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Abstract

Back-door attack poses a severe threat to deep
learning systems. It injects hidden malicious be-
haviors to a model such that any input stamped
with a special pattern can trigger such behaviors.
Detecting back-door is hence of pressing need.
Many existing defense techniques use optimiza-
tion to generate the smallest input pattern that
forces the model to misclassify a set of benign
inputs injected with the pattern to a target label.
However, the complexity is quadratic to the num-
ber of class labels such that they can hardly handle
models with many classes. Inspired by Multi-Arm
Bandit in Reinforcement Learning, we propose a
K-Arm optimization method for backdoor detec-
tion. By iteratively and stochastically selecting
the most promising labels for optimization with
the guidance of an objective function, we substan-
tially reduce the complexity, allowing to handle
models with many classes. Moreover, by itera-
tively refining the selection of labels to optimize,
it substantially mitigates the uncertainty in choos-
ing the right labels, improving detection accuracy.
At the time of submission, the evaluation of our
method on over 4000 models in the IARPA Tro-
JAI competition from round 1 to the latest round
4 achieves top performance on the leaderboard.
Our technique also supersedes five state-of-the-art
techniques in terms of accuracy and the scanning
time needed. The code of our work is available
at https://github.com/PurduePAML/
K-ARM_Backdoor_Optimization

1. Introduction

The semantics of a deep neural network is determined by
model parameters that are not interpretable. Trojan (back-
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door) attack exploits the uninterpretability and injects ma-
licious hidden behaviors to neural networks. To activate
back-door behavior, the attacker stamps a trigger to a be-
nign input and passes the stamped input to the trojaned
model, which then misclassifies the input to the target label.
When benign inputs are provided, the trojaned model has
comparable accuracy as the original one. The feasibility of
trojan attack has been demonstrated by many existing works.
For example, data poisoning (Gu et al., 2017) directly uses
stamped inputs in training to inject back-door. Neuron hi-
jacking (Liu et al., 2018b) compromises a small number of
selected neurons by changing their associated weight values
through input reverse engineering and retraining. Clean-
label attack (Shafahi et al., 2018) injects malicious features
to the target class samples instead of victim class samples,
and hence is more stealthy. More discussion can be found
in the related work section.

Realizing the prominent threat, researchers have developed
a number of defense techniques that range from detecting
malicious (stamped) inputs at runtime (Ma & Liu, 2019) to
offline model scanning for possible back-doors (Liu et al.,
2019; Wang et al., 2019; Kolouri et al., 2020). The for-
mer is an on-the-fly technique and requires the presence of
malicious inputs. The latter determines if a given model
contains any backdoor. It usually assumes a small set of
benign inputs for all the classes of the model but not any
malicious inputs. Existing scanners usually consider two
types of backdoors. The first is universal backdoor that
causes misclassification (to the target label) for benign sam-
ples from any class when they are stamped with the trigger.
The second is label-specific backdoor that only causes mis-
classification of benign samples from a specific victim class
to the target label, when they are stamped with the trigger.
Neural Cleanse (NC) (Wang et al., 2019) uses optimization
to derive a trigger for each class and observes if there is any
trigger that is exceptionally small and hence likely injected
instead of naturally occurring feature. Artificial Brain Stim-
ulation (ABS) (Liu et al., 2019) systematically intercepts
and changes internal neuron activation values on benign
inputs, and then observes if consistent misclassification can
be induced. If so, the corresponding neurons are considered
compromised and used to reverse engineer a trigger. More
existing techniques are discussed in the related work section.
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Figure 1. Motivation cases: (a) illustrates pre-selection fails to

identify backdoor in Model #56 in TrojAl round 2; (b) shows that
ABS fails to identify backdoor in Model #13 in TrojAl round 1.

Although the effectiveness of existing solutions has been
demonstrated, they have various limitations. In particular,
since the target label is unknown beforehand, scanners such
as NC try to scan all labels. If the backdoor is label-specific,
the computation complexity is quadratic. As such they can
hardly handle models with many classes. For example, NC
cannot finish scanning a TrojAl round 2 model with 23
classes within 15 hours. Techniques like ABS leverages
additional analysis to pre-select a set of labels/neurons to
optimize. However, their effectiveness hinges on the cor-
rectness of pre-selection.

We propose a new back-door scanning method that can han-
dle models with many classes and has better effectiveness
and efficiency than existing solutions. Inspired by K-Arm
bandit (Auer et al., 2002) in Reinforcement Learning that
optimizes decision making with a large number of possible
options, we propose a K-Arm backdoor scanner. Instead
of optimizing for all the labels one-by-one, the process is
divided to many rounds and in each round, our algorithm
selects one to optimize for a small number of epochs. The
selection is stochastic, guided by an objective function. The
function measures the past progress of a candidate label,
e.g., how fast a small trigger can be generated to misclas-
sify stamped inputs to the label, as a trigger is generally
easy to optimize if the label is trojaned, and how small the
trigger is. The stochastic nature of the method ensures that
even if the true target label is not selected for the current
round, it still has a good chance to be selected later. To our
knowledge, we are the first to bring reinforcement learning
(K-Arm Bandit) into the neural backdoor detection domain
and substantially improve the scanner’s efficiency and ca-
pability. Natural features sometimes behave similarly to
backdoors. To distinguish the two, we develop a symmet-
ric optimization algorithm that piggy-backs on the K-Arm
backbone. It leverages the following observation: while it
is easy to optimize a trigger that flips victim label to target
label, the inverse (i.e., optimize a trigger that flips target
label to victim label) is difficult; natural features, however,
do not have this property.

