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Abstract

Automated analyses of chest imaging in Coronavirus Disease 2019 (COVID-19) have
largely focused on a single timepoint, usually at disease presentation, and have not explic-
itly taken into account temporal disease manifestations. We present a deep learning-based
approach for prediction of imaging progression from serial chest radiographs (CXRs) of
COVID-19 patients. Our method first utilizes convolutional neural networks (CNNs) for
feature extraction from patches within the concerned lung zone, and also from neighboring
areas to enhance the contextual phenotypic information. The framework further incorpo-
rates two distinct spatio-temporal Long Short Term Memory (LSTM) modules for e↵ective
predictions. The first LSTM module captures spatial dependencies between patches and
the second exploits the temporal context of sequential CXR scans. The resulting network
focuses on critical image regions that provide relevant information for learning the progres-
sion of lung infiltrates without the explicit need for infiltrate segmentation. The second
LSTM provides an encoded context vector used as an input to a decoder module to predict
future severity grades. Our novel multi-institutional dataset comprises sequential CXR
scans from N=100 patients. Specifically, our framework predicts zone-wise disease severity
for a patient on the last day by learning representations from the previous temporal CXRs.
We design two baseline approaches - one using fine-tuned VGG-16 features and the other
using radiomic descriptors. Experimental results demonstrate that our proposed approach
outperforms both baselines in average accuracy by 10.33% and 12.16%, respectively, in
predicting COVID-19 progression severity.
Keywords: COVID-19, proning, convolutional neural network, chest radiographs, long
short term memory, transfer learning
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1. Introduction

Coronavirus disease 2019 (COVID-19) has infected 107 million people worldwide and caused
over 2 million deaths as of February 2021 (Dong et al., 2020). Currently, chest radiography
(CXR) is the primary imaging modality for disease monitoring (American College of Radi-
ology, 2020). Findings of COVID-19 infection on CXR include the presence of infiltrates,
opacities, and consolidations (Hui et al., 2020). These findings vary in quantity and loca-
tion throughout the disease course of COVID-19. Studies have reported that the spatial
distribution of these radiographic findings within lung zones is of clinical significance (Hui
et al., 2020; Toussie et al., 2020). For instance, the presence of lung findings on CXR in
multiple lobes has been shown to be correlated with severe disease (Toussie et al., 2020).

Clinical motivation. Due to their convenience, CXRs can be taken serially for inpa-
tients with COVID-19. Expert interpretation of these serial images can be used to monitor
COVID-19 progression. Recent studies have suggested that placing patients in prone posi-
tion has shown to improve clinical outcomes for patients receiving mechanical ventilation in
the setting of other illnesses (Guérin et al., 2013). However, studies have not yet explored
whether its e↵ect on disease progression can be appraised on chest radiography (CXR).
Figure 1 shows AP (antero-posterior) radiographs of the chest (a-d) from a single patient
demonstrating the lung infiltrates burden over the course of four days during prone venti-
lation. Lung contours have been coloured green. There exist no models currently that can
predict the severity of disease, as manifested on imaging on a later time point, based on
the trajectory in the first few days of treatment. As an application of our study on serial
medical images, we can provide imaging evidence of disease improvement. Radiographic
findings on sequential CXR might be analyzed to provide insights into when proning or
other treatments should be initiated and for what duration proning is most e↵ective in
patients undergoing mechanical ventilation.

Technical motivation. Existing deep learning (DL) based COVID-19 studies primarily
utilize single-timepoint radiographic images rather than serial CXRs taken at di↵erent time-
points (Bae et al., 2020; Shi et al., 2020). By analyzing sequential CXRs, our work aims to
more accurately model disease progression.

