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ABSTRACT 
   Tailored wick structures are essential to develop efficient two-
phase thermal management systems in various engineering 
applications, however, manufacturing a geometrically-complex 
wick is challenging using conventional manufacturing processes 
due to limited manufacturability and poor cost effectiveness. 
Additive manufacturing is an ideal alternative, however, the 
state-of-the-art metal three-dimensional printers have poor 
manufacturability when depositing pre-designed porous wicks 
with pore sizes below 100 m. In this paper, a powder bed fusion 
3D printer (Matsuura Lumex Avance-25) was employed to 
fabricate metallic wicks through partial sintering for pore sizes 
below 100 m with data-driven control of process parameters. 
Hatch spacing and scan speed were selected as the two main AM 
process parameters to adjust. Due to the unavailability of 
process maps between the process parameters and properties of 
printed metallic wick structures, different surrogate-based 
models were employed to identify the combinations of the two 
process parameters that result in improved manufacturability of 
wick structures. Since the generation of training points for 
surrogate model training through experimentation is expensive 
and time-consuming, Bayesian optimization was used for 
sequential and intelligent selection of training points that 
provide maximum information gain regarding the relationships 
between the process parameters and the manufacturability of a 
3D printed wick structure. The relationship between the required 
number of training points and model prediction accuracy was 
investigated. The AM parameters’ ranges were discretized using 
six values of hatch spacing and seven values of scan speed, which 
resulted in a total of 42 combinations across the two parameters. 
Preliminary results conclude that 80% prediction accuracy is 
achievable with approximately forty training points (only 10% of 
total combinations). This study provides insights into the 

selection of optimal process parameters for the desired 
additively-manufactured wick structure performance. 

Keywords: additive manufacturing, Bayesian optimization, 
laser powder bed fusion, data classification, 3D printed wick, 
porous materials, Gaussian, support vector machine, random 
forest 

NOMENCLATURE 

Ds  spot diameter, m 
E  energy density, J/m3 

H  hatch spacing, m 
P  laser power, W 
U  scan speed, m/s 
C  classification category 
x    input variable to the classification model 

Greek symbols 
   layer thickness, m 

subscripts 
i input variable 

1. INTRODUCTION
Wick structures are essential parts of passive two-phase

cooling systems in various applications such as high power 
elcotronics, spacecrafts, chemical reactors, battery, and fuel cells 
by enhancing spontaneous liquid coolant flow to the heated 
surface via wicking and increased evaporation surfaces [1,2]. A 
conventional manufacturing apporach such as furnace sintering 
has technical limitations to address growing interests in 
manufacturing high-performance, geometrically complex wick 
structures with desired pore geometries, thus it is imperative to 
seek a breakthrough manufacturing approach. A Laser Powder 
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Bed Fusion (LPBF) metal Additive Manufacturing (AM) has 
shown a strong potential to manufacture such complex wick 
structures with desired geometries and performance 
characteristics [3]. Recentely, Jafari et al. successfully 
manufactured a high-performance multi-layer wick structure 
with small effective pore size, 9.3 µm <reff < 28.6 µm, and for a 
range of porosities, 2.4% <   < 42.2% by using selective 
sintering of the stainless steel CL 20ES particles in reduced 
effective laser energy [4]. They also manufactured single-layer 
wicks with 22 µm < reff < 29 µm and 51% <   < 61% using 
stainless steel 316L particles [5]. To identify the required process 
parameters, they used trial and error based approach by carefully 
adjusting the laser power, scan speed, hatch spacing, fluence, 
layer thickness, pulse duration, and focal and point distance both 
in continuous and pulse lasers, mainly because the complex 
relations between the process parameters and wick 
manufacturability is still poorly understood. Furthurmore, the 
trial and error approach is not ideal to understand such relations 
due to the poor cost effectiveness, and it is imperative to seek a 
cost-effective approach for the process maping. 
    Bayesian classifer and optimization approaches are ideal 
candidates to fill the knowledge gap as it deals with the 
sequential optimal design strategy for unkonwn functions [6]. In 
fact, Aminzadeh and Kurfess [7] developed and trained a 
Bayesian classifier to detect pore generation based on the 
effective energy density of different sets of process parameters, 
but this study remains only at very low porosity below 5%, which 
cannot be used for the porous structures with high porosity 
greater than 30%, i.e., wicks. 
    This study examines the relation between the process 
parameters and additively manufactured wick manufacturability, 
i.e., process mapping, cost effectively by employing a surrogate-
based Bayesian classifier and optimization approach. The 
developed approach will be also experimentally validated by the 
additively manufactured metallic wicks. In Section 2, we discuss 
the possibility of manufacturing wick structures by controlling 
the key process parameters in LPBF and presents the successful 
and failed printed wicks along with the associated process 
parameters. Section 3 explains the development of surrogate-
based Bayesian classifier, which predicts the wick 
manufacturability. In Section 4, the prediction accuracy of the 
surrogate-based Bayesian classifier is evaluated followed by a 
discussion.  
 
