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Abstract

Standard approaches to group-based notions
of fairness, such as parity and equalized odds,
try to equalize absolute measures of perfor-
mance across known groups (based on race,
gender, etc.). Consequently, a group that is
inherently harder to classify may hold back
the performance on other groups; and no
guarantees can be provided for unforeseen
groups. Instead, we propose a fairness no-
tion whose guarantee, on each group ¢ in a
class G, is relative to the performance of the
best classifier on g. We apply this notion to
broad classes of groups, in particular, where
(a) G consists of all possible groups (subsets)
in the data, and (b) G is more streamlined.

For the first setting, which is akin to groups
being completely unknown, we devise the
PF (Proportional Fairness) classifier, which
guarantees, on any possible group g, an ac-
curacy that is proportional to that of the op-
timal classifier for g, scaled by the relative
size of g in the data set. Due to including
all possible groups, some of which could be
too complex to be relevant, the worst-case
theoretical guarantees here have to be pro-
portionally weaker for smaller subsets.

For the second setting, we devise the BEFAIR
(Best-effort Fair) framework which seeks an
accuracy, on every g € G, which approxi-
mates that of the optimal classifier on g, in-
dependent of the size of g. Aiming for such
a guarantee results in a non-convex problem,
and we design novel techniques to get around
this difficulty when G is the set of linear hy-
potheses. We test our algorithms on real-
world data sets, and present interesting com-
parative insights on their performance.
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1 Introduction

Machine learning is playing an ever-increasing role in
making decisions that have a significant impact on
our lives. Of late, we have seen the deployment of
machine learning methods to provide advice for de-
cisions pertaining to criminal justice (Angwin et al.|
2016; Berk et al.l [2018)), credit/lending (Koren) [2016)),
health/medicine (Rajkomar et all |2018), etc. Given
the concerns of disparate impact and bias in this re-
gard (Angwin et al.l 2016 Barocas and Selbst|, [2016)),
it is imperative that machine learning models are fair.

The question of defining notions of fairness, and devel-
oping methods to achieve them, has received a great
deal of attention (Barocas et al.,[2017;|Binns|, 2018). A
common theme among the many approaches proposed
thus far (Kleinberg, [2018} |Chouldechoval [2017)) is to fix
beforehand a list of protected groups, and then ask for
the (approximate) equality of some statistical measure
across them. For example, parity seeks to equalize the
accuracy across the given groups (Calders et al., [2009),
while equalized odds seeks to equalize false positive or
false negative rates (Hardt et al.l [2016).

Classical definitions of fairness from microeconomics
have also found application in machine learning (Bal-
can et al., 2019 |Chen et al.l 2019b; [Hossain et al.,
2020). In particular, there has been recent work (Za-
far et al., 2017} [Ustun et al.,[2019)) on adapting the no-
tion of enwy-freeness, which is born out of fair division
theory (Brams and Taylor, [1996)), to a group-based
variant tailored to (binary) classification — every given
pre-defined group should prefer the way it is classified
(on aggregate) in comparison to how it would have
been if it assumed the identity of some other group.

A major drawback of the aforementioned approaches is
that they aim for an absolute guarantee: when some
of the groups are inherently harder to classify than
others, trying to achieve a particular measure of fair-
ness, say equalized odds (Hardt et al. |2016)), could do
more harm than good by bringing down the accuracy
on a group that is easier to classify (see Figure (1| for
an example). In this paper, we take a more relative
best-effort approach: aiming for guarantees that are
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Figure 1: Given two groups Blue and Yellow (with
true labels as shown), we have to choose just between
the two classifiers = 0 and y = 0. The Blue group is
inherently harder to classify. Equalized odds makes us
choose the classifier = 0, thereby hurting the Yellow
group. We could choose y = 0 with no aggregate effect
on Blue, doing much better on Yellow.

defined in terms of how well each group can be classi-
fied in itself.

Another drawback of the standard approaches to fair-
ness is that they depend critically on the specification
of groups (via sensitive features such as race, gender,
etc.). In many cases, the sensitive features are either
missing (Chen et al. [2019al), or unusable, consider-
ing the need to adhere to treatment parity and anti-
discrimination laws (Barocas and Selbstl [2016]). Even
if they can be used, it is sometimes not clear what
the right categorization within them should be. For
instance, it could be that a particular demographic
group, which is defined on the basis of a shared cul-
tural or ethnic feature, is actually a collection of hid-
den subgroups that are otherwise quite heterogeneous
in terms of other socio-economic indicators (Meier and
Melton, 2012} |(Chang}, 2011)). Therefore, mis-specifying
or mis-calibrating the protected groups could end up
hurting some groups within the data, potentially lead-
ing to unintended consequences such as a feeling of
resentment among them (Hoggett et al., [2013).