Recurrent neural networks (RNNs) have been mainly applied for prediction of time series
data in problems related to natural language processing and computer vision. RNNs have
been found to be quite successful in a variety of health-care tasks such as disease progression
prediction (Wang T, 2018; Chen et al., 2018) and electronic health record analysis (Cheng
et al., 2016; Choi et al., 2016b). Previous works have explored the use of gated recurrent
units to predict the evolution of tumors (Zhang et al., 2018) and treatment response from
serial medical images (Wang et al., 2019b; Xu et al., 2019). In RNNs, the past hidden
states of an object are passed through a weighted non-linear function to predict its state at
a future timepoint. As a result, relevant past information is stored and and used for future
predictions. As an extension of RNN, the Long-Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) is specifically designed to capture long-term patterns that are
commonly found over a long period of patients’ records (Martin et al., 2012). LSTM-based
approaches have achieved great success in many applications that involve sequential data,
such as video processing. There are quite a few publications that employ LSTM for medical
data (Jiang et al., 2018; Lao et al., 2018; Wang et al., 2019a, 2018). However most are based
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Figure 1: AP (antero-posterior) radiographs of the chest (a-d) from a single patient demon-
strating the lung infiltrates burden over the course of four days. (a) Ground glass
opacities throughout the left and right lung zones on day 1. (b) Slightly increased
opacities throughout the aforementioned lung zones. (c) shows that disease bur-
den has increased to become extensive confluent consolidations in the bilateral
middle and lower lung zones. (d) resembles the similar findings seen on day 1.

on clinical measurements (Lipton et al., 2015), although a few use the concept of disease
progression modeling (Choi et al., 2016b).

Despite the great success of LSTM, one of its major drawbacks lies in its failure to inter-
pret prediction results. (Choi et al., 2016a) shows that capturing interpretable information
is more significant than building a robust deep network in disease progression scenarios.
Also, LSTMs do not directly consider irregular time intervals between consecutive events.
Previous works have shown that LSTMs are able to correlate features from di↵erent image
regions (Zuo et al., 2015; Linsley et al., 2018). We incorporate this idea into our framework
to generate more discriminative features from the image patches. None of the previous
works jointly exploit the spatial distribution within images and the temporal information
across timepoints. We use a framework that encodes a combination of spatial and temporal
information. Similar models have achieved great success in action prediction from video
data. (Liu et al., 2017; Mao et al., 2016; Clark et al., 2017).

Using a unique cohort of multi-institutional serial CXR (N=100 patients), we present a
novel two-stage LSTM based encoder-decoder network to predict CXR severity progression.
Sequential CXRs taken for a patient are used as inputs to this model to predict imaging
severity scores for future CXRs. Our framework learns both temporal and spatial informa-
tion from CXR images. The first stage, called LSTM-Spatial, aggregates spatial information
from di↵erent locations. This module also takes into account imaging variability in the im-
mediately adjoining lung zones. The second stage, LSTM-Temporal, learns to aggregate
information from temporal CXRs and unravels the information to predict the severity at a
future time point.

1.1. Contributions

• Our work uses a multi-stage spatio-temporal LSTM framework to model the progres-
sion of COVID-19 lung infiltrates over multiple timepoints and predict the infiltrate
severity at a later time.
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• We are the first to use a temporal COVID-19 imaging dataset for severity prediction.
Our proposed model has been evaluated on this dataset (N=100 patients, 657 CXRs)
and compared against multiple baseline approaches.

2. Method

In this IRB-approved study, temporal sequences of varying number of CXR images were
curated for N=100 patients. The number of images for each patient is denoted by D,
which ranges from 4 to 13. The images corresponding to D days are represented by
It1 , It2 , ..., ItD�1

, ItD . The lung fields for both right (R) and left (L) lungs were automati-
cally segmented using a Residual UNet model (Bae et al., 2020). We do not perform any
image co-registration. However, to avoid any possible bias from the temporal data, these
masks were further subdivided into upper (L1, R1), middle (L2, R2), and lower (L3, R3) lung
zones, with each zone comprising approximately one third of the entire lung field. Based
on the observed infiltrate patterns, each of these 6 lung zones was independently assigned
a severity score g0 = 0, g1 = 1, or g2 = 2 by three expert readers in consensus, representing
mild, moderate, and high disease severity, respectively. The severity grades of the last image
ItD is used as a ground truth for the severity prediction at timepoint tD.

Our model consists of 6 encoder-decoder frameworks to facilitate zone-wise predictions,
represented by FLi , FRi , where i = 1, 2, 3. Figure 2 shows FL1

framework which considers
patches from L1 zone as input.