2. WORKING PRINCIPLES: ADDITIVELY 

MANUFACTURED SINTERED WICK 
    Figure 1 illustrates the key process parameters in LPBF 
metal additive manufacturing, including laser power P, hatch 
spacing H, scan speed U, laser spot diameter Ds, and layer 
thickness . The sintering depth and width are the thickness of 
the powder particles sintered in each laser pass. To manufacture 
desired wick structures, i.e., liquid-permeable porous structures, 
it requires partial-melting of the powder bed, i.e., sintering, 
which can be achieved by using low effective laser energy 
density. 

  

       
Figure 1: Schematic of powder bed fusion manufacturing process for 
sintered wick. Laser power, P, spot diameter, Ds, scan speed, U, hatch 
spacing, H, layer thickness, , sintering width, sintering depth, and 
powder bed are also shown. 

    The effective laser energy density E is given as [8] 

 
PE

U H 
=

 
 (1) 

where P is the laser power, H is the hatch spacing, and U is the 
scan speed, Ds is the laser spot diameter, and  is the layer 
thickness. The desired low energy density can be achieved either 
by increasing scan speed, hatch spacing, layer thickness, spot 
diameter or by decreasing laser power. In this study, the layer 
thickness remains constant. It will be later shown that the wick 
manufacturability cannot be simply predicted using Eq. (1) due 
to complex relations between the process parameters and wick 
manufacturability, and the wick manufacturability will be 
predicted using Bayesian optimization with limited available 
experimental data. 
 
3. EXPERIMENTAL: ADDITIVELY MANUFACTURED 

WICK 
To identify the possible process parameters for additively 

manufactured wick structures, commercially available Stainless 
Steel (SS) 630 particles with powder size in the range of 20-50 
m and density of 7,750 kg/m3 was used. The additively 
manufactured wick structures will be visually inspected to 
determine whether the wick structures are successfully 
manufactured or not, and the experimental results are used to 
train the data analytic algorithm and validate them. The SS 630 
particle is an ideal choice for additive manufacturing of wick 
structure using partial sintering process due to good laser 
absorptivity and low thermal conductivity. Commercially 
available Matsuura LUMEX Avance-25 LFPB device which 
uses high-power fiber laser to selectively sinter metal particles 
together has been used for wick manufacturing. Before starting 
the print in LUMEX, the wick geometry was designed and drawn 
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using SolidWorks 2019 followed by defining the process 
parameters in the LUMEX CAM software, which were given to 
the Matsuura LUMEX as an input. The wick manufacturing on a 
build plate took about 3-4 hours. In total, 5 sets of wick structures 
were printed. The first 3 prints were dedicated to printing cubic 
wicks while prints 4 and 5 included cylindrical and strip wicks. 
As shown in Figure 2, a successful wick is a wick that has a 
consistent fully formed structure, while a failed wick denotes a 
wick that is structurally incoherent. If the laser effective energy 
density is highly low, no mechanical bond between the 
neighboring particles would form during the laser sintering and 
therefore the wick would fail.   
  Figure 3 shows the Scanning Electron Microscope (SEM) 
images of successful and failed wicks. While for a successful 
wick a consistent pattern of particle bond can be observed, a 
failed wick has inconsistent structure with hollows. 
Figure 4 illustrates the manufacturability of the printed wicks as 
a function of their respective energy density, i.e., Eq. (1). In 
Figure 4, S indicates the successful wick and F represents the 
failed wick. The unpredictable region in Figure 4 indicates the 
energy densities for which no prediction can be made, using a 
simple predictive tool, e.g., Eq. (1). This unpredictability shows 
here exists a more complicated relationship between the process 
parameters and wick manufacturability. This is the reason why 
we decided to develop a statistical model for prediction of 
manufacturability. 

