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Abstract—To integrate unmanned aerial vehicles (UAVs) in
future large-scale deployments, a new wireless communication
paradigm, namely, cellular-connected UAV has recently attracted
interest. However, the line-of-sight dominant air-to-ground chan-
nels along with the antenna pattern of the cellular ground base
stations (GBSs) introduce critical interference issues in cellular-
connected UAV communications. In particular, the complex an-
tenna pattern and the ground reflection (GR) from the downtilted
antennas create both coverage holes and patchy coverage for the
UAVs in the sky, which leads to unreliable connectivity from the
underlying cellular network. To overcome these challenges, in
this paper, we propose a new cellular architecture that employs
an extra set of co-channel antennas oriented towards the sky
to support UAVs on top of the existing downtilted antennas for
ground user equipment (GUE). To model the GR stemming from
the downtilted antennas, we propose a path-loss model, which
takes both antenna radiation pattern and configuration into ac-
count. Next, we formulate an optimization problem to maximize
the minimum signal-to-interference ratio (SIR) of the UAVs by
tuning the uptilt (UT) angles of the uptilted antennas. Since this is
an NP-hard problem, we propose a genetic algorithm (GA) based
heuristic method to optimize the UT angles of these antennas.
After obtaining the optimal UT angles, we integrate the 3GPP
Release-10 specified enhanced inter-cell interference coordination
(eICIC) to reduce the interference stemming from the downtilted
antennas. Our simulation results based on the hexagonal cell
layout show that the proposed interference mitigation method
can ensure higher minimum SIRs for the UAVs over baseline
methods while creating minimal impact on the SIR of GUEs.

Index Terms—3GPP, advanced aerial mobility (AAM), antenna
radiation, drone corridor, enhanced inter-cell interference coor-
dination (eICIC), genetic algorithm, ground reflection, hexagonal
cell layout, interference, unmanned aerial vehicle (UAV), un-
manned aircraft system (UAS), UAS traffic management (UTM),
urban air mobility (UAM).

I. INTRODUCTION

As the development of the fifth-generation (5G) and beyond
wireless networks is underway, unmanned aerial vehicles
(UAVs) are expected to play an instrumental role in improving
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the network capacity and efficiency [1]-[4]. While UAVs were
originally developed for military applications, due to their
fluid mobility, line-of-sight (LOS) transmission, and steadily
decreasing production cost, UAVs have been widely used in
various new civilian applications, such as packet delivery,
search and rescue, video surveillance, aerial photography,
airborne communication, among others [5]-[8].

However, most commercial UAVs are still dependent on the
instructions/maneuvers sent to them by their associated ground
pilots through simple direct point-to-point communications.
This, in turn, limits the UAV use cases to the visual or radio
LOS range only. Thus, to take full advantage of large-scale
UAV deployment, beyond visual line of sight (BVLOS) UAV
operations are of critical importance where the UAVs can
reliably obtain command and control (C&C) communication
in the downlink (DL) for safe autonomous operations. In light
of such requirements, existing cellular networks can be a
strong candidate for deploying autonomous UAVs in BVLOS
scenarios with their widespread footprints [2], [9]. In fact, field
trials from separate industrial entities reported that the existing
long-term evolution (LTE) network is capable of meeting some
basic requirements of UAV-ground communications [2], [10].
However, these studies and the Third Generation Partnership
Project (3GPP) also pointed out several challenges such as
strong inter-cell interference and service of UAVs through
antenna sidelobes, among others. These challenges come into
play due to the fact that traditional cellular networks are
optimized for ground user equipment (GUE) by tilting the
main lobe of the antennas towards the GUEs. Hence, UAVs
flying in the sky are only served by the upper antenna sidelobes
and experience abrupt signal fluctuations as the UAVs change
their locations. Moreover, UAVs also obtain more frequent
LOS channels than GUEs. This results in severe interference
in the DL from the nearby ground base stations (GBSs) to the
UAVs.

The downtilted antennas of the existing GBSs can also
create another source of interference for the UAVs through the
reflected signal from the downtilted antennas [11]. The main
lobe of the antenna hits the ground with an incident angle
and the reflected signal can cause non-trivial interference to
the UAVs flying in the sky. The non-trivial impact of ground
reflection (GR) at millimeter-wave (mmWave) bands is also
discussed in [12], [13], where authors introduce the concept of
co-channel uptilted and downtilted antennas for serving UAVs
and GUEs in the mmWave domain. Their ray-tracing-based
simulations captured the impact of the angular separations



TABLE I
LITERATURE REVIEW.
Ref. Goal Interference mitigation Antenna radia- Uptilted GR Co-channel UAV
technique tion pattern antenna & GUE
[5] Performance analysis of UAVs X directional, array X X X
considering 3D antenna radiation
[16] Provide reliable connectivity and  Cooperative transmission  directional, array X X X
mobility support for UAVs among GBSs
[17] Simultaneous content delivery to  MIMO conjugate beam-  directional, array X v
GUEs and UAVs forming
[18] Mitigate the strong downlink inter- ~ Cooperative beamforming  directional, array X X X
ference to UAVs
[19] Intelligent GBS association for  Choosing the best GBS by  directional, array X X X
UAVs based on network informa-  supervised learning
tion
[15] Maximize the coverage probability ~ Optimizing UAV-BS loca-  directional, X X v
and fifth-percentile rate in hetnet tions and ICIC parameters  single
using exhaustive search
[20] To reduce disconnectivity time, Finding the optimal UAV  directional, array X X X
handover rate, and energy con-  velocity by RL
sumption of UAV
[21] Serve both GUEs and UAVs si-  Finding the ideal tilting  directional, array X X v
multaneously in a co-channel sub-6  angle by RL
GHz network
[22] To ensure robust wireless con- NA directional, array X X X
nectivity and mobility support for
UAVs
[23] Maximize aircraft user throughput  Bi-directional deep learn-  directional, array v X X
by tuning ISD and UT angles ing
[12] Serve both GUEs and UAVs simul-  Finding the ideal tilting  directional, v v v
taneously in a co-channel mmWave  angle of a single GBS by  single
network ray-tracing
This Maximize the minimum UAV SIR  Tuning the UT angles by  directional, array v v v
work GA

between these two antennas on the coverage performance
of the network. However, the authors did not consider the
presence of multiple GBSs in their work. The presence of
separate co-channel uptilted antennas sets can help the network
providers to ensure a high signal-to-interference ratio (SIR)
for the cellular-connected UAVs. However, proper adjustment
of uptilt (UT) angles is of critical importance since the
LOS dominant UAV-GBS paths can worsen the interference
dominant UAV-GBS links [12]. The works in [1], [2] also
suggested such dedicated uptilted cells for serving the UAVs;
however, to the best of our knowledge, no prior work consider
the problem of tuning the uptilted antennas for obtaining better
UAV SIR performance in a multi-GBS scenario.

