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Abstract

Al practitioners typically strive to develop the most accurate
systems, making an implicit assumption that the Al system
will function autonomously. However, in practice, Al systems
often are used to provide advice to people in domains ranging
from criminal justice and finance to healthcare. In such Al-
advised decision making, humans and machines form a team,
where the human is responsible for making final decisions.
But is the most accurate Al the best teammate? We argue
“No” — predictable performance may be worth a slight sacri-
fice in Al accuracy. Instead, we argue that Al systems should
be trained in a human-centered manner, directly optimized for
team performance. We study this proposal for a specific type
of human-Al teaming, where the human overseer chooses to
either accept the Al recommendation or solve the task them-
selves. To optimize the team performance for this setting we
maximize the team’s expected utility, expressed in terms of
the quality of the final decision, cost of verifying, and indi-
vidual accuracies of people and machines. Our experiments
with linear and non-linear models on real-world, high-stakes
datasets show that the most accuracy Al may not lead to high-
est team performance and show the benefit of modeling team-
work during training through improvements in expected team
utility across datasets, considering parameters such as human
skill and the cost of mistakes. We discuss the shortcoming
of current optimization approaches beyond well-studied loss
functions such as log-loss, and encourage future work on Al
optimization problems motivated by human-AlI collaboration.

1 Introduction

Many Al systems are developed for use in collaborative set-
tings, where people work with an Al teammate. For exam-
ple, numerous applications of Al have been designed as ad-
visory tools, providing input to people who are tasked with
making final decisions. Beyond the appropriateness of peo-
ple making the final calls, the advisory role of Al systems
may be obligatory; legal requirements may prohibit com-
plete automation (GDPR 2020; Nickelsburg 2020). Stud-
ies have demonstrated domains and tasks where human-
Al teams may perform better than either the Al or human
alone (Nagar and Malone 2011; Patel et al. 2019; Kamar,
Hacker, and Horvitz 2012). For human-Al teams, optimiz-
ing the performance of the whole team is more important
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Figure 1: Consider a binary classification problem (purple
vs. yellow). Assume each blob is uniformly distributed and
of the same size. In a human-AlI team, a more accurate clas-
sifier (h1, left pane, learned using log-loss) may produce
lower team utility than a less accurate model (ho, right pane).
Suppose the human can either quickly accept the AI’s rec-
ommendation or solve the task themselves, incurring a cost
A in time or effort, to yield a more reliable result. The pay-
off matrix describes the utility of different outcomes. We
explore the policy where humans accept recommendations
when the Al is confident, but verify uncertain predictions
(shown in the light grey region surrounding each hyper-
plane). While ho is less accurate than /i, (because B is incor-
rectly classified), it results in a higher team utility: Since ho
moved A outside the verify region, there are more correctly
classified inputs on which the user can rely on the system.

than optimizing the performance of an individual member.
Yet, to date, the AI community has focused on maximizing
the individual accuracy of machine-learned models, assum-
ing implicitly that this will optimize team performance. This
raises an important question: Is the most accurate Al the best
possible teammate for a human?

We argue that the most accurate model is not necessar-
ily the best teammate. We show this formally, but the in-
tuition is simple. Considering human-human teams, Is the
best-ranked tennis player necessarily the best doubles team-
mate? Clearly not—teamwork puts additional demands on
participants that extend beyond individual performance on



tasks, such as ability to complement and coordinate with
one’s partner. Similarly, creating high-performing human-
Al teams may require training Al systems that exhibit ad-
ditional human-centered properties, e.g., facilitating appro-
priate levels of trust and delegation. Implicitly, this is the
motivation behind much work in intelligible Al, including
efforts aimed at enhancing the understandability of com-
plex Al inference (Horvitz et al. 1986), interpretability of
machine-learned models (Caruana et al. 2015; Weld and
Bansal 2019), and performing post-hoc explanations of the
output of models (Ribeiro, Singh, and Guestrin 2016; Lund-
berg and Lee 2017). We move beyond such general motiva-
tion and highlight the value of developing methods to model
and optimize the collaborative process.