 
 

 
Figure 2: Schematic and pictures of successful and failed (a) cubic 
and (b) cylindrical and strip wicks.  

4. PREDICTION OF MANUFACTURABILITY USING 
CLASSIFICATION METHODS 

    In this section, we discuss various classification to facilitate 
the prediction of manufacturability of a wick structure. The 
manufacturability is a classification problem with two outcomes 
(Success/Fail). 
Success and Failure outcomes corresponding to the ability to 
manufacture the wick at a given set of process parameters. We 
describe five models: Naïve Bayes Classifier (NBC), Logistic 
Regression (LR), Support Vector Machine (SVM) Gaussian 
Process Classifier (GPC), and Random Forest (RF), and analyze 
 

 
Figure 3: Scanning Electron Microscope (SEM) images of 
successful and failed cubic and cylindrical wicks. 

     

 
Figure 4: Wick manufacturability as a function of effective energy 
density at given spot diameter, Ds = 0.2 mm. The unpredictable energy 
density range is also shown. S and F indicate successful and failed 
wicks, respectively. 
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their abilities in manufacturability prediction. In this analysis, we 
considered two process parameters to predict manufacturability: 
scan speed, U (mm/s), and hatch spacing, H (mm). In this study, 
experiments are conducted at seven discrete levels of scan speed 
(1000, 1250, 1500, 1750, 2000, 2500, 4000 mm/s) and six levels 
of hatch spacing (0.2, 0.225, 0.25, 0.275, 0.3 and 0.35 mm). In 
general, manufacturability can also depend on other parameters 
such as laser power but in this preliminary study, we considered 
only two important parameters for this surrogate modeling study. 
Through this study, we try to answer the following questions: 
 
(1) What is the prediction accuracy of these surrogate models 
across the input space?  
(2) What is the performance of these models at the input 
configurations close to the boundary between successful and 
unsuccessful prints?  
(3) What is the impact of experimental input settings on the 
performance of a surrogate model?  
 
We performed 25 experiments at various input configurations to 
understand the manufacturability of wick structures. We use this 
dataset to train, validate the surrogate models and answer the 
above three questions. First, we will provide a brief review of the 
five classification models that were used in this study. 
 
Naïve Bayes Classifier (NBC): A Naïve Bayes classifier is a 
probabilistic classifier in which all the input variables are 
assumed to be independent of each other. Let 𝐶 represent the 
class (category) variable and let 𝑋𝑖 , 𝑖 = 1. . 𝑛 represent 𝑛 input 
variables. The input variables can be continuous or discrete in 
nature. The Naïve Bayes model uses Bayes theorem to infer the 
class variable given the values of the input variables. The 
expression for inference is given as  
 

 
𝑃(𝑐|𝑥1, 𝑥2 … 𝑥𝑛) =  

𝑃(𝑥1, 𝑥2 … 𝑥𝑛|𝑐)𝑃(𝑐)

𝑃(𝑥1, 𝑥2 … 𝑥𝑛)

=  
𝑃(𝑥1, 𝑥2 … 𝑥𝑛|𝑐)𝑃(𝑐)

∑ 𝑃(𝑥1, 𝑥2 … 𝑥𝑛|𝑐)𝑃(𝑐)𝑐

 
(2) 

 
Here, 𝑥𝑖  and 𝑐  represent the values taken by 𝑋𝑖  and 𝐶 
respectively. 𝑃(𝑐)  represents the prior probability, i.e., 
probability of observing class 𝑐 before observing the data point 
𝑥1, 𝑥2 … 𝑥𝑛 . 𝑃(𝑥1, 𝑥2 … 𝑥𝑛|𝑐)  is the likelihood term, i.e., the 
probability of observing 𝑥1, 𝑥2 … 𝑥𝑛 assuming that it belongs to 
class 𝑐 .  𝑃(𝑥1, 𝑥2 … 𝑥𝑛)  is the probability of observing 
𝑥1, 𝑥2 … 𝑥𝑛  and  𝑃(𝑐|𝑥1, 𝑥2 … 𝑥𝑛)  is the posterior probability 
of class 𝑐. Using the above expression, we calculate posterior 
probabilities of all values of 𝐶, and the data point 𝑥1, 𝑥2 … 𝑥𝑛 
is concluded to belong to that class for which the posterior 
probability is the maximum.  