Note that, in such a two-antenna setup, the downtilted anten-
nas create interference to the UAVs by antenna sidelobes and
the GR. Moreover, the downtilt (DT) angles of the downtilted
antennas can impact the DL performance of the GUEs as they
can be tuned to mitigate the inter-GBS interference for GUEs.
Hence, it may not always be possible or convenient to tune
the DT angles of cellular networks to optimize coverage for
both ground and aerial users. Thus, to mitigate the interference
stemming from the downtilted antennas on the UAVs, we can
consider existing inter-cell interference coordination (ICIC)
techniques already developed for heterogeneous networks,
namely, the 3GPP Release-10 specified enhanced inter-cell
interference coordination (eICIC) [14], [15].

Motivated by all these factors, the main contribution of this
paper is a novel cellular architecture that leverages additional
sets of antennas focusing towards the sky to support UAVs
along with existing downtilted antennas for GUEs. Our key
contributions can be summarized as follows:

e« We first introduce and study a new cellular concept to
increase the coverage of cellular-connected UAVs. As
mentioned earlier, we propose to use extra antennas with
UT angles installed on top of the existing downtilted
antennas for the GUEs. To the best of our knowledge,
there are only limited studies in the literature for such an
architecture [12], [13]. The antennas sets use the same
time and frequency resources as the existing downtilted
antennas. However, they focus their main beams towards
the sky to provide a more efficient and reliable connec-
tivity to the UAVs.

o Unlike other previous works, in our proposed architec-
ture, we also consider the presence of GR stemming from
the downtilted antennas while considering the antenna
radiation pattern of the downtilted antennas. To represent
the impact of antenna directivity, we modify the GR-
based path-loss model introduced in [11] to capture the
impact of the antenna directivity. Depending on the DT
angles of the downtilted antennas, our analysis shows that
the GR can create stronger interference than the antenna’s
sidelobes when the horizontal distance between UAV and
a GBS increases.

o By considering an interference-limited DL cellular net-
work, we formulate an optimization problem to maximize
the minimum SIR of the UAVs by tuning the UT angles
of all the uptilted antennas in the network. Since this
is an NP-hard problem, we propose a simple meta-
heuristics-based technique, which tunes the UT angles
of the GBSs to ensure high minimum UAV SIR. Our
proposed method uses the genetic algorithm (GA), a well-
known meta-heuristics algorithm that can generate sub-



optimal solutions efficiently in an iterative method [24].

o Since the UAVs will experience interference from the ex-
tra uptilted antenna sets along with the antenna sidelobes
and GRs of the downtilted antennas, here, we consider
the 3GPP Release-10 specified eICIC technique to ensure
the reliable co-existence of cellular-connected UAVs and
GUEs. The basic idea is that the downtilted antennas
will stop transmission during some portions of the data
transmission duration to reduce interference at the UAVs
in DL. We discuss eICIC briefly later in this paper.

« We conduct and present extensive simulations to study the
minimum SIR performance of our proposed method. We
first obtain sub-optimal solutions from the proposed GA-
based technique and then use eICIC to further increase
the SIR. Our results show that it is possible to obtain
high signal-to-interference (SIR) at the UAVs’ end by
optimizing the UT angles along with considering the
eICIC method. By considering different UAV heights and
inter-GBS distances, we also show the effectiveness and
superiority of our method over some baseline methods.
Our results also revealed some interesting yet important
design guidelines such as the impact of the number of
antenna elements and the DT angles while considering
the coexistence of UAVs and GUE:s.

The rest of the paper is organized as follows. We provide
a literature review related to the interference mitigation tech-
niques for cellular-connected UAV in Section II. In Section III,
we describe our system model. Section IV discusses the
UT angle maximization problem. We discuss our proposed
GA-based UT antenna optimization method in Section V.
Simulation results and the pertinent discussions are presented
in Section VI. Finally, conclusions are drawn in Section VII.

II. RELATED WORKS

Research efforts in integrating UAVs into existing cellu-
lar networks with GUEs have recently attracted substantial
attention from both academia and industry. For instance,
in [5], the authors explored the impact of practical antenna
configurations on the mobility of cellular-connected UAVs and
showed that increasing the number of antenna elements can
increase the number of handovers (HOs) for vertically-mobile
UAVs. In [16], the same authors provided the upper and lower
bounds on the coverage probability of UAVs considering a
coordinated multi-point technique. The work in [25] pre-
sented an analytical framework for co-existing UAV and GUE
considering beamforming technique. By conducting extensive
3GPP compliant simulations, in [26], the authors showed that
the existing cellular networks will be able to support a small
number of UAVs with good mobility support. In [27], authors
summarized the key barriers and their potential solutions
for widespread commercial deployment of flying UAVs in
beyond 5G wireless systems. By considering a network of
UAV base stations (BSs), the work in [28] introduced exact HO
probability for similar UAV velocity and provided lower bound
for UAV BSs with different velocities. The authors in [29]
extended the results of [28] by providing exact analysis of HO
rate and sojourn time for different UAV velocities and showed

that HO rate is minimum when UAV BSs move with the same
velocity. However, both of these works treated UAVs as BSs.
By using tools from stochastic geometry, the authors in [30]
studied the performance of 3D two-hop cellular networks
where UAV-BSs can obtain wireless backhaul from GBSs.
In particular [30] considered realistic antenna patterns and
dedicated uptilted antennas for providing better connectivity
in the UAV-to-GBS links.

Due to the complex antenna pattern and air-to-ground
path loss model, the researcher also relied on learning-based
frameworks for ensuring reliable integration and operation of
cellular-connected UAVs. For instance, a supervised learning-
based association scheme for UAVs was proposed in [19] to
associate UAVs with the GBS providing the highest directional
antenna SIR. By tuning the DT angles of the GBSs, athe
work in [21] used reinforcement learning (RL) to provide
good connectivity to both UAVs and GUEs. However, they
did not consider the SIR at the UAV which plays a critical
role in reliable autonomous UAV deployment. In another
work [31], the authors proposed a deep-learning-based GBS
association algorithm for cellular-connected UAVs which takes
the knowledge of the cellular environment into account. The
recent work in [20] authors study the problem of jointly
optimizing UAV HO rate, disconnectivity time, UAV flight
duration, and UAV energy consumption by tuning the UAV
velocity. In particular this prior work explored a multi-armed
bandit RL algorithm to solve the problem and showed that the
perfect parameters can significantly improve the performance
of cellular-connected UAVs. In [22], the authors explored RL
algorithm to maximize the received signal quality at a cellular-
connected UAV while minimizing the number of HOs. An
extension of the traditional RL algorithms known as multi-
agent RL has been also introduced for efficient UAV control
in [32]. Note that these learning-based algorithms will either
require advanced data collection, pre-processing, and training,
or sample inefficient repetitive interaction with the cellular
networks, which makes the deployment of these algorithms
challenging for real-world network operators.

