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Ensuring Reliable Connectivity to
Cellular-Connected UAVs with Uptilted Antennas

and Interference Coordination
Md Moin Uddin Chowdhury, İsmail Güvenç, Walid Saad, and Arupjyoti Bhuyan

Abstract—To integrate unmanned aerial vehicles (UAVs) in
future large-scale deployments, a new wireless communication
paradigm, namely, cellular-connected UAV has recently attracted
interest. However, the line-of-sight dominant air-to-ground chan-
nels along with the antenna pattern of the cellular ground base
stations (GBSs) introduce critical interference issues in cellular-
connected UAV communications. In particular, the complex an-
tenna pattern and the ground reflection (GR) from the downtilted
antennas create both coverage holes and patchy coverage for the
UAVs in the sky, which leads to unreliable connectivity from the
underlying cellular network. To overcome these challenges, in
this paper, we propose a new cellular architecture that employs
an extra set of co-channel antennas oriented towards the sky
to support UAVs on top of the existing downtilted antennas for
ground user equipment (GUE). To model the GR stemming from
the downtilted antennas, we propose a path-loss model, which
takes both antenna radiation pattern and configuration into ac-
count. Next, we formulate an optimization problem to maximize
the minimum signal-to-interference ratio (SIR) of the UAVs by
tuning the uptilt (UT) angles of the uptilted antennas. Since this is
an NP-hard problem, we propose a genetic algorithm (GA) based
heuristic method to optimize the UT angles of these antennas.
After obtaining the optimal UT angles, we integrate the 3GPP
Release-10 specified enhanced inter-cell interference coordination
(eICIC) to reduce the interference stemming from the downtilted
antennas. Our simulation results based on the hexagonal cell
layout show that the proposed interference mitigation method
can ensure higher minimum SIRs for the UAVs over baseline
methods while creating minimal impact on the SIR of GUEs.

Index Terms—3GPP, advanced aerial mobility (AAM), antenna
radiation, drone corridor, enhanced inter-cell interference coor-
dination (eICIC), genetic algorithm, ground reflection, hexagonal
cell layout, interference, unmanned aerial vehicle (UAV), un-
manned aircraft system (UAS), UAS traffic management (UTM),
urban air mobility (UAM).

I. INTRODUCTION

As the development of the fifth-generation (5G) and beyond

wireless networks is underway, unmanned aerial vehicles

(UAVs) are expected to play an instrumental role in improving
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the network capacity and efficiency [1]–[4]. While UAVs were

originally developed for military applications, due to their

fluid mobility, line-of-sight (LOS) transmission, and steadily

decreasing production cost, UAVs have been widely used in

various new civilian applications, such as packet delivery,

search and rescue, video surveillance, aerial photography,

airborne communication, among others [5]–[8].

However, most commercial UAVs are still dependent on the

instructions/maneuvers sent to them by their associated ground

pilots through simple direct point-to-point communications.

This, in turn, limits the UAV use cases to the visual or radio

LOS range only. Thus, to take full advantage of large-scale

UAV deployment, beyond visual line of sight (BVLOS) UAV

operations are of critical importance where the UAVs can

reliably obtain command and control (C&C) communication

in the downlink (DL) for safe autonomous operations. In light

of such requirements, existing cellular networks can be a

strong candidate for deploying autonomous UAVs in BVLOS

scenarios with their widespread footprints [2], [9]. In fact, field

trials from separate industrial entities reported that the existing

long-term evolution (LTE) network is capable of meeting some

basic requirements of UAV-ground communications [2], [10].

However, these studies and the Third Generation Partnership

Project (3GPP) also pointed out several challenges such as

strong inter-cell interference and service of UAVs through

antenna sidelobes, among others. These challenges come into

play due to the fact that traditional cellular networks are

optimized for ground user equipment (GUE) by tilting the

main lobe of the antennas towards the GUEs. Hence, UAVs

flying in the sky are only served by the upper antenna sidelobes

and experience abrupt signal fluctuations as the UAVs change

their locations. Moreover, UAVs also obtain more frequent

LOS channels than GUEs. This results in severe interference

in the DL from the nearby ground base stations (GBSs) to the

UAVs.

The downtilted antennas of the existing GBSs can also

create another source of interference for the UAVs through the

reflected signal from the downtilted antennas [11]. The main

lobe of the antenna hits the ground with an incident angle

and the reflected signal can cause non-trivial interference to

the UAVs flying in the sky. The non-trivial impact of ground

reflection (GR) at millimeter-wave (mmWave) bands is also

discussed in [12], [13], where authors introduce the concept of

co-channel uptilted and downtilted antennas for serving UAVs

and GUEs in the mmWave domain. Their ray-tracing-based

simulations captured the impact of the angular separations
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TABLE I
LITERATURE REVIEW.

Ref. Goal Interference mitigation
technique

Antenna radia-
tion pattern

Uptilted
antenna

GR Co-channel UAV
& GUE

[5] Performance analysis of UAVs
considering 3D antenna radiation

� directional, array � � �

[16] Provide reliable connectivity and
mobility support for UAVs

Cooperative transmission
among GBSs

directional, array � � �

[17] Simultaneous content delivery to
GUEs and UAVs

MIMO conjugate beam-
forming

directional, array � �

[18] Mitigate the strong downlink inter-
ference to UAVs

Cooperative beamforming directional, array � � �

[19] Intelligent GBS association for
UAVs based on network informa-
tion

Choosing the best GBS by
supervised learning

directional, array � � �

[15] Maximize the coverage probability
and fifth-percentile rate in hetnet

Optimizing UAV-BS loca-
tions and ICIC parameters
using exhaustive search

directional,
single

� � �

[20] To reduce disconnectivity time,
handover rate, and energy con-
sumption of UAV

Finding the optimal UAV
velocity by RL

directional, array � � �

[21] Serve both GUEs and UAVs si-
multaneously in a co-channel sub-6
GHz network

Finding the ideal tilting
angle by RL

directional, array � � �

[22] To ensure robust wireless con-
nectivity and mobility support for
UAVs

NA directional, array � � �

[23] Maximize aircraft user throughput
by tuning ISD and UT angles

Bi-directional deep learn-
ing

directional, array � � �

[12] Serve both GUEs and UAVs simul-
taneously in a co-channel mmWave
network

Finding the ideal tilting
angle of a single GBS by
ray-tracing

directional,
single

� � �

This
work

Maximize the minimum UAV SIR Tuning the UT angles by
GA

directional, array � � �

between these two antennas on the coverage performance

of the network. However, the authors did not consider the

presence of multiple GBSs in their work. The presence of

separate co-channel uptilted antennas sets can help the network

providers to ensure a high signal-to-interference ratio (SIR)

for the cellular-connected UAVs. However, proper adjustment

of uptilt (UT) angles is of critical importance since the

LOS dominant UAV-GBS paths can worsen the interference

dominant UAV-GBS links [12]. The works in [1], [2] also

suggested such dedicated uptilted cells for serving the UAVs;

however, to the best of our knowledge, no prior work consider

the problem of tuning the uptilted antennas for obtaining better

UAV SIR performance in a multi-GBS scenario.

Note that, in such a two-antenna setup, the downtilted anten-

nas create interference to the UAVs by antenna sidelobes and

the GR. Moreover, the downtilt (DT) angles of the downtilted

antennas can impact the DL performance of the GUEs as they

can be tuned to mitigate the inter-GBS interference for GUEs.