As mentioned earlier, a Naïve Bayes classifier assumes all 
the input variables to be independent of each other. Using the 
independence property, 𝑃(𝑥1, 𝑥2 … 𝑥𝑛|𝑐) =  ∏ 𝑃(𝑥𝑖|𝑐)𝑛

𝑖=1  . 
𝑃(𝑥𝑖|𝑐) is the probability that 𝑋𝑖 = 𝑥𝑖 given that the class is 𝑐 
and evaluated using its conditional distribution, which is trained 

using available training data. The computation of 𝑃(𝑥𝑖|𝑐) 
depends on the type of input variable, whether discrete or 
continuous. Here, we detail the calculation of 𝑃(𝑥𝑖|𝑐) 
assuming all the input variables are discrete. Let 𝑘𝑖 , 𝑖 = 1. . 𝑛 
represent the number of possible values taken by each input 
variable. Let 𝑥𝑖𝑗 , 𝑖 = 1. . 𝑛, 𝑗 = 1. . 𝑘𝑖 represent the 𝑗𝑡ℎvalue of 
the 𝑖𝑡ℎ  input variable. The class variable can be a binary 
variable of a categorical variable. We assume that 𝐶 can take 
two values, successful and unsuccessful, denoted as 0 and 1 
respectively.  

 𝑃(𝑥𝑖 = 𝑥𝑖𝑗|𝑐) =  
𝑁𝑖𝑗𝑐

𝑁𝑐

 (3) 

We calculate the probability that 𝑥𝑖 = 𝑥𝑖𝑗 given that the class 𝑐 
is calculated as the ratio of the number of data points in which 
𝑥𝑖 = 𝑥𝑖𝑗 (denoted as 𝑁𝑖𝑗𝑐) to the number of data points in the 
𝑙𝑡ℎ  class (denoted as 𝑁𝑐 ). The above expression is used to 
calculate the probabilities for all values of 𝑥𝑖  and also, all 
variables 𝑥1, 𝑥2 … 𝑥𝑛 . This expression is used to calculate the 
likelihood term, which is used in the calculation of posterior 
probabilities. 
 
Support Vector Machine: Support Vector Machine (SVM) is a 
common machine learning algorithm, used for both regression 
and classification problems. The goal of SVM in classification is 
to find a hyperplane in a D-dimensional feature space with which 
all the data points could be distinctly classified [10]. The data 
points that are closer to the hyperplane have the main role in 
identifying the position and orientation of the hyperplane and are 
called support vectors. Support vectors are used to define a 
margin between the hyperplane and the data points; the goal of 
SVM is to maximize this margin. For binary classification, 
suppose that the classes are linearly separable and the 
discriminant function is 𝑔(𝑥) = 𝑤𝑇𝑥 + 𝑤0  where 𝑥  had 𝐷 
features, 𝑤 is the weights vector with 𝐷 components and 𝑤0  is 
a scalar. Our hyperplane-based classifier is then defined by 𝑤 
and 𝑤0  and the prediction function is given by 𝑦: 

 𝑦 = 𝑆𝑖𝑔𝑛(𝑤⊤𝑥 + 𝑤0) (4) 
Now, assume that the training data set is given as 
{(𝑥1, 𝑟1), . . . , (𝑥𝑁 , 𝑟𝑁 )} , where 𝑟𝑛 is the class label for  𝑛 ∈
{1,2, . . . , 𝑁}, and for the hyper plane we have: 
 

 {
𝑤𝑥𝑛 + 𝑤0 ≥ 1  , 𝑟𝑛 = +1
𝑤𝑛 + 𝑤0 = −1  , 𝑟𝑛 = −1

 (5) 