For example, consider the scenario when the system gen-
erates advice in which it is uncertain. In practice, users
are likely to distrust such recommendations, and rightly
so, because a low confidence is often correlated with erro-
neous predictions (Bansal et al. 2020; Hendrycks and Gim-
pel 2017). In this work, we assume that, when systems have
low confidence in their inferences, users will discard the rec-
ommendation and solve the task themselves, incurring a cost
based in the required additional human effort. As a result,
team performance depends on the Al accuracy only in the
accept region, i.e., the region where a user is actually likely
to rely on Al. The singular objective of optimizing for Al
accuracy (e.g., using log-loss) may hurt team performance
when the model has fixed inductive bias. Team performance
will benefit from improving Al in the accept regions even
if at the cost of performance over the complementary solve
regions (Figure 1). While there exist other aspects of col-
laboration that can also be addressed via optimization tech-
niques, such as model interpretability, supporting comple-
mentary skills (Wilder, Horvitz, and Kamar 2020), or en-
abling learning among partners, the problem we address in
this paper is to account for team-based utility as a basis for
collaboration. In sum:

1. We highlight an important direction in the field of human-
centered Al: When paired with a human overseer, the
most accurate ML model may not lead to the highest feam
performance. Specifically, we consider settings where,
during training the system considers humans’ mental
model of the Al and how they make use of its recom-
mendations. This setting complements recent advances in
learning to defer where systems are trained when to refuse
to share a recommendation to the overseer.

2. For a simple yet ubiquitous form of teamwork, we show
that log-loss, the most popular loss function for optimiz-
ing Al accuracy, can lead to suboptimal team performance
and instead propose directly optimizing for human-Al
team’s utility. During training, the new objective consid-
ers and guides Al performance by considering various
human and domain parameters, such as human accuracy,
cost of human effort, and cost of mistakes.

3. We present experiments on real-world datasets and mod-
els that show improvements in expected team utility
achieved by our method. We present qualitative analy-
ses to understand how the re-trained model differs from
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Figure 2: (a) Al-advised decision making. (b) To make a de-
cision, the human either accepts or overrides a recommen-
dation. The Solve meta-decision is costlier than Accept.

the most accurate Al, and how the improvements in util-
ity change as a function of domain parameters. We con-
clude with discussing optimization issues, loss-metric
mismatch, and implications for optimizing team perfor-
mance for more complex human-Al teams.

2 Problem Description

We focus on Al-advised decision making scenarios where
a classifier h gives recommendations to a human decision
maker to help them make decisions (Figure 2a). Suppose z
is an n-dimensional feature vector (i.e., X C R"™) and Y
is a finite set of possible decisions. For example, for binary
classification Y = {4, —}. If h(z) denotes the classifier’s
output (i.e., a probability distribution over the set of possi-
ble outcomes )) the recommendation 7 is a tuple consisting
of the predicted label § = argmax h(z) and a confidence
value max h(z), i.e., r = (g, max h(z)). Using this recom-
mendation, the user computes a final decision d. The envi-
ronment, in response, returns a utility which depends on the
quality of the final decision and any cost incurred due to hu-
man effort. If the team classifies a sequence of instances, the
objective is to maximize the cumulative utility. Before de-
riving a closed form equation for the objective, we describe
the form of the human-Al collaboration we consider along
with our assumptions. We study this simple setting as a step
to exploring broader opportunities and challenges in team-
centric optimization.

1. User either accepts the recommendation or solves the
task themselves: The human computes the final decision
by first making a meta-decision m: Accept or Solve
(Figure 2b). In Accept, the user passes off the Al recom-



Meta-decision/Decision | Correct | Incorrect
Accept [A] 1 —B
Solve [ S] 11— —B—=A

Table 1: Utility as a function of meta-decision and decision.

mendation as the final decision. In contrast, in Solve, the
user ignores the recommendation and computes the final
decision themselves. Let m denote the function that maps
an input instance and recommendation to a meta-decision
in M = {Accept, Solve}. Further, U denotes the util-
ity function, which depends on the human meta-decision
and final decision d (Figure 1). As a result, the optimal
classifier h* would maximize the team’s expected utility:

h* = argmaxE, ,[U(m, d)] (1)
h

2. Mistakes are costly: A correct decision results in unit re-
ward. An incorrect decision results in a penalty 5 > 1.

3. Solving the task is costly: Since it takes time and effort
for the human to perform the task themselves (e.g., cogni-
tive effort), we realistically assume that the Solve meta-
decision costs more than Accept. Further, without loss of
generality, we assume A units of cost to Solve and zero
cost to Accept. Note that even when the cost of Accept
is non-zero and the reward for a correct decision is differ-
ent than one, the utility function can still be transformed
and simplified to the same form as in Table 1 and be opti-
mized in the same way as we describe henceforth.
Following the above specifications, we obtain the utility
function in Figure 1. The values in the table originate from
subtracting the cost of the action from the reward.

4. Human is uniformly accurate across decisions: Let a €
[0,1] denote the conditional probability that if the user
solves the task, they will make the correct decision.

Pd=ylm=3)=a )

5. Human is rational: The user chooses the meta-decision
that results in highest expected utility. Further, the user
trusts the classifier’s confidence h(z)[j] as an accurate in-
dicator of the recommendation’s reliability, i.e., true con-
ditional probability of prediction g being correct. As a re-
sult, the user will choose Accept if and only if the ex-
pected utility of Accept is greater than that of Solve.