Hence, it may not always be possible or convenient to tune

the DT angles of cellular networks to optimize coverage for

both ground and aerial users. Thus, to mitigate the interference

stemming from the downtilted antennas on the UAVs, we can

consider existing inter-cell interference coordination (ICIC)

techniques already developed for heterogeneous networks,

namely, the 3GPP Release-10 specified enhanced inter-cell

interference coordination (eICIC) [14], [15].

Motivated by all these factors, the main contribution of this

paper is a novel cellular architecture that leverages additional

sets of antennas focusing towards the sky to support UAVs

along with existing downtilted antennas for GUEs. Our key

contributions can be summarized as follows:

• We first introduce and study a new cellular concept to

increase the coverage of cellular-connected UAVs. As

mentioned earlier, we propose to use extra antennas with

UT angles installed on top of the existing downtilted

antennas for the GUEs. To the best of our knowledge,

there are only limited studies in the literature for such an

architecture [12], [13]. The antennas sets use the same

time and frequency resources as the existing downtilted

antennas. However, they focus their main beams towards

the sky to provide a more efficient and reliable connec-

tivity to the UAVs.

• Unlike other previous works, in our proposed architec-

ture, we also consider the presence of GR stemming from

the downtilted antennas while considering the antenna

radiation pattern of the downtilted antennas. To represent

the impact of antenna directivity, we modify the GR-

based path-loss model introduced in [11] to capture the

impact of the antenna directivity. Depending on the DT

angles of the downtilted antennas, our analysis shows that

the GR can create stronger interference than the antenna’s

sidelobes when the horizontal distance between UAV and

a GBS increases.

• By considering an interference-limited DL cellular net-

work, we formulate an optimization problem to maximize

the minimum SIR of the UAVs by tuning the UT angles

of all the uptilted antennas in the network. Since this

is an NP-hard problem, we propose a simple meta-

heuristics-based technique, which tunes the UT angles

of the GBSs to ensure high minimum UAV SIR. Our

proposed method uses the genetic algorithm (GA), a well-

known meta-heuristics algorithm that can generate sub-
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optimal solutions efficiently in an iterative method [24].

• Since the UAVs will experience interference from the ex-

tra uptilted antenna sets along with the antenna sidelobes

and GRs of the downtilted antennas, here, we consider

the 3GPP Release-10 specified eICIC technique to ensure

the reliable co-existence of cellular-connected UAVs and

GUEs. The basic idea is that the downtilted antennas

will stop transmission during some portions of the data

transmission duration to reduce interference at the UAVs

in DL. We discuss eICIC briefly later in this paper.

• We conduct and present extensive simulations to study the

minimum SIR performance of our proposed method. We

first obtain sub-optimal solutions from the proposed GA-

based technique and then use eICIC to further increase

the SIR. Our results show that it is possible to obtain

high signal-to-interference (SIR) at the UAVs’ end by

optimizing the UT angles along with considering the

eICIC method. By considering different UAV heights and

inter-GBS distances, we also show the effectiveness and

superiority of our method over some baseline methods.

Our results also revealed some interesting yet important

design guidelines such as the impact of the number of

antenna elements and the DT angles while considering

the coexistence of UAVs and GUEs.

The rest of the paper is organized as follows. We provide

a literature review related to the interference mitigation tech-

niques for cellular-connected UAV in Section II. In Section III,

we describe our system model. Section IV discusses the

UT angle maximization problem. We discuss our proposed

GA-based UT antenna optimization method in Section V.

Simulation results and the pertinent discussions are presented

in Section VI. Finally, conclusions are drawn in Section VII.

II. RELATED WORKS

Research efforts in integrating UAVs into existing cellu-

lar networks with GUEs have recently attracted substantial

attention from both academia and industry. For instance,

in [5], the authors explored the impact of practical antenna

configurations on the mobility of cellular-connected UAVs and

showed that increasing the number of antenna elements can

increase the number of handovers (HOs) for vertically-mobile

UAVs. In [16], the same authors provided the upper and lower

bounds on the coverage probability of UAVs considering a

coordinated multi-point technique. The work in [25] pre-

sented an analytical framework for co-existing UAV and GUE

considering beamforming technique. By conducting extensive

3GPP compliant simulations, in [26], the authors showed that

the existing cellular networks will be able to support a small

number of UAVs with good mobility support. In [27], authors

summarized the key barriers and their potential solutions

for widespread commercial deployment of flying UAVs in

beyond 5G wireless systems. By considering a network of

UAV base stations (BSs), the work in [28] introduced exact HO

probability for similar UAV velocity and provided lower bound

for UAV BSs with different velocities. The authors in [29]

extended the results of [28] by providing exact analysis of HO

rate and sojourn time for different UAV velocities and showed

that HO rate is minimum when UAV BSs move with the same

velocity. However, both of these works treated UAVs as BSs.

By using tools from stochastic geometry, the authors in [30]

studied the performance of 3D two-hop cellular networks

where UAV-BSs can obtain wireless backhaul from GBSs.

In particular [30] considered realistic antenna patterns and

dedicated uptilted antennas for providing better connectivity

in the UAV-to-GBS links.

Due to the complex antenna pattern and air-to-ground

path loss model, the researcher also relied on learning-based

frameworks for ensuring reliable integration and operation of

cellular-connected UAVs. For instance, a supervised learning-

based association scheme for UAVs was proposed in [19] to

associate UAVs with the GBS providing the highest directional

antenna SIR. By tuning the DT angles of the GBSs, athe

work in [21] used reinforcement learning (RL) to provide

good connectivity to both UAVs and GUEs. However, they

did not consider the SIR at the UAV which plays a critical

role in reliable autonomous UAV deployment. In another

work [31], the authors proposed a deep-learning-based GBS

association algorithm for cellular-connected UAVs which takes

the knowledge of the cellular environment into account. The

recent work in [20] authors study the problem of jointly

optimizing UAV HO rate, disconnectivity time, UAV flight

duration, and UAV energy consumption by tuning the UAV

velocity. In particular this prior work explored a multi-armed

bandit RL algorithm to solve the problem and showed that the

perfect parameters can significantly improve the performance

of cellular-connected UAVs. In [22], the authors explored RL

algorithm to maximize the received signal quality at a cellular-

connected UAV while minimizing the number of HOs. An

extension of the traditional RL algorithms known as multi-

agent RL has been also introduced for efficient UAV control

in [32]. Note that these learning-based algorithms will either

require advanced data collection, pre-processing, and training,

or sample inefficient repetitive interaction with the cellular

networks, which makes the deployment of these algorithms

challenging for real-world network operators.

In addition to these learning-based methods, non-linear

optimization techniques were also used to provide reliable con-

nectivity to UAVs. For instance, in [33], the authors proposed

a cooperative interference mitigation scheme to mitigate the

strong uplink interference from the UAV to a large number of

co-channel GBSs serving terrestrial UEs. The helping GBSs

sense the UAV’s power, which is sent to the main GBS for

further interference processing. Similar authors introduced a

cooperative beamforming and transmission scheme to miti-

gate the interference of cellular-connected UAVs in DL [18].