Equivalently,  
    𝑟𝑛(𝑤⊤𝑥𝑛 + 𝑤0) ≥ 1 ⇒ 𝑚𝑖𝑛1≤𝑛≤𝑁 ∣ 𝑤⊤𝑥𝑛 + 𝑤0 ∣= 1   (6) 

And the hyper plane margin,𝜌, will be: 

 𝜌 = 𝑚𝑖𝑛1≤𝑛≤𝑁 |
𝑤⊤𝑥𝑛 + 𝑤0

∥ 𝑤 ∥
| =

1

∥ 𝑤 ∥
 (7) 

Now, maximizing the margin 𝜌 is equivalent to minimizing the 
norm ∥ 𝑤 ∥ , and our optimization problem to obtain the 
hyperplane will be a quadratic program with 𝑁 linear inequality 
constraints and 𝐷 + 1 variables (𝑤, 𝑤0): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓(𝑤, 𝑤0) =
‖𝑤‖2

2
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              𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑟𝑛(𝑤⊤𝑥𝑛 + 𝑤0) ≥ 1, 𝑛 = {1, … , 𝑁} 
 
This method could be extended to non-separable datasets as well. 
We will utilize the SVM function from the python package 
Scikit-learn to solve our problem.  
 
Logistic regression: Logistic regression is a classification 
algorithm that can help predict a binary outcome variable. This 
method is often used to replicate an expert by learning from the 
past expert assessments. A link function (S‐shaped, Sigmoidal 
function) is used in this method to transform the regression 
outcomes into a number between 0 and 1 as follows [9]: 

 𝑝 = 𝐸(𝑌) =
exp(𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑑𝑥𝑑)

1 + exp(𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑑𝑥𝑑)
 (8) 

which makes the ln(𝑜𝑑𝑑𝑠)  a linear function of the predictor 
variable such that: 

ln( odds ) = ln (
𝑝

1 − 𝑝
) = 𝜔 0 + 𝜔 1𝑥1 + ⋯ + 𝜔 𝑑𝑥𝑑   (9) 

In the above equations for 𝑖 ∈ {0,1, . . . 𝑑} , 𝜔𝑖  and 𝜔
^

𝑖  are the 
parameters and parameter estimations respectively and 𝐸(𝑌) 
denotes the expectation value of the link function 𝑌. When the 
predicted and fitted values match, the likelihood of an object 
(data point) of the dataset, i.e.  𝑝𝑦(1 − 𝑝)1−𝑦 is maximized. In 
this method, the Log likelihood is used to estimate parameters. 
 
Gaussian Process Classifier (GPC): Gaussian Processes (GP) 
are a supervised machine learning technique suitable for 
regression and probabilistic classification. Assume for function 
𝑓: 𝑋 → 𝑅 we evaluated the values at 𝑛 points {𝑥1, . . . , 𝑥𝑛} ∈ 𝑋 
and form a vector f such that f = (𝑓(𝑥1), . . . , 𝑓(𝑥𝑛)) and f will 
be a random variable. A distribution 𝑝(𝑓) is called a Gaussian 
process, if for any such 𝑛-dimensional subset of 𝑋, the marginal 
distribution over 𝑝(𝑓) has a multivariate Gaussian distribution 
[13]. The Gaussian Process Classifier (GCP) implements GP for 
classification where test predictions take the form of class 
probabilities. This method is based on Bayesian statistics and 
considers a prior distribution for the underlying probability 
densities while satisfying the smoothness. For binary 
classification a GP prior is placed over the latent function 𝑓(𝑥) 
and then it is squashed through the logistic logit function 𝜆(𝑧) =
(1 + 𝑒𝑥𝑝(−𝑧))−1 to obtain the class probability using 𝜋(𝑥) =
𝜆(𝑓(𝑥)). GPC is indeed a generalization of Logistic regression; 
Specifically, the linear function from the linear logistic model is 
replaced by a Gaussian process and accordingly the Gaussian 
prior on the weights gives its place to a GP prior [13]. 
 
