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Abstract

Trojan (backdoor) attack is a form of adversarial attack on
deep neural networks where the attacker provides victims
with a model trained/retrained on malicious data. The back-
door can be activated when a normal input is stamped with a
certain pattern called trigger, causing misclassification. Many
existing trojan attacks have their triggers being input space
patches/objects (e.g., a polygon with solid color) or simple
input transformations such as Instagram filters. These sim-
ple triggers are susceptible to recent backdoor detection algo-
rithms. We propose a novel deep feature space trojan attack
with five characteristics: effectiveness, stealthiness, control-
lability, robustness and reliance on deep features. We con-
duct extensive experiments on 9 image classifiers on various
datasets including ImageNet to demonstrate these properties
and show that our attack can evade state-of-the-art defense.

Introduction

Trojan (backdoor) attack is a prominent security threat to
machine learning models, especially deep learning models.
It injects secret features called frigger into a model such that
any input possessing such features causes model misclassifi-
cation. Existing attacks inject such features using additional
(malicious) training samples. They vary in the way of gen-
erating these samples. For example, data poisoning (Chen
et al. 2017) assumes the attacker has the access to the train-
ing dataset such that he can directly stamp the trigger on
some benign samples and set their labels to the target la-
bel. Through training, the model picks up the correlation be-
tween the trigger and the target label. Neuron hijacking (Liu
et al. 2017) does not assume access to the training set. In-
stead, it hijacks a small set of neurons in the model and
makes them sensitive to the trigger features. It performs
model inversion to generate inputs to hijack these neurons.
Reflection attack (Liu et al. 2020a) uses a filter to inject trig-
ger features by making them look like faded reflection (from
glass). More discussion can be found in the related work
section. However, most these attacks do not control the tro-
jan training process. As such, the model tends to overfit on
the trigger features and pick up simple features. In addition,
the malicious samples used in many attacks are not stealthy.
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Manual inspection of the training set can easily disclose the
malicious intention.

Existing defense techniques include detecting malicious
inputs (i.e., inputs stamped with triggers) at runtime and
scanning models to determine if they have backdoors. The
former cannot decide the malicious identity of a model un-
til malicious inputs are seen at runtime. We hence focus on
the latter kind that does not require malicious inputs. Neural
Cleanse (NC) (Wang et al. 2019) uses optimization to gen-
erate a universal input pattern (or trigger) for each output
label and observes if there is a trigger that is exceptionally
smaller than the others. Note that such a trigger must exist
for each label if its size is not bounded (as it could be as
large as covering the whole input). ABS (Liu et al. 2019) in-
tentionally enlarges activation values of individual neurons
(on benign inputs) to see if the enlarged values can lead to
misclassification. If so, such neurons are used to generate a
trigger to confirm the malicious identity. Universal Litmus
Pattern (ULP) (Kolouri et al. 2020) trains on a set of tro-
janed and benign models to derive a set of universal input
patterns. These patterns can lead to different output logits
for benign and trojaned models, allowing effective backdoor
model classification. More can be found in the related work
section. These techniques more or less exploit the observa-
tion that trojaned models tend to overfit on simple features.
Note that the neurons representing these features can be eas-
ily enlarged through optimization and hence allow easy trig-
ger reverse engineering and backdoor detection.

We propose a new trojan attack that is stealthier, more
difficult to defend, and having configurable attack strength.
We call it deep feature space trojan (DFST) attack.

DFST Attack Model. DFST is a poisoning attack, assum-
ing the attacker has access to both the model and the training
dataset, and can control the training process. The target label
can be any label chosen by the attacker and all the other la-
bels are victims. The trojaned models will be released to the
public just like the numerous benign models. The attacker
holds a secret trigger generator. When he wants to launch
the attack, he passes a benign input to the trigger generator
to stamp an uninterpretable feature trigger, which causes the
model to misbehave. The trojaned model behaves normally
for inputs that haven’t gone through the trigger generator. []

Instead of having fixed pixel space patches/watermarks
or simple color patterns as the trojan trigger, DFST attack



triggers are human uninterpretable features. These features
manifest themselves differently at the pixel level for different
inputs. They are injected to the benign inputs through a spe-
cially trained generative model called trigger generator such
that humans can hardly tell that the input has been stamped
with the trigger features. The secret held by the attacker is
the trigger generator instead of fixed pixel patterns/objects.
Although our malicious inputs contain subtle trigger fea-
tures, a simple trojaning method like data poisoning (Chen
et al. 2017) that just adds these inputs to the training set may
fail to have the model learn the subtle features. Instead, the
trojaned model may only extract simple features from the
malicious inputs, allowing easy defense. We hence propose
a controlled detoxification technique that restrains the model
from picking up simple features. In particular, after the ini-
tial data poisoning and the trojaned model achieving a high
attack success rate, we compare the activation values of the
inner neurons using the benign inputs and their malicious
versions. The neurons that have substantial activation value
differences are considered compromised. Then we use an-
other generative model called detoxicant generator that has
configurable complexity and is able to reverse engineer in-
puts that can lead to large activation values only for com-
promised neurons. These inputs hence contain the features
denoted by the compromised neurons and called defoxicant.
These features are usually simple as they can be directly re-
verse engineered from (compromised) neurons. The gener-
ated detoxicant inputs are used to retrain the trojaned model
so that it can be detoxified from the simple trigger features.
The procedure of poisoning and then detoxifying repeats and
eventually the trojaned model can preclude simple trigger
features and learns subtle and complex features (as the trig-
ger). The proposed attack has the unique capabilities of con-
trolling attack strength. Specifically, by controlling the com-
plexity of the trigger generator, we can control the abstract
level of the feature triggers (e.g., ranging from simple pixel
patterns to uninterpretable features); by controlling the com-
plexity of the detoxicant generator, we can force the trojaned
model to learn features at different abstract levels that ren-
der different detection difficulty. And in the mean time, more
complex generators and more abstract trigger features entail
longer training time and more rounds of detoxification.
Our contributions are summarized as follows.