In [34], they proposed cooperative non-orthogonal multiple

access (NOMA) technique to the uplink communication from

a UAV to cellular GBSs, under spectrum sharing with the

existing GUEs. In [35], authors introduced the problem of

maximizing the minimum UAV rate by joint beamforming,

association, and UAV-height control framework for cellular-

connected multi-UAV scenarios. However, none of these an-

alytical and learning-based works [5], [16], [19]–[22], [25]–

[29], [31], [35] considered the presence of GR which plays a

critical role in air-to-ground communications as an important
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Fig. 1. Illustration of the inter-cell interference at a cellular-connected UAV from the GR signal of a downtilted antenna and the LOS signal from the uptilted
antenna of a nearby base station. Though not shown in the figure, the associated GBS in the right can also create interference by the downtilted antennas.
The signal quality at the UAV will be effected by the UT angles of the uptilted antennas since they will impact both the desired and the interference signals.

source of interference for UAVs [11], [12]. The most closely

related work here is [23], in which the authors introduced a

bi-directional deep learning-based technique to maximize the

median capacity of an aircraft flying at a height of 12 km.

Using system-level simulation, they considered optimizing the

inter-GBS distance and dedicated uptilted antennas to solve

network optimization problems. In contrast to their work,

here, we focus on the UAVs flying under 400 meters of

height where the impact of GR is not negligible. Moreover,

in our considered system, each GBS can individually change

its UT angle, in contrast to the similar UT angles that are

assumed for all GBSs in [23]. To further increase the minimum

SIR, we consider the concept of the eICIC to mitigate the

interference stemming from the downtilted antennas at the

UAV’s end. Since eICIC was already studied extensively in

the last decade for increasing efficiency and capacity of the

heterogeneous networks [14], [15], it will be practical to

deploy it for mitigating the interference from the downtilted

antennas. Moreover, the UT angle tuning is based on the GA

algorithm, which is also well-studied and was used extensively

in optimizations of different aspects of wireless networks [36].

For convenience, we summarize and compare the state-of-art

in the literature with our work in Table I.

III. SYSTEM MODEL

A. Network Model

We consider an interference-limited DL transmission sce-

nario from terrestrial GBSs to cellular-connected UAVs where

the 19 GBSs are distributed in a two-tier hexagonal grid with

a fixed inter-site distance (ISD). An illustration of such a

network is presented in Fig. 2. Here, we do not consider

wrap-around [37], [38] and thus, we will only focus on the

performance of the central hexagonal cell to capture the impact

of inter-cell interference from the neighboring cells. However,

our analysis can easily be extended to larger cellular networks

with different GBS distributions. Hereinafter, we will use

the terms ‘GBS’ and ‘cell’ interchangeably. To average out

the impact of UAV distribution, we divide the center cell

into discrete grid points, and a UAV is placed on each grid

point at a height hUAV. Each UAV is equipped with a single

omnidirectional antenna. The set of the UAV locations and the

GBSs can be expressed as A and B, respectively.

We also assume that all GBSs have equal altitudes hGBS

and transmission power PGBS. The GBSs consist of Nt ver-

tically placed cross-polarized directional antennas downtilted

by angle φd [5], [6]. We consider the GBS antennas to be

omnidirectional in the horizontal plane but they have a variable

radiation patterns along the vertical dimension with respect to

the elevation angle between the antennas and the users [17].

Different from the traditional cellular network setting, here,

we also consider the presence of another set of antennas on

top of the previous ones, which can provide connectivity to

the UAVs using UT angle φu. Since the UAVs served by only

downtilted antennas suffer from poor connectivity and severe

interference, uptilted antennas can be used to provide reliable

connectivity to the UAVs [1], [12]. Note that the antenna tilt

angle is obtained by introducing a fixed phase shift to the

signal of each element. We define h(u)
GBS and h(d)

GBS, respectively,

as the height of the uptilted antennas and downtilted antennas.

The two sets of antenna setups are separated by a height

difference hd, i.e., hd = h(u)
GBS − h(d)

GBS. We consider that all

of the GBSs and their sets of antennas share the same time

and frequency resources. The UAVs will be associated with

the antenna set (uptilted or downtilted) of the GBS providing

the highest reference signal received power (RSRP) [5], [39].

B. Antenna Radiation Pattern

The Nt antennas are equally spaced where adjacent ele-

ments are separated by half-wavelength distance. The element

power gain (in dB) in the vertical plane at elevation angle

θd with respect to the downtilted antennas can be specified

by [37]

Ge(θd) = Gmax
e − min

{
12

(
θd
θ3dB

)2

,Gm

}
, (1)

where θd ∈ [−90◦, 90◦], θ3dB refers to the 3 dB beamwidth

with a value of 65◦, Gmax
e = 8 dBi is the maximum gain
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of each antenna element, and Gm is the side-lobe level limit,

respectively, with a value 30 dB [40]. Note that θd = 0◦ refers

to the horizon and the θd = 90◦ represents case when the main

beam is facing upward perpendicular to the xy-plane [37].

The array factor Ad
f (θd) of the ULA with Nt elements while

considering a DT angle φd is given by

A
(d)
f (θd) =

1√
Nt

sin
(
Ntπ
2 (sin θd − sinφd)

)
sin

(
π
2 (sin θd − sinφd)

) . (2)

Let us denote G
(d)
f (θd) � 10 log10(A

d
f (θd))

2 as the array

power gain in dB scale. Then the overall antenna gain at

elevation angle θ is given by

G(d)(θd) = Ge(θd) +G
(d)
f (θd). (3)

Similarly, the array factor pertinent to the uptilted antennas

with UT angle φu and elevation angle θu can be expressed as:

A
(u)
f (θu) =

1√
Nt

sin
(
Ntπ
2 (sin θu − sinφu)

)
sin

(
π
2 (sin θu − sinφu)

) . (4)

The array gain G
(u)
f (θu) � 10 log10(A

u
f (θu))

2 can then be

derived and, finally, the overall antenna gain due to the UT

angle φu can be expressed as:

G(u)(θu) = Ge(θu) +G
(u)
f (θu). (5)

C. Ground Reflection Channel Model

The channel between a GBS and a UAV plays a critical role

in the coverage performance at the UAV’s end and we consider

a channel model that is characterized by both distance-based

path-loss and GR. To characterize the GR, we modify the

height-dependent path loss model introduced in [11] which is

a variant of the two-ray path loss model [41]. Let the length of

the 3D Cartesian distance from a UAV to a GBS j be lj and

the length of the incident and reflected paths are r1,j and r2,j ,

respectively. For convenience, we discard the subscript from

hUAV in the following analysis. Finally, the received power

from GBS j at a UAV at height h can be specified as:

P (v)
j = PGBS

[
λ

4π

]2∣∣∣∣ Ĝ(v)
j (θv)

lj
+

R(ψj)G̃
(d)
j (h)eiΔφj

r1,j + r2,j

∣∣∣∣α(h),
(6)

where v ∈ {u, d}, i =
√−1 is the imaginary unit of a

complex number, λ is the wavelength of the carrier frequency,

Ĝ(v)
j (θv) and G̃(d)

j (h) represent the height-dependent antenna

gain of the direct and reflected path, respectively, R(ψj) is

the GR coefficient for the angle of reflection ψj with respect

to the ground plane, Δφj = (r1,j + r2,j) − lj is the phase

difference between the reflected and the direct signal paths,

and α(h) is the height dependent propagation coefficient for

UAV height h. Here, we do not consider GR from the uptilted

antennas since their main beams are oriented towards the sky.