Random Forest (RF): Random forests (RFs) are an ensemble 
learning method that can be applied to classification problems 
[12]. When training the RF model, one can construct a group of 
decision trees such that the output will be the class that appears 
the most among all the classes of the individual trees. Random 
forests are specifically useful for small data sets where the data 
is scarce or expensive to collect [11].  
  Decision Tree on the other hand, is a non-parametric method 
and a type of hierarchical model for supervised learning that uses 

a sequence of recursive split of the input space to identify local 
regions. A decision tree consists of internal decision nodes and 
terminal leaves through which a test function 𝑓𝑚(𝑥) would pass 
to label the branches [11]. 
  An impurity measure is used to quantify the goodness of split. 
Assuming that 𝑁𝑚  denotes the number of instances reaching 
node 𝑚 and 𝑁𝑚

𝑖  of those instances belong to class 𝐶𝑖, then: 
   

 𝑃
^

(𝐶𝑖 ∣ 𝐱, 𝑚) ≡ 𝑝𝑚
𝑖 =

𝑁𝑚
𝑖

𝑁𝑚

 (10) 

Node 𝑚 is called a pure node if for all 𝑖 values, 𝑝𝑚
𝑖  is either 0 

or 1. Otherwise, the impurity could be measured using entropy 
as: 

 ℐ𝑚 = − ∑ 𝑝𝑚
𝑖 log2𝑝𝑚

𝑖

𝐾

𝑖=1

 (11) 

In this study, the RF algorithm from Scikit-learn is utilized for 
classification. 
 

5. RESULTS AND DISCUSSION 
    5.1 Additively Manufactured Wicks 
    In this section, the effect of the process parameters on wick 
manufacturability is discussed based on the experimental results, 
i.e., additively-manufactured wicks using LPBF. The process 
parameters were initially selected by following a trial-and-error 
approach that was based on the idea of achieving partial sintering 
through  careful reduction of the effective laser energy density,  
Based on Eq. (1), energy density is directly proportional to laser 
power, P, and inversely proportional to hatch spacing, H, scan 
speed, U, and layer thickness, . However, Eq. (1) provides no 
information regarding the possible effect of the spot diameter, 
Ds, on laser energy density. Therefore, the sets of process 
parameters that are known to generate minimal pores, i.e., H = 
0.15 mm, U = 700 mm/s, P = 320 W, Ds = 0.2 mm, and  = 0.02 
mm, were adjusted with the aim of reducing the energy density. 
These set of parameters were provided by the Lumex 
Corporation catalogue. The following process parameters were 
employed to additively manufacture wicks: spot diameter and 
layer thickness were fixed at Ds = 0.2 mm and  = 0.02 mm, 
respectively, and two values for laser power, P = 120 and 160 W, 
six different values for hatch spacing, H = 0.2, 0.225, 0.25, 0.275, 
0.3, and 0.35 mm (0.2 mm  H < 0.35 mm), and seven values for 
scan speed, U = 1000, 1250, 1500, 1750, 2000, 2500, and 4000 
mm/s (1000 mm/s  U < 4000 mm/s) were selected.  
    After printing the wick structures, it was found that the 
selected laser power range, i.e., 120 W  P  160 W, was not 
broad enough to capture laser sensitivity to wick 
manufacturability.  
    Figure 5 illustrates wick manufacturability as a function of 
hatch spacing and scan speed at Ds = 0.2 mm and 120 W  P  
160 W. It can be seen that variations of scan speed and hatch 
spacing have huge impacts on wick manufacturability. More 
specifically, while selecting extremely low hatch spacings and 
scan speeds would significantly increase the possibility of wick 
manufacturability (due to the increased energy density),  
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Figure 5. Wick manufacturability as a function of hatch spacing, H, 
and scan speed, U, at given spot diameter, Ds = 0.2 mm and laser power, 
120 W  P  160 W. 
 
increasing these two parameters above a certain threshold range, 
which is shown by the Target Prediction Region in Figure 5 
results in structurally inconsistent wick, i.e., failed wick 
structures. This is the region that is critical to predict using 
Bayesian approach, which will be explained in detail in the next 
sections.  
     
 
Table 1 summarizes the process parameters and wick 
manufacturability associated with the data shown in Figure 5. 
 
Table 1. Process parameters associated with successful and failed 
additively-manufactured wicks at spot diameter Ds = 0.2 mm.  