We evaluate our prototype on 4000 models from TARPA
TrojAl round 1 to the latest round 4 competitions, and a
few complex models on ImageNet. Our technique achieved

top performance on the TrojAl leaderboard and reached
the round targets on the TrojAl test server for all rounds.
It is substantially more effective than the state-of-the-art
techniques NC, ABS, and ULP (Kolouri et al., 2020) by
having 31%, 20%, and 27% better accuracy, respectively.
In addition, its scanning time is a few times to orders of
magnitude smaller than other optimization based methods,
especially in scanning label-specific backdoors.

2. Related Work

Besides the ones mentioned in the introduction, we further
briefly discuss additional related work and our threat model.

Trojan Attack. Several data-poisoning like attacks (Gu
et al., 2017; Liu et al., 2018b) utilize patch/watermark trig-
gers. Clean-label attacks (Shafahi et al., 2018; Saha et al.,
2020; Turner et al., 2019; Zhao et al., 2020; Zhu et al., 2019)
inject back-door without changing data label. Salem et al.
(2020); Nguyen & Tran (2020) leveraged generative models
to construct dynamic triggers with random patterns and lo-
cations for specific samples. Composite attack (Lin et al.,
2020) uses natural features from multiple labels as triggers.
Bit flipping (Rakin et al., 2019; 2020) injects malicious
behaviors by flipping bits in model weights. Trojan attacks
have been developed for transfer learning (Rezaei & Liu,
2019; Wang et al., 2018; Yao et al., 2019), federated learn-
ing (Bagdasaryan et al., 2020; Xie et al., 2019; Wang et al.,
2020b) and NLP tasks (Chen et al., 2020; Sun, 2020).

Existing Detection. ULP (Kolouri et al., 2020) trains a clas-
sifier to determine if a model is trojaned. It leverages a large
pool of benign and trojaned models to learn a set of univer-
sal input patterns that can lead to different logits for benign
and trojaned models. The classifier is then trained on these
logits. Similar to ULP (Kolouri et al., 2020), researchers
in (Huang et al., 2020) proposed one-pixel signature. They
trained a classifier to predict the model’s benignity based
on their one-pixel signature. Qiao et al. (2019) proposed to
generate trigger distribution. Zhang et al. (2020); Wang et al.
(2020c) leveraged the differences of adversarial examples
for benign and trojaned models to detect backdoors. TA-
BOR (Guo et al., 2019) used explainable Al techniques to
scan backdoors. Xu et al. (2019) detected backdoors using
Meta Neural Analysis. Liu et al. (2018a) combined prun-
ing and fine-tuning to weaken or even eliminate backdoors.
Wang et al. (2020a) certified model robustness against back-
door via randomized smoothing. Chan & Ong (2019); Gao
et al. (2019); Chen et al. (2018); Chou et al. (2020); Du et al.
(2019); Liu et al. (2017); Ma & Liu (2019) aimed to detect
if a provided input contains trigger. Comprehensive surveys
of backdoor learning can be found at (Li et al., 2020a;b)

Multi-Arm Bandit. Multi-Arm Bandit (MAB) describes
the dilemma of making a sequence of decisions to maximize
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(a) (R4 model #556) victim
class #13 input + trigger

(b) (R4 model #556) target class
#1 input

(¢) (R4 model #262) class #4 in-
put + generated natural feature

(d) (R4 model #262) class #20
input + generated natural fea-
ture

Figure 2. Motivation cases: (a) illustrates a victim class #13 input of a round 4 (R4) trojaned model stamped with trigger generated by
K-Arm, yielding the classification result of label #1; (b) shows a target class #1 input for the same model; (c) shows a class #4 input of a
clean R4 model stamped with natural features generated by K-Arm, yielding label 20; (d) shows a class #20 input stamped with generated

natural features for the same model in (c), yielding label 4.

reward, which has an unknown distribution. It has been
thoroughly studied in (Auer et al., 2002). Many solutions are
proposed to tackle this problem, such as Upper Confidence
Bound (UCB) (Auer, 2002), e-greedy (Watkins, 1989), etc.
MAB is a general idea with many applications, Our design
is inspired by MAB and unique for backdoor detection.

Threat Model We consider a standard setting in the back-
door scanning. Given a model and a small set of clean
images without trigger information for each class (less than
20), the defender is required to identify whether the model
is trojaned or not. In this paper, we mainly discuss the
backdoor with limited size on the propose of stealthiness,
such as patch triggers (Liu et al., 2018b) or small pertur-
bations (Saha et al., 2020). The injected backdoor can be
static (Gu et al., 2017), input aware dynamic (Nguyen &
Tran, 2020), label-specific or global. Large triggers such as
the composite attack (Lin et al., 2020) and filter triggers (Liu
et al., 2019; Cheng et al., 2020) are out of the scope. We
will leave it to the future work.

3. Motivation

In this section, we discuss the limitations of existing opti-
mization based backdoor scanners and motivate ours.

