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Abstract

Noisy labels can impair the performance of deep neural networks. To tackle this
problem, in this paper, we propose a new method for filtering label noise. Unlike
most existing methods relying on the posterior probability of a noisy classifier,
we focus on the much richer spatial behavior of data in the latent representational
space. By leveraging the high-order topological information of data, we are able
to collect most of the clean data and train a high-quality model. Theoretically
we prove that this topological approach is guaranteed to collect the clean data
with high probability. Empirical results show that our method outperforms the
state-of-the-arts and is robust to a broad spectrum of noise types and levels.

1 Introduction

Corrupted labels are ubiquitous in real world data, and can severely impair the performance of deep
neural networks with strong memorization ability [30, 12, 51]. Label noise may arise in mistakes of
human annotators or automatic label extraction tools, such as crowd sourcing and web crawling for
images [48, 42]. Improving the robustness of deep neural networks to label corruption is critical in
many applications [29, 45], yet still remains a challenging problem and largely under-studied.

To combat label noise, state-of-the-art methods often segregate the clean data (i.e., samples with
uncorrupted labels) from the noisy ones. These methods collect clean data iteratively and eventually
train a high-quality model. The major challenge is to ensure that the data selection procedure is
(1) careful enough to not accumulate errors; and (2) aggressive enough to collect sufficient clean
data to train a strong model. Existing methods under this category [27, 21, 16, 43, 31] typically
select clean data based on the prediction of the noisy classifier. It is generally assumed that if the
noisy classifiers have strong and consistent confidence on a particular label, this label is likely true.
However, most of these heuristics do not have a theoretical foundation and thus are not guaranteed to
generalize to unseen datasets or noise patterns.

In this paper, we propose to investigate the problem in a novel topological perspective. We stipulate
that while a noisy classifier’s prediction is useful, its latent space representation of the data also
contains rich information and should be exploited. Our method is motivated by the following
observation: given an ideal feature representation, the clean data are clustered together while the
corrupted data are spread out and isolated. This intuition is illustrated in Figure 1(a). We show the
spatial distribution pattern of a corrupted dataset with an ideal representation, i.e., the penultimate
layer activation (the layer before softmax) of a neural net trained on the original uncorrupted dataset.
As is shown in Figure 1(a)(left), the data are well separated into clusters, corresponding to their true
labels. Meanwhile, noisy-labeled data (colorful crumbs sprinkled on each cluster) are surrounded by
uncorrupted data and thus are isolated.

The above observation inspires us to utilize the spatial topological pattern for label noise filtering.
We propose a new method, TopoFilter, that collects clean data by selecting the largest connected
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The whole dataset Data from class 1

(a) Ideal Representation

The whole dataset Data from class 1 Epoch 30 Epoch 170

(b) Skewed Representation (c) Learned Representation

Figure 1: Different representations of a 40% uniformly corrupted CIFAR-10 dataset (visualized using
t-SNE). (a) The ideal feature representation (trained on a clean dataset). On the left, we show the
whole dataset. Colors correspond to different noisy labels. On the right, we draw all data with label 1.
Green points are clean data. Red points are data with corrupted labels. (b) A skewed representation
of a noisy classifier, namely, one trained using the corrupted dataset. (c) The learned representations
by our algorithm. We show the data of label 1 using the continuously improved representations. The
collected data by our method are highlighted with the blue contour.

component of each class and dropping isolated data. Our method leverages the group behavior of data
in the latent representation, which has been neglected by previous classifier-confidence-dependent
approaches. The challenge is that the ideal representation is unavailable in practice. Training on noisy
data leads to a skewed representation (Fig. 1(b)); and the topological intuition does not seem to hold.

To address this issue, we propose an algorithm that uses the topological intuition even with the
“imperfect” representation. Our algorithm essentially “peels” the outer most layer of the largest
component so that only the core of the component is kept. One particular strength of our method is
that it is theoretically guaranteed to be correct. We prove (1) purity: the collected data have a high
chance to be uncorrupted; and (2) abundancy: the algorithm can collect a majority of the clean data.
These two guarantees ensure the algorithm can collect clean data both carefully and aggressively.
Our proof imposes weak assumptions on the representation: (1) the density of the data has a compact
support, (2) the true conditional distributions of different labels are continuous, and (3) the decision
region of each class of the Bayes optimal classifier is connected. These relative weak assumptions
ensures that the theorem still holds on the skewed representation (from a noisy classifier).

We wrap our data collection algorithm to jointly learn the representation and select clean data. To
learn the representation, we train a deep net classifier only using the collected clean data. As the
classifier continuously improves, it further facilitates the data collection and finally converges to
a strong one, as illustrated in Fig. 1(c). We empirically validate the proposed method on different
datasets such as CIFAR-10, CIFAR-100 and Clothing1M [47]. Our method consistently outperforms
the existing methods under a wide range of noise types and levels.