We use the following instructive albeit stylized exam-
ple to illustrate the effect of missing group information.

Example 1. As shown below in Table [I} there are
two binary features a,b € {0,1}, and a hidden de-
mographic feature ¢ € {0,1}. The target label y fol-
lows the formula y = (a A ¢) V (b A —¢): if the hid-
den feature ¢ = 1, then a is a perfect classifier, and
if ¢ = 0, then b is a perfect classifier. For brevity,
we define three groups: P = {(1,0,0),(0,1,0)}, @ =
{(1707 1)3 (07 1, 1)}7 and R = (P U Q)c

As a concrete example, suppose each data point cor-
responds to a job candidate. The hidden feature c
corresponds to gender, (a,b) correspond to measures
of two different traits, and y the assignment to one of
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Table 1: a, b are visible features, ¢ is a hidden “demo-
graphic” feature, and y is the target label.

two jobs. Suppose the family of available classifiers is
H = {a,b}. It can be seen that any of these classifiers
does poorly in terms of fairness for groups based on
the hidden feature c.

Consider the classifier a (in this case, a solution to the
standard Empirical Risk Minimization (ERM) with 0-
1 loss), which correctly classifies all data except those
in P. Therefore, the ERM classifier a is unfair to those
of gender 0. Our PF classifier (which we shall see
later) gets around this issue by randomizing between
a and b. This allows us to classify P and ) correctly
with probability 0.5, and R correctly with probability
1. Note that the PF classifier is able to treat every
gender equally in expectation, even without access to
the gender labels.

In order to deal with the above issues, we take a best-
effort approach to fairness, one that can be applied to
broad classes of groups. If the group identities were
well defined and limited in number, simple solutions
work: for example, one could perhaps train decou-
pled classifiers (Ustun et al.,|2019; |Dwork et al.l 2018)).
With the unavailability or mis-specification of group
information, however, the problem is much more inter-
esting. In this regard, we look at two settings — where
the groups taken into account are given by (a) all pos-
sible subsets in the data, and (b) a more streamlined
class of groups, such as all linearly separable ones.

In the former setting, we are effectively reasoning
about fairness even though there are no pre-specified
groups. Standard statistical notions are of no use in
this regard, for, as noted by Kearns et al.| (2018]), “we
cannot insist on any notion of statistical fairness for
every subgroup of the population: for example, any
imperfect classifier could be accused of being unfair to
the subgroup of individuals defined ex-post as the set
of individuals it mis-classified.”

In fact, such a limitation also applies to any deter-
ministic classifier. Therefore, focusing on randomized
classifiers, the questions we consider first (Section
are: What is the best possible best-effort guarantee that
can be achieved for all groups simultaneously? We will
see that, on account of taking all groups into account,
some of which could be too complex to be meaningful
in practice, we have to settle for guarantees that are
proportionally weaker for smaller subsets. Are there



Krishnaswamy, Jiang, Wang, Cheng, Munagala

algorithms that achieve such a guarantee? We answer
this question in the affirmative by devising the Pro-
portional Fairness (PF) classifier.

The next natural question is: can we do better if we
consider a more streamlined class of groups? We will
see (Section [3)) that this is indeed the case. We note
here that standard fairness notions (such as parity) can
also be applied in such settings, by effectively solving
a convex optimization problem (Kearns et al., [2018]).
In our best-effort fairness (BEFAIR) approach, even
when we consider linearly separable groups, we need
to solve a non-convex problem. A major contribution
of our work is devising a way of dealing with this dif-
ficulty, and at that, one that works well in practice.
In Section [4] we evaluate all our algorithms on real-
world datasets. We see that our BEFAIR approach is
able to achieve strong best-effort guarantees, signifi-
cantly better than standard ERM classifiers. We also
present several empirical insights on the performance
on PF, mostly in line with our theoretical results.

A more detailed overview of our results are provided
in Section [I.2] All our proofs are provided in the Sup-
plement.

1.1 Related literature

The extant literature on fairness in machine learning
Hardt et al.| (2016); [Kamiran and Calders| (2012);
jian and Domingo-Ferrer| (2012); Chouldechova) (2017));
Corbett-Davies et al.| (2017) primarily considers sta-
tistical notions of fairness which require the protected
groups to be specified as input to the (binary) clas-
sification problem. Many of these notions are further
known to be incompatible with one another
(2018); [Friedler et al| (2016). Individual notions of
fairness, which loosely translate to asking for “similar
individuals” to be “treated similarly”, have also been
studied [Dwork et al| (2012). However, this requires
additional assumptions to be made about the problem
at hand, in the form of, e.g., a “similarity metric” de-
fined on pairs of data points. Another related notion
is envy-freeness (Hossain et al.,|2020)), which isn’t very
useful without group information.