NC (Wang et al., 2019) cannot handle models with many
classes. Assume a model has NV classes. Since the target
label is unknown, to detect universal backdoors, NC con-
siders each of the N labels could be the target label and
optimizes a trigger that flips benign samples from any class
to the label. To detect label specific backdoors, it considers
each pair of labels could be the victim and target labels, and
optimizes a trigger to flip only samples of the victim class
to the target label. It then checks if there is an exceptionally
small trigger (among all those generated). If so, the model is
considered having a backdoor. The computation complexity
is hence O(N) for universal backdoors and O(N?) for label
specific backdoors. Our experiment (in Section 5) shows
that to scan a model on ImageNet with a universal backdoor,
NC needs more than 55 hours. It certainly cannot handle
label-specific backdoors on such models.

Pre-selection may miss the correct label(s). To address
the above limitation, a pre-selection strategy was proposed
in (Wang et al., 2019) to select a small subset of labels
to proceed after 10 steps of optimization. Specifically, it
selects the m smallest triggers to continue. However, its ef-
fectiveness hinges on the correctness of pre-selection, which
is difficult to achieve due to the uncertainty in optimization.
Fig.1a illustrates how pre-selection fails on a TrojAl round
2 model (with a universal backdoor). Due to the small time
budget allowed for scanning a TrojAI model (600s in round
2), top 5 labels are pre-selected out of 14. Observe that the
trigger size of the target label is still much larger than most
of the other labels after 10 steps and precluded. The situa-
tion is aggravated when the number of classes is large and
backdoors are label-specific. In fact, our results show that
pre-selection can only achieve 58% accuracy on average in
TrojAl rounds 1 to 4 training sets.

ABS may select the wrong neurons in stimulation analy-
sis. ABS (Liu et al., 2019) avoids optimizing for individual
labels/label-pairs. It systematically enlarges internal neuron
activation values for benign inputs and observes if consis-
tent misclassification (to a certain label) can be achieved.
If so, the neurons are considered potentially compromised
by trojaning. It then uses optimization to generate a trigger
by maximizing the activation values of these neurons. A
model is considered trojaned if the generated trigger can
cause the intended misclassification. It works for both uni-
versal and label-specific backdoors. Its effectiveness hinges
on correctly identifying the compromised neurons, which
has inherent uncertainty as well. Fig. 1b shows that for a
trojaned model #13 in TrojAl round 1, the top 10 neurons
that have the largest elevation for the target label logits when
stimulated (and hence cause misclassification to the target
label) do not include the truly compromised neuron, which
is ranked 134 by the stimulation analysis. As such, trigger
generation based on the top 10 neurons fails to derive the
real trigger. In our experiment, ABS can only achieve 69%
detection accuracy on average for TrojAl rounds 1 to 4.

Existing scanners cannot distinguish triggers from nat-
ural features. Natural features can induce misclassification
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in a way similar to backdoor triggers. For example, stamp-
ing a dog nose to cat images may induce misclassification
to dog. As such, optimization based trigger generation like
NC and ABS may generate natural features as triggers. Dis-
tinguishing the two is important as misclassification caused
by natural features is inevitable and a model should not be
blamed for their presence; and correctly separating natural
features from injected triggers allows model end users to
employ proper counter measures. Many TrojAl models have
natural features that behave like triggers. Fig. 2c presents a
benign TrojAl model #262 in round 4, with a class #4 input
stamped with the natural features generated by K-Arm (i.e.,
the pixel pattern inside the red box). It causes the model to
misclassify to label 20 (shown in (d)). The inputs to TrojAl
models are traffic-sign like foreground objects (e.g., the tri-
angle in Fig. 2a and the octagon in Fig. 2b) with randomly
chosen street-view background. More information can be
found in Appendix.D. Observe classes #4 and #20 are sim-
ilar, and the generated features in (c) resemble the central
symbol of class #20, which explains the misclassification.
Both NC and ABS consider the natural features as a trigger
and report the model as trojaned.

Our Method. From the above discussion, we can observe
that a key challenge lies in the inherent uncertainty in se-
lecting the appropriate label (in NC) or neuron(s) (in ABS)
to perform optimization. An exhaustive method like NC
without selection is not effective for complex models while
pre-selection and ABS making deterministic choices may
fail to select the right one. The overarching idea of our
method is to formulate the whole procedure as a stochastic
process in which we continue to make selection at each
round. Here and in the rest of the paper, an optimization
round does not mean an optimization epoch in the tradi-
tional sense but rather finding a smaller trigger (that can
cause misclassification). In particular, a selected label/label-
pair/neuron that continues to perform well over time (i.e.,
whose trigger has been easy to optimize) will have a high
probability to be selected in the new round. A label/label-
pair/neuron that does not get selected in one round has a
probability to be selected in the future. The goal is to allow
the true positive to eventually stand out.

Specifically, we start with a warm-up phase in which we
optimize each label (to generate trigger) for a very small
number of rounds (2 in this paper). We retain a history of
trigger size variation for each label. Then we start the selec-
tive optimization. At each round of selective optimization,
we select the label that has the best performance over-time.
We use an objective function to measure the performance.
For the moment, readers can intuitively consider that we
utilize the derivative of trigger size (i.e., how fast the trigger
size changes). Note that for a clean label, although the op-
timization may produce a small trigger at the beginning, it
cannot achieve substantial size reduction over time. There-
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Figure 3. Trigger size variations over optimization rounds

fore, its performance degrades and tends to be replaced. In
contrast, although the target label may not perform well at
the beginning and hence not be selected, it is eventually
selected when the other optimizations get stuck.

