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Abstract
Randomly perturbing networks during the train-
ing process is a commonly used approach to im-
proving generalization performance. In this paper,
we present a theoretical study of one particular
way of random perturbation, which corresponds
to injecting artificial noise to the training data. We
provide a precise asymptotic characterization of
the training and generalization errors of such ran-
domly perturbed learning problems on a random
feature model. Our analysis shows that Gaussian
noise injection in the training process is equiva-
lent to introducing a weighted ridge regulariza-
tion, when the number of noise injections tends
to infinity. The explicit form of the regulariza-
tion is also given. Numerical results corroborate
our asymptotic predictions, showing that they are
accurate even in moderate problem dimensions.
Our theoretical predictions are based on a new
correlated Gaussian equivalence conjecture that
generalizes recent results in the study of random
feature models.

1. Introduction
A popular approach to improving the generalization per-
formance is to randomly perturb the network during the
training process (Srivastava et al., 2014; Bishop, 1995; Gul-
cehre et al., 2016; LeJeune et al., 2020; Kobak et al., 2020).
Such random perturbations are widely used as an implicit
regularization to the learning problem. One way that random
perturbation has been used as a regularization is by inject-
ing it to the input data before starting the learning process
(Gong et al., 2020; Rakin et al., 2018; Poole et al., 2014). In
this paper, we provide a theoretical analysis of such learning
procedure on a random feature model (Rahimi & Recht,
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2008) under Gaussian input and perturbation vectors. Our
analysis particularly shows that Gaussian noise injection
introduces a weighted ridge regularization, asymptotically.

First, we describe the models for our theoretical analysis.
We are given a collection of training data {(yi,ai)}ni=1,
where ai ∈ Rp is referred to as the input vector and yi ∈ R
is referred to as the label corresponding to ai. In this paper,
we shall assume that the labels are generated according to
the standard teacher–student model, i.e.

yi = ϕ(a>i ξ), ∀i ∈ {1, . . . , n}, (1)

where ξ ∈ Rp is an unknown teacher weight vector, and
ϕ(·) is a scalar deterministic or probabilistic function. Here,
we use the random feature model (Rahimi & Recht, 2008)
to learn the model described in (1). The random feature
model considers the following class of functions

FRF(a) =
{
gw(a) = w>σ(F>a), w ∈ Rk

}
, (2)

where a ∈ Rp is an input vector, F ∈ Rp×k is a random
matrix referred to as the feature matrix, and σ(·) is a scalar
function referred to as the activation function. This model
assumes that F is fixed during the training. Note that the
family in (2) can be viewed as a two–layer neural network
where the first layer weights are fixed, i.e. F is fixed.

1.1. Learning Formulation

Before starting the learning process, ` independent perturba-
tion vectors are injected to each ai. This procedure forms
the augmented family {ai + ∆zij}`j=1 for each ai, where
{zij}`j=1 are independent random perturbations and ∆ ≥ 0
denotes the noise variance. In this paper, we study the ef-
fects of such perturbation method on an average loss and
a random feature model. Specifically, we analyze formula-
tions of the following form

ŵ = argmin
w∈Rk

1

2n`

n∑
i=1

∑̀
j=1

(
yi −w>σ

(
F>[ai + ∆zij ]

))2
+ λ

2 ‖w‖
2, (3)

where λ > 0 denotes the regularization parameter. Note that
the problem in (3) is a standard feature formulation when
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∆ = 0. Then, we refer to (3) as the noisy formulation, when
∆ > 0 and the standard formulation, otherwise.

1.2. Performance Measure

The main objective in this paper is to study the performance
of the learning formulation in (3) on unobserved test data.
For every test vector anew ∈ Rp, the corresponding label ŷ
can be predicted using the following (probabilistic) role

ŷ = ϕ̂[ŵ>σ(F>anew)], (4)

for some predefined function ϕ̂(·), where ŵ ∈ Rk denotes
the optimal solution of the formulation given in (3). To
measure the performance of the learning problem in (3) on
any unobserved test data {(ynew,anew)}, we use the gener-
alization error defined as follows

Etest =
1

4υ
E
[(
ynew − ϕ̂(ŵ>σ(F>anew))

)2]
. (5)

Here, the expectation is taken over the distribution of the
unobserved test vector anew and the (random) functions ϕ(·)
and ϕ̂(·). We take υ = 0 for regression problems (e.g. ϕ(·)
is the identity function) and υ = 1 for binary classification
problems (e.g. ϕ(·) is the sign function). In this paper, we
assume that the test data is generated according to the same
training model introduced in (1). Furthermore, we measure
the performance of the formulation in (3) on the training
data via the training error defined as follows

Etrain =
1

2n`

n∑
i=1

∑̀
j=1

(
yi − ŵ>σ

(
F>[ai + ∆zij ]

))2
.

Note that the training error is the optimal cost value of our
learning formulation in (3) without regularization.

1.3. Contributions

The contribution of this paper can be summarized as follows:

(C.1) Our first contribution is a correlated Gaussian equiv-
alence conjecture (cGEC). Our conjecture considers Gaus-
sian input and perturbation vectors. It states that the learning
formulation in (3) is asymptotically equivalent to a simpler
optimization problem that can be formulated by replacing
the non–linear vectors

vij = σ
(
F>[ai + ∆zij ]

)
,

with linear vectors with the following form

qij = µ01k + µ̃1F
>ai + µ̂1F

>zij + µ2bi + µ3pij .