Note that the GR coefficient for cross polarized antennas

can be calculated as R(ψj) =
RH(ψj)−RV(ψj)

2 [42], which also

depends on the relative ground permittivity εr ≈ 15 [11], re-

flection coefficients for horizontal linear polarization RH(ψj)
and vertical linear polarization RV(ψj). Moreover, Ĝ(v)

j (θv)

Fig. 2. 2-tier hexagonal cell structure with 19 cells and ISD = 500 m. In this
paper, we focus on the center cell with GBS location [0,0] km.

depends on the instantaneous elevation angle between the GBS

and the UAV by (3) and (5), whereas G̃(d)
j (h) can be expressed

as:

G̃(d)
j (h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĝ(d)
j (ψj), h < ht

Ĝ(d)
j (ψj)

2
, ht ≤ h ≤ 2ht

Ĝ(d)
j (ψj)

2
− h

2ht,c
· (Ĝ(d)

j (ψj)− 1), 2ht ≤ h ≤ 500

0.5, h ≥ 500

(7)

where ht = 2h(d)
GBS + 2 and ht,c = 500 m are threshold

heights [11], and Ĝ(d)
j (ψj) is the antenna gain of the incident

path on the ground from the downtilted antennas which

depends on Nt. Finally, the height-dependent propagation

coefficient can be expressed as:

α(h) =

⎧⎪⎨⎪⎩
α0 − h ·

(
(α0 − 2)

h(v)
GBS

)
, h < 2 · h(v)

GBS,

2 h ≥ 2 · h(v)
GBS,

(8)

where α0 is the maximum possible attenuation coefficient [11].

Here, we do not consider any GR due to the antenna sidelobes.

From (7), we can see that the antenna gain is dependent on the

incident angle ψj , whereas in [11], the gain of the reflected

path is assumed to be constant with respect to ψj . In Fig. 1,

we provide a simple illustration of how a UAV can suffer from

interference from GR and antenna sidelobes.

Remark 1: Due to the the DT angle φd, the main lobe of
the downtilted antenna will not reach the ground level before
the horizontal distance (in meter) is away by hGBS

tan(φd)
from

the GBS. Hence, UAVs closer to this distance from a GBS will
not be impacted by the GR stemming from the downtilted main
lobe of that particular GBS.

Next, for a given UAV height and DT angle, we derive the

distances from a GBS where the impact of the GR is the most

effective.
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Fig. 3. Analysis of GR depending on the DT angle φd.

Theorem 1: For a given hGBS, hUAV, and DT angle φd,
the impact of the GR from a GBS will mostly be seen between
horizontal distances d1 = hGBS+hUAV

tan(φ1)
and d2 = hGBS+hUAV

tan(φ2)
from that GBS, where

φ1 = φd − 0.5× θhpbw, (9)

φ2 = φd + 0.5× θhpbw, (10)

and θhpbw is half power beamwidth of the mainlobe of the
downtilted antenna.

Proof : Consider a scenario with a single GBS with antenna

pattern and height are as specified in Section III. Since GR

only stems from the downtilted antennas, here, we consider

that the GBS is only equipped with downtilted antenna with

DT angle φd. Let us consider the half-power beamwidth

(HPBW) of the main lobe as θhpbw. Note that the HPBW is

inversely proportional to the number of elements in the antenna

array [43]. Given the DT angle φd, the two angles of the two

end-points of the HPBW will be as expressed in (9) and (10).

Then the downtilted main beam will reach the ground

and the impact of the HPBW will be within the distances

r1 = hGBS

tan(φ1)
and r2 = hGBS

tan(φ2)
from the GBS as depicted in

Fig. 3. By assuming regular reflection from the ground, the two

rays will reach the UAV height at a distance d1 = hGBS+hUAV

tan(φ1)

and d2 = hGBS+hUAV

tan(φ2)
, respectively from the GBS, which

completes the proof.

Theorem 1 provides us the range of distances from a GBS

where a UAV will be impacted significantly by GR for a given

DT angle φd. From Theorem 1, we can observe that for a

higher φd, locations closer to the GBSs will be impacted by

GR and vice versa.

Remark 2: If φd <
θhpbw

2 , then the impact GR at the UAV
will start from the distance d1 and will the impact of the
main lobe will last till infinity. However, due to the path loss,
the impact will gradually decrease as the horizontal distance
increases beyond d1.

D. Numerical Example

By considering φd = 6◦, in Fig. 4(a), we compare the 3GPP

RMa-AV model [38] and our proposed height dependent GR

model for hUAV = 50 m, hGBS = 30 m, and PGBS = 30 dBm,

while considering the antenna radiation pattern as discussed

before. The received signal plot with respect to 2D UAV-BS

distance shows that the impact of GR comes into play after a

certain horizontal distance. The ripple in the received signal is

created due to the phase difference between the direct LoS path

(a) hUAV = 50 m.

(b) hUAV = 100 m.

Fig. 4. Comparison of GR and 3GPP RMa-AV channel model [38] for
different UAV heights considering the antenna radiation pattern and φd = 6◦.
(a) hUAV = 50 m and (b) hUAV = 100 m.

and the reflected path and the GR can provide more than 10 dB

more signal power than the 3GPP model. For hUAV = 100 m,

as shown in Fig. 4(b), the GR shows a similar kind of trend

but after greater UAV-to-GBS horizontal distance as discussed

in Theorem 1.

Finally, we split the reflected signal from the downtilted

antennas into its two ingredients: the signal from the antenna

sidelobes and the reflected signal from the main beam of the

DT antennas. The relevant results for hUAV = 100 m are

shown in Fig. 5(a), from which we conclude that the GR

path-loss model coincides with the sidelobes when the UAV is

close to the GBS. However, after a distance of 400 m, the GR

starts to provide high power through the main lobe which even

compensates the antenna’s side-lobe null at 442 m. Overall, the

GR keeps dominating the signal from the DT angles till about

900 m. We also study the impact of GR for higher DT angles

in Fig. 5(b). For a DT angle of 10◦, GR starts dominating the

signal power from about 350 m and can act as the dominant

source of interference for a UAV situated at a distance of 1500
meters.

From the above discussion, we can conclude that the down-

tilted antennas can create significant interference towards the
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(a) hUAV = 100 m, φd = 6◦.

(b) hUAV = 100 m, φd = 10◦.

Fig. 5. Impact of GR and antenna sidelobes on the GR-based path loss
model for hUAV = 100 m. (a) φd = 6◦ and (b) φd = 10◦.

far UAVs by GR. However, other than a few works, the impact

of GR is not considered in the literature. Apart from this, the

uptilted antennas can also create strong interference. However,

we can mitigate the interference from the uptilted antennas by

tuning the UT angles properly [12]. Hence, to increase the

reliability of the cellular-connected UAVs, we consider the

eICIC method to reduce the interference from the downtilted

antennas.