* We propose deep feature space trojan (DFST) attack.
Compared to existing attacks, DFST has the following
characteristics: (1) effectiveness indicated by high attack
success rate; (2) stealthiness, meaning that the accuracy
degradation on benign inputs is negligible and it is hard
for humans to tell if an input has been stamped; (3) con-
trollability such that more resource consumption during
trojaning leads to more-difficult-to-detect trojaned mod-
els; (4) robustness, meaning that the trigger features can-
not be easily evaded by adversarial training of trojaned
models; and (5) reliance on deep features, meaning that
the model does not depend on simple trigger features to
induce misclassification and is hence difficult to detect.

* We formally define feature space trojan attack. Existing
pixel space attacks and the proposed DFST are all in-

stances of feature space trojan attack.

* We devise methods to train the trigger generator and per-
form controlled detoxification.

* We develop a prototype to prove the concept. Our evalu-
ation shows that models trojaned by our system have the
properties stated earlier. Existing state-of-the-art scanners
NC, ABS, and ULP cannot detect the trojaned models. It
is available on github (Cheng et al. 2020).

Related Work

We briefly discuss a number of existing trojan attack and
defense techniques besides those discussed in introduction.

Trojan (Backdoor) Attacks. A number of existing at-
tacks (Chen et al. 2017; Saha, Subramanya, and Pirsiavash
2019; Tang et al. 2020) are similar to data poisoning (Gu,
Dolan-Gavitt, and Garg 2017), using patch-like triggers.
In (Liao et al. 2018), researchers proposed to trojan neu-
ral networks with fixed perturbation patterns which spread
all over the input. Clean-label attack (Shafahi et al. 2018;
Zhu et al. 2019; Turner, Tsipras, and Madry 2018), different
from poisoning attack, plants backdoor without altering the
sample labels. Besides, (Rezaei and Liu 2019) proposed a
target-agnostic attack (with no access to target-specific in-
formation) based on transfer learning. (Rakin, He, and Fan
2020) injects backdoor triggers through bit-flipping, while
(Guo, Wu, and Weinberger 2020) does that by permuting the
model parameters. (Zou et al. 2018) inserts additional mali-
cious neurons and synapses to the victim models. (Salem
et al. 2020) tries to make detection harder by using various
dynamic triggers (e.g., different locations, textures) instead
of a single static one. In contrast, our attack is in the feature
space, uses a generator to stamp the trigger, and leverages
controlled detoxification.

Detection and Defense. STRIP (Gao et al. 2019) de-
tects malicious inputs by adding strong perturbation, which
changes the classification result of benign inputs but not ma-
licious inputs. TABOR (Guo et al. 2019) designs a new ob-
jective function to find backdoor. Deeplnspect (Chen et al.
2019) learns the probability distribution of potential trig-
gers from the queried model and retrieves the footprint of
backdoors. (Chen et al. 2018a) leverages activation cluster-
ing. (Xu et al. 2019) uses meta neural analysis. (Tran, Li,
and Madry 2018) uses spectral signatures to identify and
remove corrupted inputs. Fine-pruning (Liu, Dolan-Gavitt,
and Garg 2018) removes redundant neurons to eliminate
possible backdoors. (Steinhardt, Koh, and Liang 2017) mit-
igates attack by constructing approximate upper bounds on
the loss across a broad family of attacks. (Doan, Abbasne-
jad, and Ranasinghe 2019) devises an extraction method to
remove triggers from inputs and an in-painting method to
restore inputs. (Li et al. 2020b) finds malicious inputs by
checking accuracy degradation caused by transformations.
(Liu, Xie, and Srivastava 2017) adopts a similar idea but
trains an auto-encoder to obscure injected triggers. (Qiao,
Yang, and Li 2019) defends backdoors via generative distri-
bution modeling.



Defining Feature Space Trojan Attack

In this section, we formally define feature space tro-
jan attack. Considering a typical classification problem,
where the samples € R and the corresponding la-
bel y € {0,1,...,n} jointly obey a distribution D(x, y).
Given a classifier M : R? — {0,1,...,n} with pa-
rameter §. The goal of training is to find the best pa-
rameter arg maxy P y~p[M(x;0) = y]. Empirically,
we associate a continuous loss function £M79(a:,y), e.g.
cross-entropy, to measure the difference between the pre-
diction and the true label. And the goal is rewritten as
argming Ez yp[Lar0(x,y)]. We use Ly in short for
L 1,6 in the following discussion.

Definition 1 Trojan attack aims to derive a classifier
M : RT — {0,1,...,n} with parameter 6 such that
arg maxy P(g y)~p[M(x;0) = y and M(T(x);0) = yq,
in which T : R — R? is an input transformation that in-
Jects a trigger to a natural input sample (x,y) and y; is the
target label. A trojan attack is stealthy if (T(x),y) ~ D,
meaning that the stamped input T(x) naturally looks like a
sample of the y class. In other words, a perfect classifier M
for the distribution D would have M(T(x); ) = M(x;0).
A trojan attack is robust if given perturbation § € S C R¢
of a stamped sample (T(x),y), M(T(x) + 8;6) = y:. Nor-
mally S is defined as an {y,-ball centered on 0. It means the
attack is persistent such that pixel level bounded perturba-
tion should not change the malicious behavior.

Note that although we define stealthiness of trojan attacks,
such attacks may not have to be stealthy. For example, many
existing attacks (Liu et al. 2017; Gu, Dolan-Gavitt, and Garg
2017; Chen et al. 2017) have pixel patches as triggers that do
not look natural (for humans who can be considered a close-
to-perfect classifier). However, there are attack scenarios in
which it is desirable to have stealthy malicious samples dur-
ing attack (and even during training).

Trojaned model scanning is defined as follows.