In addition to these learning-based methods, non-linear
optimization techniques were also used to provide reliable con-
nectivity to UAVs. For instance, in [33], the authors proposed
a cooperative interference mitigation scheme to mitigate the
strong uplink interference from the UAV to a large number of
co-channel GBSs serving terrestrial UEs. The helping GBSs
sense the UAV’s power, which is sent to the main GBS for
further interference processing. Similar authors introduced a
cooperative beamforming and transmission scheme to miti-
gate the interference of cellular-connected UAVs in DL [18].
In [34], they proposed cooperative non-orthogonal multiple
access (NOMA) technique to the uplink communication from
a UAV to cellular GBSs, under spectrum sharing with the
existing GUEs. In [35], authors introduced the problem of
maximizing the minimum UAV rate by joint beamforming,
association, and UAV-height control framework for cellular-
connected multi-UAV scenarios. However, none of these an-
alytical and learning-based works [5], [16], [19]-[22], [25]-
[29], [31], [35] considered the presence of GR which plays a
critical role in air-to-ground communications as an important
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Fig. 1. Illustration of the inter-cell interference at a cellular-connected UAV from the GR signal of a downtilted antenna and the LOS signal from the uptilted
antenna of a nearby base station. Though not shown in the figure, the associated GBS in the right can also create interference by the downtilted antennas.
The signal quality at the UAV will be effected by the UT angles of the uptilted antennas since they will impact both the desired and the interference signals.

source of interference for UAVs [11], [12]. The most closely
related work here is [23], in which the authors introduced a
bi-directional deep learning-based technique to maximize the
median capacity of an aircraft flying at a height of 12 km.
Using system-level simulation, they considered optimizing the
inter-GBS distance and dedicated uptilted antennas to solve
network optimization problems. In contrast to their work,
here, we focus on the UAVs flying under 400 meters of
height where the impact of GR is not negligible. Moreover,
in our considered system, each GBS can individually change
its UT angle, in contrast to the similar UT angles that are
assumed for all GBSs in [23]. To further increase the minimum
SIR, we consider the concept of the eICIC to mitigate the
interference stemming from the downtilted antennas at the
UAV’s end. Since eICIC was already studied extensively in
the last decade for increasing efficiency and capacity of the
heterogeneous networks [14], [15], it will be practical to
deploy it for mitigating the interference from the downtilted
antennas. Moreover, the UT angle tuning is based on the GA
algorithm, which is also well-studied and was used extensively
in optimizations of different aspects of wireless networks [36].
For convenience, we summarize and compare the state-of-art
in the literature with our work in Table I.

III. SYSTEM MODEL
A. Network Model

We consider an interference-limited DL transmission sce-
nario from terrestrial GBSs to cellular-connected UAVs where
the 19 GBSs are distributed in a two-tier hexagonal grid with
a fixed inter-site distance (ISD). An illustration of such a
network is presented in Fig. 2. Here, we do not consider
wrap-around [37], [38] and thus, we will only focus on the
performance of the central hexagonal cell to capture the impact
of inter-cell interference from the neighboring cells. However,
our analysis can easily be extended to larger cellular networks
with different GBS distributions. Hereinafter, we will use
the terms ‘GBS’ and ‘cell’ interchangeably. To average out
the impact of UAV distribution, we divide the center cell
into discrete grid points, and a UAV is placed on each grid

point at a height hyay. Each UAV is equipped with a single
omnidirectional antenna. The set of the UAV locations and the
GBSs can be expressed as A and B, respectively.

We also assume that all GBSs have equal altitudes hgps
and transmission power Pggs. The GBSs consist of V; ver-
tically placed cross-polarized directional antennas downtilted
by angle ¢4 [5], [6]. We consider the GBS antennas to be
omnidirectional in the horizontal plane but they have a variable
radiation patterns along the vertical dimension with respect to
the elevation angle between the antennas and the users [17].

Different from the traditional cellular network setting, here,
we also consider the presence of another set of antennas on
top of the previous ones, which can provide connectivity to
the UAVs using UT angle ¢,,. Since the UAVs served by only
downtilted antennas suffer from poor connectivity and severe
interference, uptilted antennas can be used to provide reliable
connectivity to the UAVs [1], [12]. Note that the antenna tilt
angle is obtained by introducing a fixed phase shift to the
signal of each element. We define hg%s and hg%s, respectively,
as the height of the uptilted antennas and downtilted antennas.
The two sets of antenna setups are separated by a height
difference hgq, i.e., hq = h(cul)as — h(c(;jl)as- We consider that all
of the GBSs and their sets of antennas share the same time
and frequency resources. The UAVs will be associated with
the antenna set (uptilted or downtilted) of the GBS providing
the highest reference signal received power (RSRP) [5], [39].

B. Antenna Radiation Pattern

The N, antennas are equally spaced where adjacent ele-
ments are separated by half-wavelength distance. The element
power gain (in dB) in the vertical plane at elevation angle
04 with respect to the downtilted antennas can be specified
by [37]

0 2
Ge(64) = G™ — min { 12 <d> Gy, (1)
0348
where 04 € [—90°,90°], 0345 refers to the 3 dB beamwidth
with a value of 65°, GI'™ = 8 dBi is the maximum gain



of each antenna element, and G, is the side-lobe level limit,
respectively, with a value 30 dB [40]. Note that 64 = 0° refers
to the horizon and the 64 = 90° represents case when the main
beam is facing upward perpendicular to the zy-plane [37].
The array factor A?(Gd) of the ULA with N; elements while
considering a DT angle ¢4 is given by

1 sin (M= (sinfg — sin ¢q))
VN, sin (%(sin 04 — sin qﬁd)) '
Let us denote chd) (6a) = 101og;o(AF(0a))? as the array

power gain in dB scale. Then the overall antenna gain at
elevation angle 6 is given by

GD(04) = Ge(ba) + G (0a). 3)

A (0q) = )

Similarly, the array factor pertinent to the uptilted antennas
with UT angle ¢, and elevation angle #,, can be expressed as:

1 sin <N5” (sin @, — sin qbu))
V/N; sin (g(sin 0, — sin gbu)) ’
The array gain G(fu)(ﬂu) 2 101og;(A}(6u))? can then be

derived and, ﬁnally,' the overall antenna gain due to the UT
angle ¢, can be expressed as:

G (0,) = Ge(Ba) + G (01). (5)

AP (6,) = )

C. Ground Reflection Channel Model

The channel between a GBS and a UAV plays a critical role
in the coverage performance at the UAV’s end and we consider
a channel model that is characterized by both distance-based
path-loss and GR. To characterize the GR, we modify the
height-dependent path loss model introduced in [11] which is
a variant of the two-ray path loss model [41]. Let the length of
the 3D Cartesian distance from a UAV to a GBS j be [/; and
the length of the incident and reflected paths are ry ; and 3 ;,
respectively. For convenience, we discard the subscript from
huay in the following analysis. Finally, the received power
from GBS j at a UAV at height h can be specified as:

GP(0) | RW)G (h)eiads o)

¥ T+ T2,

(6)
where v € {u,d}, i = /=1 is the imaginary unit of a
complex number, A is the wavelength of the carrier frequency,
ég-v)(Hv) and Gg-d)(h) represent the height-dependent antenna
gain of the direct and reflected path, respectively, R(1);) is
the GR coefficient for the angle of reflection ¢); with respect
to the ground plane, A¢; = (r1; + ro ;) — l; is the phase
difference between the reflected and the direct signal paths,
and «(h) is the height dependent propagation coefficient for
UAV height h. Here, we do not consider GR from the uptilted
antennas since their main beams are oriented towards the sky.

