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ABSTRACT

Tailored wick structures are essential to develop efficient two-
phase thermal management systems in various engineering
applications, however, manufacturing a geometrically-complex
wick is challenging using conventional manufacturing processes
due to limited manufacturability and poor cost effectiveness.
Additive manufacturing is an ideal alternative, however, the
state-of-the-art metal three-dimensional printers have poor
manufacturability when depositing pre-designed porous wicks
with pore sizes below 100 pm. In this paper, a powder bed fusion
3D printer (Matsuura Lumex Avance-25) was employed to
fabricate metallic wicks through partial sintering for pore sizes
below 100 pum with data-driven control of process parameters.
Hatch spacing and scan speed were selected as the two main AM
process parameters to adjust. Due to the unavailability of
process maps between the process parameters and properties of
printed metallic wick structures, different surrogate-based
models were employed to identify the combinations of the two
process parameters that result in improved manufacturability of
wick structures. Since the generation of training points for
surrogate model training through experimentation is expensive
and time-consuming, Bayesian optimization was used for
sequential and intelligent selection of training points that
provide maximum information gain regarding the relationships
between the process parameters and the manufacturability of a
3D printed wick structure. The relationship between the required
number of training points and model prediction accuracy was
investigated. The AM parameters’ ranges were discretized using
six values of hatch spacing and seven values of scan speed, which
resulted in a total of 42 combinations across the two parameters.
Preliminary results conclude that 80% prediction accuracy is
achievable with approximately forty training points (only 10% of
total combinations). This study provides insights into the

selection of optimal process parameters for the desired
additively-manufactured wick structure performance.

Keywords: additive manufacturing, Bayesian optimization,
laser powder bed fusion, data classification, 3D printed wick,
porous materials, Gaussian, support vector machine, random
forest

NOMENCLATURE
Dy spot diameter, m
E energy density, J/m?
H hatch spacing, m
P laser power, W
U scan speed, m/s
C classification category
X input variable to the classification model
Greek symbols
1) layer thickness, m
subscripts
i input variable

1. INTRODUCTION

Wick structures are essential parts of passive two-phase
cooling systems in various applications such as high power
elcotronics, spacecrafts, chemical reactors, battery, and fuel cells
by enhancing spontaneous liquid coolant flow to the heated
surface via wicking and increased evaporation surfaces [1,2]. A
conventional manufacturing apporach such as furnace sintering
has technical limitations to address growing interests in
manufacturing high-performance, geometrically complex wick
structures with desired pore geometries, thus it is imperative to
seek a breakthrough manufacturing approach. A Laser Powder
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Bed Fusion (LPBF) metal Additive Manufacturing (AM) has
shown a strong potential to manufacture such complex wick
structures  with  desired geometries and performance
characteristics [3]. Recentely, Jafari et al. successfully
manufactured a high-performance multi-layer wick structure
with small effective pore size, 9.3 pm <rey< 28.6 um, and for a
range of porosities, 2.4% < ¢ < 42.2% by using selective
sintering of the stainless steel CL 20ES particles in reduced
effective laser energy [4]. They also manufactured single-layer
wicks with 22 pm < rep < 29 pm and 51% < ¢ < 61% using
stainless steel 316L particles [5]. To identify the required process
parameters, they used trial and error based approach by carefully
adjusting the laser power, scan speed, hatch spacing, fluence,
layer thickness, pulse duration, and focal and point distance both
in continuous and pulse lasers, mainly because the complex
relations between the process parameters and wick
manufacturability is still poorly understood. Furthurmore, the
trial and error approach is not ideal to understand such relations
due to the poor cost effectiveness, and it is imperative to seek a
cost-effective approach for the process maping.

Bayesian classifer and optimization approaches are ideal
candidates to fill the knowledge gap as it deals with the
sequential optimal design strategy for unkonwn functions [6]. In
fact, Aminzadeh and Kurfess [7] developed and trained a
Bayesian classifier to detect pore generation based on the
effective energy density of different sets of process parameters,
but this study remains only at very low porosity below 5%, which
cannot be used for the porous structures with high porosity
greater than 30%, i.e., wicks.