Definition 2 Given a pre-trained model M with parameters
0, and a set of natural samples (x,y) ~ D, determines if
there exists an input transformation function T that satisfies
the aforementioned properties of trojan attack. The presence
of the function indicates the model has been compromised.

The difficulty of launching a successful attack and the
strength of the attack vary with the complexity of T. Many
existing attacks use a patch as the trigger. This corresponds
to having a simple T that replaces part of an input with the
patch. As shown in (Liu et al. 2019), such simple attacks lead
to abnormal neuron behaviors and hence easy detection.

Definition 3 A feature space trojan attack is a trojan attack
in which A(T(x), x) is not a constant.

In other words, the differences introduced by the trigger
generator is dependent on the input (and hence no longer
constants). Note that although it appears that T can be any
transformation, a poorly designed one (e.g., the introduced
differences are some linear combinations of inputs) may
likely yield attacks that are not stealthy and easy to defend.
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Figure 1: Style transfer by CycleGAN

Therefore in the following sections, we introduce how we
use a generative model as T.

Deep Feature Space Trojaning (DFST)

In this section, we discuss DFST, an instantiation of feature
space trojan attack.

Overview. Our attack consists of two main steps. In the first
step, a CycleGAN is trained to serve as the trigger generator.
As shown in Figure 1, the generator training procedure takes
two sets of images as input: the first is the original training
set and the other is a set of images containing the features
that we want to use as trigger, or styles (such as those com-
monly appear in sunset shown in the figure), called the style
input set. The training aims to derive a generative model that
can transfer the features encoded in the style input set to the
training inputs. Observe in the figure that the generated im-
age now appears like one taken under the sunset condition.
Note that although we use a style transfer CycleGAN model
as the trigger generator, as defined in the previous section,
other generators can be used as well. Exploring other gener-
ators is left to our future work.

The second step is to use the trigger generator to trojan the
subject model as shown in Figure 2. Benign inputs (on the
left) are fed to the trigger generator A that stamps these in-
puts with the trigger features. The stamped inputs, together
with the original benign training inputs, are used in a data
poisoning proecedure to trojan the subject model. This ini-
tial round of data poisoning terminates when the attack suc-
cess rate (the rate of classifying a stamped input to the target
label) and the accuracy on benign inputs are both high.

Although the inputs are stamped with features, including
features that are straightforward (e.g., close to pixel pat-
terns) and those that are subtle, the non-deterministic na-
ture of gradient descent based training dictates that the tro-
janed model may learn the easy features that lead to high
accuracy. As such, this causes a small number of neurons
in the lower layers to be substantially compromised, that is,
behave very differently when stamped inputs are provided.
The small dark yellow area in the second layer of the tro-
janed model B denotes the compromised neurons after the
initial round of data poisoning. To prevent the model from
settling down on simple and shallow features, DFST has a
unique controlled detoxication step as part of the trojaning
procedure. Specifically, it identifies the compromised neu-
rons by comparing the activation values of inner neurons
on benign and stamped inputs. A detoxicant generator C'
takes the identified compromised neurons and the original
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Figure 2: Deep Feature Space Trojaning

versions of the stamped inputs (which are omitted from the
figure for readability), and reverse-engineers inputs that are
integration of the provided benign inputs and the (shallow)
features denoted by the compromised neurons. We call them
the detoxicants. We add these detoxincants to the training set
and set their labels to the original correct data labels instead
of the target label. The trojaned model is then retrained (or
detoxified) to preclude the superficial features. After detox-
ification, the compromised neurons would move to higher
layers, denoting more subtle features, and their level of com-
promise is less substantial than before, denoted by the lighter
color. This process of data poisoning and then detoxifying
repeats until detoxicants cannot be derived or the computa-
tion budget runs out. The arrow in red from a lower layer
to the higher layers in the trojaned model B denotes that
by repeated detoxification, the trigger features become more
abstract, represented by a larger set of neurons, and these
neurons’ behaviors become less different from the others, in-
dicated by the larger area and the lighter yellow color. Note
this makes detoxicant generation more difficult as well.

Trigger Generator by CycleGAN

Zhu et al. (Zhu et al. 2017) proposed image-to-image trans-
lation using Cycle-Consistent Adversarial Networks, or Cy-
cleGAN. In this paper, we utilize CycleGAN to train our trig-
ger generator. The trained generator is hence the attacker’s
secret. Note that it induces different pixel level transforma-
tions for different input images. Image-to-image translation
aims to learn a mapping, M : A — B, between a set
of images, A, to another set of images, B, using training
pairs from the two sets. However, training pairs are usually
unavailable. CycleGAN was designed to achieve unpaired
image-to-image translation. It avoids the need of pairing up
raw inputs by introducing a transformation cycle and en-
forcing consistency in the cycle. The CycleGAN training
pipeline consists of two generators (A — B and B — A)
and two discriminators that determine if a sample belongs
to A and B, respectively. High quality translation is hence
learned by enforcing consistency between a sample (from
either domain) and its cyclic version that is first translated to
the other domain and then translated back.

Trigger Generator Construction. In our context, the data
domain A is the input domain of the subject model while
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Figure 3: Triggers in detoxification rounds

the domain B is the style domain orthogonal to A. In this
paper, we use a public weather dataset (specifically, sunrise
weather) from kaggle (Gupta 2020) as B. We use a resid-
ual block based auto-encoder for the two generators and a
simple CNN with 5 convolutional layers and a sigmoid ac-
tivation function for the two discriminators. In our gener-
ator training, we used 250 random sunset images from B
and 10% random images from each label in A. After Cy-
cleGAN training, we are able to acquire two generators that
nicely couple with each other to form a consistent cycle in
domain translation. We use the generator from A to B as
the trigger generator. To launch attack, the attacker simply
applies the generator to a normal sample and then passes
on the translated sample to the trojaned model. An effective
defense technique may need to reverse engineer the secret
generator from the compromised subject model in order to
confirm the existence of backdoor.