Note that the GR coefficient for cross polarized antennas
can be calculated as R(1);) = w [42], which also
depends on the relative ground permittivity e, ~ 15 [11], re-
flection coefficients for horizontal linear polarization R (1))
and vertical linear polarization Ry (1);). Moreover, égv)(Qv)

A 2
P = Pogs | —
f GBS [474

y axis position (km)
o

-0.5 0 0.5 1 1.5 2
x axis position (km)

-2 -1.5 -1

Fig. 2. 2-tier hexagonal cell structure with 19 cells and ISD = 500 m. In this
paper, we focus on the center cell with GBS location [0,0] km.

depends on the instantaneous elevation angle between the GBS
and the UAV by (3) and (5), whereas Gg-d)(h) can be expressed
as:

G (vy), h<hy
ng)(iﬁj) R
~(d) o 2 ) L < h<2h
G5 (h) = D (4.
J (¥5) h )
2 2. (G () = 1), 2hy <h <500
e h > 500

(7
where h; = thi%s + 2 and hy, = 500 m are threshold
heights [11], and CA?(jd) (1) is the antenna gain of the incident
path on the ground from the downtilted antennas which
depends on N,. Finally, the height-dependent propagation
coefficient can be expressed as:

-2
ag—h- <(a0(v) )>7 h<2~h(GV1)35,
a(h) = heas ®)
2 h>2-hi)s,

where o is the maximum possible attenuation coefficient [11].
Here, we do not consider any GR due to the antenna sidelobes.
From (7), we can see that the antenna gain is dependent on the
incident angle );, whereas in [11], the gain of the reflected
path is assumed to be constant with respect to ;. In Fig. 1,
we provide a simple illustration of how a UAV can suffer from
interference from GR and antenna sidelobes.

Remark 1: Due to the the DT angle ¢q, the main lobe of
the downtilted antenna will not reach the ground level before
the horizontal distance (in meter) is away by t:f(’;i) from
the GBS. Hence, UAVs closer to this distance from a GBS will
not be impacted by the GR stemming from the downtilted main
lobe of that particular GBS.

Next, for a given UAV height and DT angle, we derive the
distances from a GBS where the impact of the GR is the most
effective.
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Fig. 3. Analysis of GR depending on the DT angle ¢q.

Theorem 1: For a given hgps, huav, and DT angle ¢q,
the impact of the GR from a GBS will mostly be seen between
horizontal distances d; = % and dy = %
from that GBS, where

¢1 = ¢a — 0.5 X Onppw, )
¢2 = ¢a + 0.5 X Onppw, (10

and Onpby is half power beamwidth of the mainlobe of the
downtilted antenna.

Proof: Consider a scenario with a single GBS with antenna
pattern and height are as specified in Section III. Since GR
only stems from the downtilted antennas, here, we consider
that the GBS is only equipped with downtilted antenna with
DT angle ¢4. Let us consider the half-power beamwidth
(HPBW) of the main lobe as 0yp1,w. Note that the HPBW is
inversely proportional to the number of elements in the antenna
array [43]. Given the DT angle ¢4, the two angles of the two
end-points of the HPBW will be as expressed in (9) and (10).

Then the downtilted main beam will reach the ground
and the impact of the HPBW will be within the distances
rl = tg&‘zi) and r2 = t;f(%sz) from the GBS as depicted in
Fig. 3. By assuming regular reflection from the ground, the two
rays will reach the UAV height at a distance d; = %
and dr = %, respectively from the GBS, which
completes the proof.

Theorem 1 provides us the range of distances from a GBS
where a UAV will be impacted significantly by GR for a given
DT angle ¢4q. From Theorem 1, we can observe that for a
higher ¢4, locations closer to the GBSs will be impacted by
GR and vice versa.

Remark 2: If ¢q < 9‘“"%, then the impact GR at the UAV
will start from the distance di and will the impact of the
main lobe will last till infinity. However, due to the path loss,
the impact will gradually decrease as the horizontal distance
increases beyond d; .

D. Numerical Example

By considering ¢4 = 6°, in Fig. 4(a), we compare the 3GPP
RMa-AV model [38] and our proposed height dependent GR
model for ~yay = 50 m, hgps = 30 m, and Pgs = 30 dBm,
while considering the antenna radiation pattern as discussed
before. The received signal plot with respect to 2D UAV-BS
distance shows that the impact of GR comes into play after a
certain horizontal distance. The ripple in the received signal is
created due to the phase difference between the direct LoS path
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Fig. 4. Comparison of GR and 3GPP RMa-AV channel model [38] for

different UAV heights considering the antenna radiation pattern and ¢g = 6°.
(a) hUAV =50 m and (b) hUAV = 100 m.

and the reflected path and the GR can provide more than 10 dB
more signal power than the 3GPP model. For hyay = 100 m,
as shown in Fig. 4(b), the GR shows a similar kind of trend
but after greater UAV-to-GBS horizontal distance as discussed
in Theorem 1.

Finally, we split the reflected signal from the downtilted
antennas into its two ingredients: the signal from the antenna
sidelobes and the reflected signal from the main beam of the
DT antennas. The relevant results for hyay = 100 m are
shown in Fig. 5(a), from which we conclude that the GR
path-loss model coincides with the sidelobes when the UAV is
close to the GBS. However, after a distance of 400 m, the GR
starts to provide high power through the main lobe which even
compensates the antenna’s side-lobe null at 442 m. Overall, the
GR keeps dominating the signal from the DT angles till about
900 m. We also study the impact of GR for higher DT angles
in Fig. 5(b). For a DT angle of 10°, GR starts dominating the
signal power from about 350 m and can act as the dominant
source of interference for a UAV situated at a distance of 1500
meters.

From the above discussion, we can conclude that the down-
tilted antennas can create significant interference towards the
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far UAVs by GR. However, other than a few works, the impact
of GR is not considered in the literature. Apart from this, the
uptilted antennas can also create strong interference. However,
we can mitigate the interference from the uptilted antennas by
tuning the UT angles properly [12]. Hence, to increase the
reliability of the cellular-connected UAVs, we consider the
eICIC method to reduce the interference from the downtilted
antennas.