2.1. Two-stage encoder LSTM

Capturing spatial dependencies for CXR imaging findings is a critical step in our analysis
due to the nature of COVID-19 clinical progression. Recurrent neural networks (RNN)
enable the modeling of data sequences, allowing inputs of varying number of patches. How-
ever, this method can lead to the problem of vanishing gradients during back-propagation,
restricting the model’s capability of handling excessively long contextual temporal informa-
tion (Bengio et al., 1994). LSTM models address this issue by proposing three gating units:
input, output, and forget units (Hochreiter and Schmidhuber, 1997). The gates operate
based on the present input and the previous hidden states.

Our framework includes two LSTM modules: 1) LSTM-Spatial to learn the patch diver-
sity at di↵erent spatial locations of an image, which we refer to as “spatial dependencies”
and 2) LSTM-Temporal to exploit the “temporal dependencies” between CXR images from
multiple days.

The feature representations of all image patches obtained from CNN described below
(sub-section 2.3), are fed into LSTM-Spatial following the same sequence in which the
extracted patches were provided to the CNN. The number of timesteps in LSTM-Spatial
depends on the number of CNN maps obtained for each zone for each day. Time steps
vary from 1 to P for each day, where P refers to the number of patches obtained from a
given zone. The output from each timestep is a 1 ⇥ 512 dimension feature vector. Thus,
as the output of the LSTM-Spatial, we obtained a P ⇥ 512 dimension feature vector, where
P varies day-wise and, further, patient-wise. It can be seen from Figure 2 that day ‘t1’
of the particular patient has P input patches which may di↵er across days [t2, ..., tD�1].
To construct a holistic feature representation from each of the D � 1 days of a particular
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Figure 2: Architecture of the proposed LSTM approach

patient, we obtain a single dimensional feature vector from the last cell state (denoted by
LCS in Figure 2) of the LSTM-Spatial. This is the global feature of the entire sequence
of patches for a particular day, and has dimension 1 ⇥ 512. We provide these day-wise
global features as inputs to each timestep of LSTM-Temporal. LSTM-Temporal has D � 1
timesteps. Finally, from the last cell state of the LSTM-Temporal, we obtain the encoder
module context vector.

2.2. Patch extraction

A sliding window approach was employed to extract dense patches from each lung zone.
The patch dimension used for our framework is 256⇥256. The stride length of the window is
chosen as 128 pixels. Because segmented masks from CXRs have non-uniform dimensions,
the number of patches extracted for a lung zone will vary each day for a particular patient.
The patches that had more than 80% background pixels were discarded. In our dataset, a
large proportion of image zones are assigned g1, making it the majority class. To address
the issue of class imbalance, we randomly upsampled the number of patches labelled (g0, g2)
by 25%. Thus, for an encoder-decoder framework for a particular zone, we achieved a fair
proportion of patches with grades g0, g1, and g2. Moreover, it has been clinically proven
that features from neighboring areas tend to enhance the contextual information of a zone
in medical imaging (Toussie et al., 2020). Therefore, in the pool of extracted patches to be
used as an input for a zone, we also included an array of patches from the boundary of its
adjoining neighboring zones. As an example, for patches from L2 shown in Figure 2, the
closest patch array from adjoining zones L1 and L3 have been considered.

2.3. CNN for feature extraction

After patch extraction, for each of the 6 zone-wise encoder-decoder frameworks, a CNN
architecture was employed to obtain image feature representations. For each framework,
patches from the concerned lung zone were fed as input to this CNN network in a day-wise
manner, spanning across D � 1 days. The number of days varies for each patient depending
on the number of time-points available in the dataset. For example, for the patient in
Figure 1, D = 4. The output response of the CNN for each patch for each such time-
point is a 1 ⇥ 256 dimensional feature vector. The CNN network configuration contains
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five convolutional layers, each associated with an operation of max-pooling. The model
terminates with a fully connected layer.

2.4. The decoder module

A decoder module is defined to decode the encoded vector representation from LSTM-
Temporal and predict the grades of tDth day, for each lung zone. The encoded context
vector and start tokenizer (EOS) are used as inputs (Bahdanau et al., 2014) to the first
timestep of the LSTM module in this section. We then apply a softmax layer to classify
the decoder output into g0, g1, or g2.