Here, {bi}ni=1 and {pij}
n,`
i,j=1 are independent standard

Gaussian random vectors and independent of {ai}ni=1 and

{zij}n,`i,j=1. Moreover, the weights µ0, µ̃1, µ̂1, µ2 and µ3

depend on σ(·) and ∆ as follows
µ0 = E[σ(x1)], µ̃1 = E[zσ(x1)], µ̂1 = E[v1σ(x1)]

µ2
2 = E[σ(x1)σ(x2)]− µ2

0 − µ̃2
1

µ2
3 = E[σ(x1)2]− E[σ(x1)σ(x2)]− µ̂2

1,

where x1 = z+∆v1, x2 = z+∆v2, and z, v1 and v2 are in-
dependent standard Gaussian random variables. Specifically,
the cGEC states that the performance of the formulation:

min
w∈Rk

1

2n`

n∑
i=1

∑̀
j=1

(
yi − µ̃1w

>F>ai − µ̂1w
>F>zij

− µ0w
>1k − µ2w

>bi − µ3w
>pij

)2
+ λ

2 ‖w‖
2, (6)

is asymptotically equivalent to the performance of the noisy
formulation. This conjecture is valid in the asymptotic limit
(i.e. n, p and k grow to infinity at finite ratios). More details
about this equivalence is provided in Section 2. We refer to
(6) as the Gaussian formulation. The cGEC is verified by
presenting multiple simulations in different scenarios.

(C.2) The second contribution is a precise characterization
of the training and generalization errors of the noise injec-
tion procedure formulated in (3) for Gaussian input and
perturbation vectors. The theoretical predictions are ob-
tained using an extended version of the convex Gaussian
min-max theorem (CGMT) (Thrampoulidis et al., 2016;
2015). From a purely technical point of view, our analysis
technique is novel. Rather than a routine and direct appli-
cation of the standard CGMT method from previous work,
we have developed a new multivariate version of the CGMT
that is a significant extension of the existing formulation.
Specifically, the standard CGMT method provides precise
performance analysis of problems in the following form:
minw∈Sw maxu∈Su u

>Gw + ψ(w,u), where the matrix
G has independent standard Gaussian entries and the func-
tion ψ(·, ·) satisfies convexity assumptions. In our problem,
we are dealing with

min
w∈Sw

max
u∈Su

[u>1 , . . . ,u
>
` ]

G1

...
G`

w + ψ(w,u). (7)

Here, the matrixGj = KΣ
1
2 + T jΓ

1
2 , for j ∈ {1, . . . , `},

where Σ and Γ are two different covariance matrices and
K and {T j}1≤j≤` are all independent standard Gaussian
matrices. We can see that everyGj has independent rows.
However, any two different matricesGi andGj are depen-
dent as their constructions share the same matrixK. Clearly,
the classical CGMT method is not applicable in this case.
To our knowledge, our paper provides the first theoretical
analysis that can handle such correlation in the input data.
We refer to this extended version the multivariate CGMT.
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Figure 1. Solid line: Theoretical predictions. Circle: Numerical
simulations for (3). Black cross: Numerical simulations for (6).
ϕ(·) is the sign function with probability θ of flipping the sign.
ϕ̂(·) and σ(·) are the sign function. We set p = 500, ∆ = 0.5,
α = n/p = 2, θ = 0.1, λ = 10−5. F has independent Gaussian
components with zero mean and variance 1/p. The results are
averaged over 200 independent Monte Carlo trials.

In Figure 1, we compare our theoretical predictions with
the actual performance of the learning problem given in
(3). First, note that our asymptotic predictions are in ex-
cellent agreement with the actual performance of (3) and
its Gaussian formulation given in (6), even for moderate
values of p, n and k. This provides a first empirical valida-
tion of our results. Figure 1 also study the effects of ` on
the training and generalization performance. Note that the
generalization error follows a double descent curve (Belkin
et al., 2018; 2019). Specifically, the generalization error
decreases monotonically as a function of the complexity
η = k/n after reaching a peak known as the interpolation
threshold (Belkin et al., 2018; 2019). Figure 1(b) partic-
ularly demonstrates that the location of the interpolation
threshold depends on the number of noise samples. Specifi-
cally, the interpolation threshold peak occurs at ` for fixed
noise variance ∆ = 0.5. Additionally, Figure 1(a) shows
that the interpolation threshold occurs when the training er-
ror converges to zero. Then, we can see that perturbing the
input data with ` random noise vectors moves the interpola-
tion threshold from 1 to ` and improves the generalization
error for complexity η lower than `.

(C.3) The third contribution is a precise analysis of the regu-
larization effects of the considered noise injection procedure.
Specifically, we use the asymptotic predictions of the noisy
formulation to show that the noise injection model in (3) is
equivalent to solving a standard feature formulation with an
additional weighted ridge regularization. This theoretical
result is valid when the number of noise samples ` tends to
infinity. In particular, we show that the formulation in (3) is
equivalent to solving the problem

min
w∈Rk

1

2n

n∑
i=1

(
yi −w>σ̂(F>ai)

)2
+

1

2
‖R

1
2w‖2

+ λ
2 ‖w‖

2, (8)
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Figure 2. Solid line: Theoretical predictions. Circle: Numerical
simulations for (3) and (8). ϕ(·), ϕ̂(·) and σ(·) are the sign func-
tion. (a) p = 700, ` = 180, α = n/p = 1, ∆ = 1 and λ = 10−3.
(b) p = 600, α = n/p = 1.5, η = k/n = 1, ∆ = 1 and
λ = 10−3. F has independent Gaussian components with zero
mean and variance 1/p. The results are averaged over 100 inde-
pendent Monte Carlo trials.

when ` grows to infinity slower than the dimensions n, p
and k. Here, σ̂(·) is a new activation function and R is
defined as follows

R = µ̂2
1F
>F + µ2

3Ik. (9)

Finally, we provide a precise asymptotic characterization of
the training and generalization errors corresponding to (8).
We refer to this formulation as the limiting formulation.