There are several papers on fairness that utilize the
broadly applicable framework of minimax optimiza-
tion in their algorithms (Agarwal et al., |2018} Rezaei
et all [Baharlouei et all, 2019} [Madras et al.,
2018). For example, Rezaei et al.| (2020) derive a novel
distributionally robust classification method by incor-
porating fairness criteria into a worst-case loss mini-
mization program. When compared with this litera-
ture, our work is different in one or both of two senses:
First, we have a novel and conceptually different no-
tion of fairness that approximates the best-effort guar-

antee for each group, as opposed to objectives such as
max-min fairness or parity. Second, the cardinality of
the set of groups can be unbounded (defined by linear
constraints on either the feature space or its basis ex-
pansion) in our case, as opposed to operating with a
fixed set of groups. As we shall see later, each of these
aspects presents its own technical challenges.

Several issues have been raised with respect to defining
the demographic groups that need to be considered for
fairness. |Chen et al.| (2019a) assess the prevalence of
disparity when missing demographic identities are im-
puted from the data. [Hashimoto et al.| (2018)) look at a
model where user retention among different groups is
linked to the accuracy achieved on them respectively,
and design algorithms that improve the user retention
among minority groups based on distributionally ro-
bust optimization. Their methods, while oblivious to
the identity of the groups, operate under the assump-
tion that there are a fixed number K of groups, and
work well in practice for small K. Kim et al. (2019)
develop multi-accuracy auditing to guarantee the fair-
ness for identifiable subgroups, by post-processing the
classifier such that it is unbiased. [Kearns et al.| (2018)
study the problem of auditing classifiers for statisti-
cal parity (or other related fairness concepts) across
a (possibly infinite) collection of groups of bounded
VC dimension. However, they do not consider the fact
that some groups could be inherently harder to classify
than others, and instead work with standard statistical
notions such as statistical parity. Doing so results in
a non-convex problem — something that we deal with
in our work.

Our BEFAIR approach assumes black-box access to an
agnostic learning oracle. Such reductions are common-
place in recent work on fairness in machine learning
Kearns et al., 2018). For example, |Agarwal et al.
2018) reduce fair classification to a sequence of cost-
sensitive classifications, the solutions of which can be
achieved using out-of-the-box classification methods.

The study of fairness has had a much longer history in
economics, in particular, the literature on fair division
and cake-cutting (Brams and Taylor, 1996; Robert-|
ison and Webb|, 1998)). Out of this line of work have
emerged general notions of fairness such as proportion-

ality (Steinhaus, [1948), envy-freeness 1974),
the core (Foley, [1970)), and egalitarian (or maxmin)
fairness (Rawls, [2009; [Hahne| [1991), to name a few.

Of these, the idea of envy-freeness has received great
attention in computer science (e.g., (Chen et all 2013}
[Cohler et all 2011))), and been amenable to adapta-
tion into machine learning as a group-based notion of
fairness (Balcan et al.l 2019; Ustun et al., 2019; Zafar|
let al.|, 2017). Hossain et al| (2020) devise algorithms,
for multi-class classification that can achieve a vari-
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ant of group-based (approximate) envy-freeness, with
sample complexity of the order of log |G|, where G is
the collection of pre-defined groups. Our guarantees
on the accuracy of the PF classifier are related to the
notion of the core: for example, analogous guaran-
tees have been studied in the setting of participatory
budgeting (Fain et all, |2016|). However, dealing with
envy-freeness at an individual level, in the absence of
group information, is not very useful. Even in simple
binary settings, such as loan and bail applications (all
individuals prefer being classified positively, i.e. re-
ceiving a loan/bail), satisfying envy-freeness requires
all individuals to receive the same outcome (Hossain
et al., [2020).

Practical implementations of the above-mentioned
economic notions of fairness have garnered interest in
the literature on network resource allocation (Klein-
berg et al., [1999; [Kumar and Kleinberg, 2006|). Pro-
portional fairness (Kelly et al., [1998; Bonald et al.|
2006) has been seen as a way of attaining a middle-
ground between welfare maximization and maxmin
fairness (Jain et al.| [1984). The applicability of pro-
portional fairness to machine learning, in terms of the
performance of classification across groups, has, to the
best of our knowledge, not been studied before. Al-
though, |Li et al|(2019)) do study fair resource alloca-
tion based on a-fairness (of which proportional fair-
ness is a special case with « = 1) to improve fairness
in terms of the performance across devices in a decen-
tralized federated learning setting.