To summarize, we propose the first theoretically guaranteed algorithm for label noise that exploits a
topological view of the noisy data representation. Our paper offers both the algorithmic intuition and
the theoretical rationale on how spatial pattern and group behavior of data in the latent space can be
informative of the model training. We believe the geometry and topology of data in the latent space
should be further explored for better understanding and regulating of neural networks.

Related works. One representative class of methods for handling label noise aim to improve the
robustness by modeling the noise transition process [38, 33, 15, 18]. However, the estimation of
noise transformation is non-trivial, and these methods generally require additional access to the true
labels or depend on strong assumptions, which could be impractical. In contrast to these works, our
method does not rely on noise modeling, and is thus more generic and flexible.

A number of approaches have sought to develop noise-robust loss to help resist label corruption.
One typical idea is to reduce the influence of noisy samples with carefully designed losses [35, 1,
52, 40, 44, 25, 14, 6] or regularization terms [20, 28, 23]. Closely related to this philosophy, other
approaches focus on adaptively re-weighting the contributions of the noisy samples to the loss. The
re-weighting functions could be pre-specified based on heuristics [5, 43] or learned automatically
[21, 36, 37]. Our method is independent of the loss function, and can be combined with any of them.

Another direction seeks to improve the label quality by correcting the noisy labels to the underlying
true ones [47, 41, 42, 24, 39, 49]. To predict the true labels, these approaches generally require
additional clean labels, complex interventions into the learning process, or an expensive detection
process for noise model estimation. Moreover, these methods are based on heuristics without
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theoretical guarantees, and tend to be sensitive to the hyper-parameters (e.g., learning rate and
loss coefficients). Zheng et al. [54] showed that assuming the noisy classifier approximates the
noisy conditional distribution well everywhere, the noisy classifier can help correct labels with high
probability. Our theorem has a weaker assumption on the noisy classifier’s quality.

Our work can be categorized as a data-selection method. Some methods choose the clean data based
on the prediction agreements among different networks [27, 31]. Others train the networks only
on samples with small losses and exchange the error flows between networks [16, 10, 50]. These
methods typically train multiple networks, and is thus computationally expensive and hard to tune.
The data-selection process in these methods is generally based on heuristics without guarantees.

A few existing works also seek to handle the label noise by probing the spatial properties of data.
Wang et al. [43] propose to detect noisy data using spatial outlier detection. Gao et al. [13] use
k-nearest neighbor to correct noisy labels. Both of these methods rely on local spatial information.
They fail to explore global structural information that could reveal critical common patterns, such
as topology. Lee et al. [22] model the spatial distributions with a generative model and train a
robust generative classifier using all noisy data. For completeness, we also refer to works studying
KNN-induced connectivity [26, 7], which only focus on the unsupervised setting.

2 Method

Our algorithm jointly trains a neural network and collects clean data. At each epoch, clean data are
collected based on the their spatial topology in the latent space of the current network. Meanwhile,
only clean data are used to further train the network. In the beginning, we use an early-stopped
noisy classifier to learn the representation. It has been observed that an early-stopped model will
learn meaningful feature without overfitting the noise [51, 2]. Such a network, although not powerful
enough, can provide a reasonable initial representation for our data-collection algorithm to start.

Below we present our algorithm. We first provide a baseline, called TopoCC. It collects clean data
only using the largest connected component. However, this is insufficient due to the imperfect
representation. Next, we present our main algorithm, called TopoFilter, that further “peels” the largest
component and only keeps its core.

Our algorithm for data selection is as follows. Let v be the input data and x to be the latent feature
given by network by taking input v, we probe the spatial data distributions by building a k-nearest
neighbor (KNN) graph G upon x. From G we further derive the subgraph Gi for class i by removing
the vertices belonging to other classes and their associated edges. On each Gi, we find the largest
connected component Qi and consider the data belonging to Qi as clean. Eventually we have a
collection of potentially clean data C = [iQi. Intuitively, the clean data will be regularly and densely
distributed in the feature space. They will form a salient topological structure (connected component),
which could thus be captured by the algorithm. Plugging this data-collection procedure into our joint
training algorithm gives the baseline TopoCC.

However, simply relying on connected components is insufficient; the geometry and thus connectivity
of the data is not fully reliable due to the imperfect representation. In particular, near the outer most
layer of the largest connected component, the data can easily be corrupted. We need to remove these
data in order to improve the purity of the selected data. In particular, for a given sample x belonging
to one of the largest connected components Si, with label ey, find its k-nearest neighbors KNN(x)
from S (the union of largest components for each class). Then we consider x as clean if at least a
fraction ⇣ of its neighbors have the same label ey. As is illustrated in Section 2.1 and Section 3, this
additional filtering of the largest component, called the ⇣-filtering, is essential to the success of our
method. We name this method TopoFilter. Details are in Algorithm 1. In practice, we observe that our
algorithm is insensitive to the choice of ⇣. More empirical study can be found in the supplementary
material. At the end of this section, we will provide details on how to choose ⇣ based on the theory.