E[U(m = 2)] > E[U(m = 5)]
()] — (1= h(a)[§)8 = a — (1~ a)-5 - A
M)l = a - 5

Let ¢(3, A, a) denote the minimum value of confidence
for which the user’s meta-decision is Accept.

A
c(B,\;a)=a— —— 3
(B, A ) 5 3)
This implies the human will follow the following
threshold-based policy to make meta-decisions:

_ oy 1 iER@)[G] = ¢(B, A a)
P(m=2)= {0 otherwise
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Figure 3: Visualization of expected utility when A\ =
0.5,8 = 1, and a = 1 (i.e., the human is perfectly accu-
rate but it costs them half a unit of utility to solve the task).
In the Accept region, expected utility of the team is equal
to expected utility of the automation, while in the Solve re-
gion it equals to the human utility. The negative team utility
in the left-most region results from over-confident but incor-
rect recommendations to the human.

Expected Team Utility

We now derive the equation for expected utility of recom-
mendations for the teamwork that we described above. Let
1) denote the expected team utility on a given example.

Y(z,y) = E[U(m,d)]
= P(m = 1)- [P(d =ylm=2a)-1

+ P(d # ylm = )-(~B))|

+ P(m=s)- [P(d = ylm=25)-(1 - \)

+ P(d # ylm = 8)-(~B — )]
Since upon Accept, the human returns the classifier’s rec-
ommendation, the probability that the final decision is cor-
rect is the same as the classifier’s predicted probability of the

correct decision, ie., P(d = ylm = &) = h(z)[y]. Substi-
tuting this and Equation 2 we obtain:

b(@,y) = P(m=5): [(1+ 8)-h(z)ly] - ]
+P(m=5)-[(1+8)-a— -2
= P(m = 1)-[(1+ B): (h(x)[y] - ) + A]
+ 1+ B)ra-p-1

constant

Substituting human policy (Equation 4) we obtain:

W, y) = (1+8)-h(x)[yl = B if h(z)[g] = (B, A, a)
’ (14+8)-a—p—X  otherwise

&)

Figure 3 visualizes the expected team utility of the classi-

fier predictions as a function of confidence in the true label.



Dataset #Features Size | Frac. Pos.
Scenariol 2 | 10000 0.43
Moons 2 | 10000 0.50
German 24 1000 0.30
Fico 39 9861 0.52
Recidivism 13 6172 0.46
MIMIC 714 | 21139 0.13

Table 2: Number of features and size of binary classifica-
tion datasets used for experiments. The original Fico dataset
contains 23 features but 39 after preprocessing categorical
features into binary features.

We convert expected utility into a loss function by negating
it, i.e., —(x, y).

3 Experiments
Experiments in this section address the following questions:

RQ1 Can we train a classifier with higher utility than
the most accurate classifier?

RQ2 How does the new model qualitatively differ from
the most accurate model?

RQ3 How do the properties of the task affect improve-
ments in utility (e.g., human skill and cost of mistake)?

Datasets We experimented with two synthetic datasets and
four real-world binary classification datasets: German credit
lending dataset (Hofmann 1994), FICO credit risk assess-
ment (Fico 2018), recidivism prediction (ProPublica 2016),
and MIMIC-3 mortality prediction (Harutyunyan et al.
2019). The real datasets are drawn from high-stakes do-
mains where machine learning has already been deployed
or has been discussed being employed to assist human de-
cision makers. On the synthetic datasets, Scenariol dataset
refers to a dataset we created by sampling 10000 points from
the data distribution similar to Figure 1. Moons refers to the
classic two moons non-linear classification problem.!
Model Training We experimented with two types of mod-
els: logistic regression and multi-layered perceptron (two
hidden layers with 50 and 10 units). For each task (defined
by a choice of task parameters, dataset, model, and loss) we
optimized the loss using the Adam optimizer and also used
standard, well-known training practices such as regulariza-
tion, check-pointing the model best validation performance,
and learning rate schedulers. We selected the best hyperpa-
rameters using five-fold cross validation, including values
for the learning rate, batch size, patience, decay factor of
the learning rate scheduler, and the L2 regularization weight.
(Range of parameters detailed in the Appendix).