1.2 Owur model and results

We are given a set of n data points denoted by N, with
their features given by {x;}ien, and their true binary
labels by {y; }iear- The hypothesis space at hand will
be denoted by H, a set of (deterministic) classifiers.
The Boolean variable w;(h) € {0,1} denotes whether
the classifier h € H correctly classifies data point . In
other words, w;(h) = 1[h(z;) = y;]- A classification
instance is defined by a pair (M, H). We assume that
for any classifier h € H, its complement h, defined by
flipping the classification outcomes of h (i.e., h(x;) =
1 — h(x;)), is also in H. This assumption is valid for
most natural families of binary classifiers. We denote
by A(H) the space of all randomized classifiers over
H. If h € A(H) is obtained via a distribution Dy, over
H, then for a data point ¢ € A/, we defined the utility
ui(h) 2 Eprwp, [ui(h'))-

We are given G, a class of groups, each element of
which is of the form ¢ : N — {1,-1}. g¢g(i) =1
means 4 is in the group and g¢(i) = —1 indicates
the opposite. We also use g to denote the subset
given by {i € N : g(i) = 1} and |g| as its size
[{i € N : g(i) = 1}|. For any such g, its utility under

h is ug(h) = ﬁ Dicg wi(h).

For each g € G, define h* £ argmaxpey ug(h) to be
the best classifier for the group g. The best-effort fair-
ness guarantee is captured via a constraint of the form
fug(h),uqg(h’),|g]) > 0. The function f(-) constrains
the accuracy ug(h) of h, the classifier at hand, to that
of the optimal classifier h} for g, with a possible de-
pendence on the size |g| of the group g. Applying such
a constraint for all g € G gives us a uniform best-effort
fairness guarantee. What sort of f(-) is workable de-
pends on the class G considered.

In Section [2] we consider the case where G includes
all the subsets of A/, i.e., there is no specific infor-
mation about G. Via a theoretical worst-case bound
(Theorem , we show that the best we can do in this
case is to choose f(-) = uy(h) — w‘ [ug(R')]?. For
any group ¢ that can be perfectly classified by some
h' € H (ug(h') = 1), the same constraint boils down
to ug(h) > |g|/|N|: in other words, a utility of at
least |g|/| V| should be guaranteed on such a set. Such
a guarantee can be interpreted as fairness: If g is a
potentially hidden demographic that can be perfectly
classified using some features, our classifier should not
ignore those features entirely. We show that our PF
classifier in fact achieves this guarantee (Theorem [2)).

In Section [3] we consider a more streamlined class of
groups: in particular, G contains all linearly separable
groups. For ease of exposition, we define the error
errg(h) = Y icoll —ui(h)], and recast the discussion
in terms of 1tﬂg In this case, we seek a much stronger
guarantee: erry(h) < errg(h;) + v. The general form
of the optimization problem we solve is as follows:

min errp(h
heA(H) N( )

such that Vg € G, erry(hy) —erry(h) +v > 0.

As discussed in more detail later, to solve the above
problem we need to deal with the non-convex con-
straints. We outline a method (BEFAIR) to do so
when G consists of linearly separable groups. We will
also look for a slightly weaker guarantee as follows:
errg(h) <6 -errg(hy) 47, for some 6 > 1 — weaker be-
cause now erry(h) has a slightly larger target du,(hy)
to approximate. Our techniques extend seamlessly to
such a formulation also.

2 Best-effort guarantee for all groups

The first question to ask is whether there is a fun-
damental limit on how well one can hope to do with
*While a fundamentally similar discussion can be done

in terms of the utilities, using errors instead leads to an
easier handling of the constants involved.
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respect to fairness in the setting where G = 2V, Since
we are dealing with a notion of fairness that is mea-
sured relative to the family of classifiers at hand, we
first want to understand what the best guarantee that
can be given is (in the form of a worst-case bound),
with no conditions on the type of classifiers used.

Theorem 1. On any data set N, there is no random-
ized classifier h (for some H) such that for all g C N
admitting a perfect classifier hy € H (i.e., ug(hy) = 1),

we have ug(h) > %“.

This theorem shows that, in terms of how much utility
is accrued by each of the perfectly classified sets, the
best bound we can hope to target is one proportional
to the fractional size of the given set of data points.
Note that for every instance, there exists some H, such
that the claim of the theorem holds — this is not true
more generally in the sense that there could exist some
‘H for which the claim does not hold as shown by Ex-
ample 2 (in the Supplement).

2.1 Proportional Fairness (PF) Classifier

We now demonstrate a classifier that matches the
above bound as long as the utilities u;(h;)’s are binary
(which holds in our model, but could also be encoun-
tered in other scenarios involving resource allocation
discussed in Section ; as mentioned before, this
captures multi-class classification as well. The Pro-
portional Fairness classifier is defined as follows:

Definition 1 (Proportional Fairness (PF)). Given an
instance (N, H), the PF classifier hpr is the one that
maximizes f(h) £ Y, Inu;(h) over all h € A(H).

