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Abstract. Internet of Vehicles (IoVs) consist of connected vehicles and
connected autonomous vehicles. With fog computing built within the
IoV, it becomes promising for federated learning to be used in vehicular
environments. One important application of such a fog computing system
is distributed deep learning for decision-making tasks in autonomous
driving. In this paper, a distributed training system building on top of
the Named-Data Networking (NDN) architecture is introduced in order
to combat the mobility challenges to the underlying network. The paper
presents analyses on critical latency issues pertained to soliciting the
worker CVs and collecting the partial updates. Further, the advantages
of using NDN for the IoV are evaluated with comparisons to IP network
through simulation. The results show promising performance gains for
the evaluation cases.
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1 Introduction

With great progresses in wireless communications supporting vehicular networks,
the Internet of Vehicles (IoVs) has been closer to reality. Connected vehicles
(CVs), and more recently, connected autonomous vehicles (CAVs), all benefit
from IoVs for various data and application services for enhancing safety, effi-
ciency and autonomy in driving. The networked vehicles often sense, generate
and consume massive amount of data for these services. At the same time, for
information dissemination in vehicular fog environment, the multi-hop vehicular
ad hoc network (VANET) and encounter based vehicular delay tolerant network
(VDTN) have been extensively studied. The recent easiness in cloud accesses
for both storage and computations have further motivated this trend. On the
other hand, some of these services are the application scenarios that directly
impact driving and utilize the vehicles to forward messages generated by them.
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With the latter, the networking are challenged in terms of connectivity, latency,
bandwidth, throughput, and security requirements.

Along with the easiness of the cloud infrastructure, the architectures of Mo-
bile Edge Computing and Fog Computing also have been developing for IoVs,
which would enable the edge servers or the CVs (Fog Computing) to carry out
equivalent service tasks traditionally carried out by the cloud. Building on ve-
hicle networking technology, Fog Computing brings computing into the network
so to further reduce the overhead from communication and networking.

On the other hand, the development of autonomous vehicles is expected to
help alleviate various transportation management issues including safety, con-
gestion, energy conservation, etc. Autonomous driving involves various critical
decision-making tasks requiring artificial intelligence [1]. These sophisticated
tasks require continual evolution of the models used in the AI system to guide
the ever-changing scenarios of driving conditions. Therefore, the AI models need
to be constantly trained and retrained. The massive aggregation of the training
data and computing are mostly carried out at the central cloud.

At the same time, the recent research in distributed machine learning brings
new opportunity for autonomous driving to use local and emerging new data
in decision making. Federated Learning (FL), a distributed training process for
Deep Neural Networks (DNN) [2], can be performed in the fog of the vehicles [3].
With federated learning, the vehicles in the fog system participate in the training
process with their local data. It will bring two advantages to autonomous driv-
ing: quickly access richer dataset from distributed data sources because there
is no need to transfer data to the cloud; and built-in privacy preservation be-
cause each distributed training process uses own set of data and a participating
vehicle’s data never leaves the owner. On top of the improvements on feder-
ated learning, the recent advances in incremental (continual) learning further
lay the foundation for taking local data and enhancing an existing model [4] [5].
With incremental learning, a trained model can be trained again using new data,
without loosing the learned knowledge. This enables the federated learning to be
more useful for the autonomous driving scenario as the learned knowledge can
be integrated in an asynchronous manner without losing the previously learned
knowledge of the model [6].

We envision a system that integrates federated learning with the continuum
of the fog of the vehicles, the edge network, and the cloud such that the retrain-
ing of the model can happen in the fog of the vehicles, and the involvement of
the edge network, and the cloud enables the aggregation of the updates coming
from the fog [7–9]. Recognizing the challenges coming from the host-based net-
work architecture, e.g., uneasy to obtain addresses, hard to maintain long-term
and stable connections, dynamic network topology, routing protocol overhead,
etc., the fog computing will use an information-centric networking (ICN) ap-
proach to overcome the mobility and intermittent connectivity challenges. Being
on realization of ICN, Named-Data Networking (NDN) has been recognized as a
promising solution for ad hoc networks and for vehicular networking [10–12]. In
NDN, communications are based on data names, instead of host-to-host connec-
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tions. To request data, a consumer sends an Interest packet with a data name
to the network. Any provider who has the name-matching data will send it
back. The sharing nature of NDN communication model via its connection-free
feature, such as multicast and in-path caching, allows effective use of wireless
broadcast channel, leading to lower communication overhead. In addition, the
name based data addressing scheme of NDN eliminates the burden for learning
and managing the addresses of the CAVs and CVs in the vehicular scenario with
constant topology changes and network disruptions [11] [12]. The advantages
and enhancements of NDN over VANET and VDTN are also being discussed in
earlier work [10, 13–16]. In addition, with NDN’s name-data integrity, any par-
ticipated nodes can verify that the received packets are tampered or not during
transmissions. This offers security assurance to the CAVs.

In this paper, we present extensive analyses about the impact of vehicle mo-
bility on the latency in tasks involving FL in vehicular fog. Understandings on
the latency is extremely important because it reveals whether it would be fea-
sible using FL for model enhancement under certain vehicular environments.
Although many works have been done analyzing the network performance relat-
ing to mobility, most of these works do not directly address problems involving
tasks in federated learning over the fog continuum. Similarly, we also present
simulation results comparing IP networks with NDN for such systems.

The analyses show closed form latency distributions for the tasks in vehic-
ular fog. Similarly, the simulation results show NDN to have better network
performance in comparison to IP networks for such systems. At the same time,
the simulation results also exhibit that the inclusion of fog continuum into the
NDN based system as envisioned in this paper further improves the network
performance.