In initial experiments to optimize team utility, we ob-
served that the classifier’s loss (in this case, negative of ex-
pected utility) remained constant over the optimization pro-
cess. This happened because, in practice, random initializa-
tions resulted in classifiers that were uncertain on most of
the data distributions considered. By definition, the expected

"https://scikit-learn.org/stable/modules/generated/sklearn.
datasets.make_moons.html

utility is flat and constant in regions of uncertainty (see Fig-
ure 3). Thus, the gradient was zero and uninformative over
these ranges. To overcome this issue, we initialized the clas-
sifiers with the (already converged) most accurate classifier.
Metrics: Empirical and Expected Utility We evaluated our
systems on two metrics of team utility: expected team utility
(Equation 5) and empirical team utility, which draws dis-
crete rewards from the pay-off described in Table 1. A key
difference between expected and empirical utilities is that
the former incentivizes systems that output a calibrated be-
lief, i.e., in the Accept region it assigns a score propor-
tional to the system’s confidence in the correct class (Fig-
ure 3). Empirical utility, in contrast, does not differentiate
between a low- and a high-confidence recommendation in
the Accept region as long as they are both correct (or both
are incorrect).

Each metric offers different advantages. Maximizing em-
pirical utility aligns well with existing non-probabilistic dis-
crete metrics for evaluating ML classifiers (such as, accu-
racy, Fl-score, and AUPRC), which exclusively focus on
the discriminative power of models. In contrast, maximizing
expected utility is critical for decision making under uncer-
tainty, i.e., when the outcome of decisions may be proba-
bilistic and thus a rational agent should maximize for its de-
cision’s expected utility. In fact, the primary result of utility
theory, the accepted, normative theory of action under un-
certainty, is that ideal decisions are those that maximize ex-
pected utility (Morgenstern and Von Neumann 1953). Max-
imizing expected utility requires the use of calibrated prob-
abilities, which is an aspect that is not reflected in empirical
utility. Moreover, expected utility optimization is useful in
cases when empirical evaluation of metrics is not feasible
due to delayed reward in the real world or when the defini-
tion of empirical ground truth labels is soft and non-discrete.

Results

RQ1: Table 3 shows that the new classifier can improve ex-
pected team utility over log-loss. These improvements are
often achieved by sacrificing the classifier’s individual ac-
curacy. For example, on Scenariol the new linear classifier
improved expected utility from 0.524 to 0.606 even though
it was less accurate.

When we considered empirical utility, our method did not
always result in improvements. For example, for the linear
classifier, while on Scenariol, the empirical utility increased
from 0.593 to 0.654, but on MIMIC it decreased from 0.8 to
0.765. Ideally, one would expect that an increase in expected
team utility would be accompanied with proportional in-
crease in empirical team utility. However, as Table 3 shows,
this was often not the case.

While this mismatch between empirical and expected util-
ities seems counterintuitive, it is a well know problem;
Huang et al. (2019) noticed a mismatch between various
common ML evaluation metrics, such as log-loss, zero-one
loss, and AUPRC. However, we still considered the possi-
bility that, in practice, the mismatch perhaps resulted from
stochastic optimization getting stuck in local minimas, and
that a better optimization procedure would alleviate this
mismatch. To pursue this conjecture, we developed two-



Logloss Expected Utility Loss
Classifier | Dataset Accuracy | Expected Util. | Emp. Util. | A Accuracy | A Expected Util. | A Emp. Util.
Fico 0.729 0.487 0.575 -0.247 0.013 -0.075
German 0.754 0.529 0.594 -0.015 0 -0.019
Linear MIMIC 0.881 0.694 0.8 -0.004 0.066 -0.035
Moons 0.885 0.687 0.79 -0.02 0.079 -0.006
recidivism | 0.669 0.485 0.52 -0.17 0.015 -0.02
Scenariol 0.858 0.524 0.593 -0.165 0.102 0.061
Fico 0.725 0.472 0.574 -0.244 0.028 -0.074
German 0.752 0.53 0.618 -0.036 -0.027 -0.056
MLP MIMIC 0.881 0.719 0.799 -0.001 0.049 -0.029
Moons 1 0.944 0.989 0 0.049 0.006
Recidivism | 0.674 0.467 0.521 -0.168 0.033 -0.021
Scenariol 1 0.826 0.854 -0.1 0.08 0.057

Table 3: Comparison of accuracy, expected and empirical team utilities of classifiers optimized for log-loss (with a checkpoint
on accuracy) and expected team utility (with a checkpoint on expected utility) using Adam for A = 0.5, a = 1.0, 5 = 1.0.
Observations averaged over 50 train/test splits. A indicates difference with respect to log-loss. Classifier trained to optimize
expected team utility achieves higher expected utility at the cost of automation accuracy. However, we notice a mismatch
between expected and empirical utilities— empirical utility decreased even though expected utility increased.