Figure 2 provides another empirical verification of our theo-
retical predictions since it shows that they are in excellent
agreement with the actual performance of (3) and (8). Fig-
ure 2(a) shows that the noisy formulation in (3) has approxi-
mately the same performance as the formulation in (8) for
` = 180. This is aligned with our theoretical prediction
which states that the formulations in (3) and (8) are equiv-
alent when ` grows to infinity slower than the dimensions
n, p and k. Figure 2(b) illustrates the convergence behavior
of the generalization error corresponding to (3) for a fixed
value of η. It particularly shows that the noisy formulation
has a good convergence rate, i.e. the limit is already at-
tained with a moderate value of `. Moreover, we can see
from Figure 2(a) that the convergence rate depends on the
complexity parameter η.

1.4. Related Work

There has been significant interest in precisely characteriz-
ing the performance of the random feature model in recent
literature (Mei & Montanari, 2019; Gerace et al., 2020; Dhi-
fallah & Lu, 2020; Hu & Lu, 2020). The ridge regression
formulation, (i.e. ϕ(·) is the identity function and ∆ = 0 in
(3)) is precisely analyzed in (Mei & Montanari, 2019) where
the feature matrix is Gaussian. In a subsequent work, (Mon-
tanari et al., 2019) uses the CGMT to accurately analyze the
maximum-margin linear classifier in the overparametrized
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regime. The work in (Gerace et al., 2020) precisely char-
acterizes the performance of the standard formulation, i.e.
∆ = 0, for general families of feature matrices and convex
loss functions. The results presented in (Gerace et al., 2020)
are derived using the non–rigorous replica method (Mezard
et al., 1986). The predictions in (Gerace et al., 2020) are
rigiourously verified in (Dhifallah & Lu, 2020) using the
CGMT. All the previous work consider an unperturbed for-
mulation of the random feature model. In this paper, we
study the effects of adding random noise during training.
Our analysis is based on an extended version of the CGMT
referred to as the multivariate CGMT. The CGMT is first
used in (Stojnic, 2013) and further developed in (Thram-
poulidis et al., 2016). It extends a Gaussian theorem first
introduced in (Gordon, 1988). It relies on (strong) convexity
properties to prove an equivalence between two Gaussian
processes. It has been successfully applied in the analysis
of convex regression (Thrampoulidis et al., 2016; Dhifallah
et al., 2018; Dhifallah & Lu, 2020) and convex classification
(Salehi et al., 2019; Sifaou et al., 2019; Mignacco et al.,
2020; Dhifallah & Lu, 2021) formulations.

There has been significant interest in studying the effects
of random noise injection during training (see e.g. (Bishop,
1995; An, 1996; Gulcehre et al., 2016)). In particular, prior
literature (Zantedeschi et al., 2017; Kannan et al., 2018)
shows that Gaussian noise injection during training im-
proves the robustness of the network. Moreover, several
recent papers (Bishop, 1995; Gong et al., 2020) show that
such perturbation technique introduces some sort of regu-
larization to the loss function. In particular, the work in
(Gong et al., 2020) shows that minimizing the worst–case
loss introduces a gradient norm regularization.

Another popular perturbation approach used in regularizing
learning models is the dropout method (Srivastava et al.,
2014; Wei et al., 2020). It consists of perturbing the learn-
ing problem by randomly dropping units from the network
during the training procedure. In this paper, we precisely
analyze the Gaussian noise injection method and we leave
the analysis of the dropout technique for future work. Our
empirical studies suggest that the dropout method has a bet-
ter convergence rate as compared to the noisy formulation.
Moreover, they suggest that both methods have comparable
generalization performance.

2. Gaussian Equivalence Conjecture with an
Intuitive Explanation

Consider three independent standard Gaussian random vec-
tors a ∈ Rp, z1 ∈ Rp and z2 ∈ Rp. Moreover, consider the
random variables ν1 = ξ>a, ν2 and ν3 defined as follows

ν2 = w>σ(F>[a+ ∆z1]), ν3 = w>σ(F>[a+ ∆z2]),

where σ(·), ξ ∈ Rp and F ∈ Rp×k satisfy some
regularity assumptions, and where w ∈ Rk. More-
over, define the joint probability distribution of ν1, ν2
and ν3 as P(ν1, ν2, ν3). The cGEC states that the joint
distribution P(ν1, ν2, ν3) is asymptotically Gaussian, i.e.
d(P(ν1, ν2, ν3),P(νg,1, νg,2, νg,3)) converges in probabil-
ity to zero where νg,1, νg,2 and νg,3 are jointly Gaussian
with the same first and second moments of ν1 , ν2 and ν3
and d(·, ·) is some probability distance that metrizes the con-
vergence in distribution (e.g maximum-sliced (MS) distance
(Kolouri et al., 2019; Goldt et al., 2020a)). To have the same
first two moments, the random variables νg,1, νg,2 and νg,3
are selected as follows νg,1 = ν1 and

νg,2 = w>
(
µ01k + F>[µ̃1a+ µ̂1z1] + µ2b+ µ3p1

)
,

νg,3 = w>
(
µ01k + F>[µ̃1a+ µ̂1z2] + µ2b+ µ3p2

)
,

where 1k represents the all 1 vector with size k. Here,
b ∈ Rk, p1 ∈ Rk and p2 ∈ Rk are three independent
standard Gaussian random vectors and they are independent
of a, z1 and z2. The weights µ0, µ̃1, µ̂1, µ2 and µ3 are as
defined in Section 1.3.