Fig. 3 shows the trigger size variations of all labels over
multiple rounds of optimization for two models from TrojAlL
Observe that after the first round, the target label has the
smallest trigger for model #15 and hence pre-selection
handles it correctly. In contrast for model #18, the target
label’s trigger is very large and precluded (by pre-selection)
from further optimization. Observe that it remains larger
than many others till round 5. However, with our method, it
eventually stands out and exposes the backdoor.

The algorithm also seamlessly facilitates separation of natu-
ral features and backdoor triggers. Specifically, when two
benign classes A and B are similar (e.g., cat and dog), small
natural features (of A) can be identified to flip B samples
to A when they are stamped with the features, just like a
trigger. Observe that since the two classes are similar, small
natural features can be easily identified to flip A to B as
well. For example in Fig 2d, the generated trigger to flip
class #20 to #4 has a similar small size as that in Fig. 2c.
In contrast, such symmetry is unlikely for real backdoors
as generating a trigger to flip the target label to the victim
label tends to be difficult. For example, Fig. 2a shows a
trigger (the pixel in the red box) for model #556 in round
4 that has a label-specific backdoor from class #13 to class
#1. It is sufficient to flip all class #13 inputs to class #1 (i.e.,
Fig. 2b). However, due to the differences of the two classes,
flipping class #1 inputs to class #13 is much more difficult.
Hence, we extend the algorithm such that when it decides
to optimize for a victim-target label pair, it also sufficiently
optimizes along the opposite direction to check symmetry.

4. Design

Fig. 4 presents the overview of our technique. On the left is
the trigger optimizer (Section 4.1) that performs one round
of trigger optimization at a time. In each round the opti-
mizer generates a smaller trigger (than before) that causes a
given set of benign samples to be misclassified to a target
label, or returns failure when such a trigger cannot be found
within a fixed number of epochs. On the right is the K-Arm
scheduler (Section 4.2) that decides which arm should be
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optimized next. Assume a model has [V classes. To identify
universal backdoor, we create [V (optimization) arms, each
having one of the IV labels as the target label and aiming to
generate a trigger to flip benign samples from the remaining
N — 1 classes to the target label. To identify label-specific
backdoor, we create N x (N — 1) arms (i.e., all the pair-
wise combinations), each aiming to flip samples of a victim
class to a target label. Hence, the scheduler selects from
the K = N+ N x (N — 1) arms. In the diagram, there
are two cycles inside the scheduler representing two opti-
mization phases. The top cycle denotes the warm-up phase
that optimizes all arms for two rounds. The scheduler re-
ceives and retains the generated trigger information for later
use. The bottom cycle denotes the later selective optimiza-
tion phase, in which one selected arm is optimized in each
round. The selective optimization terminates when we can
get a sufficiently small trigger or the time budget runs out.
To improve efficiency, the scheduler is facilitated by a pre-
screening phase to reduce unnecessary arms (Section 4.3).
It also considers symmetry during selection to distinguish
nature features from triggers (Section 4.4).

4.1. Trigger Optimizer

In each round, the trigger optimizer optimizes one selected
arm, generating a trigger for the target label of the arm.
Specifically, a trigger 1" is composed of two parts: pattern
P and mask M with the former deciding the input values
of a trigger and the latter deciding the shape/position of the
trigger. Given a clean input = and a trigger, the stamped
input 2 is defined as follows.

ig=01—-M)-z+M-P (1)

Here, operator - stands for the element-wise production.
Given an z of dimensions [C, H, W], the dimensions of
pattern P and M are identical to z’s. The values of P are in
the range of [0, 255] and the values of M are in the range of
[0, 1]. Intuitively, stamping a trigger is by mixing « and P
through the mask M. Given a model F, a target label ¢, and
a set of inputs X, the trigger optimization for ¢ is defined as

follows.
g}g}(ﬁ(t,}"((l —M)-X+M-P))+ao|M|:1),YVz e X

@)
For an arm of generating universal trigger, X contains a
set of clean inputs from classes other than ¢; for an arm of
generating label-specific trigger, X contains a set of clean
inputs from the victim class. £ stands for the cross-entropy
loss function. Hyper-parameter o balances the attack suc-
cess rate and the size of the optimized trigger. The optimizer
finishes a round and returns if the current trigger 7" satisfies
the following condition.

Ace(X,t) > 0 and |M||y < || M,

Intuitively, the attack success rate with the trigger needs to
be greater than a threshold 6, which is 0.99 in this paper,
meaning samples stamped with the trigger have higher than
99% chance to be classified to ¢, and the current trigger
is smaller than the previous one M,,. The optimizer may
return failure for the current round when the budget for the
label runs out (which is 10 epochs in this paper).

4.2. K-Arm Scheduler

To handle uncertainty in arm selection, we leverage the e-
greedy algorithm (Watkins, 1989) to introduce randomness
in our selection. The idea is to draw a random sample from
a distribution, which is a uniform distribution from O to 1 in
this paper. If the sample is larger than a threshold €, we rely
on an objective function to make the selection; otherwise, a
random arm is selected. The procedure of selecting label L
is formally defined as follows.
argmax A(l), s > €