Dataset Expected Util L. | Emp. Util ... | AExpected Util (A) | A Emp. Util (B) | A* Emp. Util (C)
Fico-2d 0.475 0.511 0.025 -0.011 -0.004
German-2d 0.514 0.6 0.076 -0.004 -0.016
MIMIC-2d 0.641 0.772 0.121 -0.009 0.005
Moons 0.767 0.813 0.016 -0.006 0.034
Recidivism-2d | 0.478 0.518 0.022 -0.017 0.007
Scenariol 0.707 0.715 0.045 0.069 0.068

Table 4: Test performance of linear classifier that optimizes log-loss and team utility using brute-force optimization on two-
dimensional domains. While we observe consistent improvements in the team’s expected utility (column marked A) across
domains, improvements in expected utility did not translate to improvements in empirical utility (values in column marked B
are negative), indicating a mismatch between the expected and empirical metrics of team utilities. At the same time, exhaustive
search shows existence of linear classifiers with higher empirical utility (column marked C). Values were averaged over five
seeds. Observations in column C on Fico-2d and German-2d were negative on test set due to over-fitting.

dimensional versions of our dataset (by selecting two top
most informative features) and trained linear classifiers us-
ing exhaustive search, which by definition cannot get stuck
in local minimas. We again found a persistence of the mis-
match between expected and empirical utilities (Table 4).
In addition, we also noticed that there exist classifiers with
higher empirical utility if the exhaustive search maximizes
directly for empirical utility (column C in Table 4), which
further demonstrates the existence of the mismatch.

These results provide evidence that the challenge with
achieving comparable increases in empirical utility to those
in expected utility is not only due to optimization issues
(e.g., local minimas and plateaus due to flatness of the ex-
pected utility curve in the Solve region). There exists a fun-
damental ML challenge of loss-metric mismatch, which was
prominent in our setup. In the rest of the section, we present
further analyses of improvements in the normative decision
making metric of expected utility, which as described earlier,
is useful in decision-making under uncertainty.

RQ2: While the metrics in Table 3 (change in accuracy and
utility) provide a global understanding of the classifier be-

Note that directly optimizing for empirical utility is not effec-
tive via stochastic optimization.

havior, here we attempt to understand how these improve-
ments were achieved and whether the behavior of the new
models is consistent with the original intuition. Figure 4 dis-
plays the difference in behavior (averaged over 50 seeds)
between the classifiers produced by log-loss and the one
that maximizes team utility on the Scenariol and MIMIC
dataset. Specifically, as shown in Figure 4, we visualize and
compare the following behaviors of the two classifiers:

V1. Calibration using reliability curves, which compare
system confidence and its true accuracy. A perfectly cal-
ibrated system, for example, will be 80% accurate on re-
gions that is 80% confident. However, in practice, systems
may be over- or under-confident.

V2. Distributions of confidence in predictions. For exam-
ple, in Figure 4, the new classifier makes more high-
confidence predictions than the most accurate classifier.

V3. Density of system accuracy as function of confidence
in true label. Thus, the area under this curve indicates the
system’s total accuracy. Note that, for our setup, the area
under the curve in the Accept region is more crucial.

V4. Density of expected utility as a function of confidence.

The classifier optimized for the team’s expected utility re-
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Figure 4: Behavior of linear classifiers that optimize log-
loss and expected team utility on the Scenariol and MIMIC
datasets (observations averaged over 50 runs). The latter
makes fewer predictions in the Solve region and also sacri-
fices accuracy in that region to increase it in Accept. We ob-
served a behavior similar for the MLP model on all datasets
(ommitted due to space constraints).

sults in dramatically different predictions than the classifier
trained using log-loss: The new classifier sacrifices accuracy
on the uncertain examples (Solve region) to make higher
numbers of high-confidence predictions (Accept region).
Most importantly, it also increases the density of system ac-
curacy in the Accept region, which is where the system ac-
curacy matters and contributes to team utility. Figure 4 illus-
trates the same behavior on the MIMIC in-hospital mortality
prediction dataset.

An interesting exception was Fico, where the system
learned to always be uncertain. This may make sense for
the Fico domain because, as shown in Table 3, even though
the most accurate linear classifier is 73% accurate on Fico,
it achieves an expected team utility of 0.487. This is less
than the expected utility achieved if humans solved the task
alone. Hence, the more accurate classifier leads to lower ex-
pected team utility. We observed a similar behavior on re-
cidivism prediction where the linear classifier led to team
performance lower than that associated with people making
decisions unaided, even though the classifer had a 67.4%
accuracy (Table 3). These cases illustrate timely concerns
and questions of when and if an Al should be deployed to

dataset a=0.8 a=0.9 a=1

Fico 0.257 (0.133) | 0.337 (0.071) | 0.487 (0.013)
German 0.397 (0.046) | 0.444 (0.035) | 0.529 (0)
MIMIC 0.625 (0.127) | 0.644 (0.111) | 0.694 (0.066)
Moons 0.582 (0.162) | 0.616 (0.139) | 0.687 (0.079)
Recidivism | 0.155 (0.073) | 0.292 (0) 0.485 (0.015)
Scenariol 0.224 (0.324) | 0.364 (0.248) | 0.524 (0.102)