In the standard setting, i.e. ∆ = 0, the cGEC is equivalent
to the uniform equivalence theorem (uGET), observed and
used in many earlier papers (Montanari et al., 2019; Gerace
et al., 2020; Goldt et al., 2020b; Dhifallah & Lu, 2020).
Recently, the work in (Hu & Lu, 2020) provided a rigorous
proof of the uGET. Specifically, the work in (Hu & Lu,
2020) proves a special case of cGEC when ∆ = 0, the
feature matrix is Gaussian and the activation functions have
bounded first three derivatives. However, similar to previous
literature (Goldt et al., 2020b), we conjecture that the cGEC
is valid under more general settings. We believe that the
analysis in (Hu & Lu, 2020) can be extended to prove the
cGEC and we leave the technical details for future work.

Our theoretical results are based on this conjecture. It is
thus useful to also provide an intuitive explanation for the
plausibility of the cGEC. Assume that f i is the ith column
of F . The nonlinear term I1 = σ(f>i (a + ∆z1)) can be
decomposed by projecting on the basis (1,f>i a,f

>
i z1),

i.e. I1 = µ0 + µ̃1f
>
i a + µ̂1f

>
i z1 + σ⊥i . The term σ⊥i is

selected so that we match the variance of I1 and the correla-
tion with I2 = σ(f>i (a+ ∆z2)). We note that the cGEC
makes sense when the columns of F are independent and
have the same norm. These are the regularity assumptions
for the feature matrix in (Goldt et al., 2020b). The same
intuition also appears in the analysis of the unperturbed ran-
dom kernel models, in particular, the random feature model
(Montanari et al., 2019). In this paper, we suppose that the
feature matrix and the activation function satisfy the regu-
larity assumptions in (Goldt et al., 2020b) and conjecture
that the Gaussian equivalence is valid for (ν1, ν2, . . . , ν`)
for ` ≥ 1 and uniformly in w ∈ Rk. Using the cGEC, the
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performance of the formulation in (3) can be characterized
by asymptotically analyzing the Gaussian formulation given
in (6). We verify this conjecture by performing multiple
simulation examples in different settings.

3. Technical Assumptions
In this paper, we precisely characterize the noisy formula-
tion under the following technical assumptions.

Assumption 1 (Gaussian Vectors). The input vectors
{ai}ni=1 and the perturbation vectors {zij}n,`i=1,j=1 are
known and drawn independently from a standard Gaussian
distribution. Without loss of generality, we assume that the
hidden vector ξ ∈ Rp has unit norm. Also, it is independent
of the input vectors, the noise vectors and F .

This paper makes specific assumptions about the input/noise
vectors distribution. We wish to emphasize that such as-
sumptions are essential for our asymptotic analysis. An
interesting future work is to relax the Gaussian assump-
tion by establishing universality properties (e.g. (Oymak
& Tropp, 2017; Panahi & Hassibi, 2017) ). Our theoretical
predictions are valid in the high-dimensional setting where
n, p and k grow to infinity at finite ratios.

Assumption 2 (Asymptotic Limit). The number of samples
and the number of hidden neurons satisfy n = n(p) and
k = k(p), respectively. We assume that αp = n(p)/p →
α > 0 and ηp = k(p)/n(p)→ η > 0 as p→∞. Also, the
number of noise injections ` is independent of p.

Moreover, we consider the following assumption to ensure
that the generalization error defined in (5) concentrates.

Assumption 3 (Generative Model). The data generating
function ϕ(·) introduced in (1) is independent of the input
vectors, the noise vectors and the feature matrix. Moreover,
the following conditions are satisfied.

(a) ϕ(·) and ϕ̂(·) are continuous almost everywhere in R.
For every h > 0 and z ∼ N (0, h), we have E[ϕ2(z)] <
+∞, E[zϕ(z)] 6= 0 and 0 < E[ϕ̂2(z)] < +∞.

(b) For any [c, C], there exists a function g(·) such that

sup
h,χ∈[c,C]

|ϕ̂(χ+ hx)|2 ≤ g(x) for all x ∈ R.

Additionally, the function g(·) satisfies E[g2(z)] < +∞,
where z ∼ N (0, 1).

In addition to the assumptions in Section 2, we consider the
following regularity conditions for the activation function.

Assumption 4 (Activation Function). The activation func-
tion σ(·) is independent of the input vectors, the noise vec-
tors and the feature matrix. It also satisfies E[σ(z)2] < +∞
and E[zσ(z)] 6= 0, where z ∼ N (0, 1).

In addition to the assumptions discussed in Section 2, we
consider a family of feature matrices that satisfy the follow-
ing assumption to guarantee that the Gaussian formulation
converges to a deterministic problem.

Assumption 5 (Feature Matrix). The SVD decomposition of
the feature matrix can be expressed as F = USV , where
U ∈ Rp×p andV ∈ Rk×k are random orthogonal matrices
and S ∈ Rp×k is a diagonal matrix formed by the singular
values of F . Define the matrixM asM = F>F .

(a) We assume that U is a Haar-distributed random uni-
tary matrix.

(b) We also assume that the empirical distribution of the
eigenvalues of the matrix M converges weakly to a
probability distribution Pκ(·) supported in [0 ζmax],
where ζmax > 0 is a constant independent of (p, `).

(c) We finally assume that Eκ[κ] > 0, where the expecta-
tion is taken over the distribution Pκ(·).