E. Overview of eICIC

To mitigate the interference problems caused by the extra
set of antennas, we consider eICIC techniques which have
been specified in LTE Release-10 of 3GPP [44]. The time-
domain eICIC technique provides an interference coordination
method based on the sub-frame blanking, known as almost
blank sub-frame (ABS) that does not send any traffic channels
and sends mostly control channels with very low power. In
our proposed interference mitigation method, the downtilted
antennas will not transmit data while allowing the uptilted
antennas to serve UAVs suffering from high interference
during an ABS. Transmissions from the downtilted antennas
are periodically muted during the entire frame duration. The

Almost Blank Subframe
Frame Duration

P 7!
Downtilt v
Uptilt

<—> \ Tirr:e

Subframe Duration Normal Subframe

Fig. 6. Basic principle of time domain eICIC. For the considered scenario,
the aerial users can be scheduled in the uptilted antenna subframes that
overlap with the almost blank subframes of the downtilted antennas. This will
protect aerial users from the sidelobe interference and the ground reflection
interference coming from the downtilted antennas, as illustrated in Fig. 1.

uptilted antennas can send their data during such an ABS and
avoid interference. Note that certain control signals are still
required to be transmitted even in the muted sub-frames to
avoid radio link failure [45].

The frame structure of the eICIC is shown in Fig. 6. During
the uncoordinated sub-frames (USFs), the downtilted antennas
transmit data and control signals at full power Pgpg while
during the coordinated sub-frames (CSFs), they remain muted.
We define 5 as the duty cycle of USFs which refers to the
ratio of the number of USFs to the total number of sub-
frames in a frame. Then, (1 — ) will be the duty cycle of the
silent sub-frames or CSFs. Here, we assume full coordination
and synchronization among the GBSs and hence, the ABS
pattern of all the downtilted antennas will be the same. We
will show in the next subsection that the choice of 5 will
impact the capacity/rate of the UAVs/GUEs associated with
the downtilted antennas. However, this is out of the scope of
this paper and will be subject of our future works.

IV. UPTILT ANGLE OPTIMIZATION FOR MAXIMIZING SIR
A. SIR Definitions Over Different Subframes

As mentioned earlier, we consider an interference-limited
DL sub-6 GHz band for the cellular network, where the
presence of thermal noise is omitted. We also assume that
the GBSs and both uptilted and downtilted antennas share a
common transmission bandwidth and full buffer traffic is used
in every GBS [6], [46]. Then, we can calculate the SIR of a
UAV connected to uptilt antennas of GBS j considering flat-
fading channels [14] and antenna pattern during USF by the
following expression:

(w)
Pj

> B+ P
beB,b#], ve{u,d}

(w) _
Vst =

(1)

Similarly, SIR of a UAV connected to the downtilt antennas
of GBS j considering flat-fading channels during USF as
follows:

(@)
Pj

> Y+ pY
beB,b#j, ve{u,d}

(4 _
’yj,usf -

12)

Note that (6) is used to calculate the received power from a
particular antenna set (uptilted/downtilted) of a GBS. We as-
sume flat-fading channels due to the presence of narrow-band
OFDM-based communication in existing cellular networks.



During the CSFs, the downtilt antennas are kept off to protect
the UAVs from interference (GR of the beam’s boresight and
the LOS interference from the beam’s sidelobes). Note that the
interference to a UAV served by an uptilted antenna may be
coming also from the downtilted antenna located at the same
GBS. Thus, the SIR of a UAV connected to the uptilt antennas
of GBS j during CSF can be expressed as follows:
“Y(li)gf - &
€8 Z Pb(u)
bEB b#j

13)

Finally, we can find the capacity of a UAV connected to
uptilt antennas of GBS j during USFs as follows:
oW = log, (1 + y(u) ).

gousf T 7,usf

(14)

On the other hand, if the UAV is associated with downtilted
antenna of its serving GBS, it will obtain its data in the DL
during the USFs. Hence, the rate can be expressed as

1 |
Cj(',(u)sf =p (Ing(l + 7]((u1f))

Note that the rate of the UAVs associated with downtilted
antennas will be scaled by the parameter 3. Lower values of 8
will increase the SIR performance of the UAVs associated with
the uptilted antennas as shown in (13). However, the UAVs
associated with the downtilted antennas and most importantly,
the GUEs will suffer from low rates for a low (. This tradeoff
will be addressed in our future work.

5)

B. Problem Definition

Our goal is to tune the UT angles of the uptilted antennas
individually during the USFs to provide reliable SIR at the
UAVs’ end. Without optimizing the UT angles, the SIR
performance will worsen due to the additional interference
from the uptilted antennas [12]. Note that the UAVs can be
associated with either uptilted antennas or downtilted antennas
depending on the highest RSRP providing antenna set [12].
Let us consider the vector of SIRs of all UAVs when they are
associated with the highest RSRP providing antenna sets as:

Y = [V1,usfs o VA ust)s

where | - | represents the cardinality of a set. Then, we can
formulate the problem of maximizing the minimum UAV SIR

as: .
max min 7y

P, (16)
st. 0< P, <90°.

Here, the optimization variable ®, = [¢u 1, ..., oy, 8] is
the vector of the UT angles of the uptilted antennas in the
network. Note that only the interference caused by the uptilted
antennas is dependent on the UT angles. We also keep the UT
angles above the horizon level (greater than 0°) for saving the
GUE:s from additional interference. However, changing the UT
angles will change the association of the serving GBS/antenna
sets. Moreover, due to the complex antenna pattern and tilting
angles involved, it not possible to obtain the closed-form
optimal solutions by taking the derivatives of (11) and (12)
even under a free-space path loss model and a similar UT

angle for all the GBSs. Assuming the tilting angles to be 0°
for simplification as done in [25] will not provide the realistic
cellular network scenarios.

Using exhaustive search method is also computationally
prohibitive since its complexity increases exponentially with
number of GBSs or uptilted antenna sets. To overcome these
challenges, in the next section, we introduce our GA-based UT
angle optimization method for maximizing the minimum UAV
SIR. Note the SIR gain due to the eICIC is not related to tuning
the UT angles and the gain can be calculated by simply not
considering the received power from the downtilted antennas.
The rates of the UAVs who are associated with the downtilted
antennas will be reduced by the quantity 3 as shown in (15)
and their SIRs will also be impacted by the choice of the UT
angles.

V. GENETIC ALGORITHM BASED UPTILT ANGLE
OPTIMIZATION

The GA is a stochastic population-based optimization tech-
nique that mimics the metaphor of natural biological evalua-
tion and is an efficient tool in searching for the global opti-
mum [24]. It borrows the idea of “survival of the fittest” in its
search process to select and generate individuals (design solu-
tions) that are adapted to the underlying objectives/constraints
of the problem of interest. Hence, GA is well suited to
and has been extensively applied to solve complex design
optimization without being guided by stringent mathematical
formulation. Thanks to its parallel-search capability, it can
explore the whole search space simultaneously, and hence,
an optimum solution can be obtained more quickly than an
exhaustive search. The detailed principles of a GA scheme
can be found in [24]. In the following subsections, we outline
our proposed GA-based UT angle tuning method for obtaining
the optimal solution of (16). We assume that each GBS sends
only its chosen UT angle and the SIR information of the UAVs
associated with it to a central server. The server can then run
the proposed GA-based algorithm and compute the optimum
UT angles.