2.1 Theoretical Guarantee of the Algorithm

Next we provide a detailed analysis of our method. We show that after running our algorithm once,
the collected data are pure, i.e., have high probability to be clean (Theorem 1). Meanwhile, we
prove that the algorithm collects abundant clean data, i.e., a sufficiently large amount of clean data
(Theorem 2). Both theorems are critical in ensuring we train a high-quality model despite the label
noise. Note that our theoretical results are one-shot. We leave the convergence result as future work.
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Algorithm 1 TopoFilter
1: Input: Noisy training data S , milestone m, training epochs N , number of classes �, number of

neighbors k, filtering parameter ⇣
2: Output: Collected clean data C

3: Initialize C  ;, bS  S
4: for t = 1, · · · , N do

5: Train network on bS
6: if t � m then

7: Extract feature vectors x from training data S
8: Compute k-NN graph G over x
9: for i = 1, · · · ,� do

10: Construct subgraph Gi by selecting feature vectors x(i) from i-th class and
removing all edges associated with x(j) for j 6= i

11: Compute the largest connected component Qi over Gi

12: C  C [Qi

13: end for

14: Find outliers O within C based on ⇣-filtering; update C  C\O
15: bS  C

16: end if

17: end for

We first introduce notations. Next, we present the purity and abundancy theorems respectively. Due
to space constraints, we mainly present the theorems and their intuitions. Details of the proofs can be
found in the supplemental material.

Notations. We focus on binary classification. Assume that the data points and labels lie in X ⇥ Y ,
where the feature space X ⇢ Rd and label space Y = {0, 1}. A datum x and its true label y follow
a distribution F ⇠ X ⇥ Y . Let f(x) :=

P
i2{0,1} F (x, i) be the density at x. Denote by ỹ the

observed (potentially noisy) label. Due to label noise, label y = i is flipped to ỹ = j with probability
⌧ij and is assumed to be independent of x.

Let X ⇢ X be the finite set of features in the data sample, and let G(X, k) be the mutual k-nearest
neighbor graph on X using the Euclidean metric on X , whose edge set E = {(x1,x2) 2 X⇥X |
x1 2 KNN(x2) or x2 2 KNN(x1)}. Also, 8i 2 {0, 1}, let Gi(X, k) be the induced subgraph of
G(X, k) consisting only of vertices x 2 X with label ey(x) = i.

Let ⌘i(x) = P (y = i | x) and e⌘i(x) = P (ey = i | x) be the conditional probability of the clean
and noisy labels given a feature x, respectively. Since this is binary setting, we have ⌘i(x) =
1 � ⌘1�i(x) and e⌘i(x) = 1 � e⌘1�i(x). Since e⌘i(x) = ⌧1�i,i⌘i(x), these probabilities satisfy a
linear relationship. e⌘i(x) = (1� ⌧01 � ⌧10)⌘i(x) + ⌧1�i,i, 8i 2 {0, 1}. Define the superlevel set
L(t) = {x | max(⌘1(x), ⌘0(x)) � t}, and let µ(L(t)) be the probability measure of L(t). Lastly,
the indicator function IA(x) = 1 if x 2 A and IA(x) = 0 otherwise.

Consider an algorithm A that takes as input a random sample of size n, Sn = {(xi, ỹ(xi))}ni=1.
The set of features of the data is X = {xi}ni=1 ⇢ X . Algorithm A then outputs [i2{0,1}Ci, where
Ci ✓ Xi := {x : ey(x) = i} is the claimed “clean” set for label i.
Definition 1. (Purity) We define two kinds of purity of A on Sn. One captures the worst-case

behavior of the algorithm, while the other captures the average-case behavior.

1. Minimum Purity `Sn,A := min
i2{0,1}

min
x2Ci

P (y = i | ey = i,x) = min
i2{0,1}

min
x2Ci

⌧ii
⌘i(x)
e⌘i(x)

.

2. Average Purity `
0
Sn,A :=

P
i2{0,1}

Ex2Ci [P (y = i | ey = i,x)] =
P

i2{0,1}

1
|Ci|

P
x2Ci

⌧ii
⌘i(x)
e⌘i(x)

.