Based on Assumption 2, we also have the following property
δp = k(p)/p→ δ > 0 as p grows to infinity. Moreover, the
assumption on the feature matrix is used to show that some
key quantities in the cost function concentrate in the high
dimensional limit. The above assumptions are essential for
the technical tools we use. The simulation results in Section
5.4 show the robustness of the phenomenology uncovered
by our analysis on real data sets.

4. Precise Analysis of the Noisy Formulation
In this section, we asymptotically analyze the noise injec-
tion procedure introduced in (3). Specifically, we provide
a precise asymptotic characterization of the training and
generalization errors corresponding to (3).

4.1. Precise Asymptotic Analysis

Before stating our technical results, we start with few defi-
nitions. Define the following two deterministic functions

T2,λ =
δ

T 2
1

Eκ
[ κ

gκ,λ(t, τ )

]
/
(

1− µ̃2
1t1δ

τ1
Eκ
[ κ

gκ,λ(t, τ )

])
T3,λ =

t21
`
Eκ
[ µ̃2

1κ+ µ2
2

gκ,λ(t, τ )

]
+
t21 + t22
`2

Eκ
[ µ̂2

1κ+ µ2
3

gκ,λ(t, τ )

]
,

where the expectations are taken over the probability dis-
tribution Pκ(·) defined in Assumption 5 and where t =
[t1, t2]> and τ = [τ1, τ2]>. Here, the function gκ,λ(·, ·) is
defined as follows

gκ,λ(t, τ ) =
t1
τ1

(
µ̃2
1κ+ µ2

2

)
+
( t1
τ1`

+
t2(`− 1)

τ2`

)
×(

µ̂2
1κ+ µ2

3

)
+ λ. (10)
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Furthermore, define the following four-dimensional deter-
ministic optimization problem

inf
τ1>0
τ2>0

max
t1≥0
t2≥0

t1
2τ1

(
γ1 − 2µ̃1T1q

?
t,τγ2 + µ̃2

1T
2
1 (q?t,τ )2 + µ2

0(ϑ?)2

− 2µ0ϑ
?γ3
)

+
τ1t1 + τ2t2

2`
− t21 + t22

2`
+

(q?t,τ )2

2T2,λ(t, τ )

− ηT3,λ(t, τ )

2
, (11)

where the constant ϑ? satisfies ϑ? = 0 if µ0 = 0 and
ϑ? = γ3/µ0 otherwise, and T1 =

√
δEκ[κ]. Here, γ1, γ2

and γ3 depend on the data distribution and are defined as
γ1 = E[y2], γ2 = E[ys], γ3 = E[y], where y = ϕ(s), and
s is a standard Gaussian random variable. Note that the
problem defined in (11) depends on q?t,τ which is given by

q?t,τ =
γ2t1µ̃1T1T2,λ(t, τ )

τ1 + t1µ̃2
1T

2
1 T2,λ(t, τ )

. (12)

Now, we summarize our main theoretical results in the fol-
lowing theorem.
Theorem 1 (Noisy Formulation Characterization). Suppose
that the assumptions in Section 3 are all satisfied and the
cGEC introduced in Section 2 is valid. Then, the training
error converges in probability as follows

Etrain
p→+∞−−−−−→ C?(∆, λ)− λ

2

(
(q?)2 + h′(λ)

)
,

where C?(∆, λ) is the optimal cost of the deterministic
problem in (11). Here, the function h(·) is defined as follows

h(λ) = −(q?)2
(
λ− 1

T2,λ(t?, τ ?)

)
− ηT3,λ(t?, τ ?).

Moreover, the generalization error defined in (5) converges
in probability to a deterministic function as follows

Etest
p→+∞−−−−−→ 1

4υ
E
[
(ϕ(g1)− ϕ̂(g2))

2
]
, (13)

where g1 and g2 have a bivariate Gaussian distribution with
mean vector [0, µ0sϑ

?] and covariance matrix C, defined
as follows

C =

[
1 µ1sT1q

?

µ1sT1q
? µ2

1sβ
? + µ2

2s

(
(q?)2 + h′(λ)

)] .
The constant ϑ? satisfies ϑ? = 0 if µ0 = 0 and ϑ? = γ3/µ0

otherwise. Here, the constants µ0s, µ1s and µ2s are de-
fined as µ0s = E[σ(z)], µ1s = E[zσ(z)] and µ2

2s =
E[σ(z)2] − µ2

0s − µ2
1s, where z is a standard Gaussian

random variable. Additionally, the constant β? can be com-
puted via the following expression

β? =
1

V1 + V3

(
V1T

2
1 − V2 − V4 − λ+

1

T2,λ(t?, τ ?)

)
(q?)2

+
ηT3,λ(t?, τ ?)

V1 + V3
− V2 + V4 + λ

V1 + V3
h′(λ), (14)

where the constants V1, V2, V3 and V4 are defined as follows

V1 =
t?1µ̃

2
1

τ?1
, V3 = µ̂2

1

( t?1
τ?1 `

+
t?2(`− 1)

τ?2 `

)
V2 =

t?1µ
2
2

τ?1
, V4 = µ2

3

( t?1
τ?1 `

+
t?2(`− 1)

τ?2 `

)
.

Here, q? = q?t?,τ? is given in (12), t? = [t?1, t
?
2]> and τ ? =

[τ?1 , τ
?
2 ]>. Moreover, {t?1, t?2, τ?1 , τ?2 } denotes the optimal

solution of the problem defined in (11). Also, we treat q?, t?

and τ ? as constants independent of λ when we compute the
derivative of the function h(·).