This study examines the relation between the process
parameters and additively manufactured wick manufacturability,
i.e., process mapping, cost effectively by employing a surrogate-
based Bayesian classifier and optimization approach. The
developed approach will be also experimentally validated by the
additively manufactured metallic wicks. In Section 2, we discuss
the possibility of manufacturing wick structures by controlling
the key process parameters in LPBF and presents the successful
and failed printed wicks along with the associated process
parameters. Section 3 explains the development of surrogate-
based Bayesian classifier, which predicts the wick
manufacturability. In Section 4, the prediction accuracy of the
surrogate-based Bayesian classifier is evaluated followed by a
discussion.

2. WORKING PRINCIPLES:
MANUFACTURED SINTERED WICK
Figure 1 illustrates the key process parameters in LPBF

metal additive manufacturing, including laser power P, hatch
spacing H, scan speed U, laser spot diameter D,, and layer
thickness 6. The sintering depth and width are the thickness of
the powder particles sintered in each laser pass. To manufacture
desired wick structures, i.e., liquid-permeable porous structures,
it requires partial-melting of the powder bed, i.e., sintering,
which can be achieved by using low effective laser energy
density.

ADDITIVELY
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Figure 1: Schematic of powder bed fusion manufacturing process for
sintered wick. Laser power, P, spot diameter, Ds, scan speed, U, hatch
spacing, H, layer thickness, o, sintering width, sintering depth, and
powder bed are also shown.

The effective laser energy density E is given as [8]

P

I —— (1
UxHxo

where P is the laser power, H is the hatch spacing, and U is the
scan speed, D; is the laser spot diameter, and ¢ is the layer
thickness. The desired low energy density can be achieved either
by increasing scan speed, hatch spacing, layer thickness, spot
diameter or by decreasing laser power. In this study, the layer
thickness remains constant. It will be later shown that the wick
manufacturability cannot be simply predicted using Eq. (1) due
to complex relations between the process parameters and wick
manufacturability, and the wick manufacturability will be
predicted using Bayesian optimization with limited available
experimental data.

3. EXPERIMENTAL: ADDITIVELY MANUFACTURED

WICK

To identify the possible process parameters for additively
manufactured wick structures, commercially available Stainless
Steel (SS) 630 particles with powder size in the range of 20-50
um and density of 7,750 kg/m® was used. The additively
manufactured wick structures will be visually inspected to
determine whether the wick structures are successfully
manufactured or not, and the experimental results are used to
train the data analytic algorithm and validate them. The SS 630
particle is an ideal choice for additive manufacturing of wick
structure using partial sintering process due to good laser
absorptivity and low thermal conductivity. Commercially
available Matsuura LUMEX Avance-25 LFPB device which
uses high-power fiber laser to selectively sinter metal particles
together has been used for wick manufacturing. Before starting
the print in LUMEX, the wick geometry was designed and drawn
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using SolidWorks 2019 followed by defining the process
parameters in the LUMEX CAM software, which were given to
the Matsuura LUMEX as an input. The wick manufacturing on a
build plate took about 3-4 hours. In total, 5 sets of wick structures
were printed. The first 3 prints were dedicated to printing cubic
wicks while prints 4 and 5 included cylindrical and strip wicks.
As shown in Figure 2, a successful wick is a wick that has a
consistent fully formed structure, while a failed wick denotes a
wick that is structurally incoherent. If the laser effective energy
density is highly low, no mechanical bond between the
neighboring particles would form during the laser sintering and
therefore the wick would fail.

Figure 3 shows the Scanning Electron Microscope (SEM)

images of successful and failed wicks. While for a successful
wick a consistent pattern of particle bond can be observed, a
failed wick has inconsistent structure with hollows.
Figure 4 illustrates the manufacturability of the printed wicks as
a function of their respective energy density, i.e., Eq. (1). In
Figure 4, S indicates the successful wick and F represents the
failed wick. The unpredictable region in Figure 4 indicates the
energy densities for which no prediction can be made, using a
simple predictive tool, e.g., Eq. (1). This unpredictability shows
here exists a more complicated relationship between the process
parameters and wick manufacturability. This is the reason why
we decided to develop a statistical model for prediction of
manufacturability.
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Figure 2: Schematic and pictures of sucéesé%ul and ailed (a) cubic
and (b) cylindrical and strip wicks.