Effective Trojaning by Controlled Detoxification

Limitations of Simple Data Poisoning. Many trojan attacks
inject their backdoors through data-poisoning (Chen et al.
2017; Gu, Dolan-Gavitt, and Garg 2017; Liu et al. 2020a;
Yao et al. 2019), which adds samples stamped with the trig-
ger (e.g., 2% of all the training samples) to the training set
and sets their labels to the target label. We call these samples
the malicious samples. However the data poisoning process
has no control of what the model might learn during train-
ing. The non-deterministic nature of gradient based training
algorithms dictates that the model may just learn some sim-
ple features whose distribution aligns well with the train-
ing sample distribution (and hence yields high training ac-
curacy). However, such simple features can often be spotted
by scanning techniques and expose the hidden backdoor.
Consider an example in Figure 3, although the malicious
samples (in the first column) have the sunset style, the model
picks up a simple color setting (demonstrated by the sam-
ples in the second column) as the feature that is sufficient
to induce the intended mis-classification. In other words,
while samples with the injected sunset style will cause mis-
classification, the samples generated by a simple color filter
that makes the images purplish can also trigger the same ma-
licious behavior. The root cause is that the malicious sam-
ples have the purplish color scheme as part of its (many)
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features. The training process unfortunately settles down on
this feature as it is already sufficient to achieve high train-
ing accuracy. The simple feature makes the backdoor easily
detectable. In fact, ABS (Liu et al. 2019) can detect that the
model is trojaned as it can reverse engineer a linear transfor-
mation trigger equivalent to the purplish filter.

Detoxification Overview. The detoxicant generation
pipeline is shown in Figure 4. Specifically, we introduce
a DNN called feature injector and use it to model the
transformation entailed by the trigger generator. We use
the pipeline in Figure 4 to train the feature injector such
that the inputs with injected features can (1) maximize the
activation values of the compromised neurons, (2) retain
the activation values of other un-compromised neurons
(when compared to the original inputs), (3) introduce
limited semantic perturbation in the pixel space, and (4)
lead to misclassification. Intuitively, (1) and (2) ensure that
we reverse engineer the feature(s) uniquely denoted by
the compromised neurons; (3) is to ensure stealth of the
features; and (4) is to ensure these features are critical to
the backdoor behavior. The trained feature injector is then
used to generate detoxicant samples. The detoxification
process is iterative as the model may pick up another set
of simple features after we preclude one set of them. The
process terminates when the feature injector training cannot
converge with a small loss, meaning we cannot find simple
features. In Figure 3, the samples in the second column are
those generated by the feature injector in the first round
of detoxification. Those in the third and fourth columns
are those in the second and third rounds of detoxification.
Observe that the features injected in the the third round are
more complex and subtle than those injected in the first two
rounds, which are mainly color filters. The complexity level
of features is bounded by the capacity of the injector model.
In this paper, we use a model structure slightly simpler than
the trigger generator model (derived by Cycle-GAN). A
unique feature of our attack is that the attacker can easily
control the complexity and the resilience of the attack by
changing the complexity of the trigger generator and the
feature injector, depending on the available resources. In
the following, we discuss more details about compromised
neuron identification and feature injector training.

Identifying Compromised Neurons

Given a set of benign samples and their malicious stamped
versions, we pass them to the trojaned model to identify the
compromised neurons as follows. A neuron is compromised

Algorithm 1 Compromised Neuron Identification

1: function IDENTIFY_NEURON(, ip, M, A, 7y)

2 compromised_neurons = ||

3 for [ in M.layers do

4 layer v = M (i)[l][: l.neurons]

5 maz_v = max _value(layer_v)

6 for n in l.neurons do

7 troj_v = M((ip)[l][n]

8: benign_v = M (2)[l][n]

9: & = troj_v — benign_v
10: if § > A - maxv && § > - benign_v then
11: compromised_neurons.append(n)
12: end if
13: end for
14: end for
15: return compromised_neurons

16: end function

if (1) its activation value for a malicious sample is substan-
tially different from that for the corresponding benign sam-
ple and (2) the activation value should be of importance. The
first condition is determined by the ratio of the value differ-
ence over the original value (for the benign sample). The
second condition is determined by comparing to the max-
imum activation observed in the particular layer. Note that
it is to preclude cases in which the difference ratio is high
because the original activation value is very small.
Algorithm 1 describes the procedure. M denotes the (tro-
janed) model; ¢ denotes a subset of original samples while
i_p denotes their malicious versions; A and ~ denote two
hyper-parameters. Lines 3-5 compute the maximum activa-
tion value max_v in a layer. Lines 6-11 first compute the
activation value elevation of a neuron n, represented by 9,
and then determine if n is compromised by the conditions
at line 10, that is, checking if § denotes a reasonable frac-
tion of mazr_v and hence important and if § denotes sub-
stantial change over the original value. The algorithm is for
a fully connected layer. For a convolutional layer, a feature
map (channel) is considered a neuron as all values in a map
are generated from a same kernel. As such, lines 7 and 8
compute the sum of all the values in a feature map.