To streamline our presentation, we postpone the proof of
Theorem 1 to the supplementary materiel. Note that Theo-
rem 1 provides a full asymptotic characterization of the train-
ing and generalization errors corresponding to the formula-
tion given in (3). Specifically, it shows that the performance
of (3) can be fully characterized after solving a deterministic
scalar formulation where the cost function depends on the
parameters ` and ∆. The theoretical predictions stated in
Theorem 1 are valid for any fixed noise variance ∆ ≥ 0 and
number of noise samples ` ≥ 1. Additionally, it is valid for
a general family of feature matrices, activation functions
and generative models satisfying (1). The analysis presented
in the supplementary materiel shows that the deterministic
problem in (11) is strictly convex-concave. This implies the
uniqueness of the optimal solutions of the optimization in
(11). Next, we study the properties of the noise injection
method in (3) when ` grows to infinity slower than (n, p, k).

4.2. Noise Regularization Effects

Now, we consider the setting where ` grows to infinity
slower than the dimensions n, p and k. We use the the-
oretical predictions stated in Theorem 1 to study the regular-
ization effects of the noise injection method in (3). Our first
theoretical result is introduced in the following theorem.

Theorem 2 (Regularization Effects). Suppose that the as-
sumptions in Theorem 1 are all satisfied. Moreover, define
the following formulation

min
w∈Rk

1

2n

n∑
i=1

(
yi −w>σ̂(F>ai)

)2
+

1

2
‖R

1
2w‖2 + λ

2 ‖w‖
2. (15)

Here, the regularization matrixR is defined as follows

R = µ̂2
1F
>F + µ2

3Ik, (16)

and the new activation function σ̂(·) satisfies the properties

E[σ̂(z)] = E[σ(x1)], E[zσ̂(z)] = E[zσ(x1)]

E[σ̂(z)2] = E[σ(x1)σ(x2)], (17)
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where x1 = z + ∆v1, x2 = z + ∆v2 and z, v1 and v2 are
independent standard Gaussian random variables. Also, de-
fine Êtrain and Êtest as the training and generalization errors
corresponding to the problem in (15). Then, for any ζ > 0,
we have the following convergence results lim

`→+∞
lim

p→+∞
P
(
|Etrain − Êtrain| < ζ

)
= 1

lim
`→+∞

lim
p→+∞

P
(
|Etest − Êtest| < ζ

)
= 1,

(18)

where Etest and Etrain are the training and generalization
errors corresponding to the noisy formulation.

To streamline our presentation, we postpone the proof of
Theorem 2 to the supplementary materiel. The above theo-
rem shows that the noisy formulation given in (3) is equiv-
alent to a standard formulation with a new activation func-
tion and an additional weighted ridge regularization, when
`→ +∞. It also provides the explicit form of the regular-
ization. This shows that inserting Gaussian noise during
the training procedure introduces a regularization that de-
pend on the activation function, the feature matrix and the
noise variance. Now, we provide a precise asymptotic char-
acterization of the formulation in (15). Before stating our
asymptotic result, we define the following deterministic
problem

inf
τ1>0

sup
t1≥0

t1
2τ1

(
γ1 − 2µ̃1T1q̂

?
t,τγ2 + µ̃2

1T
2
1 (q̂?t,τ )2 + µ2

0(ϑ?)2

− 2µ0ϑ
?γ3
)

+
τ1t1

2
− t21

2
+

(q̂?t,τ )2

2T̂2,λ(t1, τ1)
− ηT̂3,λ(t1, τ1)

2
.

Here, the constant ϑ? satisfies ϑ? = 0 if µ0 = 0 and ϑ? =
γ3/µ0 otherwise, and T1 is defined in Section 4.1. Moreover,
the functions q̂?t,τ and T̂2,λ(·, ·) are defined as follows

q̂?t,τ =
γ2t1µ̃1T1T̂2,λ(t1, τ1)

τ1 + t1µ̃2
1T

2
1 T̂2,λ(t1, τ1)

, and T̂2,λ(t1, τ1) =

δ

T 2
1

Eκ
[ κ

ĝκ,λ(t1, τ1)

]
/
(

1− µ̃2
1t1δ

τ1
Eκ
[ κ

ĝκ,λ(t1, τ1)

])
.

Here, the functions T̂3,λ(·, ·) and ĝκ,λ(·, ·) are defined as
follows

T̂3,λ(t1, τ1) = t21Eκ
[
(µ̃2

1κ+ µ2
2)/ĝκ,λ(t1, τ1)

]
,

ĝκ,λ(t1, τ1) =
t1
τ1

(
µ̃2
1κ+ µ2

2

)
+
(
µ̂2
1κ+ µ2

3

)
+ λ,

where the expectations are taken over the probability distri-
bution Pκ(·) defined in Assumption 5. Now, we summarize
the asymptotic properties of the limiting formulation in (15)
in the following theorem.

Lemma 1 (Limiting Formulation Characterization). Sup-
pose that the assumptions in Theorem 1 are all satisfied.

Then, the training error corresponding to the limiting for-
mulation in (15) converges in probability as follows

Êtrain
p→+∞−−−−−→ Ĉ?(∆, λ)− λ

2

(
(q̂?)2 + ĥ′(λ)

)
,

where Ĉ?(∆, λ) is the optimal cost of the deterministic
problem in (19). Here, the function ĥ(·) is defined as follows

ĥ(λ) = −(q̂?)2
(
λ− 1

T̂2,λ(t?1, τ
?
1 )

)
− ηT̂3,λ(t?1, τ

?
1 ).