We define the following three sets, which form a partition of X :

A
+
i =

n
x : e⌘i(x) > max( 12 ,

1+⌧i,1�i�⌧1�i,i

2 ))
o
=
n
x : ⌘i(x) > max( 12 ,

1/2�max(⌧10,⌧01)
2(1�⌧10�⌧01)

)
o
,

A
�
i =

n
x : e⌘i(x) < min( 12 ,

1+⌧i,1�i�⌧1�i,i

2 ))
o
=
n
x : ⌘i(x) < min( 12 ,

1/2�max(⌧10,⌧01)
2(1�⌧10�⌧01)

)
o
,

A
b = X \ (A+

i [A
�
i ).
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A
+
i is the good region where clean Bayes classifier and noisy Bayes classifier have the same correct

prediction i. Notice that A+
i = A

�
1�i. The whole idea of our algorithm is to collect as many points

in A
+
i as we can in region A

+
i because those points are most likely to be clean. Meanwhile, the

algorithm throws away uncertain points in the region A
b whose points are near to the decision

boundary of Bayes classifier and are more likely to be corrupted.

Assumptions. To establish our theorems, we will assume the following reasonable conditions:

A1: f(x) (the density on the feature space) has compact support.

A2: 8i 2 {0, 1}, ⌘i(x) is continuous.1

A3: 8i 2 {0, 1}, A+
i is a connected set.

A4: ⌧10, ⌧01 2
�
0, 1

2

�
.

Figure 2: Algorithm illustration. Points from A+
i are all connected; points in A�

i [Ab are kicked out.

Denote by A0 the naive algorithm which takes input Sn and simply outputs Ci = Xi for i = 0, 1,
i.e., does no processing and treats corrupted labels as clean. The purity of A0 is the “default” purity
of the data set. Denote our algorithm with parameter ⇣ by A⇣ . Let e be the natural constant.

Theorem 1. (Purity Guarantee) 8� > 0, 8⇣ >
1+|⌧10�⌧01|

2 , there exist N(�, ⇣) > 0, c1(⇣) > 0 ,

c2 2
�
0, e�1

e

�
, and an increasing function g1(⇣) 2

h
[(2⇣+1+|⌧10�⌧01|)�4max(⌧10,⌧01)]min(⌧11,⌧00)

(2⇣+1+|⌧10�⌧01|)(1�⌧10�⌧01)
, 1
i

and function g2(⇣) > 0, such that 8n � N(�, ⇣), 8q > 1 and 8k 2 [c1(⇣) log
q
n, c2n]:

1. P
⇥
(`Sn,A⇣ � `Sn,A0) > g1(⇣)

⇤
� 1� �, and

2. P
h
(`0Sn,A⇣

� `
0
Sn,A0

) > g2(⇣)
i
� 1� �.

Sketch of Proof. The complete proof is in the supplementary materials; here we provide a sketch
and the main lemmas used to prove Theorem 1. Firstly, we show that for a given t 2 [0, 1), when the
sample size n is large enough and the number of neighbors k is set to be ⌦(logq(n)), then all data
points from Xi(t) := L(t) \Xi will be connected in Gi(X, k).
Lemma 1. (Connectivity). 8� > 0 and 8t 2 [0, 1), there exist N(�, t) > 0, and c1(t) > 0 such that

8n � N(�, t), 8q > 1, 8k > c1(t) log
q (n) and 8i 2 {0, 1}, Xi(t) is connected in Gi(X, k) with

probability at least 1� �.

Let ⇣ 0 = 1
2

⇣
⇣ + 1+|⌧10�⌧01|

2

⌘
. Notice that because ⇣ >

1+|⌧10�⌧01|
2 , ⇣ > ⇣

0 and L(⇣) ⇢ L(⇣ 0) ⇢
A

+
i . Next we prove that when k is not too large, there will be no points in A

+
i \ L(⇣) that have

an edge to a point in L(⇣ 0)c, where L(⇣ 0)c is the complement of L(⇣ 0). Let L(⇣ 0)c be the closure
of L(⇣ 0)c, and denote Xc

i (⇣
0) := L(⇣ 0)c \Xi. Define r

i
0 = min

��xi
1 � xi

2

�� for xi
1 2 Xi(⇣) and

xi
2 2 X

c
i (⇣

0). Also observe that A+
i , A�

i and A
b form a partition of the domain, which along with

the assumption A1 of compact support implies that r0 > 0. Let Vd to be the volume of d-dimensional

1This is a significantly weaker conditions on ⌘i than is assumed in many prior works on KNN classifiers
(such as Hölder continuous [3], Lipschitz continuous [13], etc.). This condition upper bounds the measure of
region that is close to the decision boundary of Bayes decision rule. This assumption is also adopted in [7, 4, 34]
and is reasonably well accepted.
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unit ball. Let p(i)⇣ = min
x2L(⇣)\A+

i

f(x)Vd(ri0)
d and p

(i)
⇣0 = inf

x2L(⇣0)c\A+c
i

f(x)Vd(ri0)
d. Since f(x) has

compact support, p(i)⇣ > 0 and p
(i)
⇣0 > 0.