L—{ ! , with s ~U(0,1) 3)

rand(K), s <e

The parameter € decides the level of greediness (or random-
ness). With the e-greedy method, even if the true positive
label is not selected in an early round, it still has a chance
to be chosen in the following rounds. We set ¢ = 0.3 in
this paper and will discuss its effect later in the section.
A(l) is an objective function for the target label [ of an arm.
It is supposed to approximate the likelihood of the label
being the true label target. We leverage two kinds of infor-
mation in the approximation: the current trigger size for
the label and the trigger size variation for the label over
rounds of optimization. To simplify discussion, we leave
symmetry (to distinguish natural features and triggers) to a
later section. Intuitively, a label with a smaller trigger size
is promising, and a label that continuously achieves good
trigger size reduction in the past is promising. Let tm(l)
be the accumulated time spent on optimizing [ (in the past
rounds); M () the current mask of [ such that ||A/(1)||1, the
Ly norm of M (1), describes the trigger size; and M; (1) the
first valid trigger for [. The objective function A(7) is hence
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defined as follows.
MW~ M)
tm(1)

by b @

AW 0

Here (3 is a hyper-parameter set to 10°. In the early rounds,
the trigger size reduction rate (i.e., the first term in the
above equation) is a stronger indicator of true positive. The
equation allows us to put more weight on the reduction rate
instead of the trigger size, which tends to be large at the
beginning and hence the second term tends to be small. As
the optimization proceeds, the trigger size reduction rate
degrades, even for the true positive label, the second term
becomes dominating, allowing the scheduler to prioritize
labels with small triggers (to make them smaller).

In the end, we compare the size of the smallest trigger with a
threshold 7 to decide whether a model is trojaned or benign.
In this paper, we set 7 = 300 for all TrojAl models and
7 = 350 for ImageNet models.

Theoretical Analysis of K-Arm. We conduct theoretical
analysis to show that K-Arm is more effective (i.e., having
higher accuracy) and more efficient (i.e., lower overhead)
than NC and NC+pre-selection. The effectiveness is proved
by computing the expected time of finishing trigger gen-
eration for the true target label. Details can be found in
Appendix.A.

4.3. Arm Pre-screening

According to the theoretical analysis, when the number
of arms K is large, the cost is dominated by the warm-
up phase that is determined by K. A large K is hence
undesirable. Recall that for a model with NV classes, K =
N+ N x (N —1), which could be large. We hence propose
a pre-screening step to filter out arms that are not promising.

In order to achieve high attack success rate, the attacker
often has to stamp many benign samples (of various classes
when injecting a universal backdoor) with the trigger and
use them in trojan training. Note that these stamped samples
have their labels set to the target label. As such, the model
learns the correlations between the target label and the be-
nign features belonging to the original labels. Consequently,
the logits value of the target label tends to be consistently
larger than other labels for benign samples. We leverage
this to preclude labels that do not look promising.

Specifically, for universal backdoor scanning, we consider a
label promising if its logits value ranks among the top 7%
labels in at least 6% of all the benign samples (of various
labels) that can be leveraged for scanning. Collecting such
statistics has much lower cost compared to optimization.
We set v = 25 and 6 = 65 in this paper. For label-specific
backdoor scanning, we consider an optimization arm from
the victim label ¢, to the target label ¢, promising if ¢;’s
logits value ranks among the top 7% labels in at least 6% of

all the available benign samples of label ;. We set v = 25
and € = 90 in this paper. Observe that our settings of v and
6 are conservative in order not to exclude the right one. We
also empirically study the effect of different settings.

According to our experiments in the next section, the pre-
screening can substantially reduce the number of arms to
consider. For example, we can effectively reduce the arms
of ImageNet from 1000 to 20 without sacrificing accuracy
in universal backdoor scanning.

4.4. Symmetric Optimization to Distinguish Natural
Features from Triggers

Assume a (small) trigger 7" is generated to flip clean sam-
ples with label ¢ to label ¢4. As discussed in Section 3, If
T does not denote a backdoor but rather natural features,
the two classes are likely close to each other. As such,
the trigger flipping samples of ¢4 to ¢ shall have a simi-
lar size as T'. If T" indeed denotes a backdoor, the trigger
flipping ¢, to ¢, tends to be much larger as it is difficult
to cause misclassification along the opposite direction of
trojaning. Therefore, the scheduling algorithm is enhanced
as follows to consider symmetry. The extension focuses on
label-specific optimization as such confusion rarely happens
for universal backdoors.

Given a label-specific arm (¢, t4), i.e., flipping s to t4,
M (ts,tq) and P(ts, tq) denote the mask and pattern for the
generated trigger, respectively, and M (¢4, ts) and P(t4,ts)
the correspondence along the opposite direction (i.e., flip-
ping ¢4 to t,). The objective function is as follows.

(M (s, ta)lln = 1M1 (ts, ta)ll)/tm(ts, ta) + B - 1/IIM(ts, ta)ll1

A(ts, tq) =

(M (g, ts)lln — [IM1(tas ts)lln)/tm(ta, ts) + B - 1/\|M(td,(§)s)l\1
Intuitively, we leverage the ratio of objective functions in
Equation ( 4) in the two directions to estimate the likelihood
of (ts,tq) being the true victim-target label pair. When
Alts, tq) is large, meaning the two directions are asymmet-
ric, the pair is likely the true victim-target pair and selected.

S. Experiments

We compare our method with five state-of-the-art techniques
against three different attack methods on multiple datsets
and show that K-arm optimization can achieve better accu-
racy with lower time cost.

