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INTRODUCTION

We study morphogenesis (shape changes) that occur during early
embryo development. The shape of the early embryo is characterized by
a series of well-defined curves. We study here the dorsal curvature of
the early chick embryo, which is characterized by two distinct bends —
cervical and thoracic flexures (Fig.1). We study the formation and
deepening of these flexures starting at about Hamburger and Hamilton
(HH) Stage 14 and following the development 9 or 10 hours of
incubation later, when the embryo reaches HH Stage 15 or 16 [1].

The deepening of flexures is a significant morphogenetic event in
the early embryo and usually they are described imprecisely and using
adjectives. Reference [1], for instance, describes cervical flexure as “a
broad curve”. We need a mathematically precise way to quantify
flexures and precise criteria that can be used to distinguish between
normal and abnormal flexures. Prior research indicates that correct
flexure formation is important for the development of major organs,
including the heart [2]. In that study, we quantified the cervical flexure
by fitting a circle and here we expand on those results, by fitting a
parametric curve to the entire dorsal wall. We use Bezier curves, which
are widely used in computer graphics and to precisely define font
shapes, to describe the shape of the dorsal wall in early embryonic
development.

METHODS

The dorsal wall was “sampled” by selecting closely-spaced points
using ImageJ. We used a total of 7 embryos (n=7). Measurements were
taken at t=0 and at t=%h (n=2) or 10h (n=5). The cubic Bezier curve is a
parametric curve where 7€[0,1] is a parameter that varies from 0 (start
of the curve) to 1 (end of the curve).

B(t) = (1 —t)%ag + 3(1 — t)%*ta, + 3(1 —t)t?a, + t3as (1)

where ay, a;, a3, and a3 are the Bezier control points in 2D space. The
line joining the Bezier control points is called the Bezier Polygon (Fig.
1). Unlike polynomial fits, wherein the coefficients do not convey
insight about the shape of the curve, the Bezier control points, which are
the curve parameters, are rich in meaning. To begin with, the first (last)
control point is simply the first (last) point in the data set. The middle
two control points (a;, a;) were fit using an optimization procedure in
MATLAB. Also, the line joining the first two control points (ag, & a1)
is tangent to the initial curve direction and the line joining the last two
control points (az, & a3) are tangent to the final curve direction. Note
also that the movement of the middle control points from t=0 to t=9 or
10h quantifies the deepening of flexures and the movement of the first
and last control points shows the increase in curve length (Fig. 1A,B).
Bezier curves are also invariant under affine transformations.

The single cubic fit is unable to capture fully the sharpness of the
thoracic flexure at the later time point (Fig. 1C). In this case, it is
possible to fit a piecewise Bezier curve where the last control point of
the first curve becomes the first control point of the second curve, i.e.,
a3 =by (Fig. 1C). Also, we impose a constraint for geometric continuity,
i.e., a2, by, and by are colinear. The ability to break up larger curves into
smaller ones, each with its own control polygon, is a significant
advantage to using Bezier curves to characterize complex shapes.

RESULTS

The length of the curve, as measured by a numerical line integral
using the selected data points, increases from 3.46+-0.27 mm at t=0 to
5.43+0.42 at t=9 or 10h. These values are similar to the Bezier curve
lengths (data not shown).

SB3C2021-100



Once a parametric curve is fit, we can measure the curvature using
techniques from Differential Geometry. Fig. 1D shows the curvature for
a single embryo (done in MATLAB and verified in Mathematica). Note
that the composite curve fit is able to precisely capture the thoracic
flexure, enabling us to calculate the curvature more accurately (Fig.
1C,D). For the composite fit, the curvature is very nearly straight for the
first half of the curve (arrow in Fig. 1D), indicating that the cervical
flexure portion can be approximated by a circle. For the embryo in
Fig.1C, the radius for cervical flexure is about 2.5 mm (x = 0.4, Fig.
1D), which is consistent with the results from our earlier study [2].
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Figure 1: Chick embryo at stage HH 14 (A) and 10 hours later (B,
C), along with Bezier curve fits and curvatures (D). Black and white
arrows in A & B indicate cervical and thoracic flexures,
respectively; note the deepening of flexures at t=10h (B). A—C show
the Bezier curve (white) and Bezier polygon (black dashed). In (A)
& (B), ay, a1, a2, a3 are the four control points (marked by “x”) of the
single cubic Bezier curve. The middle control points move farther
from the embryo (compare locations of a; & a; in B & C), indicating
the deepening of flexures. The fit for the thoracic flexure is poor in
(B), a situation remedied by the composite Bezier curve fit in (C).
Curvatures for the curves shown in (A—C) are reported in (D). The
curvature information can be used to develop finite element models
(Fig. 2B) that give insight into the mechanisms driving flexure
formation. The reader is cautioned not to confuse the parameter ¢
(italic; used in the horizontal axis in D) with the time stamp t used
to denote progression of embryo development.
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Figure 2: (A) Bezier control points “constellation” from curve fits
on 7 embryos, each shown by a different marker (+,* etc.). Pixel
dimensions are used (225.696 pixels = 1 mm). An affine
transformation (translation) is carried out with the embryo eye as
the origin (denoted by the bull’s eye symbol at 0,0). Black markers
denote t=0 while purple markers denote t=9 or 10h. Solid curves
show the average Bezier curve fit based on the Bezier control points
presented. Note that the second control points (enclosed in the
dashed boxes; again, black and purple symbols denote t=0 and t=9
or 10h respectively) move farther (black arrow), indicating a
deepening of cervical flexure. There is not a similarly large shift in
the third control point location (solid box), which corresponds to
the thoracic flexure; hence we use a composite curve to better
capture the thoracic flexure (Fig. 1C). (B) Results from a finite
element model (done in ABAQUS) of the dorsal wall with growth
(contraction) specified in regions of positive (negative) curvature.
Undeformed (black) and deformed (color) shapes are shown.

DISCUSSION

Cubic Bezier curves have a number of elegant properties which
make them ideal to quantify shape changes during morphogenesis. We
found that a single cubic Bezier curve captures the overall features of
the dorsal wall. The control points (Fig. 2) and the control polygon (Fig.
1) are useful tools to broadly characterize shapes. Composite curves can
be used to fit cubic curves for smaller sections when more precision is
desired (Fig. 2C). Tools from differential geometry such as curvature,
arc length, and velocity of curves can be used to develop finite element
models and investigate mechanisms driving morphogenesis. Bezier
curves can be used to compare curvatures across different time points,
control vs. perturbation conditions, and also for comparing embryo
shapes from different species at the same developmental period.

ACKNOWLEDGEMENTS
This research was supported by the NSF (Award #1936733)

REFERENCES

[1] Hamburger, V & Hamilton, H L, J. Morph, 88:49-92, 1951.
[2] Ramasubramanian, A et al., J Biomech Eng., 141:1-12, 2019.

SB3C2021-100