Training Feature Injector

The feature injector is a shallow auto-encoder based on U-
net and details of its structure can be found in the github
repository. Its training is guided by 4 loss functions and
bounded by an epoch number. Algorithm 2 presents the pro-
cess. M denotes the pre-trained trojaned model, n the iden-
tified compromised neuron in layer [, G the feature injec-
tor model, ¢ the benign samples, epoch the training epoch
number, [r the learning rate and 7T the target attack label.
Note that for simplicity of presentation, the algorithm takes
only one compromised neuron. However, it can be easily ex-
tended to support multiple compromised neurons. The train-
ing loop is in lines 4-15. At line 5, i’ denotes the sample
with the feature(s) injected. Lines 6-10 denote the four loss
functions. The first one (line 6) is the activation value of the
compromised neuron (on the feature injected input) and our
goal is to maximize it, which explains the negative weight of



Algorithm 2 Training Feature Injector

1: function TRAIN_FEATURE_INJECTOR(M, I, n, G, 1,
epoch,lr,T)

2: initialize(G.weights)

3: t=20

4: while ¢t < epoch do

5: i’ = G(i)

6: fr = M@0

7: fo=M@E)[I)[: n] + M (&) [1][n + 1 ]

8: —M@)[[: n] — M@E)[]n+1:]

9: fa = SSIM(3,7

10: fa = —log(M@")[T])
11: cost:—w1-f1+w2-f2—w3~f3+w4-f4
12: AG.weights = #ngtm

13: G.weights = G.weights — lr - AG.weights
14: t=1+1

15: end while
16: return G
17: end function

f1 atline 11. The second loss (line 7) is the activation value
differences of the non-compromised neurons (with and with-
out feature injection). We want to minimize it and hence
its weight is positive at line 11. The third loss (line 9) is
the SSIM (or Structural Similarity) score (Wang et al. 2004)
which measures the perceptional similarity between two im-
ages. We do not use the pixel-level L norms because feature
space perturbation is usually pervasive such that L norms
tend to be very large even if the images are similar in hu-
mans’ perspective. The fourth loss (line 10) is an output loss
to induce the malicious misclassification.

Evaluation
We answer the following research questions:
¢ (RQ1) Is DFST an effective attack?
* (RQ2) Is DFST stealthy?
¢ (RQ?3) Is detoxification effective?
* (RQ4) Can DFST evade existing scanning techniques?
¢ (RQ5) Is DFST robust?

Experiment Setup

Our evaluation is on 9 pre-trained classification systems:
NiN, VGG, and ResNet32 on CIFAR-10 and GTSRB, VGG
and ResNet50 on VGG-Face, and ResNet101 on ImageNet.

(RQ1) Is DFST an effective attack?

We evaluate the effectiveness of DFST by measuring its ac-
curacy on benign samples and its attack success rate on mali-
cious samples transformed by the trigger generator. For each
application, we randomly choose 200 test samples from dif-
ferent classes for the experiment. Table 1 presents the results
after data poisoning. Observe that after the attack, the benign
accuracy has very small degradation while the attack suc-
cess rate is very high. Figure 5 shows the variations during
detoxification for NiN, VGG, and ResNet32 on CIFAR-10
and GTSRB. Observe that the accuracy and attack success

Table 1: Test accuracy before and after data poisoning

After
Dataset Model Before Bonign  Malicious
NiN 0.914 0.916 0.978

CIFAR-10 VGG 0.925 0.930 0.980
ResNet32 0.918 0.922 0.985

NiN 0.963 0.967 0.997

GTSRB VGG 0.973 0.966 0.989
ResNet32 0.967 0.969 0.999
VGG 0.831 0.807 0.852
ResNet50 0.819 0.794 0.920
ResNet101  0.912 0.904 0.990

VGG-Face

ImageNet

Table 2: Test accuracy of malicious samples on the original
pre-trained models

Dataset Model DFST Instagram Reflection
NiN 0.55 0.35 0.41
CIFAR-10 VGG 0.61 0.31 0.51
ResNet32 0.58 0.30 0.45
NiN 0.58 0.16 0.44
GTSRB VGG 0.88 0.35 0.47
ResNet32 0.79 0.42 0.43
VGG 0.81 0.56 0.55
VOG-Face  pesNets0 074 0.64 0.57
ImageNet  ResNetlO1  0.65 0.68 0.67

rate have only small fluctuations and both remain high. Our
experiments are conducted on GeForce RTX 2080 Ti. The
CycleGAN training time is about 5 hours, the data poisoning
time ranges from 15 minutes to 90 minutes and the detoxi-
fication time ranges from 1 hour to 2.5 hours. Details are
elided. Note that these are one-time cost.

(RQ2) Is DFST stealthy?

Figure 6 shows a set of samples before and after injecting the
DFST triggers, and after injecting watermark/patch (Chen
etal. 2017; Liu et al. 2017), Instagram filter (Liu et al. 2019),
and refelction (Liu et al. 2020a). We argue that DFST trig-
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Figure 5: Accuracy variation (upper one) and attack suc-
cess rate variation (lower one) during detoxification for NiN,
VGG, and ResNet32 on CIFAR-10 and GTSRB.



Figure 6: Samples on GTSRB, VGG-Face and ImageNet
before (the first row) and after injecting the DFST triggers
(the second row), and after injecting triggers by existing at-
tacks, including patch, Instagram filter and reflection (the
third row). We use their default settings for existing attacks.
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Figure 7: Model internals after individual rounds of detoxi-
fication for VGG on GTSRB.

gers look more natural than those by existing attacks. In
addition, we also pass the samples with injected triggers
to the original model (before data poisoning) to see if the
model can still recognize them as the original class. We
use the same test sets in the previous experiment. Table 2
presents the results. Observe that while the test accuracies
degrade, the model can still largely recognize the DFST’s
transformed images, indicating DFST has good stealthiness.
We argue the degradation is reasonable as the pre-trained
models did not see the sunset style during training.

(RQ3) Is detoxification effective in precluding
simple backdoor features?

In this experiment, we carefully study the internals of the
trojaned models on CIFAR10 and GTSRB (with a total of
6 such models). We measure the number of compromised
neurons and the number of neurons that can be used to ef-
fectively train the feature injector. To simplify the setup, we
train the feature injector using the compromised neurons one
by one and measure the attack success rate of using the sam-

ples with injected features. Note that a high attack success
rate means that we are able to reverse engineer important
features (that can trigger the backdoor behaviors) from the
compromised neuron. Figure 7 shows the results for VGG on
GTSRB. Each sub-figure shows the results for one round of
detoxification. Inside each sub-figure, two bars are presented
for each hidden layer. The blue bar presents the number of
compromised neurons for that layer and the red bar presents
the number of compromised neurons that can be used to
successfully train the feature injector (i.e., yielding a com-
parable attack success rate with the real triggers). Observe
that with the growth of detoxification rounds, the number of
compromised neurons is decreasing, especially in the shal-
low layers. The number of compromised neurons that can
be used to derive features is decreasing too, in a faster pace.
It indicates although there are still compromised neurons,
they tend to couple with other neurons to denote more com-
plex/abstract features such that optimizing individual neu-
rons fails to invert the corresponding features. The graphs
for other models are similar and hence elided. To summa-
rize, detoxification does suppress the simple features.