5.1. Datasets

TrojAI Competition. TrojAI (IARPA, 2020) is a program
by IARPA that aims to tackle the back-door detection prob-
lem. In each round of competition, the performers are first
given a large set of training models (over 1000) with dif-
ferent structures and different classification tasks. Roughly
half of them are trojaned and their malicious identities are
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known. A (small) set of benign examples are provided for
each label of each model. These models may be trojaned
with various kinds of backdoors, including universal and
label-specific. The triggers could be pixel patterns (e.g.,
polygons with solid color) and Instagram filters (Liu et al.,
2019). They could be position dependent or independent.
Position dependency means that the trigger has to be at a
specific relative position with the foreground object in or-
der to cause misclassification. A model may have one or
more backdoors. The complexity of models and backdoors
grows from round to round. Note that our technique does
not require training. We hence use these training sets as
regular datasets. IARPA also hosts a test set online that is
drawn from the same distribution as the training models. It
is unknown which test models are trojaned. One can sub-
mit his/her solution which will be evaluated remotely on
their server. The solution needs to finish scanning all the test
models (100, 144, 288, and 288 for rounds 1-4, respectively)
within 24 hours for rounds 1-2 and 48 hours for rounds 3-4.
By the time of submission, round 4 is the latest. We com-
pare our method with the baselines on all the models with
polygon backdoors, mixed with all the clean models across
all four rounds. We exclude models trojaned with Instagram
filters as some baselines do not support them. The leader-
board results for our technique including both polygon and
filter backdoors will be discussed in Section 5.5. The details
of datasets can be found in Appendix.B.

ImageNet. We also use 7 VGG16 models on ImageNet
(1000 classes) trojaned by TrojNN (Liu et al., 2018b), a kind
of unviersal patch attack, and 6 models on ImageNet poi-
soned by hidden-trigger backdoors (Saha et al., 2020), with
different structures including VGG16, AlexNet, DenseNet,
Inception, ResNet and SqueezeNet. The hidden-trigger
backdoors are label-specific. They are mixed with 7 clean
ImageNet models.

Other datasets. We also evaluate our method on 4 CI-
FAR10 and 4 GTSRB models trojaned by Input-Aware Dy-
namic Attack (Nguyen & Tran, 2020). They are mixed with
4 clean models respectively.

5.2. Evaluation Metrics

We report two accuracy metrics used in TrojAl: cross-
entropy loss (Murphy, 2012) and ROC-AUC (Area under
Receiver Operating Characteristic Curve) (Fawcett, 2006).
The former is the lower the better and the latter is the higher
the better. In addition, we also report the plain accuracy, i.e.,
the percentage of models that are correctly classified. We
also report the average scanning time for each model. For
fair comparison, comparative experiments are all done on
an identical machine with a single 24GB memory NVIDIA
Quadro RTX 6000 GPU (with the lab server configuration).
Leaderboard results (on TrojAl test sets) were run on the

IARPA server with a single 32GB memory NVIDIA V100
GPU. We use Adam (Kingma & Ba, 2014) optimizer with
learning rate 0.1, 3 = {0.5, 0.9} for all the experiments.

5.3. Baseline Methods

We compare K-Arm with the following state-of-the-art
detection methods: ABS (Liu et al., 2019), NC (Wang
et al., 2019), NC+pre-selection (Wang et al., 2019) (or
Pre-selection for short), ULP (Kolouri et al., 2020), TA-
BOR (Guo et al., 2019), DLTND (Wang et al., 2020c). For
the optimization based methods including ABS, NC, Pre-
selection, TABOR and DLTND, we use the same batch size
for fair comparison. For NC, Pre-selection and our method,
we use the same early stop condition to terminate the op-
timization. For ABS, we select top10 neuron candidates
after the stimulation analysis and perform the trigger re-
verse engineering. For Pre-selection, we set the number of
optimization epochs as max (10, s) for each label with s
the number of epochs when the first valid trigger is found.
Recall Pre-selection performs a few rounds of optimizations
and then selects a promising subset to finish. We select the
top 3 among the 5 labels for round 1 models and the top 20%
labels/label-pairs for rounds 2-4. For the ImageNet models,
we follow (Wang et al., 2019) and select the top 100. For
ULP, we train it on 500 TrojAl round 1 models and test it
on the 100 test models. We did not run it on later rounds as
it cannot handle model structure variations in those rounds.
For TABOR and DLTND, we use the implementation pro-
vided by the authors.

5.4. Parameter Tuning

We evaluate the effects of hyper-parameters, including the
following: (3 in the objective function, 6, v in the arm pre-
screening and e in the K-Arm Scheduler. The last one is
the threshold 7 which decides if a model is trojaned. We
randomly select 40 models (20 benign and 20 trojaned) from
round 2 to test our method. In detail, we pick 5 different
values (102,103, 10%,10%,10%) for 3. For ¢, we select 10
values ranging from 0.1 ~ 0.5. We use 5 different 7 values
from 100 ~ 500, 3 6 values from 10 ~ 30 and 3 ~y values
from 50 ~ 80. The results are in Appendix.C.