3. Experiments

3.1. Dataset Description

The multi-institutional dataset consists of a unique cohort of AP CXRs from 23 COVID-19
patients at Newark Beth Israel Medical Center (Cowan et al., 2021), and from 77 COVID-19
patients at Stony Brook University Hospital (657 scans in total). CXRs were 3470⇥4234
pixels in size. The duration (number of days) between the CXRs are variable. For a
particular patient, there can be a span of 1 day or even 5 days between two sequential
timepoints.

3.2. Implementation Details

A cross entropy loss function was selected for training, which was optimized with an Adam
optimizer for both the CNN and the LSTM. The initial and consistent learning rate and
maximal number of epochs were set to 0.0001 and 15, respectively. We used pack padded
sequence using Pytorch to mask out all losses that surpassed the required sequence length.
Thus we could nullify the e↵ect of missing timesteps for a patient in the dataset. For each
model, we performed a 5-fold cross validation, with 20 distinct test cases (patients) in each
fold. Each time, the 80 remaining cases were randomly divided into 60 training and 20
validation splits.

3.3. Baseline approach

Approach 1. We trained 6 models in this baseline approach for each of the 6 lung zones.
The last layer of the VGG-16 network (Simonyan and Zisserman, 2014) was replaced with a
mini network of 2 small fully connected layers. The new network was trained after freezing
all other pre-trained convolutional weights as shown in Figure 4 of Appendix section.

For our framework, we considered the first D� 1 days’ images of a patient, that are It1 ,
It2 ,..., ItD�1

. Hence for each patient, 64 ⇥ 64 patches were extracted in a sliding window
approach from the concerned zone of each I with a stride of 32. Upsampling of minority
label patches and inclusion of neighboring patches were adopted, similar to our LSTM
approach. Features were extracted from these patches to obtain a PL ⇥ 4096 dimensional
feature vector. PL denotes the number of patches for a particular zone over D � 1 days,
which may vary across di↵erent patients. The output for each patient was averaged into a
1⇥ 4096 feature vector.
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We trained a 1D neural network with these extracted feature vectors to perform the final
classification task. In the testing phase for each patient, the classifier predicted severity
scores for each patch. A majority voting approach was then employed on these patch
classification scores to obtain a single zone-wise severity score. This score was compared
against the ground truth severity grade for ItD

th image to compute the evaluation metrics.
An SGD optimizer with a batch-size of 64 was applied to minimize the objectives.

The VGG-16 network, with a learning rate set to 0.0001, was finetuned across 30 epochs.
Categorical cross entropy loss was used as a cost function.

Approach 2. We trained 6 di↵erent models of this baseline for each of the 6 lung zones. In
this approach, 445 texture-based radiomic features (Prasanna et al., 2017; Thawani et al.,
2018) were extracted from the patches of the concerned zone of a patient (Griethuysen
et al., 2017). Averaging was performed on this feature vector and passed on to a random
forest classifier. An approach identical to the previous baseline was used to compute the
classification performance.

4. Results

Experimental results were quantitatively evaluated using accuracy (Acc), precision (Pre),
and recall (Rec) metrics. Acc was measured zone-wise, whereas Pre and Rec were calculated
on a grade level. The results using our approach and the baseline method are illustrated
in Tables 1 and 2 for the left and the right lung zones, respectively (standard deviations
reported in Appendix D). Notably, the proposed two-stage LSTM network consistently
outperforms the designed baseline models. This is likely because our network is able to
exploit spatial and temporal dependencies in CXR images; on the other hand, both baseline
methods average convolutional and radiomic feature vectors respectively from It1 , It2 ,...,
ItD�1

. We also provide breakdowns of di↵erent sub-variants of our configuration in an
ablation setup and tested them to analyze the gradual improvement.

Variant-1: This variant used a single stage LSTM in which LSTM-Spatial was removed
from our framework. A simple averaging of the CNN feature maps to construct the feature
vector input for each time-point of LSTM-Temporal was used instead.

Variant-2: This variant of our configuration was designed without upsampling the minority
label patches and not giving importance to edge patches from the neighboring zones.

The combined two-stage LSTM was incrementally developed from these more fundamen-
tal approaches, and was shown to outperform each by a significant margin. For example, in
the middle zone of the left lung, the accuracy improved from 69% (in variant 1) and 70%
(in variant 2) to 73% achieved through our proposed method. The improved performance
of our model as compared to variant 2 also seems to suggest that contextual information
from immediate adjoining lung zones plays an important role in the disease trajectory.