Lemma 2. (Isolation). 8� > 0, 8⇣ >
1+|⌧10�⌧01|

2 , there exists N(⇣, �) > 0 and c2 2
�
0, e�1

e

�
such

that 8n � N(⇣, �), 8k < c2 min
i2{0,1}

min
⇣
p
(i)
⇣ , p

(i)
⇣0

⌘
(n� 1) + 1 and 8i 2 {0, 1}:

P (@edge = (u, v) 2 Gi(X, k) : u 2 Xi(⇣), v 2 Xc
i (⇣

0)) � 1� �.

Then we show after the ⇣-filtering step, with large probability there will be no points from L(⇣ 0)c in
our final set. Denote C

(i)(⇣) to be the data of type i finally kept by the algorithm using parameter ⇣.

Lemma 3. (⇣-filtering). 8� > 0 and ⇣ 2
⇣

1+|⌧10�⌧01|
2 , 1

⌘
, there exists N(⇣, �) > 0 and c3(⇣) > 0,

such that 8n � N(⇣, �), k > c3(⇣) log (2n/�) and 8i 2 {0, 1} :

P

⇣
C

(i)(⇣) \ L(⇣ 0)c = ;
⌘
� 1� �.

To obtain Theorem 1, we combine the above lemmas as follows. The minimum purity of a data point
retained by our algorithm is lower bounded by the purity of a point in the level set {x : ⌘̃(x) = ⇣

0},
which followed by algebraic calculation gives us the first part of the theorem. For the second part
of the theorem, we need to calculate the average purity for our algorithm, which requires a more
involved integral calculation over L(⇣ 0). The complete proof is in the supplementary materials.

Our next theorem (proof in supplementary materials) gives a lower bound on the number of points
that will be eventually kept by our algorithm A⇣ . As we will see, there will be a trade off between
the size of the retained set and its purity. A larger ⇣ will result in smaller connected component but
higher purity, while small ⇣ gives large connected component but lower purity.

Theorem 2. (Abundancy) Let nc = #
�S

i C
(i)(⇣)

 
. Then 8� > 0, 8⇣ >

1+|⌧10�⌧01|
2 , 8✏ > 0,

there exist constants c1(⇣) > 0, c2 2
�
0, e�1

e

�
and N(�, ⇣, ✏) > 0, such that 8n � N(�, ⇣, ✏), and

8k 2 [c1(⇣) log
q
n, c2n], we have P [|nc/n� µ(L(⇣))|  ✏] � 1� �.

Remark on choosing ⇣: In the beginning epochs, because of the corruption of the distribution, one
does not expect high confidence in the network classifier. In order to guarantee a minimum level of
purity, we set ⇣ to be high, say 3/4. While in these rounds the purity is high and the abundancy is
lower bounded, we still want to increase abundancy further. In the later epochs, after training on this
clean(er) data, we develop more confidence in our network classifier, and hence we reduce ⇣, letting
⇣ go to (1/2 + ✏) for a very small ✏ > 0, which corresponds to collecting data from the boundary
region of the Bayesian classifier. More discussion can be found in the supplemental material.

3 Experiments

Synthetic datasets. We test the proposed method on CIFAR-10 and CIFAR-100, which are popularly
used for the study of label noise. We preprocess each image by normalizing it with the training set
mean and standard deviation. For each of the datasets, we split 20% from the training set as validation
data. The validation set could be noisy or clean, whereas we only use clean testing data. We employ
ResNet-18 [17] as the experimental network, which achieves reasonable performance on the two
datasets, with 92.0% and 70.4% test accuracies on CIFAR-10 and CIFAR-100, respectively. In the
supplementary material, we provide additional results on the ModelNet40 [46] dataset, which offers
a domain different from images.

Generating corrupted labels. Similar to [33], we artificially corrupt the labels by constructing the
noise transition matrix T , where Tij = P (ey = j|y = i) = ⌧ij defines the probability that a true label
y = i is flipped to j. Then for each sample with label i, we replace its label with the one sampled from
the probability distribution given by the i-th row of matrix T . In this work, we consider two types
of noise, both of which can be formulated using the transition matrices. (1) Uniform flipping: the
true label i is corrupted uniformly to other classes, i.e., Tij = ⌧/(C � 1) for i 6= j, and Tii = 1� ⌧ ,
where ⌧ is the constant noise level; (2) Pair flipping: the true label i is flipped to j or stays unchanged
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Table 1: Test accuracies (%) on CIFAR-10 and CIFAR-100 under different noise types and fractions.
The average accuracies and standard deviations over 5 trials are reported. We perform unpaired t-test
(95% significance level) on the difference between the test accuracies, and observe the improvement
due to our method over state-of-the-art methods is statistically significant for all noise settings.