5.5. Experimental results

Results for TrojAI Rounds 1-4 Training Sets. Table 1
shows the comparison results on the aforementioned mod-
els from TrojAl rounds 1-4 training sets (3231 models in
total). Columns Acc, Loss, ROC, and Time stand for plain
accurcy, cross entropy loss, AUC-ROC, and average scan-
ning time (in seconds) per model, respectively. Observe that
our method achieves the best accuracy and has the lowest
scanning time compared to all the baselines. The best K-
Arm methods have 4%, 27%, 30%, 25% better ROC than
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Table 1. TrojAl Training Set Results; “Sym K-Arm Opt + Pre-Srn” stands for symmetric K-Arm with pre-screening.

| Round1 | Round2 | Round3 | Round4
Method | Acc Loss ROC Time(s) | Acc Loss ROC  Time(s) | Acc Loss ROC  Time(s) | Acc Loss ROC  Time(s)
NC 72% 0.61 0.73 623.9 - - - > 30000 - - - > 30000 - - > 30000
Pre-selection T71% 0.62 0.72 507.5 | 51% 1.16 0.54 3708.2 | 58% 0.81 0.61 34825 | 55% 1.09 0.55 3210.4
ABS 67% 0.67 0.70 5429 | 62% 0.76  0.57 1527.0 | 71% 0.62 0.56 1435.0 | 79% 0.52  0.55 525.0
TABOR 80% 051 0.81 1142.2 | 55% 1.09 059 >32000 | 60% 0.77 0.57 >30000 | 60% 0.81 0.55 > 35000
DLTND 85% 045 086 1109.6 | 60% 0.79 0.62 >26000 | 65% 0.75 0.61 >29000 | 65% 0.77 0.64 > 31000
K-Arm Opt 90% 0.32 0.90 2755 | 76% 0.58 0.77 1956.5 | 79% 0.50 0.80 1740.3 | 82% 0.51 0.81 1623.5
K-Arm Opt + Pre-Srn - - - - 75% 059 0.76 1408 | 79% 0.50 0.80 166.2 | 80% 0.53 0.79 110.5
Sym K-Arm Opt + Pre-Srn - - 89% 033 0.89 340.5 | 91% 0.31 091 290.5 | 89% 0.32 0.89 204.4
Table 2. Results on ImageNet Models = GTSRB ® CIFAR10
| Hidden Trigger Attack | TrojanNN 100 Tar
_gel Label

Method | Acc Loss ROC Time(s)| Acc Loss ROC Time(s) o 75 / _

3
NC - - >lm| 71% 0.65 0.82 221k §
Pre-selection 54% 1.02 0.62 171k | 64% 0.92 0.74 43k 'S
ABS 100% 0.11 1.00 389k | 100% 0.11 1.00 4.9k
K-Arm 85% 0.33 0.93 86k | 88% 0.38 0.92 19k
K-Arm+Pre-Srn 85% 0.33 0.93 2k | 100% 0.11 1.00 224
Sym K-Arm+Pre-Srn | 100% 0.09 1.00 4k - - - -

the best performance by the baselines for the four respective
rounds. They are also 1.8, 10.8, 8.6, 4.8 times faster than the
fastest among the baselines for the four respective rounds.
This strongly supports the better effectiveness and efficiency
of K-Arm. K-Arm has higher accuracy than Pre-selection
and ABS because they have to make deterministic selection
(about which labels/neurons to optimize) at the beginning
which is difficult when the candidate sets are large (e.g., in
label-specific backdoor scanning). K-Arm has higher accu-
racy than NC even though NC is exhaustive. Besides that
NC does not consider symmetry and hence cannot distin-
guish natural features from injected triggers, its exhaustive
nature in many cases also hurts performance as it aggres-
sively optimizes for clean labels, generating many natural
features with small size that behave like triggers. TABOR
and DLTND encounter the same problem and suffer from
huge number of false alarms.

The last three rows in Table 1 and 2 present the ablation
study for different components of our method. The vanilla
K-Arm can have 79% accuracy and 1773s on average (from
R2 to R4). K-Arm with pre-screening achieves 78% ac-
curacy and 138s. Symmetric K-Arm with pre-screening
gets 89% and 278s. Note that vanilla NC only has 57%
with 32000s. Observe that arm pre-screening substantially
reduces the scanning time (by an order of magnitude) with-
out sacrificing much accuracy; symmetric optimization is
critical to improving accuracy, with 13%, 11%, and 10%
ROC improvement for rounds 2-4. Without the symmetric
optimization, K-Arm would not be able to reach the round
targets (i.e., lower than 0.348 Loss).

Results for ImageNet Models. Table 2 shows the results
for the ImageNet models. Columns 2-5 present results on
the 6 models with (label-specific) hidden-trigger backdoors
mixed with 7 benign models; columns 6-9 present results
on the 7 models with (universal) TrojNN backdoors, mixed
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30 40

Class ID

Figure 5. Results on Input-Aware Dynamic Attack.

with 7 benign models. For hidden-trigger backdoors, the
best K-Arm has 100% accuracy. NC could not finish due
to the large number of victim-target label pairs. It took
two weeks to scan a model. Both Pre-selection and ABS
have much worse accuracy or scanning time. For TrojNN
backdoors, The best K-Arm has 100% accuracy, higher
than most baselines. Although ABS can also achieve 100%
accuracy, it is 20 times slower than the best K-Arm. NC
and Pre-selection have lower accuracy and much longer
scanning time due to the large number of classes and natural
features that behave like triggers.

Results for the Dynamic Attack. Different from static
backdoor attacks, dynamic attack can generate input specific
triggers. Therefore, the optimized trigger of the target class
will not be extremely smaller than others, then bypass the
outlier detection. However, our experiment results show
that the proposed pre-screening technique can identify the
target label preciously for the poisoned models. By setting
the bound 6 = 70, v = 25, we can successfully detect all 4
trojan models on CIFAR10 and GTSRB without any false
positives. Fig. 5 shows the 6 values of different classes for a
GTSRB and a CIFAR10 poisoned models. The target label
is 0 for both models. Observe that the 8 value of the target
label is 35% larger than the largest value of the rest labels,
which is a strong indicator for the trojan models. Remind
the large 6 reveals that the model learns the target class
features as part of the features for other classes due to the
poisoning process.