E. Overview of eICIC

To mitigate the interference problems caused by the extra

set of antennas, we consider eICIC techniques which have

been specified in LTE Release-10 of 3GPP [44]. The time-

domain eICIC technique provides an interference coordination

method based on the sub-frame blanking, known as almost

blank sub-frame (ABS) that does not send any traffic channels

and sends mostly control channels with very low power. In

our proposed interference mitigation method, the downtilted

antennas will not transmit data while allowing the uptilted

antennas to serve UAVs suffering from high interference

during an ABS. Transmissions from the downtilted antennas

are periodically muted during the entire frame duration. The

Fig. 6. Basic principle of time domain eICIC. For the considered scenario,
the aerial users can be scheduled in the uptilted antenna subframes that
overlap with the almost blank subframes of the downtilted antennas. This will
protect aerial users from the sidelobe interference and the ground reflection
interference coming from the downtilted antennas, as illustrated in Fig. 1.

uptilted antennas can send their data during such an ABS and

avoid interference. Note that certain control signals are still

required to be transmitted even in the muted sub-frames to

avoid radio link failure [45].

The frame structure of the eICIC is shown in Fig. 6. During

the uncoordinated sub-frames (USFs), the downtilted antennas

transmit data and control signals at full power PGBS while

during the coordinated sub-frames (CSFs), they remain muted.

We define β as the duty cycle of USFs which refers to the

ratio of the number of USFs to the total number of sub-

frames in a frame. Then, (1−β) will be the duty cycle of the

silent sub-frames or CSFs. Here, we assume full coordination

and synchronization among the GBSs and hence, the ABS

pattern of all the downtilted antennas will be the same. We

will show in the next subsection that the choice of β will

impact the capacity/rate of the UAVs/GUEs associated with

the downtilted antennas. However, this is out of the scope of

this paper and will be subject of our future works.

IV. UPTILT ANGLE OPTIMIZATION FOR MAXIMIZING SIR

A. SIR Definitions Over Different Subframes

As mentioned earlier, we consider an interference-limited

DL sub-6 GHz band for the cellular network, where the

presence of thermal noise is omitted. We also assume that

the GBSs and both uptilted and downtilted antennas share a

common transmission bandwidth and full buffer traffic is used

in every GBS [6], [46]. Then, we can calculate the SIR of a

UAV connected to uptilt antennas of GBS j considering flat-

fading channels [14] and antenna pattern during USF by the

following expression:

γ
(u)
j,usf =

P
(u)
j∑

b∈B,b �=j,

∑
v∈{u,d}

P
(v)
b + P

(d)
j

. (11)

Similarly, SIR of a UAV connected to the downtilt antennas

of GBS j considering flat-fading channels during USF as

follows:

γ
(d)
j,usf =

P
(d)
j∑

b∈B,b �=j,

∑
v∈{u,d}

P
(v)
b + P

(u)
j

. (12)

Note that (6) is used to calculate the received power from a

particular antenna set (uptilted/downtilted) of a GBS. We as-

sume flat-fading channels due to the presence of narrow-band

OFDM-based communication in existing cellular networks.
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During the CSFs, the downtilt antennas are kept off to protect

the UAVs from interference (GR of the beam’s boresight and

the LOS interference from the beam’s sidelobes). Note that the

interference to a UAV served by an uptilted antenna may be

coming also from the downtilted antenna located at the same

GBS. Thus, the SIR of a UAV connected to the uptilt antennas

of GBS j during CSF can be expressed as follows:

γ
(u)
j,csf =

P
(u)
j∑

b∈B,b �=j

P
(u)
b

. (13)

Finally, we can find the capacity of a UAV connected to

uptilt antennas of GBS j during USFs as follows:

C
(u)
j,usf = log2(1 + γ

(u)
j,usf). (14)

On the other hand, if the UAV is associated with downtilted

antenna of its serving GBS, it will obtain its data in the DL

during the USFs. Hence, the rate can be expressed as

C
(d)
j,usf = β

(
log2(1 + γ

(d)
j,usf)

)
. (15)

Note that the rate of the UAVs associated with downtilted

antennas will be scaled by the parameter β. Lower values of β
will increase the SIR performance of the UAVs associated with

the uptilted antennas as shown in (13). However, the UAVs

associated with the downtilted antennas and most importantly,

the GUEs will suffer from low rates for a low β. This tradeoff

will be addressed in our future work.

B. Problem Definition

Our goal is to tune the UT angles of the uptilted antennas

individually during the USFs to provide reliable SIR at the

UAVs’ end. Without optimizing the UT angles, the SIR

performance will worsen due to the additional interference

from the uptilted antennas [12]. Note that the UAVs can be

associated with either uptilted antennas or downtilted antennas

depending on the highest RSRP providing antenna set [12].

Let us consider the vector of SIRs of all UAVs when they are

associated with the highest RSRP providing antenna sets as:

γ = [γ1,usf , ..., γ|A|,usf ],

where | · | represents the cardinality of a set. Then, we can

formulate the problem of maximizing the minimum UAV SIR

as:
max
Φu

min γ

s.t. 0 ≤ Φu ≤ 90◦.
(16)

Here, the optimization variable Φu = [φu,1, ..., φu,|B|] is

the vector of the UT angles of the uptilted antennas in the

network. Note that only the interference caused by the uptilted

antennas is dependent on the UT angles. We also keep the UT

angles above the horizon level (greater than 0◦) for saving the

GUEs from additional interference. However, changing the UT

angles will change the association of the serving GBS/antenna

sets. Moreover, due to the complex antenna pattern and tilting

angles involved, it not possible to obtain the closed-form

optimal solutions by taking the derivatives of (11) and (12)

even under a free-space path loss model and a similar UT

angle for all the GBSs. Assuming the tilting angles to be 0◦

for simplification as done in [25] will not provide the realistic

cellular network scenarios.
Using exhaustive search method is also computationally

prohibitive since its complexity increases exponentially with

number of GBSs or uptilted antenna sets. To overcome these

challenges, in the next section, we introduce our GA-based UT

angle optimization method for maximizing the minimum UAV

SIR. Note the SIR gain due to the eICIC is not related to tuning

the UT angles and the gain can be calculated by simply not

considering the received power from the downtilted antennas.

The rates of the UAVs who are associated with the downtilted

antennas will be reduced by the quantity β as shown in (15)

and their SIRs will also be impacted by the choice of the UT

angles.

V. GENETIC ALGORITHM BASED UPTILT ANGLE

OPTIMIZATION

The GA is a stochastic population-based optimization tech-

nique that mimics the metaphor of natural biological evalua-

tion and is an efficient tool in searching for the global opti-

mum [24]. It borrows the idea of “survival of the fittest” in its

search process to select and generate individuals (design solu-

tions) that are adapted to the underlying objectives/constraints

of the problem of interest. Hence, GA is well suited to

and has been extensively applied to solve complex design

optimization without being guided by stringent mathematical

formulation. Thanks to its parallel-search capability, it can

explore the whole search space simultaneously, and hence,

an optimum solution can be obtained more quickly than an

exhaustive search. The detailed principles of a GA scheme

can be found in [24]. In the following subsections, we outline

our proposed GA-based UT angle tuning method for obtaining

the optimal solution of (16). We assume that each GBS sends

only its chosen UT angle and the SIR information of the UAVs

associated with it to a central server. The server can then run

the proposed GA-based algorithm and compute the optimum

UT angles.

A. Representation
At first, some randomly generated candidate solutions for

the optimization problem are encoded in a chromosome-

like strings. The collection of these candidate solutions or

chromosomes are referred to as population. In other words,

members of the population are the vectors of possible UT

angles for our formulated optimization problem. Note that each

member of the population must provide a complete solution

to the problem. The size of the population does not change

over time usually. To meet the constraint, the UT angles of

the population are generated within the feasible search space.