Dataset Method Uniform Flipping Pair Flipping
20% 40% 60% 80% 20% 30% 40%

CIFAR-10

Standard 85.7 ± 0.5 81.8 ± 0.6 73.7 ± 1.1 42.0 ± 2.8 88.0 ± 0.3 86.4 ± 0.4 84.9 ± 0.7
Forgetting 86.0 ± 0.8 82.1 ± 0.7 75.5 ± 0.7 41.3 ± 3.3 89.5 ± 0.2 88.2 ± 0.1 85.0 ± 1.0
Bootstrap 86.4 ± 0.6 82.5 ± 0.1 75.2 ± 0.8 42.1 ± 3.3 88.8 ± 0.5 87.5 ± 0.5 85.1 ± 0.3
Forward 85.7 ± 0.4 81.0 ± 0.4 73.3 ± 1.1 31.6 ± 4.0 88.5 ± 0.4 87.3 ± 0.2 85.3 ± 0.6
Decoupling 87.4 ± 0.3 83.3 ± 0.4 73.8 ± 1.0 36.0 ± 3.2 89.3 ± 0.3 88.1 ± 0.4 85.1 ± 1.0
MentorNet 88.1 ± 0.3 81.4 ± 0.5 70.4 ± 1.1 31.3 ± 2.9 86.3 ± 0.4 84.8 ± 0.3 78.7 ± 0.4
Co-teaching 89.2 ± 0.3 86.4 ± 0.4 79.0 ± 0.2 22.9 ± 3.5 90.0 ± 0.2 88.2 ± 0.1 78.4 ± 0.7
Co-teaching+ 89.8 ± 0.2 86.1 ± 0.2 74.0 ± 0.2 17.9 ± 1.1 89.4 ± 0.2 87.1 ± 0.5 71.3 ± 0.8
IterNLD 87.9 ± 0.4 83.7 ± 0.4 74.1 ± 0.5 38.0 ± 1.9 89.3 ± 0.3 88.8 ± 0.5 85.0 ± 0.4
RoG 89.2 ± 0.3 83.5 ± 0.4 77.9 ± 0.6 29.1 ± 1.8 89.6 ± 0.4 88.4 ± 0.5 86.2 ± 0.6
PENCIL 88.2 ± 0.2 86.6 ± 0.3 74.3 ± 0.6 45.3 ± 1.4 90.2 ± 0.2 88.3 ± 0.2 84.5 ± 0.5
GCE 88.7 ± 0.3 84.7 ± 0.4 76.1 ± 0.3 41.7 ± 1.0 88.1 ± 0.3 86.0 ± 0.4 81.4 ± 0.6
SL 89.2 ± 0.5 85.3 ± 0.7 78.0 ± 0.3 44.4 ± 1.1 88.7 ± 0.3 86.3 ± 0.1 81.4 ± 0.7
TopoCC 89.6 ± 0.3 86.0 ± 0.5 78.7 ± 0.5 43.0 ± 2.0 89.8 ± 0.3 87.3 ± 0.3 85.4 ± 0.4
TopoFilter 90.2 ± 0.2 87.2 ± 0.4 80.5 ± 0.4 45.7 ± 1.0 90.5 ± 0.2 89.7 ± 0.3 87.9 ± 0.2

CIFAR-100

Standard 56.5 ± 0.7 50.4 ± 0.8 38.7 ± 1.0 18.4 ± 0.5 57.3 ± 0.7 52.2 ± 0.4 42.3 ± 0.7
Forgetting 56.5 ± 0.7 50.6 ± 0.9 38.7 ± 1.0 18.4 ± 0.4 57.5 ± 1.1 52.4 ± 0.8 42.4 ± 0.8
Bootstrap 56.2 ± 0.5 50.8 ± 0.6 37.7 ± 0.8 19.0 ± 0.6 57.1 ± 0.9 53.0 ± 0.9 43.0 ± 1.0
Forward 56.4 ± 0.4 49.7 ± 1.3 38.0 ± 1.5 12.8 ± 1.3 56.8 ± 1.0 52.7 ± 0.5 42.0 ± 1.0
Decoupling 57.8 ± 0.4 49.9 ± 1.0 37.8 ± 0.7 17.0 ± 0.7 60.2 ± 0.9 54.9 ± 0.1 47.2 ± 0.9
MentorNet 62.9 ± 1.2 52.8 ± 0.7 36.0 ± 1.5 15.1 ± 0.9 62.3 ± 1.3 55.3 ± 0.5 44.4 ± 1.6
Co-teaching 64.8 ± 0.2 60.3 ± 0.4 46.8 ± 0.7 13.3 ± 2.8 63.6 ± 0.4 58.3 ± 1.1 48.9 ± 0.8
Co-teaching+ 64.2 ± 0.4 53.1 ± 0.2 25.3 ± 0.5 10.1 ± 1.2 60.9 ± 0.3 56.8 ± 0.5 48.6 ± 0.4
IterNLD 57.9 ± 0.4 51.2 ± 0.4 38.1 ± 0.9 15.5 ± 0.8 58.1 ± 0.4 53.0 ± 0.3 43.5 ± 0.8
RoG 63.1 ± 0.3 58.2 ± 0.5 47.4 ± 0.8 20.0 ± 0.9 67.1 ± 0.6 65.6 ± 0.4 58.8 ± 0.1
PENCIL 64.9 ± 0.3 61.3 ± 0.4 46.6 ± 0.7 17.3 ± 0.8 67.5 ± 0.5 66.0 ± 0.4 61.9 ± 0.4
GCE 63.6 ± 0.6 59.8 ± 0.5 46.5 ± 1.3 17.0 ± 1.1 64.8 ± 0.9 61.4 ± 1.1 50.4 ± 0.9
SL 62.1 ± 0.4 55.6 ± 0.6 42.7 ± 0.8 19.5 ± 0.7 59.2 ± 0.6 55.1 ± 0.7 44.8 ± 0.1
TopoCC 64.1 ± 0.8 57.3 ± 1.6 45.1 ± 1.1 19.1 ± 0.6 66.3 ± 0.8 62.3 ± 0.9 58.3 ± 0.9
TopoFilter 65.6 ± 0.3 62.0 ± 0.6 47.7 ± 0.5 20.7 ± 1.2 68.0 ± 0.3 66.7 ± 0.6 62.4 ± 0.2