A. Representation

At first, some randomly generated candidate solutions for
the optimization problem are encoded in a chromosome-
like strings. The collection of these candidate solutions or
chromosomes are referred to as population. In other words,
members of the population are the vectors of possible UT
angles for our formulated optimization problem. Note that each
member of the population must provide a complete solution
to the problem. The size of the population does not change
over time usually. To meet the constraint, the UT angles of
the population are generated within the feasible search space.

B. Fitness Evaluation

The objective function of the problem is used to evaluate
the fitness of each chromosome. In our case, the randomly
generated UT angles are used as inputs to the simulator for
obtaining the minimum SIR of all the discrete UAV locations.
The higher the minimum SIR of a solution is, the better the
fitness value is associated with it.



Algorithm 1 Uptilt Angle Optimization using GA

1: Input:

2: population: Set of UT angles for all GBSs

3: Fitness function (FF): Minimum SIR of the UAV
4: network parameters, GBS and UAV locations

5: Method:

6: NewPopulation = empty set

7: StopCondition: Number of iterations = 50

8: SELECTION: Roulette wheel selection method
9: Create random Population

10: EVALUATE (Population, FF)

: while (StopCondition is not met)

12: for ¢ = 1 to Population size do

13: Parent] = SELECTION(NewPopulation, FF)
14: Parent2 = SELECTION(NewPopulation, FF)
15: Child = Reproduce(Parentl, Parent2)

16: if (small random probability)

17: child = MUTATE(Child)

18: add child to NewPopulation set

19: end if

20 end for

21: end while

22: EVALUATE (NewPopulation, FF)

23: Args = GetBestSolution (NewPopulation)

24: Population = Replace (Population, NewPopulation)
25: Output: Args: Best individuals of the UT angles and the highest

minimum SIR

C. Selection

The selection process determines the pair of candidate
solutions/ UT angles who will act as parents for mating.
After being evaluated by a fitness function, each member
of the population is assigned a probability to be selected
for reproduction. Note that, the worse performing members
should also be given a chance in the evolution process so
that the overall algorithm can maintain a good exploration in
the search space. Here, we consider a simple biased roulette
wheel to select individuals as parents [47]. More explicitly,
each chromosome in the population is assigned a slot in a
roulette wheel, whose size is proportional to its fitness over
the total sum of fitness in the population. Then, a random
number between 0 and 1 is generated for each member/ UT
angle set. A chromosome/member is selected as a parent for
further genetic operations if the random number is within the
range of its roulette wheel slot.

D. Crossover

The selected parents are then processed by the crossover
operator, which mimics mating in biological populations. It is
considered to be the most significant phase in a GA. Here,
for each pair of parents to be mated, a crossover point is
chosen at random from within the chromosomes. Then Off-
spring/Children are created by exchanging the chromosomes
(UT angles) of parents among themselves until the crossover
point is reached. The crossover operator propagates features
of good surviving designs from the current population into the
future population, which will have better fitness value (higher
minimum SIR in our case) on average.

E. Mutation

The last operator is the mutation, which introduces diversity
in population characteristics and prevents premature conver-
gence. In this step, certain parts of the newly formed children
(new sets of UT angles with better fitness) are subjected to
a mutation with a low random probability. This implies that
some of the chromosomes in the string of UT angles can be
flipped/ interchange places among themselves.

After all of these genetic processes, the members of the
populations with the worst fitness values are replaced by the
new individuals with better fitness values or higher minimum
SIRs. The algorithm continues until good results are obtained
through iterations in terms of the objective function. The
overall algorithm is also summarized in Algorithm 1. In
essence, obtaining high-quality sub-optimal solutions from
our proposed method depends on carefully addressing the
following issues.

« representation of tentative solutions (UT angles) as chro-
mosomes;

o initialization of the randomly generated population;

o determination of the fitness function (min SIR);

« selection of genetic operators;

o adjustment of GA parameters (population size, crossover
and mutation probabilities).

Considering the impact of mutation, the work in [48]
provided the lower bound of the number of iterations required
for obtaining the global optimum for a given population size.
In particular, they showed that to obtain the global optimum
with any specified level of confidence, GAs should run for long
enough. However, later we show that increasing the number
of iteration or population size will increase the complexity
and run-time of the proposed algorithm. Hence, we run ex-
tensive simulations for different numbers of population size
and iteration, and check the associated minimum UAV SIRs.
We found that with a the population size of 200, mutation
probability of 0.1, and 50 iterations, our algorithm provides
high-quality sub-optimal solutions.

F. Complexity Analysis

As described in the previous subsections, our proposed GA-
based UT angle optimization technique randomly generates
tentative solutions and then produces new better solutions
from the previous ones iteratively. For a given GBS and UAV
distributions, the overall time complexity of the algorithm is
O(M?I|A||B|), where M represents the number of population
and [ is the iteration number, respectively. Hence, for a given
population size, number of iterations, and number of GBSs,
the complexity of our proposed algorithm increases linearly
with an increasing number of UAVs.

VI. SIMULATION RESULTS

In this section, we present the simulation results for our
proposed cellular architecture based on a new set of antennas
and eICIC. Unless otherwise stated, the simulation parameters
are as listed in Table II. By considering flat fading chan-
nels [14] and hexagonal cells, we report our finding for two
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Fig. 7. Optimal UT angles obtained from the proposed GA algorithm for
ISD = 500 m for (a) hyay = 100 m, (b) hyay = 200 m, and (c) for
ISD = 1000 m and hyay = 100 m.

TABLE 11
SIMULATION PARAMETERS.

Parameter Value
PGBS 46 dBm
huav 100 m & 200 m
hi 30 m
ISD 500 m & 1000 m
hd 1 m
hGUE 1.5m

0.15 m
ap 3.5 [11]
DT angle (¢q) 6°

ISDs namely, 500 m and 1000 m while considering the highest
RSRP-based association (HRA). It is worth noting that in
our setup, the HRA association will also provide the highest
SIR among all the available antennas of the network. For
convenience, we refer to our proposed method as ‘optimal
HRA’ hereinafter. To study the performance of our proposed
method we consider also three baseline schemes. These four
scenarios can be summarized as follows.

o optimal HRA: this is our proposed GA-based UT angle
tuning method.

o HRA single: all GBSs pick the same optimal UT angle
which maximizes the minimum SIR. This UT angle is
calculated by exhaustive search method.

o Random: Each GBS picks UT angles randomly from the
search space.

o HRA (no eICIC nor UT antennas): presence of uptilted
antennas and eICIC is ignored. UAVs associate with the
highest RSRP providing GBS.

As mentioned in Section III, we divide the whole network
into 10 mx10 m grids [14], and a UAV is placed on each
grid point with height hyayv. Such a uniform distribution will
average out the impact of UAV distributions [14]. We only
take the discrete points inside the center hexagonal cell into
consideration.

A. Optimal UT Angle Analysis

After obtaining the optimal UT angles by using (11) and
(12) and our proposed GA-based method, we calculate the
UAV SIRs in USFs for the two ISDs and UAV heights. Then
eICIC is used to get the pertinent UAV SIRs in CSFs. For
ISD = 500 m and hyay = 100 m and 200 m, the optimal UT
angles obtained from the proposed GA-based algorithm are
presented in Fig. 7(a) and Fig. 7(b), respectively. Our results
show that one of the six neighboring GBS chooses a relatively
smaller UT angle and provides high received power to the
UAVs for hyay = 100 m. The other GBSs overall maintain
higher UT angles to reduce the interference from the sidelobes.