B. Fitness Evaluation
The objective function of the problem is used to evaluate

the fitness of each chromosome. In our case, the randomly

generated UT angles are used as inputs to the simulator for

obtaining the minimum SIR of all the discrete UAV locations.

The higher the minimum SIR of a solution is, the better the

fitness value is associated with it.
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Algorithm 1 Uptilt Angle Optimization using GA

1: Input:
2: population: Set of UT angles for all GBSs
3: Fitness function (FF): Minimum SIR of the UAV
4: network parameters, GBS and UAV locations
5: Method:
6: NewPopulation = empty set
7: StopCondition: Number of iterations = 50
8: SELECTION: Roulette wheel selection method
9: Create random Population

10: EVALUATE (Population, FF)
11: while (StopCondition is not met)
12: for i = 1 to Population size do
13: Parent1 = SELECTION(NewPopulation, FF)
14: Parent2 = SELECTION(NewPopulation, FF)
15: Child = Reproduce(Parent1, Parent2)
16: if (small random probability)
17: child = MUTATE(Child)
18: add child to NewPopulation set
19: end if
20: end for
21: end while
22: EVALUATE (NewPopulation, FF)
23: Args = GetBestSolution (NewPopulation)
24: Population = Replace (Population, NewPopulation)
25: Output: Args: Best individuals of the UT angles and the highest

minimum SIR

C. Selection

The selection process determines the pair of candidate

solutions/ UT angles who will act as parents for mating.

After being evaluated by a fitness function, each member

of the population is assigned a probability to be selected

for reproduction. Note that, the worse performing members

should also be given a chance in the evolution process so

that the overall algorithm can maintain a good exploration in

the search space. Here, we consider a simple biased roulette

wheel to select individuals as parents [47]. More explicitly,

each chromosome in the population is assigned a slot in a

roulette wheel, whose size is proportional to its fitness over

the total sum of fitness in the population. Then, a random

number between 0 and 1 is generated for each member/ UT

angle set. A chromosome/member is selected as a parent for

further genetic operations if the random number is within the

range of its roulette wheel slot.

D. Crossover

The selected parents are then processed by the crossover

operator, which mimics mating in biological populations. It is

considered to be the most significant phase in a GA. Here,

for each pair of parents to be mated, a crossover point is

chosen at random from within the chromosomes. Then Off-

spring/Children are created by exchanging the chromosomes

(UT angles) of parents among themselves until the crossover

point is reached. The crossover operator propagates features

of good surviving designs from the current population into the

future population, which will have better fitness value (higher

minimum SIR in our case) on average.

E. Mutation

The last operator is the mutation, which introduces diversity

in population characteristics and prevents premature conver-

gence. In this step, certain parts of the newly formed children

(new sets of UT angles with better fitness) are subjected to

a mutation with a low random probability. This implies that

some of the chromosomes in the string of UT angles can be

flipped/ interchange places among themselves.

After all of these genetic processes, the members of the

populations with the worst fitness values are replaced by the

new individuals with better fitness values or higher minimum

SIRs. The algorithm continues until good results are obtained

through iterations in terms of the objective function. The

overall algorithm is also summarized in Algorithm 1. In

essence, obtaining high-quality sub-optimal solutions from

our proposed method depends on carefully addressing the

following issues.

• representation of tentative solutions (UT angles) as chro-

mosomes;

• initialization of the randomly generated population;

• determination of the fitness function (min SIR);

• selection of genetic operators;

• adjustment of GA parameters (population size, crossover

and mutation probabilities).

Considering the impact of mutation, the work in [48]

provided the lower bound of the number of iterations required

for obtaining the global optimum for a given population size.

In particular, they showed that to obtain the global optimum

with any specified level of confidence, GAs should run for long

enough. However, later we show that increasing the number

of iteration or population size will increase the complexity

and run-time of the proposed algorithm. Hence, we run ex-

tensive simulations for different numbers of population size

and iteration, and check the associated minimum UAV SIRs.

We found that with a the population size of 200, mutation

probability of 0.1, and 50 iterations, our algorithm provides

high-quality sub-optimal solutions.

F. Complexity Analysis

As described in the previous subsections, our proposed GA-

based UT angle optimization technique randomly generates

tentative solutions and then produces new better solutions

from the previous ones iteratively. For a given GBS and UAV

distributions, the overall time complexity of the algorithm is

O(M2I|A||B|), where M represents the number of population

and I is the iteration number, respectively. Hence, for a given

population size, number of iterations, and number of GBSs,

the complexity of our proposed algorithm increases linearly

with an increasing number of UAVs.

VI. SIMULATION RESULTS

In this section, we present the simulation results for our

proposed cellular architecture based on a new set of antennas

and eICIC. Unless otherwise stated, the simulation parameters

are as listed in Table II. By considering flat fading chan-

nels [14] and hexagonal cells, we report our finding for two



10

(a) hUAV = 100 m, ISD = 500 m.

(b) hUAV = 200 m, ISD = 500 m.

(c) hUAV = 100 m, ISD = 1000 m.

Fig. 7. Optimal UT angles obtained from the proposed GA algorithm for
ISD = 500 m for (a) hUAV = 100 m, (b) hUAV = 200 m, and (c) for
ISD = 1000 m and hUAV = 100 m.

TABLE II
SIMULATION PARAMETERS.

Parameter Value
PGBS 46 dBm
hUAV 100 m & 200 m

h
(d)
GBS 30 m

ISD 500 m & 1000 m
hd 1 m
hGUE 1.5 m
λ 0.15 m
α0 3.5 [11]
DT angle (φd) 6◦

ISDs namely, 500 m and 1000 m while considering the highest

RSRP-based association (HRA). It is worth noting that in

our setup, the HRA association will also provide the highest

SIR among all the available antennas of the network. For

convenience, we refer to our proposed method as ‘optimal

HRA’ hereinafter. To study the performance of our proposed

method we consider also three baseline schemes. These four

scenarios can be summarized as follows.

• optimal HRA: this is our proposed GA-based UT angle

tuning method.

• HRA single: all GBSs pick the same optimal UT angle

which maximizes the minimum SIR. This UT angle is

calculated by exhaustive search method.

• Random: Each GBS picks UT angles randomly from the

search space.

• HRA (no eICIC nor UT antennas): presence of uptilted

antennas and eICIC is ignored. UAVs associate with the

highest RSRP providing GBS.

As mentioned in Section III, we divide the whole network

into 10 m×10 m grids [14], and a UAV is placed on each

grid point with height hUAV. Such a uniform distribution will

average out the impact of UAV distributions [14]. We only

take the discrete points inside the center hexagonal cell into

consideration.

A. Optimal UT Angle Analysis

After obtaining the optimal UT angles by using (11) and

(12) and our proposed GA-based method, we calculate the

UAV SIRs in USFs for the two ISDs and UAV heights. Then

eICIC is used to get the pertinent UAV SIRs in CSFs. For

ISD = 500 m and hUAV = 100 m and 200 m, the optimal UT

angles obtained from the proposed GA-based algorithm are

presented in Fig. 7(a) and Fig. 7(b), respectively. Our results

show that one of the six neighboring GBS chooses a relatively

smaller UT angle and provides high received power to the

UAVs for hUAV = 100 m. The other GBSs overall maintain

higher UT angles to reduce the interference from the sidelobes.

