
 

 

INTRODUCTION 

 We study morphogenesis (shape changes) that occur during early 
embryo development. The shape of the early embryo is characterized by 
a series of well-defined curves. We study here the dorsal curvature of 
the early chick embryo, which is characterized by two distinct bends – 
cervical and thoracic flexures (Fig.1). We study the formation and 
deepening of these flexures starting at about Hamburger and Hamilton 
(HH) Stage 14 and following the development 9 or 10 hours of 
incubation later, when the embryo reaches HH Stage 15 or 16 [1].  
 
 The deepening of flexures is a significant morphogenetic event in 
the early embryo and usually they are described imprecisely and using 
adjectives. Reference [1], for instance, describes cervical flexure as “a 
broad curve”. We need a mathematically precise way to quantify 
flexures and precise criteria that can be used to distinguish between 
normal and abnormal flexures. Prior research indicates that correct 
flexure formation is important for the development of major organs, 
including the heart [2]. In that study, we quantified the cervical flexure 
by fitting a circle and here we expand on those results, by fitting a 
parametric curve to the entire dorsal wall. We use Bezier curves, which 
are widely used in computer graphics and to precisely define font 
shapes, to describe the shape of the dorsal wall in early embryonic 
development. 
 
METHODS 
 The dorsal wall was “sampled” by selecting closely-spaced points 
using ImageJ. We used a total of 7 embryos (n=7). Measurements were 
taken at t=0 and at t=9h (n=2) or 10h (n=5). The cubic Bezier curve is a 
parametric curve where tÎ[0,1] is a parameter that varies from 0 (start 
of the curve) to 1 (end of the curve).  
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where  a0, a1, a2, and a3 are the Bezier control points in 2D space. The 
line joining the Bezier control points is called the Bezier Polygon (Fig. 
1). Unlike polynomial fits, wherein the coefficients do not convey 
insight about the shape of the curve, the Bezier control points, which are 
the curve parameters, are rich in meaning. To begin with, the first (last) 
control point is simply the first (last) point in the data set. The middle 
two control points (a1, a2) were fit using an optimization procedure in 
MATLAB. Also, the line joining the first two control points (a0, & a1) 
is tangent to the initial curve direction and the line joining the last two 
control points (a2, & a3) are tangent to the final curve direction. Note 
also that the movement of the middle control points from t=0 to t=9 or 
10h quantifies the deepening of flexures and the movement of the first 
and last control points shows the increase in curve length (Fig. 1A,B). 
Bezier curves are also invariant under affine transformations. 
 
 The single cubic fit is unable to capture fully the sharpness of the 
thoracic flexure at the later time point (Fig. 1C). In this case, it is 
possible to fit a piecewise Bezier curve where the last control point of 
the first curve becomes the first control point of the second curve, i.e., 
a3 = b0 (Fig. 1C). Also, we impose a constraint for geometric continuity, 
i.e., a2, b0, and b1 are colinear. The ability to break up larger curves into 
smaller ones, each with its own control polygon, is a significant 
advantage to using Bezier curves to characterize complex shapes. 
 
RESULTS  

 The length of the curve, as measured by a numerical line integral 
using the selected data points, increases from 3.46±-0.27 mm at t=0 to 
5.43±0.42 at t=9 or 10h. These values are similar to the Bezier curve 
lengths (data not shown). 
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Once a parametric curve is fit, we can measure the curvature using 
techniques from Differential Geometry. Fig. 1D shows the curvature for 
a single embryo (done in MATLAB and verified in Mathematica). Note 
that the composite curve fit is able to precisely capture the thoracic 
flexure, enabling us to calculate the curvature more accurately (Fig. 
1C,D). For the composite fit, the curvature is very nearly straight for the 
first half of the curve (arrow in Fig. 1D), indicating that the cervical 
flexure portion can be approximated by a circle. For the embryo in 
Fig.1C, the radius for cervical flexure is about 2.5 mm (k @ 0.4, Fig. 
1D), which is consistent with the results from our earlier study [2].  

 
Figure 1:  Chick embryo at stage HH 14 (A) and 10 hours later (B, 

C), along with Bezier curve fits and curvatures (D). Black and white 

arrows in A & B indicate cervical and thoracic flexures, 

respectively; note the deepening of flexures at t=10h (B). A—C show 

the Bezier curve (white) and Bezier polygon (black dashed). In (A) 

& (B), a0, a1, a2, a3 are the four control points (marked by “x”) of the 
single cubic Bezier curve. The middle control points move farther 

from the embryo (compare locations of a1 & a2 in B & C), indicating 
the deepening of flexures. The fit for the thoracic flexure is poor in 

(B), a situation remedied by the composite Bezier curve fit in (C). 

Curvatures for the curves shown in (A—C) are reported in (D). The 

curvature information can be used to develop finite element models 

(Fig. 2B) that give insight into the mechanisms driving flexure 

formation. The reader is cautioned not to confuse the parameter t 
(italic; used in the horizontal axis in D) with the time stamp t used 
to denote progression of embryo development. 

 

 
 
Figure 2: (A) Bezier control points “constellation” from curve fits 

on 7 embryos, each shown by a different marker (+,* etc.). Pixel 

dimensions are used (225.696 pixels = 1 mm). An affine 

transformation (translation) is carried out with the embryo eye as 

the origin (denoted by the bull’s eye symbol at 0,0). Black markers 

denote  t=0 while purple markers denote t=9 or 10h. Solid curves 

show the average Bezier curve fit based on the Bezier control  points 

presented. Note that the second control points (enclosed in the 

dashed boxes; again, black and purple symbols denote t=0 and t=9 

or 10h respectively) move farther (black arrow), indicating a 

deepening of cervical flexure. There is not a similarly large shift in 

the third control point location (solid box), which corresponds to 

the thoracic flexure; hence we use a composite curve to better 

capture the thoracic flexure (Fig. 1C). (B) Results from a finite 

element model (done in ABAQUS) of the dorsal wall with growth 

(contraction) specified in regions of positive (negative) curvature. 

Undeformed (black) and deformed (color) shapes are shown. 

 
DISCUSSION  

 Cubic Bezier curves have a number of elegant properties which 
make them ideal to quantify shape changes during morphogenesis. We 
found that a single cubic Bezier curve captures the overall features of 
the dorsal wall. The control points (Fig. 2) and the control polygon (Fig. 
1) are useful tools to broadly characterize shapes. Composite curves can 
be used to fit cubic curves for smaller sections when more precision is 
desired (Fig. 2C). Tools from differential geometry such as curvature, 
arc length, and velocity of curves can be used to develop finite element 
models and investigate mechanisms driving morphogenesis. Bezier 
curves can be used to compare curvatures across different time points, 
control vs. perturbation conditions, and also for comparing embryo 
shapes from different species at the same developmental period.  
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