A similar conclusion can also be drawn for hyay = 200 m,
while one big exception is that the UAVs are supported by
s tier-2 GBS as shown in Fig. 7(b). Due to the compact
GBS locations and higher UAV height, the tier-2 GBSs can
provide better SIR by choosing an angle that covers most
of the discrete UAV locations for hyay = 200 m. For ISD
= 1000 m, both UAV heights show the similar trend as
Fig. 7(a) and in Fig. 7(c), we report the optimal UT angles



for hyay = 100 m. Overall, the GBSs tend to choose lower
UT angles for larger ISD to reduce inter-cell interference. A
similar case of obtaining lower UT angles for higher ISD was
also reported in [23].

For ISD = 500 m and hyay = 100 m and 200 m, the
respective UAV SIR cumulative distribution function (CDF)
plots are presented in Fig. 8(a) and Fig. 8(b), respectively.
From both figures, we can conclude that our proposed optimal
HRA scheme provides higher minimum SIR (about —1.36 dB
for hyav = 100 m and about 10 dB for hyay = 200 m)
than the other baseline methods. The optimization framework
considers the minimum UAV SIR inside the center cell and
thus the interfering GBSs choose UT angles which create less
interference towards the UAVs. During the CSFs, turning the
downtilted antennas off increases the minimum SIR to about
6 dB for hyay = 100 m and about 12.5 dB for hyay = 200 m.
One interesting observation is that the overall SIR with eICIC
is higher for hyay = 100 m. This is because the UAVs suffer
more interference from the downtilted antennas for lower UAV
heights via GR and antenna sidelobes. Moreover, the path loss
is also lower for hyay = 100 m than hAyay = 200 m. Hence,
muting the downtilted antennas provide higher SIR gain in the
CSFs for hyay = 100 m.

In the HRA single scheme, the GBSs choose the same opti-
mal angle, which result into less degree of freedom to improve
the SIR performance. Hence, it provides comparatively lower
SIR (about —11 dB for hyay = 100 m and about —8 dB for
huay = 200 m) than our proposed method. Even with ICIC,
the overall gain in the minimum SIR is still significantly lower
than the without ICIC minimum SIR of our proposed scheme.
The random scheme chooses the UT angles for each of the
GBSs and thus provides better performance than HRA single.
Thus, it is evident from the discussion that it is critical to
tune the UT angles of the GBSs individually for the successful
integration of the uptilted antenna sets. Finally, for the case in
which the UAVs are served by only downtilted antennas and
without ICIC scheme, the overall SIR is very low (less than
—8 dB) for both of the UAV heights. For larger cell sizes or
ISD = 1000 m and the two UAV heights, we can conclude
from Fig. 9(a) and Fig. 9(b) that our method outperforms the
other baseline schemes significantly in terms of the minimum
UAV SIR during the USFs i.e., without ICIC.

Fig. 10 shows the rates (bps/Hz) for the baseline schemes
using (14) and (15). From Fig. 10, we can observe that our
proposed optimal HRA scheme provides a higher minimum
rate, 50th-percentile rate, and sum rate than other baseline
schemes. HRA (no ICIC or UT antennas) scheme is excluded
in the rate comparison due to its very low SIR performance
(less than —8 dB). Due to the higher SIR obtained with eICIC,
overall the rates increase significantly in the CSFs. The UAV
with the minimum SIR in the HRA single scheme is associated
with the downtilted antennas and thus, HRA single provides
the same rate in USF and CSF. Similar observations are also
obtained for other UAV height and ISD.

B. Impact of the Downtilted Antenna

DT angles can create a significant impact on the overall
performance of the network since they play a major role
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in determining the inter-cell interference. Higher DT angles
decrease the interference towards other nearby GBSs which
translates to a better coverage for GUEs. However, for UAVs
flying in the sky, the DT angles can create interference by both
side lobes and GR. This motivated us to study the impact
of DT angles of the downtilted antenna sets and report the
relevant results in Fig. 11.

In Fig. 11(a), we show the SIR CDFs for hyay = 100 m
and 200 m by calculating the optimal UT angles using optimal
HRA scheme for three DT angles namely, 0°, 6°, and 12°,
respectively. From this figure, we can conclude that the 0° DT
angle overall provides low SIR in both USF and CSF frames
due to the higher interference stemming from the main beam
of the downtilted antennas. Though the impact of GR is trivial
for ¢q = 0° as discussed in Theorem 1, the focus of the
main beam causes severe interference to the far away UAVs,
which degrades the overall SIR performance. Although higher
DT angles are beneficial for GUEs, our results show that
6° provides better SIR performance than its 12° counterpart.
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Theorem 1. For 6° DT angle, UAVs usually suffer less severe 2
interference in GR from neighbor GBSs due to higher path <)
loss since the GR signals have to travel longer to reach the %
UAV. £
For the CSFs, we obtain high SIR for both 6° and 12°. ?
Due to the higher GR interference of 12°, this angle provides
the highest SIRs in the CSFs by muting the downtilted
antennas. From Fig. 11(b), we can make similar observations

for hyay = 200 m. However, in Fig. 11(b), the UAVs achieve
better SIRs than those of lower heights. This is due to the fact
that the GRs from the GBSs face higher path loss and thus
become weak when they reach UAVs. Moreover, the interfer-
ence due to the sidelobes also weakens due to the increased
distances from the GBSs. Interestingly, 6° provides slightly
better SIRs because this angle provides better antenna gain
through the sidelobes from its other DT angle counterparts at
hU AV — 200 m.
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Fig. 10. Rate (bps/Hz) analysis for hyay = 100 m and ISD = 500 m. (a)
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Fig. 11. UAV SIR CDFs for ISD = 500 m for (a) hyav = 100 m and (b)
hUAV = 200 m.

C. Impact of the Number of Antenna Elements

The number of antenna elements has a direct impact on
the antenna array gain and the beamwidth of the antenna
pattern [43]. Here, we focus on how the number of antenna
elements at the GBS can influence the SIR performance of
the UAVs. Note that increasing the element number increases
the antenna array gain but reduces the beamwidth and vice
versa [43]. In Fig. 12(a), we plot the antenna gains in dB
scale for N; = 4, 16, and 32 using (3) and ¢q = 6°. As
expected, the antenna gain increases by 3 dB for doubling
the antenna elements and at the same time, the main beam
becomes narrower. To study the impact of this phenomenon,
we use the proposed optimal HRA method to calculate the
optimal UT angles in USFs for different /N; and report the
finding in Fig. 12(b). Since antenna with low N; provides
lower gain, the SIRs corresponding to N, = 4 obtains lower
values. For instance, about 20% of the UAVs suffer from very
low SIR (less than —5 dB).