A similar conclusion can also be drawn for hUAV = 200 m,

while one big exception is that the UAVs are supported by

s tier-2 GBS as shown in Fig. 7(b). Due to the compact

GBS locations and higher UAV height, the tier-2 GBSs can

provide better SIR by choosing an angle that covers most

of the discrete UAV locations for hUAV = 200 m. For ISD

= 1000 m, both UAV heights show the similar trend as

Fig. 7(a) and in Fig. 7(c), we report the optimal UT angles
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for hUAV = 100 m. Overall, the GBSs tend to choose lower

UT angles for larger ISD to reduce inter-cell interference. A

similar case of obtaining lower UT angles for higher ISD was

also reported in [23].
For ISD = 500 m and hUAV = 100 m and 200 m, the

respective UAV SIR cumulative distribution function (CDF)

plots are presented in Fig. 8(a) and Fig. 8(b), respectively.

From both figures, we can conclude that our proposed optimal

HRA scheme provides higher minimum SIR (about −1.36 dB

for hUAV = 100 m and about 10 dB for hUAV = 200 m)

than the other baseline methods. The optimization framework

considers the minimum UAV SIR inside the center cell and

thus the interfering GBSs choose UT angles which create less

interference towards the UAVs. During the CSFs, turning the

downtilted antennas off increases the minimum SIR to about

6 dB for hUAV = 100 m and about 12.5 dB for hUAV = 200 m.

One interesting observation is that the overall SIR with eICIC

is higher for hUAV = 100 m. This is because the UAVs suffer

more interference from the downtilted antennas for lower UAV

heights via GR and antenna sidelobes. Moreover, the path loss

is also lower for hUAV = 100 m than hUAV = 200 m. Hence,

muting the downtilted antennas provide higher SIR gain in the

CSFs for hUAV = 100 m.
In the HRA single scheme, the GBSs choose the same opti-

mal angle, which result into less degree of freedom to improve

the SIR performance. Hence, it provides comparatively lower

SIR (about −11 dB for hUAV = 100 m and about −8 dB for

hUAV = 200 m) than our proposed method. Even with ICIC,

the overall gain in the minimum SIR is still significantly lower

than the without ICIC minimum SIR of our proposed scheme.

The random scheme chooses the UT angles for each of the

GBSs and thus provides better performance than HRA single.

Thus, it is evident from the discussion that it is critical to
tune the UT angles of the GBSs individually for the successful
integration of the uptilted antenna sets. Finally, for the case in

which the UAVs are served by only downtilted antennas and

without ICIC scheme, the overall SIR is very low (less than

−8 dB) for both of the UAV heights. For larger cell sizes or

ISD = 1000 m and the two UAV heights, we can conclude

from Fig. 9(a) and Fig. 9(b) that our method outperforms the

other baseline schemes significantly in terms of the minimum

UAV SIR during the USFs i.e., without ICIC.
Fig. 10 shows the rates (bps/Hz) for the baseline schemes

using (14) and (15). From Fig. 10, we can observe that our

proposed optimal HRA scheme provides a higher minimum

rate, 50th-percentile rate, and sum rate than other baseline

schemes. HRA (no ICIC or UT antennas) scheme is excluded

in the rate comparison due to its very low SIR performance

(less than −8 dB). Due to the higher SIR obtained with eICIC,

overall the rates increase significantly in the CSFs. The UAV

with the minimum SIR in the HRA single scheme is associated

with the downtilted antennas and thus, HRA single provides

the same rate in USF and CSF. Similar observations are also

obtained for other UAV height and ISD.

B. Impact of the Downtilted Antenna
DT angles can create a significant impact on the overall

performance of the network since they play a major role

(a) hUAV = 100 m.

(b) hUAV = 200 m.

Fig. 8. UAV SIR CDFs for ISD = 500 m for (a) hUAV = 100 m and (b)
hUAV = 200 m.

in determining the inter-cell interference. Higher DT angles

decrease the interference towards other nearby GBSs which

translates to a better coverage for GUEs. However, for UAVs

flying in the sky, the DT angles can create interference by both

side lobes and GR. This motivated us to study the impact

of DT angles of the downtilted antenna sets and report the

relevant results in Fig. 11.

In Fig. 11(a), we show the SIR CDFs for hUAV = 100 m

and 200 m by calculating the optimal UT angles using optimal

HRA scheme for three DT angles namely, 0◦, 6◦, and 12◦,

respectively. From this figure, we can conclude that the 0◦ DT

angle overall provides low SIR in both USF and CSF frames

due to the higher interference stemming from the main beam

of the downtilted antennas. Though the impact of GR is trivial

for φd = 0◦ as discussed in Theorem 1, the focus of the

main beam causes severe interference to the far away UAVs,

which degrades the overall SIR performance. Although higher

DT angles are beneficial for GUEs, our results show that

6◦ provides better SIR performance than its 12◦ counterpart.
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(a) hUAV = 100 m.

(b) hUAV = 200 m.

Fig. 9. UAV SIR CDFs for D = 1000 m for (a) hUAV = 100 m and (b)
hUAV = 200 m.

This is because, for 12◦ DT angle, the UAVs faces more

interference by GR from the closest GBS as described in

Theorem 1. For 6◦ DT angle, UAVs usually suffer less severe

interference in GR from neighbor GBSs due to higher path

loss since the GR signals have to travel longer to reach the

UAV.

For the CSFs, we obtain high SIR for both 6◦ and 12◦.

Due to the higher GR interference of 12◦, this angle provides

the highest SIRs in the CSFs by muting the downtilted

antennas. From Fig. 11(b), we can make similar observations

for hUAV = 200 m. However, in Fig. 11(b), the UAVs achieve

better SIRs than those of lower heights. This is due to the fact

that the GRs from the GBSs face higher path loss and thus

become weak when they reach UAVs. Moreover, the interfer-

ence due to the sidelobes also weakens due to the increased

distances from the GBSs. Interestingly, 6◦ provides slightly

better SIRs because this angle provides better antenna gain

through the sidelobes from its other DT angle counterparts at

hUAV = 200 m.

(a)

(b)

(c)

Fig. 10. Rate (bps/Hz) analysis for hUAV = 100 m and ISD = 500 m. (a)
min rate, (b) 50th-percentile rate, and (c) sum rate.
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(a) hUAV = 100 m.

(b) hUAV = 200 m.

Fig. 11. UAV SIR CDFs for ISD = 500 m for (a) hUAV = 100 m and (b)
hUAV = 200 m.

C. Impact of the Number of Antenna Elements

The number of antenna elements has a direct impact on

the antenna array gain and the beamwidth of the antenna

pattern [43]. Here, we focus on how the number of antenna

elements at the GBS can influence the SIR performance of

the UAVs. Note that increasing the element number increases

the antenna array gain but reduces the beamwidth and vice

versa [43]. In Fig. 12(a), we plot the antenna gains in dB

scale for Nt = 4, 16, and 32 using (3) and φd = 6◦. As

expected, the antenna gain increases by 3 dB for doubling

the antenna elements and at the same time, the main beam

becomes narrower. To study the impact of this phenomenon,

we use the proposed optimal HRA method to calculate the

optimal UT angles in USFs for different Nt and report the

finding in Fig. 12(b). Since antenna with low Nt provides

lower gain, the SIRs corresponding to Nt = 4 obtains lower

values. For instance, about 20% of the UAVs suffer from very

low SIR (less than −5 dB).