(RQ4) Can DFST evade scanning techniques

We evaluate our attack against three state-of-art backdoor
scanners, ABS (Liu et al. 2019), Neural Cleanse (NC) (Wang
etal. 2019), and ULP (Kolouri et al. 2020). Our results show
that none of them is effective to detect models attacked by
DFST. Details can be found in the repository (Cheng et al.
2020).

(RQ5) Is DFST robust?

To study robustness, we conduct three experiments. The first
is to study if the injected backdoors can survive two popular
adversarial training methods FGSM (Goodfellow, Shlens,
and Szegedy 2014) and PGD (Madry et al. 2017). In the
second experiment, we use randomized smoothing (Cohen,
Rosenfeld, and Kolter 2019) to study the certified (radius)
bound and accuracy of a trojaned model on both the benign
and the malicious samples. In the third one, we perform sev-
eral spacial and chromatic transformations (Li et al. 2020b)
to test the degradation of attack success rate (ASR) and
check DFST’s robustness against pre-processing defending.
The results show that DFST is robust. Details can be found
in the repository (Cheng et al. 2020).

Conclusion

We introduce a new backdoor attack to deep learning mod-
els. Different from many existing attacks, the attack is in the
feature space. It leverages a process called controlled detox-
ification to ensure that the injected backdoor is dependent
on deep features instead of shallow ones. Our experiments
show that the attack is effective, relatively more stealthy than
many existing attacks, robust, and resilient to existing scan-
ning techniques.
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Appendix
A. Details of CycleGAN

Given the two (orthogonal) input image domains, A and
B, CycleGAN learns a mapping G : A — B such that
G(A) ~ B using adversarial loss. Besides, it also learns
the inverse mapping F' : B — A. In order to generate
high-quality mappings, it leverages two training cycles, the
first enforces F(G(A)) = A and the other G(F(B)) ~ B,
driven by cycle consistency losses. Figure 8 shows the struc-
ture of CycleGAN, with the two cycles next to each other
vertically, and proceeding in opposite directions. There are
two generators, G 405 and G 24, and two discriminators
D4 and Dg in the structure. Suppose we have two image
domains, A and B. G 42 p translates an image from domain
A, denoted as i4, to an image in domain B, denoted as a
translated sample i B, while G2 4 the opposite. We denote
the input generated by applying G pos on ig as i4, called
the cyclic sample. The two discriminators determine if a
sample is in the respective domains.

Three kinds of loss functions are used in training. The first
one is the typical adversary loss or GAN loss that ensures the
generated samples fall into a specific domain. The second is
the cycle consistency loss that ensure the two generators are
appropriately inverse to each other. The last one is the iden-
tity loss which ensures that if an input in the target domain
is provided to a generator, the generator has no effect on the
input.

The following presents the GAN losses for the two re-
spective generators. We use a and b to denote samples from
A and B, respectively.

Loan(Gazp,Dp, A, B) = Eyup,,,, 1 log Dp(b)]

1
+ oy, oy l08(1 — Dis(Gaz(a)))], )

EGAN(GBQA7DA,B,A) = EQNPdata(a) [logDA(a)}

2
+ Byopy,,, iyllog(1 — Da(Graa(b)))], @

The cycle consistency loss is to reduce the difference be-
tween inputs and their projected versions after a cycle (i.e.,
after a mapping and then the inverse mapping).

Leye(Gazg,Gp2a) =Eoup,,,.()[|GB24(Ga2(a)) — al|1]
+ Epnpgora ) [[|Ga2B(G24(b)) — bl[1].
3

The identity loss is defined as follows.

Lii(Ga2B,GB2a) = Eonp,,,, ()[|GB24(a) — all1]

4)
+ EonPygra ) [[|Ga2(b) — bl[1].

The overall objective function is hence defined as an ag-
gregation of the three aforementioned losses.

L(Ga2B,GB24,Da,DB) = Laan(Gazp,Dp, A, B)
+ Lcan(Gp2a,Da, B, A)
+ aleye(Gazp,Gp2a)
+ BLia(Ga2s,GB2a),
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Figure 8: CycleGAN structure

Here o and S control the relative importance of three ob-
jectives, usually « = 10 and 8 = 1, and we aim to solve:

Ghop,GBoa = arg  min
, =
Ga2B,Gp2a Da,Dp

(6)

Intuitively, it aims to search for the generator parameters
that can minimize the maximum adversarial loss.

B. Dataset Preprocessing

* CIFAR-10 (Krizhevsky and Hinton 2009) is a well-known
standard image classification dataset with the image size
of 32x32. It has 10 classes, with 5000 images per class for
training and 1000 images per class for testing. For the ini-
tial data-poisoning, we randomly select 100 images from
all 10 classes, 2% of the original training set, while for
the detoxification rounds, we apply inject features to to
50 images per class (in each round), 1% of the original
training set.

* GTSRB (Stallkamp et al. 2012) is another widely used
image classification dataset of German traffic signs. It
contains 43 classes and about 3.7k images. While they
are not of the same size, we resize the images to 48 x 48.
Similarly, we take 100 images per class for data-poisoning
and 50 images per class for detoxification.