We used Cohen’s Kappa score (K) to evaluate the agreement between predictions of
each approach and the grades assigned by experts. K values were computed to be 0.503,
0.41, 0.426, 0.541, 0.362, 0.43 for L1, L2, L3, R1, R2, and R3 zones, respectively. We noticed
that our model prediction has a higher agreement with the radiologists in the upper lung
zones. Also, the average K values for our approach, baseline 1, baseline 2, variant 1, and
variant 2 were 0.445, 0.256, 0.219, 0.356, and 0.32 respectively. K values for other methods
were significantly lower than our approach.
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Table 1: Quantitative results (Accuracy, Precision, Recall) shown for Left lung zones (Up-
per, Middle, Lower)

Methods
Left Lung Upper Left Lung Middle Left Lung Lower

Acc(%)
Pre

0 1 2
Rec

0 1 2
Acc(%)

Pre

0 1 2
Rec

0 1 2
Acc(%)

Pre

0 1 2
Rec

0 1 2
Baseline-1 60 ±4.76 0.55 0.66 0.52 0.51 0.68 0.52 64 ±5.47 0.5 0.71 0.59 0.47 0.74 0.56 58 ±4.89 0.5 0.62 0.56 0.47 0.71 0.48
Baseline-2 57 ±4.63 0.48 0.67 0.48 0.41 0.64 0.60 61 ±5.80 0.48 0.7 0.56 0.52 0.64 0.60 55 ±4.64 0.5 0.60 0.50 0.52 0.70 0.43
Variant-1 66 ±4.33 0.57 0.67 0.63 0.56 0.73 0.48 69 ±4.68 0.45 0.72 0.51 0.65 0.74 0.56 64 ±4.87 0.39 0.66 0.74 0.45 0.74 0.70
Variant-2 68 ±3.51 0.53 0.74 0.41 0.67 0.78 0.63 70 ±2.89 0.43 0.68 0.55 0.47 0.69 0.77 61 ±4.16 0.35 0.57 0.64 0.48 0.81 0.64

Our Approach 71 ±3.58 0.69 0.75 0.64 0.62 0.77 0.69 73 ±2.56 0.72 0.77 0.6 0.69 0.83 0.52 69 ±3.94 0.61 0.73 0.67 0.52 0.73 0.72

Table 2: Quantitative results (Accuracy, Precision, Recall) shown for Right lung zones (Up-
per, Middle, Lower)

Methods
Right Lung Upper Right Lung Middle Right Lung Lower

Acc(%)
Pre

0 1 2
Rec

0 1 2
Acc(%)

Pre

0 1 2
Rec

0 1 2
Acc(%)

Pre

0 1 2
Rec

0 1 2
Baseline-1 64 ±3.23 0.56 0.72 0.52 0.6 0.71 0.5 55 ±4.08 0.45 0.60 0.51 0.40 0.63 0.51 58 ±3.91 0.54 0.62 0.54 0.42 0.59 0.61
Baseline-2 67 ±3.38 0.63 0.72 0.6 0.7 0.65 0.66 52 ±3.29 0.47 0.60 0.39 0.45 0.63 0.37 56 ±4.36 0.4 0.65 0.51 0.42 0.63 0.51
Variant-1 72 ±3.09 0.65 0.69 0.52 0.67 0.73 0.62 66 ±2.62 0.42 0.56 0.72 0.56 0.62 0.80 63 ±3.85 0.50 0.62 0.57 0.60 0.61 0.52
Variant-2 70 ±2.81 0.84 0.62 0.67 0.70 0.64 0.57 62 ±1.76 0.59 0.78 0.63 0.57 0.71 0.45 64 ±3.27 0.77 0.43 0.66 0.40 0.66 0.66

Our Approach 76 ±2.33 0.68 0.84 0.66 0.73 0.80 0.66 67 ±2.72 0.59 0.71 0.65 0.59 0.75 0.58 65 ±3.73 0.5 0.67 0.67 0.5 0.65 0.69