For the other two NN, plots, we can see an interesting

Gain (dB)

-20 0 20
Elevation Angle (deg)

(@)

40 60 80

CDF of SIR

SIR (dB)
(b)

Fig. 12.  (a) Vertical antenna pattern of an GBS considering cross-polarized
elements, each with 65° half power beamwidth and ¢4 = 6°. (b) UAV SIR
CDFs for hyay = 100 m and ISD = 500 m during the USFs.

tradeoff. When N, = 16 is considered, Fig. 13(b) verifies
that it provides better minimum SIR (greater than 0 dB) than
N; = 8, thanks to its higher antenna gain. However, due to
its wider beamwidth, with N; = 8, GBSs can cover a larger
area in the sky with higher gains. This translates into the fact
that about 70% of the UAVs achieve a higher SIR compared
to the case when GBSs are equipped with 16 antennas each.
This interesting insight can help the network operators better
plan the number of antenna elements they need depending on
their performance requirements.

D. Impact of the Physical Separation of the Antenna Sets

We also study the impact of the antenna separation distance
hq between the uptilted and the downtilted antenna sets. We
consider Ayay = 100 m and ISD= 500 m and 1000 m and
show the resulting UAV SIRs for the optimal UT angles in
Fig. 13. For both ISDs, we can conclude that the overall impact
of hq is very trivial for the optimal UT angles during USFs.
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Fig. 13. UAV SIR CDFs for ISD = 500 m and ISD = 1000 m while
considering hyay = 100 m. Solid lines represents the SIR with uptilted
antennas and dashed lines represents the case without uptilted antennas during
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The related SIRs are slightly better for hq = 2 m. This is
due to the fact that with higher h4, the main lobes of the two
sets of antennas are more separated from each other and thus
creates less interference.

Another interesting finding is that the impact of hq is more
visible for ISD= 1000 m. This is because the GBSs tend to
pick lower UT angles for covering the cell-edge UAVs for
larger ISDs, and hence, the higher hq helps to keep the main
beams of the uptilted and downtilted antennas further away.
This results in lower interference and thus higher SIRs for the
UAVs. Whereas for lower ISDs, the GBSs pick higher values
of UT angles which are already separated from the main beams
of the downtilted antennas, and thus the overall impact of hq
is trivial here.

E. Impact on the GUE SIR

Thus far, we have focused on scenarios in which the UAVs
as the only users in the network. After proper tuning of the UT
angles, the presence of the extra set of uptilted antennas along
with the eICIC method can provide high and reliable SIR for
the UAVs flying in the sky. However, the extra set of antennas
can also introduce interference to the existing GUEs. Hence,
in this subsection, we study the impact of our proposed UT
angle tuning scheme on the GUEs.

Here, we consider the three DT angles as done before
along with the two ISDs and UAV heights to check the
impact thoroughly and report the results in Fig. 14. We use
the GR-based path loss model with a height of 1.5 m to
represent the GUE cases. We only report the USF results
for visual convenience and the CSF cases show the same
trends and hence, are omitted here. The cases with the uptilted
antennas are presented with solid lines and scenarios without
the uptilted antennas are represented by the dashed lines. It is
evident from the plots of both Fig. 14(a) and Fig. 14(b) that the
impact of uptilted antennas on the GUE SIRs is trivial and the
lines representing these two scenarios overlap each other. This
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Fig. 14. GUE SIR CDFs with height 1.5 m for (a) ISD = 500 m and (b)
ISD = 1000 m during USFs.

is because the main lobes of the uptilted antennas are focused
towards the sky and hence, the only impact they can create is
through the sidelobes. However, these sidelobes of the uptilted
antennas can create little to no impact on the GUEs who are
associated with GBS providing very high antenna gains. Note
that the overall trends will still be the same for 3GPP-based
path loss models [37] for GUEs.

Note that the SIRs of the GUEs increase with increasing
DT angle since higher DT angles reduce inter-cell interfer-
ence. Moreover, larger cell areas or ISDs provide better SIR
performance due to the reduced interference on the cell-
centered GUEs. Other than the plot for ISD= 1000 m and
huay = 200 m, all other plots show that GUE performance
is invariant of the optimal UT angles of the uptilted antennas.
For ISD= 1000 m and hyay = 200 m, the cell-edge users
suffer from less interference since GBSs tend to focus more
upwards with higher hyay.



VII. CONCLUDING REMARKS AND DISCUSSION

In this paper, we have proposed a novel cellular architecture
by considering an extra set of antennas that are uptilted to
provide good and reliable connectivity to the UAVs. These
antennas coexist with the traditional downtilted antennas and
use the same time and frequency resources. The downtilted
antennas can create interference to the UAVs by the antenna
sidelobes and GR, and we have proposed a modified path
loss model to capture the impact of the GR on the UAVs.
To ensure high SIR and reliable connectivity, we have formu-
lated an optimization problem with an aim to maximize the
minimum UAV SIR by tuning the UT angle of each GBS.
Since the problem is NP-hard, we have proposed a GA-based
UT angle optimization method to obtain high-quality sub-
optimal solutions efficiently. Apart from this, we have also
considered the 3GPP specified eICIC to reduce the interference
caused by the downtilted antennas. We have run extensive
simulations to study our proposed method for various cellular
network deployment configurations such as ISD, UAV height,
DT angle, number of antenna elements, etc. Our results have
shown that overall our proposed method can provide high
minimum SIR for the UAVs. Our results have also revealed
some interesting design guidelines such as the impact of the
number of antenna elements and the DT angles on the UAV
SIR performance, and most importantly, our method has shown
little to no impact on the SIRs of the existing GUEs in
the network. Thus, the proposed technique can be a strong
candidate for deploying large-scale urban aerial systems in
the near future while maintaining the reliable and efficient co-
existence of UAVs and GUEs.

Our proposed framework can be extended in several ways.
First of all, the duty cycle parameter /5 can be taken into
account in the optimization framework to maximize the min-
imum rate (instead of SIR) of both GUE and UAV since
those who are associated with downtilted antennas suffer
from the reduced rate in our proposed framework. Moreover,
the updated version of eICIC known as further enhanced
ICIC (FelICIC) can be considered in which traffic data are
transmitted during ABS with relatively low power. Another
interesting study will be providing better connectivity and re-
liable mobility (i.e., reducing ping-pong and handover failures)
to the UAVs whose trajectories are known before. It is worth
noting that, our proposed method will not be able to support
UAVs in the regions where cellular infrastructures are not
available i.e., over deserts or oceans. We may need to rely on
high-altitude aerials platforms or low earth orbital satellites
for providing reliable connectivity to UAVs in these extreme
cases.

Another limitation of our proposed framework is that the
extra set of antennas will increase the overall energy consump-
tion of the network. Moreover, the DT angles of the downtilted
antennas can impact the SIR performance of the UAVs. Hence,
joint optimization of UT angles, transmit power of the uptilted
antennas, elCIC/FelCIC parameters, and DT angles will be
included in our future work to make our framework more
efficient.
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