Moreover, the generalization error corresponding to the
limiting formulation in (15) converges in probability to a
deterministic function as follows

Êtest
p→+∞−−−−−→ 1

4υ
E
[
(ϕ(g1)− ϕ̂(g2))

2
]
, (19)

where g1 and g2 have a bivariate Gaussian distribution with
mean vector [0, µ0sϑ

?] and covariance matrix C, defined
as follows

C =

[
1 µ1sT1q̂

?

µ1sT1q̂
? µ2

1sβ̂
? + µ2

2s

(
(q̂?)2 + ĥ′(λ)

)]
.

The constant ϑ? satisfies ϑ? = 0 if µ0 = 0 and ϑ? = γ3/µ0

otherwise. Here, the constants µ0s, µ1s and µ2s are de-
fined as µ0s = E[σ(z)], µ1s = E[zσ(z)] and µ2

2s =
E[σ(z)2] − µ2

0s − µ2
1s, where z is a standard Gaussian

random variable. Additionally, the constant β̂? can be com-
puted via the following expression

β̂? =
1

V1 + V3

(
V1T

2
1 − V2 − V4 − λ+

1

T̂2,λ(t?1, τ
?
1 )

)
(q̂?)2

+
ηT̂3,λ(t?1, τ

?
1 )

V1 + V3
− V2 + V4 + λ

V1 + V3
ĥ′(λ), (20)

where the constants V1, V2, V3 and V4 are defined as follows

V1 =
t?1µ̃

2
1

τ?1
, V3 = µ̂2

1, V2 =
t?1µ

2
2

τ?1
, V4 = µ2

3.

Here, q̂? = q̂?t?,τ? is given in (19). Moreover, {t?1, τ?1 }
denotes the optimal solution of the problem defined in (19).
Also, we treat q̂?, t?1 and τ?1 as constants independent of λ
when we compute the derivative of the function ĥ(·).

The proof of Lemma 1 is provided in the supplementary ma-
teriel. The results in Theorem 2 and Lemma 1 are based on
the asymptotic predictions stated in Theorem 1. Specifically,
we show in the supplementary materiel that the asymptotic
problem corresponding to the noisy formulation in (11) con-
verges to the deterministic problem in (19), when ` grows
to infinity. Then, we show that the deterministic problem in
(19) is the asymptotic limit of the formulation in (15) using
the CGMT framework. The analysis presented in the sup-
plementary materiel shows that the deterministic problem in
(19) is strictly convex-concave. This implies the uniqueness
of its optimal solutions.
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5. Simulation Results
In this part, we provide additional simulation examples to
verify our asymptotic results stated in Theorem 1, Theorem
2 and Lemma 1. Our predictions stated in Section 4 are
valid for a general family of feature matrices, activation
functions and generative models satisfying (1). In this part,
we specialize our general results to popular learning models.
In particular, we consider two families of feature matrices.
We consider feature matrices that can be expressed as F =
dV , where: (a) The scalar d satisfies d = 1/

√
p and the

matrix V has independent standard Gaussian components.
We refer to this matrix as the Gaussian feature matrix. (b)
The scalar d satisfies d =

√
3/p and the matrix V has

independent uniformly distributed components in [−1 1].
We refer to this matrix as the uniform feature matrix.
Also, we consider two popular regression and classification
models. For the regression model, we assume that ϕ(·) is
the ReLu function and ϕ̂(·) is the identity function. For
the classification model, we assume that ϕ(·) is the sign
function with possible sign flip with probability θ and ϕ̂(·)
is the sign function.

5.1. Limiting Performance

Our third simulation considers the non–linear regression
model. Figure 3 compares the numerical predictions and
our predictions stated in Theorem 2 and Lemma 1. This
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Figure 3. Solid line: Theoretical predictions. Circle: Numerical
simulations for (3) in 3(a) and for both (3) and (8) in 3(b). Black
cross: Numerical simulations for (8). (a) p = 500, ∆ = 0.4,
α = 1.5 and λ = 10−2. (b) p = 500, ∆ = 0.6, α = 2,
λ = 10−4, η = 1 and σ(·) is the SoftPlus. Binary denotes the
binary step activation. F is the Gaussian feature matrix. The
number of Monte Carlo trials is 100.

simulation example first provides an empirical verification
of the theoretical predictions in Theorem 2 and Lemma 1. It
particularly shows that our predictions are in excellent agree-
ment with the empirical results for (3) and (8). Furthermore,
note that the performance of the deterministic formulation
given in Lemma 1 is achieved with a moderate number of
noise samples, i.e. ` = 70 and ` = 100. This verifies the
results stated in Theorem 2 and Lemma 1 and provides an
empirical verification of the cGEC introduced in Section 2.

Figure 3(a) further shows that the considered noisy formula-
tion can asymptotically mitigate the double descent in the
generalization error for an appropriately selected activation
function and fixed noise variance. Specifically, note that the
ReLu and binary activation functions lead to a decreasing
generalization performance which is not the case for the
SoftPlus activation. Figure 3(b) illustrates the convergence
behavior of the generalization error corresponding to (3) for
the SoftPlus activation and fixed η. It particularly shows
that the generalization error of (3) converges to the gener-
alization error of (8) when ` grows to infinity. Moreover,
note that the limit is already achieved with a small value of
`. This verifies the predictions in Theorem 2.