Print 
# 

Hatch 
Spacing, 
H, mm 

Scan 
Speed, 

U, 
mm/s 

Laser 
Power, 
P, W 

Successful 
Print? 

1 0.2 1500 120 O 
2 0.2 1750 120 O 
3 0.2 1750 160 O 
4 0.2 2000 120 O 
5 0.2 2000 160 O 
6 0.225 1500 120 O 
7 0.225 1750 120 O 
8 0.225 1750 160 O 
9 0.25 1000 100 O 

10 0.25 1000 160 O 
11 0.25 1500 100 O  
12 0.25 1500 120 O  
13 0.25 1500 160 O 
14 0.25 1750 160 O 
15 0.275 1250 120 O 
16 0.275 1500 120 O 

17 0.275 1500 160 O 
18 0.3 1000 120 O 
19 0.3 1000 160 O 
20 0.35 1000 160 O 
21 0.25 2000 100 X  
22 0.25 2000 120 X 
23 0.25 2000 160 X  
24 0.25 2500 100 X  
25 0.25 2500 120 X  
26 0.25 2500 160 X 
27 0.25 4000 160 X 
28 0.275 1750 120 X 
29 0.3 1250 120 X 
30 0.3 1500 120 X 
31 0.3 1500 160 X 
32 0.3 2000 120 X 
33 0.3 2000 160 X 
34 0.3 4000 160 X 
35 0.35 1500 120 X 
36 0.35 1500 160 X 
37 0.35 2000 120 X 
38 0.35 2000 160 X 
39 0.35 4000 160 X 

 
 
   5.2 Surrogate modeling 

Simulation study: First, we considered three different 
train/test proportions of the dataset: 60/40, 70/30, 80/20. In the 
dataset of 25 points, 15 points correspond to successful prints 
and 10 correspond to failed prints. From Figure 5, there are five 
success points and three failure points in the target region. To 
create balanced datasets for training the classifiers, we assumed 
similar proportion of success and failure data points. Since 
prediction in the target region is crucial, we added four points 
(two success and two failure) to the training dataset. Table 2 
shows the total number of data points used for training and 
testing at three different train/test splits. For 60/40 proportion, 
we used 15 data points for training and 10 for testing. We 
considered 8 success points and 7 failure points in those 15 
points used for training. Out of 8 success points, 2 success points 
were chosen from the target region. Similarly, 2 failure points 
were chosen from the target region and 5 points were chosen 
away from the target points. Table 3 shows the proportion of 
success training and testing points from the target and away from 
target regions across various train/test splits. Similarly, table 4 
shows the proportion of failure training and testing points from 
the target and away from target regions across various train/test 
splits.  
 
Table 2. Total number of training and testing points in various 
train/test splits 

 Train/Test split 
 60/40 70/30 80/20 
Number of train data points 15 18 20 
Number of test data points 10 7 5 
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Table 3. Number of success points (boundary and other) used in 
various train/test splits 

 Train/Test split 
 60/40 70/30 80/20 
Total Success Points 15 15 15 
Total Success Points (Training) 8 9 11 
Total Success Points (Testing) 7 6 4 
Total Success Points (Training) 8 9 11 
Success Points (Boundary) 2 2 2 
Success Points (Other) 6 7 9 
Total Success Points (Testing) 7 6 4 
Success Points (Boundary) 3 3 3 
Success Points (Other) 4 3 1 

 
Table 4. Number of failure points (boundary and other) used in 
various train/test splits 

 Train/Test split 
 60/40 70/30 80/20 
 Total Failure Points 10 10 10 
Total Failure Points (Training) 7 8 9 
Total Failure Points (Testing) 3 2 1 
Total Failure Points (Training) 7 8 9 
Failure points (Boundary) 2 2 2 
Failure Points (Other) 5 6 7 
Total Failure Points (Testing) 3 2 1 
Failure points (Boundary) 1 1 1 
Failure points (Other) 2 1 0 