4. PREDICTION OF MANUFACTURABILITY USING
CLASSIFICATION METHODS
In this section, we discuss various classification to facilitate
the prediction of manufacturability of a wick structure. The
manufacturability is a classification problem with two outcomes
(Success/Fail).
Success and Failure outcomes corresponding to the ability to
manufacture the wick at a given set of process parameters. We
describe five models: Naive Bayes Classifier (NBC), Logistic
Regression (LR), Support Vector Machine (SVM) Gaussian
Process Classifier (GPC), and Random Forest (RF), and analyze
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Figure 3: Scanning Electron Microscope (SEM) images of
successful and failed cubic and cylindrical wicks.
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Figure 4: Wick manufacturability as a function of effective energy
density at given spot diameter, Dy = 0.2 mm. The unpredictable energy
density range is also shown. S and F indicate successful and failed
wicks, respectively.

3 © 2020 by ASME



their abilities in manufacturability prediction. In this analysis, we
considered two process parameters to predict manufacturability:
scan speed, U (mm/s), and hatch spacing, H (mm). In this study,
experiments are conducted at seven discrete levels of scan speed
(1000, 1250, 1500, 1750, 2000, 2500, 4000 mm/s) and six levels
of hatch spacing (0.2, 0.225, 0.25, 0.275, 0.3 and 0.35 mm). In
general, manufacturability can also depend on other parameters
such as laser power but in this preliminary study, we considered
only two important parameters for this surrogate modeling study.
Through this study, we try to answer the following questions:

(1) What is the prediction accuracy of these surrogate models
across the input space?

(2) What is the performance of these models at the input
configurations close to the boundary between successful and
unsuccessful prints?

(3) What is the impact of experimental input settings on the
performance of a surrogate model?

We performed 25 experiments at various input configurations to
understand the manufacturability of wick structures. We use this
dataset to train, validate the surrogate models and answer the
above three questions. First, we will provide a brief review of the
five classification models that were used in this study.

Naive Bayes Classifier (NBC): A Naive Bayes classifier is a
probabilistic classifier in which all the input variables are
assumed to be independent of each other. Let C represent the
class (category) variable and let X;,i = 1..n represent n input
variables. The input variables can be continuous or discrete in
nature. The Naive Bayes model uses Bayes theorem to infer the
class variable given the values of the input variables. The
expression for inference is given as

P(xq,%5 ...x,|Cc)P(C)

P(x, %y %,
B P()Eilez...x:|c))P(c) 2)

B Zcp(x1:x2 ...anC)P(C)

P(clxy, xy X)) =

Here, x; and c represent the values taken by X; and C
respectively. P(c) represents the prior probability, i.e.,
probability of observing class ¢ before observing the data point
X1, X5 . Xy, P(xq,%x5 ...%,|c) is the likelihood term, i.e., the
probability of observing x,x, ...x,, assuming that it belongs to
class ¢ . P(xy,%,..x,) is the probability of observing
X1, %5 . X, and P(c|x;,%, ...x,,) is the posterior probability
of class c. Using the above expression, we calculate posterior
probabilities of all values of C, and the data point x;,x; ... x,
is concluded to belong to that class for which the posterior
probability is the maximum.