Table 5: Expected utility of log-loss and improvements for
linear classifiers (A Expected Util. shown in brackets) with
varying human accuracy (a) and (A = 0.5 and 5 = 1.0).
Results averaged over 50 random seeds. Improvements in
expected utility are higher when the human is less accurate.

dataset £=1 £5=3 e

Fico 0.487 (0.013) | 0.474 (0.026) | 0.481 (0.019)
German 0.529 (0) 0.427 (0.057) | 0.367 (0.118)
MIMIC 0.694 (0.066) | 0.58 (0.008) 0.543 (0)
Moons 0.687 (0.079) | 0.637 (0.065) | 0.594 (0.085)
Recidivism | 0.485 (0.015) | 0.495(0.004) | 0.498 (0.001)
Scenariol 0.524 (0.102) | 0.501 (0.02) 0.5 (0)

Table 6: Expected uility of log-loss and improvements for
linear classifiers (i.e., A Expected Util., shown in brackets)
with varying cost of mistakes () and (A = 0.5,a = 1.0).
Results averaged over 50 random seeds. On most datasets,
gains diminish as the cost of mistakes increases.

assist human decision-making, which we further discuss in
the ethical statement.

RQ3: Since properties such as the accuracy of users and
penalty of mistakes may be task-dependant (e.g., an incor-
rect diagnosis may be costlier than incorrect loan approval),
we varied human accuracy a and mistake penalty [ to study
the sensitivity in improvements in team utility to a wider
range of these task parameters.

Table 5 shows improvements in expected utility as we
vary human accuracy from 80% to 100% while keeping A
and [ constant to 0.5 and 1, respectively. These three val-
ues of a result in three new values of optimal threshold
¢(B, A, a):0.55,0.65, and 0.75, thus gradually expanding the
confidence region in which the user is likely to solve be-
cause they themselves are more accurate. We notice higher
improvements in expected utility from deploying a system
when humans are less accurate, e.g., Table 5 shows that, on
Fico, improvement in expected utility is 0.133 when the hu-
man is 80% accurate whereas it is 0.013 when they are per-
fect. One explanation for this behavior is that when humans
are less accurate there is greater value from system recom-
mendations, which widens the Accept region and increases
the scope where the Al can provide value to the team.

Similarly, Table 6 shows the impact of varying cost of
mistakes 3 on improvements. The three values of /5 increase
the Accept threshold gradually from 0.75 to 0.91, and there-
fore shrink the size of the Accept region. Hence, we start
observing smaller gains when the cost of mistake is high,
e.g., on the MIMIC dataset there are no gains, although the
trend is also subject to the shape of expected utility and how
easy it is to optimize it. In overall, the trend emphasizes once



again that for extremely high-stake decisions, automation or
Al recommendation may not always provide value.

4 Discussion and Future Work

Implications for complex human-AI teams While we in-
vestigated a simplified human-Al teamwork (as defined in
Section 2), our setup allows extensions to more complex
team and users. For example, one can relax our assump-
tion that users are rational by modifying the human-policy in
Equation 4, so that when the prediction confidence is greater
than the threshold, the user chooses Accept with probabil-
ity p < 1, instead of 1.0. Here, 1 — p denotes the proba-
bility of the user being irrational — assessed from histori-
cal data, if available. Similarly, in more complex situations
users may make Accept and Solve decisions using aricher,
more complex mental model instead of relying on just model
confidence. Such scenarios are common in cases where the
system confidence is an unreliable indicator of performance
(e.g., due to poor calibration), and, as a result, the user devel-
ops an understanding of system failures in terms of domain
features. For example, Tesla drivers may learn to override
the Autopilot considering such features as road, sun glare,
and weather conditions. We can reduce the case where users
have a complex mental model to the policy that we studied.
Specifically, we can construct a new loss function in terms of
human utility (in this case, constant) when the prediction be-
longs to the Solve region (as described by the user’s mental
model) and automation utility otherwise.

While the above extensions to our model are a start, even
they may present challenges— If we cannot optimize empir-
ical utility for our simplified case, it may be harder to op-
timize performance in the extensions as they contain more
complex user behavior and the resultant loss surface is likely
to be more complex, containing combinations of plateaus
and local optima. In addition to these extensions, future
work should also consider more general uses of Al recom-
mendations in support of human decision making. For ex-
ample, we need to consider common uses that are not con-
strained to policies where a user either accepts an Al recom-
mendation or relies completely on their own reasoning. It is
natural to expect that users in human-Al teams will employ
their own evidential reasoning to fuse Al inferences (and as-
sociated confidences if shared) with their own assessments.
Furthermore, user’s mental models may not be static; in-
stead, they may change with time as users learn more about
the Al. Mental models may also vary across users, as dif-
ferent people might have different propensity to accept ma-
chine recommendations.