5.2. Impact of the Noise Variance

In this simulation example, we study the effects of the noise
variance ∆ on the generalization error corresponding to the
noisy formulation and the limiting formulation. Here, we
consider the binary classification model. Figure 4 compares
the numerical predictions and our theoretical predictions
stated in Theorem 1, Theorem 2 and Lemma 1. It provides
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Figure 4. Solid line: Theoretical predictions. Circle: Numerical
simulations for (3) in 4(a) and for (8) in 4(b). Black cross: Nu-
merical simulations for (6). (a) F is the Gaussian feature matrix
and σ(·) is the tanh activation function. We set p = 400, ` = 50,
α = 2, θ = 0.1 and λ = 10−5. (b) F is the uniform feature ma-
trix and σ(·) is the SoftPlus activation. We set p = 1500, α = 1.5,
θ = 0 and λ = 10−4. The number of Monte Carlo trials is 100.

another empirical verification of our theoretical predictions
since our results are in excellent agreement with the ac-
tual performance of the considered formulations. It also
provides an empirical verification of the cGEC discussed
in Section 2. Figure 4(a) studies the effects of the noise
variance ∆ on the generalization error corresponding to the
noisy formulation for fixed `. Note that increasing the noise
variance improves the generalization error especially at low
η. Figure 4(a) also suggests that an optimized noise variance
can reduce the effects of the double descent phenomenon.
Now, Figure 4(b) studies the effects of the noise variance ∆
on the generalization error corresponding to the limiting for-
mulation. We can see that the generalization error increases
after reaching a minimum for ∆ = 0.5. For ∆ = 4, observe
that the generalization error is deceasing. This suggests that
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the double descent phenomenon can be mitigated for an
appropriately selected noise variance.

5.3. Alternative Formulations

Now, we consider the binary classification model, where
θ = 0. We compare the performance of the noisy formula-
tion given in (3) and the dropout technique. In this paper,
we consider the following version of the dropout method

min
w∈Rk

1

2n`

n∑
i=1

∑̀
j=1

(
yi −w>σ

(
DijF

>ai
))2

+ λ
2 ‖w‖

2,

where {Dij}n,`i,j are diagonal matrices with independent and
identically distributed diagonal entries drawn from the dis-
tribution, P(d = 1) = 1 − ε and P(d = 0) = ε, where ε
denotes the probability of dropping a unit. The above formu-
lation is similar to the one considered in (Srivastava et al.,
2014; Wei et al., 2020). In Figure 5, we compare the general-
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Figure 5. Solid line: Theoretical predictions. Circle: Numerical
simulations. Hexagram: Numerical simulations for the dropout
formulation. Erf activation function and we set p = 600, α = 1.4,
∆ = 2, λ = 10−3 and ε = 0.3. (a) ` = 40. (b) η = 2. F is the
uniform feature matrix. The number of Monte Carlo trials is 35.

ization performance of the noisy and dropout formulations.
First, we can notice that our asymptotic results provided
in Theorem 1, Theorem 2 and Lemma 1 match with the
actual performance of (3) and (15). This gives an empirical
verification of our results. Figure 5(a) considers the erf ac-
tivation function. It first shows that the dropout and noisy
formulations have comparable performance at low η. How-
ever, we can see that the dropout method provides a largely
better performance as compared to the noisy formulation for
large values of η. Figure 5(a) also shows that the limiting
and dropout formulations have a similar generalization per-
formance. Figure 5(b) studies the convergence properties
of both approaches as a function of `. It particularly sug-
gests that the dropout method has a better convergence rate
as compared to the noisy formulation. Now, Figures 5(a)
and 5(b) suggest that the noisy and dropout formulations
have comparable generalization performance when ` grows
to infinity. We provide more simulation examples in the
supplementary material.

5.4. Generalizing the Theoretical Predictions

In Figure 6(a), we consider the Semeion Handwritten Digit
Data Set downloaded from the “Machine Learning Repos-
itory”. Figure 6(a) shows that the generalization errors on
real data sets exhibit the same qualitative behavior as for the
Gaussian input vectors. This suggests that the i.i.d. Gaus-
sian assumption can be removed/eased in practice, perhaps
by considering a different random ensemble model with a
covariance matching the input data set. Note that our results
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Figure 6. Numerical simulations. (a) ReLu activation and we set
p = 256, α = 2, ∆ = 0.5, λ = 10−5 and ε = 0.3. ` = 40.
(b) The least absolute deviation (LAD) loss , the tanh activation,
p = 150, α = 1.2, ∆ = 0.8, λ = 10−6. F is the Gaussian
feature matrix. The number of Monte Carlo trials is 100.

cannot be directly applied to noise distributions other than
Gaussian. In principle, we believe that non-Gaussian noise
can be treated by appealing to universality arguments (one
observed in Figure 6(b) for centered beta/Gaussian noise).
Our analysis is only valid for the squared loss, as some of
the techniques used to obtain the asymptotic formulation
are tailored to the squared loss. We leave the extension to
general loss functions as an important future work. We can
see from Figure 6(b) that the generalization error shows the
same behaviors for beta distributed noise and the LAD loss.

6. Conclusion
In this paper, we precisely analyzed a random perturba-
tion method used to regularize machine learning problems.
Specifically, we provided an accurate characterization of
the training and generalization errors corresponding to the
noisy feature formulation. Our predictions are based on a
correlated Gaussian equivalence conjecture and an extended
version of the CGMT, referred to as the multivariate CGMT.
Moreover, our analysis shows that Gaussian noise injection
in the input data has the same effects of a weighted ridge
regularization when the number of noise samples grows to
infinity. Additionally, it provides the explicit dependence of
the introduced regularization on the feature matrix, the acti-
vation function and the noise variance. Simulation results
validate our predictions and show that inserting noise during
training moves the interpolation threshold and can mitigate
the double descent phenomenon in the generalization error.
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