As mentioned earlier, a Naive Bayes classifier assumes all
the input variables to be independent of each other. Using the
independence property, P(xq,%, ...xplc) = [T, P(x;|c) .
P(x;|c) is the probability that X; = x; given that the class is ¢
and evaluated using its conditional distribution, which is trained

using available training data. The computation of P(x;|c)
depends on the type of input variable, whether discrete or
continuous. Here, we detail the calculation of P(x;|c)
assuming all the input variables are discrete. Let k;,i = 1..n
represent the number of possible values taken by each input
variable. Let x;;,i = 1..n,j = 1..k; represent the jthvalue of
the i*" input variable. The class variable can be a binary
variable of a categorical variable. We assume that C can take
two values, successful and unsuccessful, denoted as 0 and 1
respectively.
Nijc
P(xl- = xl-]-|c) = T] 3)
c

We calculate the probability that x; = x;; given that the class ¢
is calculated as the ratio of the number of data points in which
x; = x;; (denoted as Nijc) to the number of data points in the
I*" class (denoted as N,). The above expression is used to
calculate the probabilities for all values of x; and also, all
variables Xy, x, ... x,. This expression is used to calculate the
likelihood term, which is used in the calculation of posterior
probabilities.

Support Vector Machine: Support Vector Machine (SVM) is a
common machine learning algorithm, used for both regression
and classification problems. The goal of SVM in classification is
to find a hyperplane in a D-dimensional feature space with which
all the data points could be distinctly classified [10]. The data
points that are closer to the hyperplane have the main role in
identifying the position and orientation of the hyperplane and are
called support vectors. Support vectors are used to define a
margin between the hyperplane and the data points; the goal of
SVM is to maximize this margin. For binary classification,
suppose that the classes are linearly separable and the
discriminant function is g(x) = wlx + w, where x had D
features, w is the weights vector with D components and w, is
a scalar. Our hyperplane-based classifier is then defined by w
and w, and the prediction function is given by y:

y = Sign(wTx + wy) 4)
Now, assume that the training data set is given as
{(x4,11),...,(xn, 1)}, where 7, is the class label for n €

{1,2,..., N}, and for the hyper plane we have:
{Wx"+W021,r"=+1 5
wt+w,=-1,r"m=-1 ®)

Equivalently,

TPWTx +wp) =1 2 mingoy | WX +w, =1 (6)

And the hyper plane margin,p, will be:

. wTx™ 4+ w, 1 )
= min =
P M e R | T w
Now, maximizing the margin p is equivalent to minimizing the
norm ||wll, and our optimization problem to obtain the

hyperplane will be a quadratic program with N linear inequality
constraints and D + 1 variables (w,w,):
lwll®

2

Minimize f(w,w,) =
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subjectto r*(wTx™ +w,) = 1, n=1{1,..,N}
This method could be extended to non-separable datasets as well.
We will utilize the SVM function from the python package
Scikit-learn to solve our problem.

Logistic regression: Logistic regression is a classification
algorithm that can help predict a binary outcome variable. This
method is often used to replicate an expert by learning from the
past expert assessments. A link function (S-shaped, Sigmoidal
function) is used in this method to transform the regression
outcomes into a number between 0 and 1 as follows [9]:
p = E(Y) = . ::_xp(wo +wixy + o+ waxg) ®)
exp(wg + wyxg + -+ wyxy)

which makes the In(odds) a linear function of the predictor
variable such that:

In(odds ) =In (

1—p)= wot+ wix;++ wgaxg (9)

In the above equations for i € {0,1,...d}, w; and w; are the
parameters and parameter estimations respectively and E(Y)
denotes the expectation value of the link function Y. When the
predicted and fitted values match, the likelihood of an object
(data point) of the dataset, i.e. p¥(1 —p)'™ is maximized. In
this method, the Log likelihood is used to estimate parameters.

Gaussian Process Classifier (GPC): Gaussian Processes (GP)
are a supervised machine learning technique suitable for
regression and probabilistic classification. Assume for function
f:X = R we evaluated the values at n points {x;,...,x,} € X
and form a vector f such that f = (f(x;),..., f(x,)) and f will
be a random variable. A distribution p(f) is called a Gaussian
process, if for any such n-dimensional subset of X, the marginal
distribution over p(f) has a multivariate Gaussian distribution
[13]. The Gaussian Process Classifier (GCP) implements GP for
classification where test predictions take the form of class
probabilities. This method is based on Bayesian statistics and
considers a prior distribution for the underlying probability
densities while satisfying the smoothness. For binary
classification a GP prior is placed over the latent function f(x)
and then it is squashed through the logistic logit function A(z) =
(1 + exp(—2))~? to obtain the class probability using m(x) =
A(f (x)). GPC is indeed a generalization of Logistic regression;
Specifically, the linear function from the linear logistic model is
replaced by a Gaussian process and accordingly the Gaussian
prior on the weights gives its place to a GP prior [13].