Human-subject evaluations are an important next step to
understand how factors such as biases, variations in user ex-
pertise, irrational behavior come to play in practice. Is our
simple model of human behavior sufficient for our approach
to yield gains in practice? We view our work as a funda-
mental first step showing the potential impact of a human-
centered model and motivating additional work including
real-world studies with human subjects. Over time, we hope
to learn and incorporate rich (and individualized) models of
human behavior into our framework and test them in real-
world human-AlI teams.
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Figure 5: An example of an auxiliary loss function Team-
loss defined as = log(¢(x, y) + K), which is equal to Log-
loss in Accept region and constant otherwise. Here, K is a
positive constant we added so that the logarithmic is valid.

Empirical utility and auxiliary loss functions While op-
timizing for teamwork, we faced two fundamental optimiza-
tion challenges. First, we observed an an inherent mismatch
between empirical and expected utility as shown in the ex-
haustive experiments for two dimensional data, which hin-
dered optimization on the empirical metric, which is often
a central consideration in ML. Second, current optimization
techniques were not always effective and in fact sometimes
they did not change model behavior because the optimiza-
tion approaches got stuck due to zero gradients and local
minimas Solve region.

To support empirical utility maximization, in our initial
analysis, we also experimented with an auxiliary loss func-
tion, as shown in Figure 5. However, in our experiments this
loss function did not lead always lead to significant gains
in empirical utility and when it did it only lead to marginal
improvements. Based on these theoretical and practical chal-
lenges, we invite future work on machine learning optimiza-
tion and human-AlI collaboration to develop new optimiza-
tion techniques that work well beyond , robustly over a more
general set of loss of functions that can capture team utility.

Mental models and explainable AI To increase team per-
formance we focused on adapting one Al property to user
mental models— the Al should be more accurate on instances
when the user is more likely to trust model recommenda-
tions. Similarly, future work should study whether other as-
pects of human-AlI collaboration can be improved by consid-
ering user mental models. For instance, mental models could
help inform the nature of explanation given to the users.
Such as, when users already trust the model, the system may
be better off offering concise explanations. In contrast, when
the users are likely to distrust the model, they system should
be ready to offer detailed explanations/arguments support-
ing its prediction (Bansal et al. 2020). Eventually, work on
explainable Al aims to improves human-Al collaboration by
providing a layer of communication between users and Al



systems. Since explainability does not guarantee improve-
ments in collaboration (Bansal et al. 2020), there is need to
bring collaboration as an objective to every step of system
development, starting from the training objective. We hope
that this work paves the work for future directions towards
uncovering how to develop Al systems for collaboration.

5 Related Work

Our approach is closely related to maximum-margin classi-
fiers, such as an SVM optimized with the hinge loss (Burges
1998), where a larger soft margin can be used to make high-
confidence and accurate predictions. However, unlike our
approach, it is not possible to directly plug the domain’s
payoff matrix (e.g., in Table 1) into such a model. Further-
more, the SVM’s output and margin do not have an imme-
diate probabilistic interpretation, which is crucial for our
problem setting. One possible (though computationally in-
tensive) solution direction is to convert margin into probabil-
ities, e.g., using post-hoc calibration (e.g., Platt scaling (Platt
1999)), and use cross-validation for selecting margin param-
eters to optimize team utility. While it is still an open ques-
tion whether such an approach would be effective for SVM
classifiers, in this work we focused our attention on gradient-
based optimization.

Another related problem is cost-sensitive learning,
where different mistakes incur different penalties; for
example, false-negatives may be costlier than false-
positives (Zadrozny, Langford, and Abe 2003; Bach, Heck-
erman, and Horvitz 2006). A common solution here is up-
weighting the inputs where the mistakes are costlier. Also
relevant is work on importance-based learning where re-
weighting helps learn from imbalanced data or speed-up
training. However, in our setup, re-weighting the inputs
makes less sense— the weights would depend on the clas-
sifier’s output, which has not been trained yet. An iterative
approach may be possible, but our initial analysis showed
this approach is prone to oscillations. We leave exploring
this avenue for future work.

A fundamental line of work that renders Al predictions
more actionable (for humans) and better suitable for team-
ing is confidence-calibration, for example, using Bayesian
models (Ghahramani 2015; Beach 1975; Gal and Ghahra-
mani 2016) or via post-hoc calibration (Platt 1999; Zadrozny
and Elkan 2001; Guo et al. 2017; Niculescu-Mizil and Caru-
ana 2005). A key difference between these methods and our
approach is that team-loss re-trains the model to improve
on inputs on which users are more likely to rely on the Al
predictions. The same contrast distinguishes our approach
from outlier detection techniques (Hendrycks, Mazeika, and
Dietterich 2018; Lee et al. 2017; Hodge and Austin 2004).