with probabilities Tij = ⌧ and Tii = 1 � ⌧ , respectively. Pair flipping is used to simulate the real
mistakes made by human labelers on similar classes. For more details we refer the readers to [33].

Baselines. We compare the proposed method with the following representative approaches. (1)
Standard, which is simply the standard deep network trained on noisy datasets; (2) Forgetting [2];
(3) Bootstrap [35]; (4) Forward Correction [33]; (5) Decoupling [27]; (6) MentorNet [21]; (7) Co-

teaching [16]; (8) Co-teaching+ [50]; (9) IterNLD [43]; (10) RoG [22]; (11) PENCIL [49]; (12) GCE

[52]; (13) SL [44]. These methods are from different research directions.

We implement our method with PyTorch2. For data selection, we compute the KNN graph with
CUDA and calculate the largest connected component in C++: the overall computational cost per
iteration is less than 1s on an Intel Xeon Gold 5218 CPU and a single NVIDIA RTX 4000 GPU. We
use a batch size of 128 and train the networks for 180 epochs to ensure convergence. We train the
network with Adam optimizer using its default parameters. The data selection is performed every 5
epochs. All experiments are randomly repeated 5 times, and the mean and standard deviation values
are reported. All the methods use clean validation set for model selection. Note that, our method is
robust to the validation set, as shown below.

Results. Table 1 shows the performance of different methods. We observe that TopoFilter consistently
outperforms the competitive methods across different noise settings. This suggests the benefits of
leveraging spatial pattern for label denoising. Notice that, although the posterior probabilities
employed by a few works are closely related to the penultimate layer features used in our method,
they intrinsically undergo a dimension reduction process and may lose some critical information.
This would explain the superior performance of our method to some degree.

From Table 1 we also observe that simply using largest connected components (TopoCC) or spatial
outliers (IterNLD) are less effective. This is because the data in the connected components could still

2Code is available at https://github.com/pxiangwu/TopoFilter
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Table 2: Classification accuracy (%) on Clothing1M test set.
Method Standard Forward D2L Joint Opt. PENCIL MLNT DY GCE SL TopoFiler

Accuracy 68.94 69.84 69.47 72.23 73.49 73.47 71.00 69.75 71.02 74.10

contain noise, and thereby hurts the model performance eventually. Similarly, the outlier detection is
not reliable as the noisy data could form a small cluster and thus do not appear to be outliers spatially,
as illustrated in Fig. 1(a)(b).

Behavior analysis. In Fig. 3(a) we show the validation accuracy of TopoFilter on the two datasets
with different noise settings. As is shown, the accuracy of TopoFilter does not drop throughout the
training process. This indicates that our method filters out the noise successfully and stably. This is
further confirmed in Fig. 3(b)-(e), where the collected data pool preserves high purity during training
with its size approaching the limit steadily.

Parameter analysis. In Fig. 4(a) we show that TopoFilter is robust to the size and purity of validation
set. Notably, it achieves almost the same performance even with noisy or small clean validation data.
In Fig. 4(b)(c) we demonstrate that TopoFilter is insensitive to the parameters kc and ko, up to a wide
range. Here kc and ko represent the parameters for computing the k-nearest neighbors in largest
connected component and outlier detection, respectively. This is consistent with our theoretical
findings in Section 2.1. In Fig. 4(d), we show that TopoFilter is robust to the feature dimensions. See
supplementary material for more results.