Random Forest (RF): Random forests (RFs) are an ensemble
learning method that can be applied to classification problems
[12]. When training the RF model, one can construct a group of
decision trees such that the output will be the class that appears
the most among all the classes of the individual trees. Random
forests are specifically useful for small data sets where the data
is scarce or expensive to collect [11].

Decision Tree on the other hand, is a non-parametric method
and a type of hierarchical model for supervised learning that uses

a sequence of recursive split of the input space to identify local
regions. A decision tree consists of internal decision nodes and
terminal leaves through which a test function f,,,(x) would pass
to label the branches [11].

An impurity measure is used to quantify the goodness of split.
Assuming that N,, denotes the number of instances reaching
node m and N}, of those instances belong to class C?, then:

A . Nl
P(C;1%m) =ply = (10)
m

Node m is called a pure node if for all i values, pl, is either 0
or 1. Otherwise, the impurity could be measured using entropy
as:

K
Tn=— ) Phalogaply (1
i=1

In this study, the RF algorith_m from Scikit-learn is utilized for
classification.

5. RESULTS AND DISCUSSION
5.1 Additively Manufactured Wicks

In this section, the effect of the process parameters on wick
manufacturability is discussed based on the experimental results,
i.e., additively-manufactured wicks using LPBF. The process
parameters were initially selected by following a trial-and-error
approach that was based on the idea of achieving partial sintering
through careful reduction of the effective laser energy density,
Based on Eq. (1), energy density is directly proportional to laser
power, P, and inversely proportional to hatch spacing, H, scan
speed, U, and layer thickness, &. However, Eq. (1) provides no
information regarding the possible effect of the spot diameter,
D;, on laser energy density. Therefore, the sets of process
parameters that are known to generate minimal pores, i.e., H =
0.15 mm, U= 700 mm/s, P =320 W, Dy;= 0.2 mm, and 6= 0.02
mm, were adjusted with the aim of reducing the energy density.
These set of parameters were provided by the Lumex
Corporation catalogue. The following process parameters were
employed to additively manufacture wicks: spot diameter and
layer thickness were fixed at D; = 0.2 mm and 6 = 0.02 mm,
respectively, and two values for laser power, P =120 and 160 W,
six different values for hatch spacing, H= 0.2, 0.225, 0.25, 0.275,
0.3, and 0.35 mm (0.2 mm < H < 0.35 mm), and seven values for
scan speed, U= 1000, 1250, 1500, 1750, 2000, 2500, and 4000
mm/s (1000 mm/s < U < 4000 mm/s) were selected.

After printing the wick structures, it was found that the
selected laser power range, i.e., 120 W < P < 160 W, was not
broad enough to capture laser sensitivity to wick
manufacturability.

Figure 5 illustrates wick manufacturability as a function of
hatch spacing and scan speed at Dy = 0.2 mm and 120 W < P <
160 W. It can be seen that variations of scan speed and hatch
spacing have huge impacts on wick manufacturability. More
specifically, while selecting extremely low hatch spacings and
scan speeds would significantly increase the possibility of wick
manufacturability (due to the increased energy density),
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increasing these two parameters above a certain threshold range,
which is shown by the Target Prediction Region in Figure 5
results in structurally inconsistent wick, i.e., failed wick
structures. This is the region that is critical to predict using
Bayesian approach, which will be explained in detail in the next
sections.

Table 1 summarizes the process parameters and wick
manufacturability associated with the data shown in Figure 5.

Table 1. Process parameters associated with successful and failed
additively-manufactured wicks at spot diameter Ds= 0.2 mm.