As mentioned before, the proportional fairness objec-
tive has had a long history in network resource allo-
cation literature (Kelly et al.l 1998). However, to the
best of our knowledge, its applicability to the classi-
fication problem, and the implications thereof, have
never been established before.

We now show that the PF classifier achieves a guar-
antee matching the worst-case bound in Theorem

Theorem 2. For any subset ¢ C N that admits a
perfect classifier hy € H (i.e., uy(hy) = 1) we have

’u,g(hpp) 2 %

Thus, the PF classifier achieves, on any subset, an
accuracy that is proportional to the accuracy of the
best classifier on that subset scaled by the fractional
size of the subset. As mentioned earlier, the use of
perfectly classifiable subsets in our analysis is just for
the ease of exposition. The results can be suitably
translated to using all possible subsets. For example,
the following is a simple corollary of Theorem [2}

Corollary 2.1. For any subset g C N, with its best
classifier hy, = argmaxyey ug(h), we have uy(hpr) >

! [ug(h;)]2, where a = %.

Assuming black-box access to an agnostic learning or-
acle, the PF classifier can be computed using a primal
dual style algorithm (details in the Supplement, or see
Bhalgat et al.|(2013) for similar results). In our exper-
iments, we just use a heuristic instead (see Section
and also the Supplement). We also do not explicitly
discuss the generalization properties — but we would
expect that PF is not prone to overfitting, since all
possible groups have to be given a guarantee on per-
formance (details in the Supplement).

Interpreting the results: Theorem [2] and Corol-
lary neatly characterize how PF achieves the best
possible theoretical bound . One drawback of apply-
ing PF in practice is that the theoretical guarantee is
proportionally lower for smaller groups, notwithstand-
ing the fact that, in practice, the accuracy of PF on
small groups is much better than what is given by
these bounds (see Section . As far as the bounds as
concerned, the reason that we have to settle for an ac-
curacy proportionally lower for smaller subsets is that
the guarantee has to hold for all possible subsets. Some
of these subsets could be extremely complex, and pos-
sibly unreasonable in most practical settings. As will
see next, we can do much better with more restricted
classes of groups.

3 Best-effort guarantees for linearly
separable groups

In this section, we limit G to be a more streamlined
class of groups, and aim for a much stronger guaran-
tee. We then devise an algorithm that achieves such
a guarantee. As mentioned in Section [I.2] we want to
find a a randomized classifier h € A(H) that, for every
group g € G, achieves an absolute error which is within
an additive factor « from that of the optimal classifier
hy for g. In particular, the optimization problem we
would like to solve is the following:

Problem 1 (BEFAIR(7y)). For a given hypothesis
space H, a class of groups G, and v > 0,
min  errp(h
heA(H) N( )

such that Vg € G, erry(h}) —errg(h) 4+~ > 0.

g9

In particular, we consider H to be the space of lin-
ear hypotheses, and G the class of all linearly separa-
ble groupsﬂ As mentioned earlier, despite using lin-

"If g € G, then g and A\ \ g are linearly separable.
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ear hypotheses and groups, we are faced with a non-
convex problem. It can be seen that the non-convexity
stems from the best-effort constraint — while the terms
errg(h) and erry(hy) can be individually made convex
by using standard surrogate loss functions, their com-
bination obtained by subtracting one from the other
cannot. Note that such a difficulty does not arise for
the more absolute notions of fairness such as parity,
as is the case with the techniques in [Kearns et al.
(2018)). Also, even in our setting, if G were a small
finite set, then all the optimal classifiers hj could be
calculated offline, and the corresponding constraints
listed to form a simpler convex optimization problem.

We redefine the BEFAIR(7y) as follows to explicitly
factor the hidden optimization problem of finding
h*(g) into the corresponding constraint for g; by us-
ing the fact that if erry(h;) — erry(h) +~ > 0, then
errg(h') —erry(h) 4+ > 0 for any h' € H.

Problem 2 (BEFAIR(Y)).

i h
Wain erry (h)

such that Vg € G,h' € H, erry(h') —erry(h) +~v > 0.