 
We used the same set of success/failure training points from the 
target region across various train/test splits. For 70/30 split, we 
used all the training points used in 60/40 split and added three 
more points away from the target region.  Similarly, we used all 
the points in 70/30 split and added a couple more training points 
to obtain the 80/20 split dataset. Using the data sets with various 
train/test splits, we estimated the prediction performance of 
various classifiers built with the same training dataset, at the test 
points and specifically the points in the target region. As 
mentioned above, there are 5 success and 3 failure points in the 
target region, and 2 success and 2 failure points are used in the 
training dataset. Therefore, we performed the prediction at the 
remaining 3 success and 1 failure points. For the 60/40 split, 
there are a total of 10 test points. Since four of them are in the 
target region, the remaining six are away from the target region. 
In the case of 80/20 split, there are a total of 5 test points with 
four of them in the target region. To obtain the uncertainty in the 
prediction performance, we repeated the analysis 10 times 
choosing the training and testing data points at random. Figure 6 
shows the box plots of prediction accuracy of the five classifiers 
across the three train/test splits at the test data points.  
    Figure 6 shows the overall prediction accuracy; this contains 
predictions at test points in and away from the target region. 
Figure 7 shows the box plots of the prediction accuracy of the 
five classifiers across various train/test splits at the test points in 

the target region. There is a total of 4 test points (3 success and 
1 failure) in the target region.  

 
Figure 6. Prediction accuracy of the five classifiers across various 
train/test split proportions. 
 

We can make the following observations from Figures 6 and 7. 
The overall prediction accuracy increases slightly for most 
models (LR, SVM, RF) while the performance remains the same 
at the other two models (NBC, GPC). According to Figure 7, 
there is a slight improvement in the prediction accuracy in the 
target region with the train/test split proportion. At 80/20 split, 
there is some evidence that the prediction accuracy reaches 
100% for all the five models whereas the prediction accuracy 
reached 100% for one model and two models for 60/40 and 70/30 
splits respectively. The reason for not observing a significant 
change in the prediction accuracy is because the additional 
training points added in the 80/20 split when compared to the 
60/40 split were away from the target region and therefore had 
little impact in the prediction accuracy in the target region. 
    Next, we perform an empirical analysis to test if the 
prediction performance increases in the target region when more 
points from the target region are added to the training dataset. 
For this study, we considered 60/40 split, which contains 15 
training and 10 testing data points.  

 
Figure 7. Prediction accuracy of the five classifiers across various 
train/test split proportions in the target region. 
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Figure 8. Prediction accuracy of the five classifiers in the target 
region with and without considering training points from the target 
region. 

 
In the above analysis, we considered four points from the target 
region in the training dataset. Now we repeated the analysis 
considering all the data points in the training dataset away from 
the target region. In one case, we considered 15 training data (8 
success and 7 failure) with 4 points (2 success and 2 failure) from 
the target region while the remaining 11 points (6 success and 5 
failure) are selected away from the target region. In the other 
case, all the 15 training data (8 success and 7 failure) are selected 
away from the target region. We trained all the five classifiers at 
both these cases and predicted their prediction performance at 
the four remaining points (3 success and 1 failure) in the target 
region. We repeated the analysis 10 times with random selection 
of training data points. Figure 8 shows the boxplots compares the 
prediction performance in the two cases across the five models.  
    Figure 8 shows that the prediction performance of models 
trained with training points from the target region is slightly 
higher than those models trained without points from the target 
region. The prediction performance of all the five models reach 
100% when points from the target region are considered. From 
Figures 6-8, the random forest model provides better overall and 
boundary prediction performance. 
 

6. CONCLUSION 
    In this paper, we studied a surrogate-based approach to 
predict manufacturability of an additively manufactured metallic 
wick structure using two process parameters: scan speed and 
hatch spacing. Here, we investigated the performance of five 
different classifiers: Naïve Bayes Classifier, Logistic 
Regression, Support Vector Machine, Gaussian Process 
Regression and Random Forest. We studied the effect of the 
training and testing data proportion on the prediction 
performance across the input parameter space and close the 
boundary between successful and unsuccessful prints. This paper 
also investigated the effect the training point selection on the 
prediction performance of the surrogate model performance. The 
surrogate prediction results were compared with experiments.  

As a future work, we will consider an experimental design 
framework to intelligently and adaptively choose the process 
parameters that provide maximum information to the surrogate 
model in approximately the experimental results. In addition, we 
will also investigate the estimation of optimal process 
parameters that optimize the wick performance (e.g., porosity). 
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