17 0.275 1500 160 O
18 0.3 1000 120 O
19 0.3 1000 160 O
20 0.35 1000 160 0]
21 0.25 2000 100 X
22 0.25 2000 120 X
23 0.25 2000 160 X
24 0.25 2500 100 X
25 0.25 2500 120 X
26 0.25 2500 160 X
27 0.25 4000 160 X
28 0.275 1750 120 X
29 0.3 1250 120 X
30 0.3 1500 120 X
31 0.3 1500 160 X
32 0.3 2000 120 X
33 0.3 2000 160 X
34 0.3 4000 160 X
35 0.35 1500 120 X
36 0.35 1500 160 X
37 0.35 2000 120 X
38 0.35 2000 160 X
39 0.35 4000 160 X

5.2 Surrogate modeling

Simulation study: First, we considered three different
train/test proportions of the dataset: 60/40, 70/30, 80/20. In the
dataset of 25 points, 15 points correspond to successful prints
and 10 correspond to failed prints. From Figure 5, there are five
success points and three failure points in the target region. To
create balanced datasets for training the classifiers, we assumed
similar proportion of success and failure data points. Since
prediction in the target region is crucial, we added four points
(two success and two failure) to the training dataset. Table 2
shows the total number of data points used for training and
testing at three different train/test splits. For 60/40 proportion,
we used 15 data points for training and 10 for testing. We
considered 8 success points and 7 failure points in those 15
points used for training. Out of 8 success points, 2 success points
were chosen from the target region. Similarly, 2 failure points
were chosen from the target region and 5 points were chosen
away from the target points. Table 3 shows the proportion of
success training and testing points from the target and away from
target regions across various train/test splits. Similarly, table 4
shows the proportion of failure training and testing points from
the target and away from target regions across various train/test
splits.

Table 2. Total number of training and testing points in various
train/test splits

Scan
Print Hat'ch Speed, LLeisos Successful
4 Spacing, U, Power, Print?
H, mm P,W
mm/s
1 0.2 1500 120 0]
2 0.2 1750 120 0]
3 0.2 1750 160 0]
4 0.2 2000 120 0]
5 0.2 2000 160 0]
6 0.225 1500 120 (0]
7 0.225 1750 120 (0]
8 0.225 1750 160 (0]
9 0.25 1000 100 (0]
10 0.25 1000 160 (0]
11 0.25 1500 100 (0]
12 0.25 1500 120 0]
13 0.25 1500 160 0]
14 0.25 1750 160 0]
15 0.275 1250 120 0
16 0.275 1500 120 0

Train/Test split
60/40 70/30 | 80/20
Number of train data points 15 18 20
Number of test data points 10 7 5
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Table 3. Number of success points (boundary and other) used in
various train/test splits

Train/Test split
60/40 | 70/30 | 80/20
Total Success Points 15 15 15
Total Success Points (Training) 8 9 11
Total Success Points (Testing) 7 6 4
Total Success Points (Training) 8 9 11
Success Points (Boundary) 2 2 2
Success Points (Other) 6 7 9
Total Success Points (Testing) 7 6 4
Success Points (Boundary) 3 3 3
Success Points (Other) 4 3 1

Table 4. Number of failure points (boundary and other) used in
various train/test splits

Train/Test split
60/40 | 70/30 | 80/20
Total Failure Points 10 10 10
Total Failure Points (Training) 7 8 9
Total Failure Points (Testing) 3 2 1
Total Failure Points (Training) 7 8 9
Failure points (Boundary) 2 2 2
Failure Points (Other) 5 6 7
Total Failure Points (Testing) 3 2 1
Failure points (Boundary) 1 1 1
Failure points (Other) 2 1 0

We used the same set of success/failure training points from the
target region across various train/test splits. For 70/30 split, we
used all the training points used in 60/40 split and added three
more points away from the target region. Similarly, we used all
the points in 70/30 split and added a couple more training points
to obtain the 80/20 split dataset. Using the data sets with various
train/test splits, we estimated the prediction performance of
various classifiers built with the same training dataset, at the test
points and specifically the points in the target region. As
mentioned above, there are 5 success and 3 failure points in the
target region, and 2 success and 2 failure points are used in the
training dataset. Therefore, we performed the prediction at the
remaining 3 success and 1 failure points. For the 60/40 split,
there are a total of 10 test points. Since four of them are in the
target region, the remaining six are away from the target region.
In the case of 80/20 split, there are a total of 5 test points with
four of them in the target region. To obtain the uncertainty in the
prediction performance, we repeated the analysis 10 times
choosing the training and testing data points at random. Figure 6
shows the box plots of prediction accuracy of the five classifiers
across the three train/test splits at the test data points.