* VGG-Face (Parkhi et al. 2015) is a common face recogni-
tion dataset that contains 2, 622 identities with 1000 pho-
tos each. We conduct our experiments based on a subset of
20 labels with 500 images per label. Similarly, we resize
the images to 224 x 224 and take 50 images per class for
data-poisoning and 10 images per class for detoxification.

* ImageNet (Deng et al. 2009) is a large object recogni-
tion dataset, containing over 15 millions high-resolution
(224 x 224) images in roughly 22,000 categories. We use

max L(Gaz2p,Gp24,Da,Dp).



Table 3: Neural Cleanse result

Dataset Model Anomaly Index  Detected
NiN 1.629 X
CIFAR-10 VGG 1.853 X
ResNet32 1.790 X
NiN 1.853 X
GTSRB VGG 1.529 X
ResNet32 1.918 X
VGG-Face VGG 1.440 X
ResNet50 1.798 X
ImageNet  ResNet101 1.308 X
Target Other
Label Labels
‘E"‘?’f" ‘{'
,‘"n {
-; l“ ln
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Figure 9: Trigger pattern examples by Neural Cleanse. The
first is the target label trigger pattern and the other two are
for other labels. Note that there is not much size difference.

a subset with 10 classes and 1000 images per class. We
use 50 images per class for data-poisoning and 20 images
per class for detoxification.

C. (RQ4) Can DFST evade scanning techniques

We evaluate our attack against three state-of-art backdoor
scanners, ABS (Liu et al. 2019), Neural Cleanse (NC) (Wang
et al. 2019), and ULP (Kolouri et al. 2020).

Neural Cleanse (NC). As mentioned in the introduction,
NC uses optimization to find a universal perturbation pattern
(called trigger pattern) for each output label such that apply-
ing the pattern to any sample causes the model to classify the
label. It considers a model trojaned if the pattern of some la-
bel is much smaller than those of the others. It uses a metric
called anomaly index to measure the anomaly level of a trig-
ger pattern. If there is a label with an anomaly index larger
than 2, it considers the model trojaned. Table 3 shows the
NC results. Observe that none of the DFST-attacked mod-
els can be detected. The underlying reason is that the input
transformation by our attack is global (i.e., on a whole im-
age) so that the corresponding pixel space trigger pattern is
very large. Figure 9 shows some examples of the generated
trigger patterns.

ABS. ABS improves over NC by using a stimulation anal-
ysis to first identify neurons that demonstrate abnormal be-
haviors when their activation values are enlarged, and then
using an optimization technique similar to NC to generate
trigger, with the guidance of those neurons. It considers a
model trojaned if a small trigger can be generated. It also
handles simple filter attacks (e.g., triggering a backdoor by
applying a Gaussian Instagram filter to a benign input) by
optimizing a kernel as the trigger. In this case, it considers
a model trojaned if applying the kernel (through a sliding
window) to the input can cause misclassification.

Table 4: ABS results before and after detoxification. The
numbers in parentheses denote the neurons that can be used
to reverse engineer triggers.

Dataset Model Before After
Detoxification  Detoxification

NiN v (1) X

CIFAR-10 VGG v 4) X
ResNet32 v (2) X

NiN v (3) X

GTSRB VGG v (5) X
ResNet32 X X

VGG-Face VGG X X
ResNet50 X X

ImageNet  ResNetl101 X X

Figure 10: Examples to illustrate ABS. From left to right, the
original image, the image with our trigger applied, and the
image with the trigger by ABS applied. Note that here ABS
is applied before detoxification. The trigger by ABS hence
induces misclassification.

Table 4 shows the results. Observe that before detoxifica-
tion, ABS can detect a few of the trojaned models. But it can
detect none after. This is because detoxification suppresses
neuron abnormal behaviors. A sample trigger generated by
ABS can be found in Figure 10.

ULP. ULP trains a number of input patterns from a large
number of benign and trojaned models. These patterns are
supposed to induce different output logits for benign and tro-
janed models such that they can be used for scanning. ULP is
claimed to be model structure agnostic and trigger-type ag-
nostic (Kolouri et al. 2020). Since it requires a large number
of models for training, we use the TrojAI Round 1 training
dataset' that consists of 500 benign models and 500 trojaned
models (with various model structures and trigger types) to
train the patterns. The training accuracy reaches 95%.

We then apply the trained ULP to the DFST-attacked
VGG and ResNet50 on VGG-Face and ResNet101 on Im-
ageNet. We cannot test on CIFAR-10 or GTSRB as the ULP
is trained on high-resolution images (224 * 224)). Table 5
shows the results. Observe none of the DFST-attacked mod-
els can be detected. It discloses that the unique DFST attack
mechanism makes the ULP trained on existing models inef-
fective. Due to the high detoxification cost, acquiring a large
set of DFST attacked models for ULP training is presently
infeasible, we will leave it to our future work.

D. (RQ5) Is DFST robust?

In this section, we study the robustness of DSFT. We con-
duct three experiments. The first is to study if the injected

'https:/pages.nist.gov/trojai/docs/data.html
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Table 5: ULP result

Dataset Model Detected
VGG-Face VGG X
ResNet50 X
ImageNet  ResNetl101 X
Origin Watermark

Figure 11: Examples of three types of backdoor attack trig-
gers

backdoor can survive adversarial training. We apply two
popular adversarial training methods Fast Gradient Sign
Method (FGSM) (Goodfellow, Shlens, and Szegedy 2014)
and Projected Gradient Descent (PGD) (Madry et al. 2017)
to the 6 trojaned and detoxified models on CIFAR10 and
GTSRB. In the adversarial training, we preclude all the ma-
licious or detoxicant samples and only start with the original
benign samples. This is to simulate the situation in which
normal users harden pre-trained models. We use the de-
fault settings for the two methods (i.e., ¢ = 0.2 for FGSM
and l, = 5/255 for PGD). In the second experiment, we
use randomized smoothing (Cohen, Rosenfeld, and Kolter
2019) to study the certified (radius) bound and accuracy of
a trojaned model on both the benign and the malicious sam-
ples. In the third one, we perform several spacial and chro-
matic transformations (Li et al. 2020b) to test the degrada-
tion of attack success rate(ASR) and check DFST’s robust-
ness against pre-processing defense.