5. Conclusion

Imaging changes post onset of COVID-19 have been studied previously, albeit mostly in CT
scans (Liang et al., 2020). Study of imaging evolution using machine learning techniques can
complement the understanding of COVID-19 pathogenesis. Portable CXR is a more widely
available modality and is an ideal tool to monitor imaging progression (Khullar et al., 2020).
Here we present a novel multi-stage LSTM framework for the analysis of serial CXRs to
predict changes in imaging severity. Unlike datasets used in other studies (Duchesne et al.,
2020), we developed and validated our models on a very unique dataset of sequential CXRs
collected over multiple days from two institutions. Unlike generative approaches, our model
does not require registration between images from di↵erent timepoints. More importantly,
our computational approach mirrors the clinical diagnostic interpretation process for med-
ical images by uniquely taking advantage of the temporal evolution and spatial context of
COVID-19 manifestation on CXRs. This enables more accurate predictions of the future
evolution of the disease as compared to simpler computational models. By predicting future
CXR severity scores in COVID-19 patients, our model might enable physicians to modu-
late the duration and timing of treatments (such as prone ventilation) in order to improve
clinical outcomes. Furthermore, the proposed multi-stage LSTM approach can be applied
to monitor progression in other diseases in which multiple sequential images are acquired.
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Appendix A. Additional experiments

A new baseline (Baseline-3) is formulated as follows: For each of the 100 cases, we have
CXRs from at least 4 timepoints. We aim to extract features from the images of the
first three timepoints and predict the severity grade on the fourth image. We average the
features from the patches at a single timepoint into a 1 ⇥ 4096 feature vector. 3 such feature
vectors are extracted from each of 3 timepoints and concatenated into a 3 ⇥ 4096 feature
vector. Hence, unlike Baseline - 1, we do not perform averaging across all timepoints but
at each timepoint on an individual basis. In this way, we can capture the inherent features
relevant to each timepoint within our encoded representation at greater capacity. The 3 ⇥
4096 feature vector is eventually flattened and provided to 1D-NN classifier for the severity
grade prediction.

A new variant (Variant-3) is designed. We have now averaged the feature vectors ob-
tained from the last cell state of spatial LSTM at each timepoint. We provide this averaged
feature representation as the context vector to our decoder module. Quantitative results
for methods Variant-3 and Baseline-3 are presented in the following tables:

Table 3: Quantitative Results on Left lung zones
Methods

Left Lung Upper Left Lung Middle Left Lung Lower

Acc(%)
Pre

0 1 2
Rec

0 1 2
Acc(%)

Pre

0 1 2
Rec

0 1 2
Acc(%)

Pre

0 1 2
Rec

0 1 2
Baseline-3 54 0.56 0.71 0.45 0.57 0.62 0.48 63 0.42 0.77 0.58 0.54 0.71 0.63 51 0.56 0.66 0.40 0.42 0.63 0.56
Variant-3 65 0.47 0.80 0.45 0.69 0.73 0.66 69 0.52 0.64 0.63 0.49 0.72 0.74 63 0.56 0.52 0.67 0.41 0.79 0.60

Table 4: Quantitative Results on Right lung zones
Methods

Right Lung Upper Right Lung Middle Right Lung Lower

Acc(%)
Pre

0 1 2
Rec

0 1 2
Acc(%)

Pre

0 1 2
Rec

0 1 2
Acc(%)

Pre

0 1 2
Rec

0 1 2
Baseline-3 60 0.49 0.76 0.68 0.63 0.64 0.57 56 0.51 0.64 0.48 0.52 0.60 0.61 60 0.58 0.64 0.51 0.47 0.65 0.63
Variant-3 69 0.72 0.69 0.63 0.66 0.82 0.63 64 0.63 0.75 0.69 0.61 0.75 0.53 59 0.61 0.63 0.58 0.59 0.62 0.75

Appendix B. Plot of severity grade distribution across timepoints

Figure 3: Distribution of severity grades (0,1,2) across 13 timepoints

13



Predicting COVID-19 Progression on CXR Using Spatio-temporal LSTM based Network

Appendix C. Network configurations

While designing both LSTM-Spatial and LSTM-Temporal, we stacked two LSTM layers for
better abstraction ability.