Figure 6 shows the overall prediction accuracy; this contains
predictions at test points in and away from the target region.
Figure 7 shows the box plots of the prediction accuracy of the
five classifiers across various train/test splits at the test points in

the target region. There is a total of 4 test points (3 success and
1 failure) in the target region.
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[¥)
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=
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<
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w
& 40 +
30 L
L
60/40 70/30 BOY20
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Figure 6. Prediction accuracy of the five classifiers across various
train/test split proportions.

We can make the following observations from Figures 6 and 7.
The overall prediction accuracy increases slightly for most
models (LR, SVM, RF) while the performance remains the same
at the other two models (NBC, GPC). According to Figure 7,
there is a slight improvement in the prediction accuracy in the
target region with the train/test split proportion. At 80/20 split,
there is some evidence that the prediction accuracy reaches
100% for all the five models whereas the prediction accuracy
reached 100% for one model and two models for 60/40 and 70/30
splits respectively. The reason for not observing a significant
change in the prediction accuracy is because the additional
training points added in the 80/20 split when compared to the
60/40 split were away from the target region and therefore had
little impact in the prediction accuracy in the target region.

Next, we perform an empirical analysis to test if the
prediction performance increases in the target region when more
points from the target region are added to the training dataset.
For this study, we considered 60/40 split, which contains 15
training and 10 testing data points.

= MBC CJ LR [0 SWM EEE GPC BB RF

100 —1 ¢ L]

, L1 II M,

Baundary Validation Scores

8 5 8 8 3 B8 8

L ]
B0/40 70/30 BO/20
Proportion

Figure 7. Prediction accuracy of the five classifiers across various
train/test split proportions in the target region.
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Figure 8. Prediction accuracy of the five classifiers in the target
region with and without considering training points from the target

region.

In the above analysis, we considered four points from the target
region in the training dataset. Now we repeated the analysis
considering all the data points in the training dataset away from
the target region. In one case, we considered 15 training data (8
success and 7 failure) with 4 points (2 success and 2 failure) from
the target region while the remaining 11 points (6 success and 5
failure) are selected away from the target region. In the other
case, all the 15 training data (8 success and 7 failure) are selected
away from the target region. We trained all the five classifiers at
both these cases and predicted their prediction performance at
the four remaining points (3 success and 1 failure) in the target
region. We repeated the analysis 10 times with random selection
of training data points. Figure 8 shows the boxplots compares the
prediction performance in the two cases across the five models.

Figure 8 shows that the prediction performance of models
trained with training points from the target region is slightly
higher than those models trained without points from the target
region. The prediction performance of all the five models reach
100% when points from the target region are considered. From
Figures 6-8, the random forest model provides better overall and
boundary prediction performance.

6. CONCLUSION

In this paper, we studied a surrogate-based approach to
predict manufacturability of an additively manufactured metallic
wick structure using two process parameters: scan speed and
hatch spacing. Here, we investigated the performance of five
different classifiers: Naive Bayes Classifier, Logistic
Regression, Support Vector Machine, Gaussian Process
Regression and Random Forest. We studied the effect of the
training and testing data proportion on the prediction
performance across the input parameter space and close the
boundary between successful and unsuccessful prints. This paper
also investigated the effect the training point selection on the
prediction performance of the surrogate model performance. The
surrogate prediction results were compared with experiments.

As a future work, we will consider an experimental design
framework to intelligently and adaptively choose the process
parameters that provide maximum information to the surrogate
model in approximately the experimental results. In addition, we
will also investigate the estimation of optimal process
parameters that optimize the wick performance (e.g., porosity).
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