Real-world corrupted dataset. To test the effectiveness of TopoFilter in real setting, we conduct
experiments on the Clothing1M dataset [47]. This dataset consists of 1 million clothing images
obtained from online shopping websites with 14 classes. The labels in this dataset are extremely noisy
(with an estimate accuracy of 61.54%) and their structure is unknown. This dataset also provides 50k,
14k and 10k manually verified clean data for training, validation, and testing, respectively. Following
[49, 39, 44], we evaluate the classification accuracy on the 10k clean data and do not use the 50k

clean training data; similarly, we use a randomly sampled pseudo-balanced subset as the training
set, which includes about 260k images. We use ResNet-50 with weights pre-trained on ImageNet
and train the model with SGD. We set the batch size 32, learning rate 0.001, and preprocess the
images following the same procedure in [49, 39, 44]. We train the model for 10 epochs and collect
the clean data per epoch. The cost of computing k-nearest neighbors and connected components in
data selection is about 25s.

We compare our method with the following ones: (1) Standard; (2) Forward Correction [33]; (3)
D2L [25] (4) Joint Optimization [39]; (5) PENCIL [49]; (6) MLNT [23]; (7) DY [1]; (8) GCE [52];
(9) SL [44]. As is shown in Table 2, TopoFilter obtains the best performance compared to the baseline
methods. This demonstrates its applicability to the real-world scenarios beyond the synthetic noise.
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(b) 60% uniform noise, CIFAR-10
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(c) 30% pair flip noise, CIFAR-10
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(d) 60% uniform noise, CIFAR-100
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(e) 30% pair flip noise, CIFAR-100

Figure 3: (a) Validation accuracies. (b-e) The size of selected data (the blue curve) and its purity (the
brown curve). The red line denotes the upper-bound size of clean data.

8



80.16 80.45 80.55 80.55 80.18

Clean 1k Clean 4k Clean 7k Clean 10k Noisy 10k

Validation set

74

75

76

77

78

79

80

81

82

83

Te
st

 a
cc

ur
ac

y

(a)

80.55
80.10 80.02 79.68 80.06

4 8 16 32 64
74

75

76

77

78

79

80

81

82

83

Te
st

 a
cc

ur
ac

y

(b)

79.93 80.00 80.14 80.55
79.94

4 8 16 32 64
74

75

76

77

78

79

80

81

82

83

Te
st

 a
cc

ur
ac

y

(c)

79.61 79.56
80.32

79.73
80.55

32 64 128 256 512

Feature dimension

74

75

76

77

78

79

80

81

82

83

Te
st

 a
cc

ur
ac

y

(d)

Figure 4: Parameter analysis: (a) validation set; (b) kc; (c) ko; (d) Feature dimension. We use uniform
flipping noise (60%) and CIFAR-10. For each figure, we change one of the parameters while keeping
the others fixed. (to kc = 4, ko = 32, feature dimension = 512, validation set = clean 10k).

4 Conclusion

We propose a novel method named TopoFilter for the learning with label noise. Our method leverages
the topological property of the data in feature space, and jointly learns the data representation and
collects the clean data during training. Theoretically, we show that TopoFilter is able to select the
most of clean data with high confidence. Our empirical results on different datasets demonstrate the
advantages of TopoFilter in improving the robustness of deep models to label noise.

We note that this paper only focuses on the connected components of the data in the latent representa-
tional space. In the future, we may extend the algorithm to a differentiable topological loss [9] based
on the theory of persistent homology [11]. The theory has been shown to provide robust solution
to learning problems such as weakly supervised learning [19], clustering [32, 8], and graph neural
networks [53].

Broader Impact

Label noise is ubiquitous in real-world data. This noise may arise from the cheap but imperfect
annotations, such as crowdsourcing and online queries. Moreover, even by human annotators, the
data labeling process is still error-prone. Another typical source of noise is the data poisoning, where
corruptions are intentionally injected into the labels. Training with noisy labels would severely
deteriorate the performance of deep models, due to their strong memorization ability and overfitting
on corrupted information [51, 2]. Therefore, limiting the adverse influence of noisy labels is of great
practical significance and has gained increasing attention from the community.

In this work we attack the label noise from the perspective of data topology. Different from previous
works which mostly inspect the sample losses or predicted posteriors, we show that the spatial
behavior of the data could be well exploited, a point that has been largely ignored before. Importantly,
in theory we prove that our topology-motivated method is able to exhaustively select the clean data
with high probability. In this way we keep the network away from the negative influence of corrupted
labels and promote the training healthily and steadily. Our method is simple yet with theoretical
insights, and would provide contributions supplementary to the existing works. We believe it deserves
the attention from the machine learning community.
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