We first define the partial Lagrangian corresponding to
Problem [2| Let ¢(g,h, ') £ —erry(h') + erry(h) — 7.
With dual variables A, s for every g € G and b’ € H:

L(h,N) 2 err(h) + Y Agwo(g,h 1)

geG,hW EH

In order to have a convergent algorithm for our op-
timization, we will restrict the dual space to the
bounded set A = {\ € R\fxﬂ\ 1Al < C}, where
C will be a parameter in our algorithm. Then, by the
Minimax Theorem, solving Problem [2]is equivalent to
solving the following:

min max L(h,\) =max min L(h,A). (1)
hEA(H) AEA XEA hEA(H)

The minmax problem can be viewed as a two player
zero-sum game: The set of pure strategies for the
learner (corresponding to the primal) corresponds to
H — each deterministic classifier h € H is a valid
pure strategy. For the adversary (corresponding to
the dual), the pure strategies in A can be either the all
zeros vectors, or a particular choice of (g,h') € G x H.
Then, solving Problem [2| via the minmax formulation
in Equation [I} is the same as finding an equilibrium
of the corresponding two-player zero-sum game with
L(h, ) as the payoff for the dual player.

3.1 Solving the BeFair(y) problem via a
convex relaxation:

The equilibrium of a two-player zero-sum game can
be found using Fictitious Play, an iterative algorithm
which is guaranteed to convergﬂ given that we can
solve for the best responses of both players (Robin-
son, (1951)). Fictitious Play (Brown, 1949)) proceeds in
rounds alternating between the primal and dual player:
in each round, each player chooses a best response to
the the mixed strategy that randomizes uniformly over
the empirical history of the other’s strategies. A for-
mal description is given in Algorithm

Learner’s best response: For a given mixed strat-
egy A of the adversary, the learner needs to solve:

Z Ag,neerrg(h).

geG,hMeH

min err(h) +
heA(H)

Since the optimum is obtained at the corner points of
the feasible region of the strategy space, we need only
consider pure strategies for the optimization problem
above. The learner’s problem then becomes:

min Zwﬂl[h(ﬁfz’) # il

heH

where w; = 1+ > geg.men Agh Lg(zi) = 1], and this
can be solved since we assume black-box access to a
weighted ERM oracle. In practice, many heuristics
(like Logistic Regression, Boosting, etc.) are used ef-
fectively for this problem, even though it is known to
be hard in the worst case (Feldman et al., |2012]).

Adversary’s best response: The adversary’s best
response problem is more involved and will require
some novel techniques to solve. Again, we need to
optimize only over pure strategies. With a bit of anal-
ysis, the dual best response problem can be seen to be
equivalent to solving, for a given h € A(H):
min err,(h') — erry(h). 2
min_err, () — err,(h) @
For all i € N, define t; = El[h(x;) # y;]. Then the
above objective can be written as

Z Lg(zi) = 1] (N[ (x:) # vi] — EL[h(z:) # vi])
= Z Lg(x;) # =1 (L[A (x3) # yi] — ti) , (3)

which is non-convex. For each i, we would like to con-
vexify it differently when ¢; = 0 or ¢; > 0. (The convex
relaxations are not exact.)

#The asymptotic convergence is usually fast in practice,
and especially so in our experiments.
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Since we only consider the case where both G and H
consist of linear hypotheses, define z;, = z]6, and
i 2 —yx] 0y, where 0, and 6y, are the coefficients
of the linear hypotheses g and h’ respectively.

For each i € N, we add the term 1[z;, > 0] - L[z >
0] — t;1[z;4 > 0] to the objective. The first term,
1fzig > 0] - L[z;pr > 0], is treated as e®is
e*io %' s and the second term, ¢;1[z;, > 0], is replaced
by t;(1 — e~%), whence the whole objective becomes
e*iatZin’ 4 ¢;(e~#9 — 1), which is convex.

. ezih/ =

Therefore, we need to solve

min eFioTZin! 4t (eFi9 — 1 4
eg,eh/%:v il ); (4)

which can be done via convex optimization methods.

Algorithm 1 Solving BEFAIR(7)

Input: data set A, v > 0, number of rounds 7.
Initialize by setting hg to be some classifier in H,
and \g to be the zero vector.
fort=1,...T: do
h < uniform distribution over {hq,...,hs_1}
A % Dt M -
h; < Learner’s best response to A
A\ < Adversary’s best response to h
end for
Return: \;

The solution returned by Algorithm has to be
checked for feasibility with respect to Problem [2]— this
tells us if the problem is feasible to begin with. Also,
the solution to the Adversary’s problem (Equation
can potentially be improved by alternately optimizing
for g and I/, a la Expectation-Maximization: For a
fixed b/, we can optimize g by using Equation |3| and
a convexification analogous to Equation The con-
verse problem of optimizing h’, for a fixed g, is just a
weighted ERM problem.