K-Arm Performance on TrojAlI Leaderboard. K-Arm

consistently achieved top results across the four rounds'?.

"https://pages.nist.gov/trojai/
2https://pages.nist.gov/trojai/docs/results. html#previous-
leaderboards
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Table 3. TrojAl Leaderboard Results

| Round1 | Round2

| Round3 | Round4

Method | CE Loss ROC Time(s) Rank | CE Loss ROC Time(s) Rank | CE Loss ROC Time(s) Rank | CE Loss ROC Time(s) Rank
NC - - T/O - - T/O - - T/O - - - T/O

ABS 0.64(+0.34)  0.70(-0.21) ~ 523(+233) 0.76(+0.44)  0.53(-0.36)  508(+18) 0.84(+0.55)  0.56(-0.35)  599(+367) - | 0.87(+0.55) 0.48(-0.42) 229(+18)

ULP 1.18(+0.88)  0.59(-0.32) 0.1(-290)

K-Arm | 0.30(-0.00) 0.91(-0.00) 290(-0) 1| 0.35(+0.03)  0.90(+0.01)  290(-200)

2| 0.29(-0.00)  0.91(-0.00) 232(-0) 1| 0.33(+0.01)  0.90(-0.00)  201(-10) 2

Table 3 shows the K-Arm results for the four rounds, in-
cluding the loss, ROC, average scanning time, and ranking.
The results include those for all the different types of back-
doors (polygon, filter, label-specific, universal, position-
dependent, multiple backdoors in a model, etc.). We also
show the difference between K-Arm and the top (if any).
For example, in round 2, K-Arm ranked number 2. Loss
0.35(+0.03) means that K-Arm’s loss is 0.35 while the top
performer has 0.32 loss; ROC 0.90(+0.01) means that K-
Arm has 0.9 ROC while the top performer has 0.89 ROC.
Note that the leaderboard ranks solutions by (smaller) loss.
K-Arm beat the round targets (i.e., lower than 0.348 loss)
for 3 out of the 4 rounds. For round 2, although it did not
beat the target, its ROC is the highest. It ranked number one
for 2 out of the 4 rounds. In all rounds, K-Arm is faster than
ABS. We also train ULP on 500 round 1 training set models
and evaluate it on the round 1 test set. However, its accuracy
is not high. We speculate two reasons: 1) unlike the models
in the ULP paper, the classes of TrojAl models are not fixed;
2) the classifier seems to easily overfit on the training data
and the triggers in the TrojAl datasets share few common
features. On the other hand, ULP is not optimization based
and hence is extremely fast.

Trend of Trigger Optimization in K-Arm. We randomly
sample 100 trojaned models from each training set of Tro-
jAlrounds 1 to 4. We record the ranking of the optimized
trigger size of true target label for each model during op-
timization. Fig. 6 shows the percentage of models whose
target label trigger size ranks number 1 (i.e., the smallest) for
each round. We can see that after warm-up, there are only
60-70% models rank top. As such, a simple pre-selection
strategy does not work. All the sets converge at around 90%,
indicating that K-Arm allows the true positives to stand out
eventually in most cases. Also observe that the different
sets converge at different optimization rounds, indicating
that using a universal larger number of warm-up rounds
instead of K-Arm will not work. Moreover, 20 rounds of
warm-up means hundreds of epochs, which is already not
affordable as all arms have to go through warm-up. At the
end, we point out that there are still around 10% cases that
do not stand out at the end. We study some of them in the
Appendix.D. We leave the problem to future work.

Adaptive Attack. We devise an adaptive attack for the arm
pre-screening stage. Our goal is to suppress the target label
logits for benign samples of victim classes. This is done
by adding an £, regularization of target label logits value
of benign samples. As such, the optimizer tries to enlarge
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Figure 6. Trend of Trigger Optimization.

Table 4. Adaptive Attack

Coefficient \ 0 1 10 100 1000
Model Acc 80.0% 78.1% 7T1.4% 65.5% 35.4%
ASR 99.0% 99.4% 929% 92.6% 0.0%
Selection Acc 100.0% 100.0% 80.0% 50.0% -
K-Arm Detection Acc | 100.0% 100.0% 70.0% 40.0% -

the distance between the target label and the victim label.
The strength of the attack is controlled by a coefficient. We
use 10 models on CIFAR10 with different coefficient values
and report the model accuracy, attack success rate (ASR),
selection accuracy and K-Arm detection accuracy in Table 4.
Observe that pre-screening becomes less effective when the
attack is stronger. However, the model accuracy and attack
success rate degrade as well. It is unclear how to design
adaptive attack for the scheduler or optimizer. We will leave
it to future work.

6. Conclusion

Inspired by K-Arm Bandit in Reinforcement Learning, we
develop a K-Arm optimization technique for back-door scan-
ning. The technique handles the inherent uncertainty in
searching a very large space of model behaviors, using
stochastic search guided by an objective function. It shows
outstanding performance on models from IARPA TrojAl
competitions. It also outperforms the state-of-the-art tech-
niques that are publicly available.
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