Table 5: CNN configuration
Type Configuration
Input 256 ⇥ 256 patches

Convolution

Max pooling

filter:8, kernel:5⇥ 5, auto-padding

kernel:3, stride:2, auto-padding

Output size: 8⇥128⇥128

Convolution

Max pooling

(2⇥)

filter:16, kernel:3⇥3, auto-padding

kernel:3, stride: 2, auto-padding

Output size: 16⇥32⇥32

Convolution

Max pooling

(2⇥)

filter:32, kernel:3⇥3, auto-padding

kernel:3, stride: 2, auto-padding

Output size: 32⇥8⇥8

Fully connected 256 neurons

Appendix D. Standard deviations

Table 6: Standard deviation of results (Accuracy, Precision, Recall) shown for Left lung
zones (Upper, Middle, Lower)

Methods
Left Lung Upper Left Lung Middle Left Lung Lower

std(Acc)
std(Pre)
0 1 2

std(Rec)
0 1 2

std(Acc)
std(Pre)
0 1 2

std(Rec)
0 1 2

std(Acc)
std(Pre)
0 1 2

std(Rec)
0 1 2

Baseline-1 4.76 0.032 0.024 0.022 0.025 0.023 0.019 5.47 0.017 0.029 0.031 0.021 0.027 0.03 4.89 0.024 0.022 0.031 0.035 0.017 0.024
Baseline-2 4.63 0.023 0.025 0.029 0.016 0.025 0.031 5.80 0.022 0.017 0.026 0.03 0.014 0.023 4.64 0.034 0.02 0.017 0.013 0.024 0.029
Variant-1 4.33 0.03 0.027 0.022 0.028 0.032 0.02 4.68 0.021 0.016 0.035 0.031 0.023 0.028 4.87 0.018 0.016 0.023 0.02 0.034 0.026
Variant-2 3.51 0.018 0.021 0.017 0.015 0.024 0.027 2.89 0.024 0.016 0.021 0.018 0.015 0.027 4.16 0.019 0.025 0.032 0.023 0.02 0.023

Our Approach 3.58 0.015 0.013 0.02 0.017 0.019 0.022 2.56 0.019 0.021 0.024 0.012 0.014 0.018 3.94 0.012 0.016 0.026 0.021 0.018 0.025

Table 7: Standard deviation of results (Accuracy, Precision, Recall) shown for Right lung
zones (Upper, Middle, Lower)

Methods
Right Lung Upper Right Lung Middle Right Lung Lower

std(Acc)
std(Pre)
0 1 2

std(Rec)
0 1 2

std(Acc)
std(Pre)
0 1 2

std(Rec)
0 1 2

std(Acc)
std(Pre)
0 1 2

std(Rec)
0 1 2

Baseline-1 3.23 0.034 0.03 0.037 0.025 0.021 0.032 4.08 0.032 0.036 0.021 0.028 0.029 0.035 3.91 0.019 0.027 0.03 0.023 0.028 0.034
Baseline-2 3.38 0.023 0.027 0.02 0.03 0.028 0.035 3.29 0.021 0.024 0.028 0.023 0.03 0.037 4.36 0.026 0.031 0.036 0.031 0.026 0.029
Variant-1 3.09 0.018 0.022 0.027 0.02 0.025 0.032 2.62 0.02 0.028 0.033 0.024 0.018 0.027 3.85 0.024 0.018 0.029 0.022 0.015 0.026
Variant-2 2.81 0.02 0.018 0.023 0.015 0.023 0.026 1.76 0.017 0.026 0.031 0.022 0.025 0.021 3.27 0.018 0.014 0.021 0.019 0.016 0.024

Our Approach 2.33 0.013 0.018 0.021 0.016 0.011 0.024 2.72 0.012 0.021 0.026 0.018 0.013 0.019 3.73 0.02 0.014 0.026 0.013 0.009 0.021

Appendix E. Dataset details

X-rays of 23 patients have been obtained from Newark Beth Israel Medical center. The
remaining 77 case X-rays have been obtained from Stony Brook University Hospital. CXRs
taken from Stony Brook University Hospital were acquired using the portable DRX Rev-
olution machine developed by Carestream Health with AP image technique. Image acqui-
sition parameters included average kVp of 90 and average mA of 2.8. CXRs taken from
Newark Beth Israel Medical Center were acquired using GE Optima XR240 AMX portable
machines. Image acquisition parameters included kVp 85 and mAs between 4 to 5 with
automatic exposure control.
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Appendix F. Baseline Architecture

Figure 4: Architecture of the baseline approach
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