Note that our technique works as is even for groups
that can be defined in terms of any basis expansion
of a limited size (a commonly used way of capturing
non-linear relationships with linear methods). For ex-
ample, if there are two numerical features x1, x2, then
by encoding the values 2%, x172, 23 as additional fea-
tures, we can solve the problem over all groups defined
via conic sections (in the feature space). Similarly, a
Boolean AND of binary features can also be written
as a linear constraint: for binary features x1, x5 taking
values in {0,1}, 21 A x2 is equivalent to 1 + a9 > 2.
Extensions to more general classes of G and H are an
interesting open problem.

3.2 A more general version of BeFair(y):

For § > 1, we can generalize Problem [2] as follows:
Problem 3 (§-BEFAIR(%)).

i h
pan erry (h)

such that Vg € G, §-errg(h)) —errg(h) +v > 0.

g
The only difference from Problem [2] is that we have
slightly weaker constraints: the error of h on g is com-
pared with § times the least possible error on g. With
a straightforward modification, the overall technique
in Section [3.1] works for this problem too.

For a fixed ¢, computing the quantity maxgeg errg(h)—
d - erry(hy) gives us a way of measuring the fidelity
of any given classifier h. To do so, the Adversary’s
problem can be solved (as shown) to find the smallest
~ for which h becomes feasible for the constraints in
Problem (3| (i.e., satisfies the best-effort guarantees).
We discuss this in more detail in Section F1l

4 Experiments

The primary goal of our experiments is to show that
the BEFAIR algorithm works extremely well in prac-
tice. As we discuss below, BEFAIR achieves its in-
tended purpose (as discussed in the previous section),
by achieving strong best-effort fairness guarantees uni-
formly over all linearly separable groups. In particular,
it is able to achieve a performance that is a close ap-
proximation of the best possible on these groups (as
given in Problem [3) for small values of § and . In
addition, we will also evaluate the PF algorithm and
show how it behaves differently from BEFAIR, on ac-
count on having to provide guarantees for all possible
groups, even those corresponding to a high VC dimen-
sion. We also show how, in practice, the performance
of PF seems to be better than what is suggested by
the worst-case lower bound via Theorem [2| (which is
proportionally weaker for smaller groups).

We work with two data sets: adult, the Aduhﬁ
dataset from the UCI Machine Learning Repository,
and compas, the COMPAE@ Risk of Recidivism data
set (Angwin et al.l 2016)). Both have binary labels and
a mixture of numerical and categorical features. Using
these data sets, we compare and contrast the following
methods (recalling their definitions from earlier):

1. PF: As the exact solution of PF is computation-
ally inefficient, we use HPF, a heuristic (details

§48842 instances, 14 features,
datasets/Adult

https://archive.ics.uci.edu/ml/

1[6172 instances, 8 features, https://www.propublica.org/article/
how-we-analyzed-the-compas-recidivism-algorithm
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LR | Apa | HPF | 1.0-BEFAIR | 1.1-BEFAIR
adult | 0.83 ] 0.84 | 0.78 0.79 0.80
compas | 0.75 | 0.75 | 0.64 0.70 0.71

Table 2: Overall test accuracy of various methods.

in the Supplement) inspired by Reweighted Ap-

proval Voting. (Aziz et al.,|2017)). In what follows,

we refer to HPF as PF.
2. §-BEFAIR as described in Section Bl

3. ERM methods: We use LR (Logisitic Regres-
sion), since it performs best here. We also com-
pare overall accuracy with ADA (AdaBoost), an
ensemble method.

4. The lower bound given by Corollary 2.1]

In Table 2] we present the overall accuracy of vari-
ous methods, i.e., that measured on the entire test
set. As there is a trade-off between ensuring fairness
for groups and maximizing overall accuracy, PF has
a lower overall accuracy compared to other methods.
0-BEFAIR is much closer to the ERM baselines (espe-
cially as seen on the compas dataset, even for a small
value of § = 1.1. Larger values of § can only increase
accuracy as the fairness constraints become laxer.

4.1 Evaluating the performance of BeFair

We first define Maximum Additive Error (MAE;s),
parametrized by J, of any given classifier h.

Definition 2 (MAE;s(h)). For a given h, and 4,
MAE;(h) = maxgeg errg(h) — 0 - errg(hy).

For a given h, MAEs;(h) specifies, for the worst-off
group ¢, how much difference there is between the error
of h and that of the best classifier for g scaled by §.

For instance, MAEs;(BEFAIR) can be computed by
searching over different values of v to pick the small-
est that gives a feasible solution for the J-BEFAIR(7)
problem. On the other hand, MAEs;(ERM) can be
computed by solving the Adversary’s problem (Equa-
tion [3| modified as per ¢) for h = ERM.

In Figure [2] we compare MAE;s of ERM and BEFAIR
for 6 = 1.0,1.05,...,1.30. Errors are reported as a
percentage of the entire data set.