Closely related is research on learning to defer (Madras,
Pitassi, and Zemel 2018; Mozannar and Sontag 2020) and
learning to complement (Wilder, Horvitz, and Kamar 2020),
where the classifier can abstain and defer/query the task
to the user, while accounting for costs and benefits of in-
tervention. While the "Solve" meta-decision in our frame-
work corresponds to the defer action, our work differs from
these works in two important ways. First, the defer action in

prior work is system-initiated whereas in our case it is user-
initiated and based on their mental model. Second, learning
to defer does not preclude our methods, since users may cre-
ate mental models even when the system does not defer and
so the team may still benefit from training a model that ac-
counts for user’s mental model.

Other recent work that adjusts model behavior to accom-
modate collaboration includes backward-compatibility for
Al (Bansal et al. 2019b), where the model considers user in-
teractions with a previous version of the system to preserve
trust across updates. Recent user studies showed that when
users develop mental models of Al system, properties be-
sides accuracy are also desirable, such as parsimonious and
deterministic error boundaries (Bansal et al. 2019a). Our ap-
proach is a first step towards implementing these desiderata
within ML optimization itself. Other approaches regularize
or constrain model optimization for other human-centered
requirements such as local- or global-interpretability (Wu
et al. 2020) or fairness (Jung et al. 2019; Zafar et al. 2017).

6 Conclusions

We studied opportunity to train classifiers that optimize
human-Al team performance. We showed the value of opti-
mizing the expected utility of decision making of human-Al
teams in contrast to traditional model optimization focusing
solely on automation accuracy. Investigations and visualiza-
tions of classifier behavior before and after proposed opti-
mization show that the methods can be harnessed to fun-
damentally change model behavior and improve the team
utility. Changes in model behavior include (i) sacrificing
model accuracy in low confidence regions for more accu-
rate high-confidence predictions and (ii) increasing accuracy
and number of high-confidence predictions. Such behav-
iors were observed in both synthetic and real-world datasets
where Al is known to be employed as support for human de-
cision makers, and across various domain parameters such
as human accuracy and cost of mistake.



Ethical Statement

A broader contribution of this work is to rethink how ML
models are defined and optimized when they are deployed
in human-Al collaboration scenarios, e.g., for supporting hu-
man decision making in high-stakes areas (including health-
care and criminal justice) where Al systems already influ-
ence user decisions with important consequences for indi-
viduals and society. Since most Al systems are optimized
automation performance, more research is needed to cre-
ate effective advisory systems by integrating team-centered
considerations in the formal machinery of optimization used
to build and execute these Al systems. We examined one ap-
proach to raising the expected value of Al-aided human de-
cision making by considering teamwork in the optimization
objective.

Beyond the direct use of the methods for optimizing
human-AI teamwork, the methods can be valuable for build-
ing insights on teaming. For example, results showed that
there exist regions in the space of collaboration parameters
where automated assistance, or even providing an Al recom-
mender, may not make sense— when the cost of mistakes was
high and human decisions are sufficiently accurate, the algo-
rithm always hands over control to humans, discouraging the
need for algorithmic support. Such an analysis highlights the
importance of carefully questioning and evaluating whether
Al deployment is beneficial from a team perspective. A more
rigorous evaluation requires robust and online estimation of
costs and user behavior to ensure that the training and real-
world objectives align. While we did not address the prob-
lem of estimating and updating such parameters, we wish
to bring attention to the fact that problems such as underes-
timation of costs (or overestimation of rewards) may still
lead to high-cost mistakes even when following the opti-
mization approach we proposed in this paper. We hope that
advances in interdisciplinary research on measuring the im-
pact and costs in socio-technical systems will further inform
decisions and designs about the role and behavior of Al in
human-Al teamwork in future work.

Finally, we recognize that significant ethical issues are
raised by the nature of human oversight and agency over
Al in our simplified human-AlI teaming. Our formulation of
user policy assumed that, when the Al system is confident,
the user completely trusts Al inferences and forgoes further
human deliberation. Such a policy can lead to inappropri-
ate transfers of responsibility in realistic settings. Even if the
model is confident and has been historically correct, humans
will still need to stay cognizant of the potential for poorly
characterized and unexpected modes of Al failure, e.g., due
to distributional shifts or changes in the influences of latent
variables with changes in context or workload. Thus, in real-
world settings, the policy that we studied can be dangerous.
In uses of Al, where high-confidence recommendations are
typically trusted and there is a practice of little or no human
deliberation about the validity of automated output, human
overseers of Al should be aware of their reliance and their
need to take full accountability for outcomes linked to the
inferences.
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