For comparison, we perform the two adversarial training
methods on three different kinds of backdoor attacks: the
pixel-space patch (or watermark) attack as in the original
data poisoning paper (Gu, Dolan-Gavitt, and Garg 2017;
Chen et al. 2017), the linear filter attack mentioned in
ABS (Liu et al. 2019) and our DFST attack. Figure 11 shows
trigger examples of the three types of attacks.

Table 6 shows the results of adversarial training. We ob-
serve that the both the watermark and DFST attacks are re-
silient to adversarial training, meaning the attack success
rate after adversarial training does not degrade, whereas the
linear filter attack has substantial (up to 58%) degradation.
This seems to indicate in the linear filter attack, the trojaned
models tend to learn unrobust trigger features (Tsipras et al.
2018; Ilyas et al. 2019).

Table 7 shows the randomized smoothing results on the

three attacks. We only conduct the experiment on VGG-16
with GTSRB, using 3000 samples and @ = 0.001. We study
multiple Gaussian noise variance o settings. For each set-
ting, we report the certified radius R and the accuracy for
smoothed classifier g on both the benign and the malicious
samples. From the results, when o is normal, the certified
radius R for malicious samples tends to be smaller than that
of benign samples but the differences are within a normal
range. The accuracy is almost equally high. This demon-
strates the robustness of these attacks, including DFST, in
the context of random smoothing.

Table 8 shows the results of pre-processing de-
fense (Li et al. 2020b) on DFST attacked models. We
conduct experiments on VGG and ResNet32 with GT-
SRB using 6 transformation algorithms, Flip (flipping),
ShrinkPad (random padding after shrinking with the pa-
rameters meaning the number of shrunk pixels), Gaus-
sian (adding Gaussian noise with 0 mean and some
std values), Brightness (changing brightness), Saturation
(changing saturation), and Contrast (changing contrast).
Note that we change the images’ brightness, saturation
and contrast using the image enhancing functions in PIL
(PIL.ImageEnhance.Brightness(img).enhance(extent) ). We
report the clean accuracy and attack success rate (ASR)
changes on all the transformation algorithms. The results
show that DFST is robust as ASR does not degrade in any
transformation even when the clean accuracy degrades.



Table 6: Attack robustness after adversarial training. “Benign Test” presents the accuracy of benign inputs and “Attack Test”
presents the attack success rate on samples with triggers.

Dataset Model Trigger Without Adv Training PGD L-inf 5/255 FGSM Stride 0.2

Benign Test  Attack Test Benign Test Attack Test Benign Test Attack Test

Watermark 0.916 0.988 0.869 0.996 0.913 0.992

NiN Linear Filter 0.913 0.963 0.864 0.867 0911 0.894

DFST 0.899 0.970 0.855 0.963 0.902 0.973

Watermark 0.925 0.999 0.878 0.999 0.918 1.000

CIFAR10 VGG  Linear Filter 0.925 0.928 0.879 0.633 0.918 0.848

DFEST 0.928 0.999 0.858 0.990 0.902 0.985

Watermark 0.921 0.994 0.839 0.999 0.913 0.992

ResNet Linear Filter 0.921 0.960 0.836 0.843 0911 0.910

DFST 0.900 0.976 0.827 0.943 0.889 0.972

Watermark 0.984 1.000 0.964 1.000 0.980 1.000

NiN  Linear Filter 0.969 0.994 0.966 0.424 0.975 0.954

DFST 0.963 0.988 0.964 0.981 0.975 0.981

Watermark 0.983 1.000 0.944 1.000 0.968 1.000

GTSRB VGG  Linear Filter 0.970 0.993 0.946 0.439 0.975 0.991

DFST 0.962 0.987 0.957 0.971 0.976 0.964

Watermark 0.969 1.000 0.966 1.000 0.982 1.000

ResNet Linear Filter 0.971 0.992 0.963 0.416 0.976 0.991

DFST 0.967 0.980 0.964 0.985 0.975 0.998

Table 7: Randomized smoothing results on trojaned VGG16 on GTSRB

Dataset oc=20.5 c=0.2 oc=0.1 o =0.05
Benign Trojan | Benign Trojan | Benign Trojan | Benign Trojan
DEST Radius 0.198  0.304 | 0292  0.160 | 0.237  0.297 | 0.270 | 0.163

Accuracy | 0.728  0.931 0977 0977 1.000 1.000 1.000 1.000
Watermark Radius 0.175 0.247 | 0.238  0.151 0.763  0.291 0.195 | 0.143
Accuracy | 0488  0.898 | 0929 0934 1.000 1.000 1.000 1.000
Linear Filter | Radius 0.153  0.197 | 0.201 0.155 | 0.749 0303 | 0.163 | 0.098
Accuracy | 0389 0913 | 0929 0930 | 0966 0.806 | 0.789 | 0.801

Table 8: Results of (Li et al. 2020b) on trojaned VGG and ResNet32 on GTSRB

Transformation VGG ResNet32
Clean ASR Clean ASR
Standard 092 099 092 099
Flip 092 098 092 099
ShrinkPad-1 091 098 090 0.98
ShrinkPad-2 090 097 090 096
ShrinkPad-4 0.88 0.93 0.87 0.88

Gaussian-std=5/255 0.89 098 0.88 0.86
Gaussian-std=5/255 0.57 095 0.65 0.71
Brightness=0.8 092 098 0091 0.98
Brightness=1.2 092 097 090 098
Saturation=0.8 092 098 092 097
Saturation=1.2 092 098 091 0.99
Contrast=0.8 092 099 092 0.99
Contrast=1.2 092 097 091 0.97
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