Many key observations can be made from this plot:
(a) As we increase 9§, the MAEs of both ERM and

BEFAIR decrease. This is because the best-effort
constraints get laxer with increasing §.

(b) Even for § = 1.0, BEFAIR achieves an im-
provement over ERM of close to 50% (since

Comparing MAEj on compas Comparing MAE; on adult

N ERM
BEFAIR

3 I = ERM
I | BEFAIR
P I ||

0 1.0 1.05 1.1 115 12 125 13
0

Figure 2: Comparing MAE;s between ERM and BE-
FAIR for varying values of 6.

MAEs(BEFAIR) is about half of MAEs(ERM))
on compas, and 33% on adult, in the MAE; value.

(c¢) For a slightly larger value of § = 1.10, we get an
extremely low value for MAEs (BEFAIR) of around
1%, which means BEFAIR gets a strong approxi-
mation. Therefore, BEFAIR is able to achieve an
multiplicative error of 0.1, with an additive error
of around 1%.

(d) MAEs(ERM) decreases linearly with §, while
most of the improvement in MAE;s;(BEFAIR)
comes from increasing § from 1 to 1.05. In other
words, BEFAIR is able to extract a bigger improve-
ment with a small increase of 4.

Overall, BEFAIR achieves low MAE; for small values
of § = 1.05,1.1.

4.2 Comparison of PF with BeFair:

In Figure[3] we order (on the z axis) the data points in
the test set in ascending order of their scores (i.e., con-
fidence of predicting the true label) given by LR. For
each point z, the y axis shows the accuracy of various
methods on the subset consisting of all points from 0
through z. If we imagine the LR scores as a measure
of how easy the points are to classify correctly: then
we see that PF gets a more uniform error on all these
sets, whereas 1.1-BEFAIR has lower error on sets with
higher LR scores. This is because the groups where
BEFAIR has high error are probably too complex to be
meaningful practically. On the other hand, PF must
provide uniform guarantees over all groups, even those
corresponding to large VC dimensions, and therefore
has a uniformly higher error on them.

4.3 Comparison of PF with the theoretical
lower bound

In Figure [4] (left), we order (on the z axis) the data
points in the test set in ascending order of their scores
(i.e., confidence of predicting the true label) given by
ADA. For each point x, the y axis shows the accu-
racy of various methods on the subset consisting of all
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— PF
—*- 1.1-BeFair

Cumulative error
°
S

S e rcered sy e e s,
Figure 3: Error on subsets of varying sizes (compas):
x axis denotes points in ascending order of LR scores.
y axis denotes error accrued on the subset containing
points up to x.

Accuracy on the set of points {0.1....x}

o 200 400 600 80 1000 1200 o 200 a0 600 800 1000 1200
Points ordered by their AdaBoost scores. Points ordered by their hPF scores.

Figure 4: Accuracy on subsets of varying size
(compas): x axis denotes points in ascending order
of ADA (left) and HPF (right) scores. y axis denotes
accuracy on the subset containing points up to x.

points from 0 through z. Figure {4| (right) does the
same with PF scores.

We see that the accuracy of PF is much higher than
the worst-case lower bound. PF comes close to the
lower bound for larger subsets, especially for those that
are easy to classify (see the Supplement for more de-
tails). Note that the lower bound is not monotonic
because it depends on both the size of the subset and
the best possible classification accuracy on it (Corol-
lary R1)). Also, in Figure [d] (right), ERM methods
do worse because the points with low HPF scores are
inherently much harder to classify.

5 Conclusions

In this paper, we study group fairness in the (multi-
class) classification setting. We propose a notion based
on best-effort guarantees, which requires each group
in a class G to have a classification accuracy that is as
close as possible to the optimal for that group. When
G consists of all possible groups, we show that PF
achieves the theoretical optimum in our setting. When
G consists of linearly separable groups, we can do much
better via the BEFAIR algorithm, which crucially de-
pends on convexification techniques to solve an essen-
tially non-convex problem. We also test our methods

on real-world datasets and show that they perform well
in practice, especially the BEFAIR method.

One interesting question for future work is to extend
our techniques for more involved classes of groups, say,
for example, when G consists of all groups that can be
identified by a fixed neural network. Similar exten-
sions of the hypothesis space H are also worth look-
ing at. Moreover, in some applications (bail/loan de-
cisions, college admissions, etc.), false negatives and
false positives play drastically different roles. Can our
framework be extended to deal with such considera-
tions? Can it also be extended to multi-class classifi-
cation? Note that the guarantees of PF carry over to
this setting directly. We would also like to point out
that randomized classifiers are not always desirable
and have some limitations in practice (Cotter et al.|
2019). How to think about best-effort fairness of de-
terministic classifiers with unknown groups is another
interesting open question.
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