For the other two Nt plots, we can see an interesting

(a)

(b)

Fig. 12. (a) Vertical antenna pattern of an GBS considering cross-polarized
elements, each with 65◦ half power beamwidth and φd = 6◦. (b) UAV SIR
CDFs for hUAV = 100 m and ISD = 500 m during the USFs.

tradeoff. When Nt = 16 is considered, Fig. 13(b) verifies

that it provides better minimum SIR (greater than 0 dB) than

Nt = 8, thanks to its higher antenna gain. However, due to

its wider beamwidth, with Nt = 8, GBSs can cover a larger

area in the sky with higher gains. This translates into the fact

that about 70% of the UAVs achieve a higher SIR compared

to the case when GBSs are equipped with 16 antennas each.

This interesting insight can help the network operators better

plan the number of antenna elements they need depending on

their performance requirements.

D. Impact of the Physical Separation of the Antenna Sets

We also study the impact of the antenna separation distance

hd between the uptilted and the downtilted antenna sets. We

consider hUAV = 100 m and ISD= 500 m and 1000 m and

show the resulting UAV SIRs for the optimal UT angles in

Fig. 13. For both ISDs, we can conclude that the overall impact

of hd is very trivial for the optimal UT angles during USFs.
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Fig. 13. UAV SIR CDFs for ISD = 500 m and ISD = 1000 m while
considering hUAV = 100 m. Solid lines represents the SIR with uptilted
antennas and dashed lines represents the case without uptilted antennas during
the USFs. Both of these lines overlap with each other.

The related SIRs are slightly better for hd = 2 m. This is

due to the fact that with higher hd, the main lobes of the two

sets of antennas are more separated from each other and thus

creates less interference.

Another interesting finding is that the impact of hd is more

visible for ISD= 1000 m. This is because the GBSs tend to

pick lower UT angles for covering the cell-edge UAVs for

larger ISDs, and hence, the higher hd helps to keep the main

beams of the uptilted and downtilted antennas further away.

This results in lower interference and thus higher SIRs for the

UAVs. Whereas for lower ISDs, the GBSs pick higher values

of UT angles which are already separated from the main beams

of the downtilted antennas, and thus the overall impact of hd

is trivial here.

E. Impact on the GUE SIR

Thus far, we have focused on scenarios in which the UAVs

as the only users in the network. After proper tuning of the UT

angles, the presence of the extra set of uptilted antennas along

with the eICIC method can provide high and reliable SIR for

the UAVs flying in the sky. However, the extra set of antennas

can also introduce interference to the existing GUEs. Hence,

in this subsection, we study the impact of our proposed UT

angle tuning scheme on the GUEs.

Here, we consider the three DT angles as done before

along with the two ISDs and UAV heights to check the

impact thoroughly and report the results in Fig. 14. We use

the GR-based path loss model with a height of 1.5 m to

represent the GUE cases. We only report the USF results

for visual convenience and the CSF cases show the same

trends and hence, are omitted here. The cases with the uptilted

antennas are presented with solid lines and scenarios without

the uptilted antennas are represented by the dashed lines. It is

evident from the plots of both Fig. 14(a) and Fig. 14(b) that the

impact of uptilted antennas on the GUE SIRs is trivial and the

lines representing these two scenarios overlap each other. This

(a) ISD 500 m.

(b) ISD 1000 m.

Fig. 14. GUE SIR CDFs with height 1.5 m for (a) ISD = 500 m and (b)
ISD = 1000 m during USFs.

is because the main lobes of the uptilted antennas are focused

towards the sky and hence, the only impact they can create is

through the sidelobes. However, these sidelobes of the uptilted

antennas can create little to no impact on the GUEs who are

associated with GBS providing very high antenna gains. Note

that the overall trends will still be the same for 3GPP-based

path loss models [37] for GUEs.

Note that the SIRs of the GUEs increase with increasing

DT angle since higher DT angles reduce inter-cell interfer-

ence. Moreover, larger cell areas or ISDs provide better SIR

performance due to the reduced interference on the cell-

centered GUEs. Other than the plot for ISD= 1000 m and

hUAV = 200 m, all other plots show that GUE performance

is invariant of the optimal UT angles of the uptilted antennas.

For ISD= 1000 m and hUAV = 200 m, the cell-edge users

suffer from less interference since GBSs tend to focus more

upwards with higher hUAV.
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VII. CONCLUDING REMARKS AND DISCUSSION

In this paper, we have proposed a novel cellular architecture

by considering an extra set of antennas that are uptilted to

provide good and reliable connectivity to the UAVs. These

antennas coexist with the traditional downtilted antennas and

use the same time and frequency resources. The downtilted

antennas can create interference to the UAVs by the antenna

sidelobes and GR, and we have proposed a modified path

loss model to capture the impact of the GR on the UAVs.

To ensure high SIR and reliable connectivity, we have formu-

lated an optimization problem with an aim to maximize the

minimum UAV SIR by tuning the UT angle of each GBS.

Since the problem is NP-hard, we have proposed a GA-based

UT angle optimization method to obtain high-quality sub-

optimal solutions efficiently. Apart from this, we have also

considered the 3GPP specified eICIC to reduce the interference

caused by the downtilted antennas. We have run extensive

simulations to study our proposed method for various cellular

network deployment configurations such as ISD, UAV height,

DT angle, number of antenna elements, etc. Our results have

shown that overall our proposed method can provide high

minimum SIR for the UAVs. Our results have also revealed

some interesting design guidelines such as the impact of the

number of antenna elements and the DT angles on the UAV

SIR performance, and most importantly, our method has shown

little to no impact on the SIRs of the existing GUEs in

the network. Thus, the proposed technique can be a strong

candidate for deploying large-scale urban aerial systems in

the near future while maintaining the reliable and efficient co-

existence of UAVs and GUEs.

Our proposed framework can be extended in several ways.

First of all, the duty cycle parameter β can be taken into

account in the optimization framework to maximize the min-

imum rate (instead of SIR) of both GUE and UAV since

those who are associated with downtilted antennas suffer

from the reduced rate in our proposed framework. Moreover,

the updated version of eICIC known as further enhanced

ICIC (FeICIC) can be considered in which traffic data are

transmitted during ABS with relatively low power. Another

interesting study will be providing better connectivity and re-

liable mobility (i.e., reducing ping-pong and handover failures)

to the UAVs whose trajectories are known before. It is worth

noting that, our proposed method will not be able to support

UAVs in the regions where cellular infrastructures are not

available i.e., over deserts or oceans. We may need to rely on

high-altitude aerials platforms or low earth orbital satellites

for providing reliable connectivity to UAVs in these extreme

cases.

Another limitation of our proposed framework is that the

extra set of antennas will increase the overall energy consump-

tion of the network. Moreover, the DT angles of the downtilted

antennas can impact the SIR performance of the UAVs. Hence,

joint optimization of UT angles, transmit power of the uptilted

antennas, eICIC/FeICIC parameters, and DT angles will be

included in our future work to make our framework more

efficient.
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