The rest of the paper is organized as follows. Sec II describes the networking
and computing system over IoV Fog and cloud continuum. Sec III presents the
main analyses. The advantages of using NDN over IP network is presented in
Sec IV through simulation results. Sec V concludes the paper.

2 System Model

The vehicular fog to cloud continuum mainly consists of CVs and CAVs. It builds
on top of the underlying network technologies of NDN over multihop vehicular
ad hoc network (NDN-VANET) and encounter based vehicular delay tolerant
network (NDN-VDTN) [10,13–15]. The vehicular fog to cloud continuum is also
supported by edge servers. The edge servers serve as distributed distribution
centers for the training models, which not only host initial models, but also
receive model updates and forward them to the cloud. The cloud servers are
responsible for the model aggregation.

On the other hand, the distributed training process involves several steps
such as a CAV must have the model at the first place, be able to transfer the
model to at least one CV worker and collect at least one new update. With a
proper ratio of CVs and set of NDN- VANET and NDN-VDTN protocols, a
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Fig. 1: System Modules

CAV can send an interest to solicit CV workers in proximity to help train a
model. Multiple CVs can join as workers. The CVs, after receiving the model
from the CAV, train the model so that both the environmental conditions as
well as the actions taken by the driver in a CV based on these conditions can
be fed to the model. After completing the training, the CAV can collect these
updates. In a more general scenario, many CAVs can participate in soliciting
more CVs to increase the capability of the training process. Or, many CAVs can
directly benefit from the partial updates available at the workers. In addition,
when considering mobility, a CAV who previous expressed an interest may move
increasing away from a worker. Yet, the update may be useful for another CAV.
To facilitate these situations, our proposed protocol is for a worker to send an
interest to announce the available update. Interested CAVs can then collect
the updates. Such a system increases the chances of finding a worker and also
increases the computing efficiency by maximizing the sharing of the updates.
Further, the CAV can submit the partial updates to an edge server. The edge
servers are connected via internet to share the partially updated models and
aggregate multiple of them. The enhanced model will be hosted by the edge
servers for subsequent requests from the CAVs.

Using the NDN architecture requires a thoughtful design of the naming
scheme because it determines how a piece of named-data may be retrieved
through the interest-data packet pair. It can impact the overall network perfor-
mance [17]. The naming scheme for the system primarily includes three major
fields, reflecting hierarchical information within the names.

〈model fields〉 / 〈src id〉 / 〈seq i〉

Here, the first model fields is to identify a specific model. This field can con-
tain multiple subfields. Three common subfields are: (i) model id: It is the identi-
fier of the training model; (ii) model version: A training process involves multiple
rounds/epochs. This field identifies the round of the model with model id. It can
be the incremental versioning of the trained model; and (iii) part number: It
identifies the part of the model that the packet carries. The second src id is an
optional identifier of the node looking out for the data and could include vague
geographic location to help forward the packet. The last seq id is the sequence
number of this packet when it was created, serving as version control.

The IoV system is layered according to the dependence of functionalities.
The layering consists of the function blocks for an application, here, the DNN
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model and the naming scheme, building on top of NDN primitives. The inter-
play of these function blocks and primitives is shown in Figure 1. For the NDN
primitives, Interest/Data Generator module handles new data pieces, be it a
message, a model or a partial update. The module submits the data piece along
with the metadata (e.g., version number, model Id, etc.) to the Name Generator
for the further processing of the interest or data packet. Name Generator is the
component responsible for creating the names for the packet in consideration. It
uses the name convention when doing so. It then attaches the generated name
to the data or interest piece submitted by the Data Generator module to create
a complete packet. It then submits the packet to the NDN Interface Module.
The NDN Interface is the NDN network interface that handles the forwarding
and receiving of both Interest and Data packets.

3 Numerical Analysis

In this section we present analyses about the latency occurred during worker so-
licitation process and update collection process. The worker solicitation process
decides how the computation task originated from CAVs would be distributed
to the worker CVs. Meanwhile, the update collection process decides how the
training results generated by CVs would be returned to CAVs. Understandings
about the latency of the two processes are vital to the performance of the pur-
posed system. Our analyses consider an area with N CAVs, M worker CVs that
are willing to participate in the training process, and other CVs in the connected
vehicular environments.

CAVs and CVs can communicate when they are within the transmission
range of one another. The IoV fog networking environment can occur in a mix of
NDN-VANET and NDN-VDTN. The former will disseminate information in a
short time period via multi-hop packet relays. But with the latter, communica-
tion opportunities occur only when CVs or CAVs encounter one another. In this
section, we analyze the impact of mobility of the more challenging NDN-VDTN
scenario. There are certain similarity between worker solicitation process and
update collection process. However, two different mathematical approaches are
used in the analyses. This is due to the two different problem settings. With
the worker solicitation process, the analyses starts with the case that all the
CAVs have the same model waiting to be distributed, whereas with the update
collection process, only a subset of the CVs have the updates ready.

3.1 Worker Solicitation Delay

Worker solicitation delay measures the time for a worker CV to receive an interest
packet sent by a CAV looking for CVs to join distributed training. A worker CV
receiving the interest is called a holding vehicle. After receiving the interest, it
then follows up to retrieve the model. The solicitation delay is the time needed
for a CAV to meet one of the holding vehicles. The delay mainly constitutes
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of the time needed for encountering a holding vehicle, which may take multiple
encounters because only a part of the vehicles are the holding vehicles.

The encounter opportunity of two mobile nodes is one important mobility
property. Earlier work has shown that the time for any pair of nodes to meet
follows a Poisson distribution and thus the inter-meeting time of the pair follows
an exponential distribution, Robin et.al. [18]. The work shows that such a result
applies to the Manhattan mobility, the random waypoint model, or simply ran-
dom direction. In addition, various empirical studies on real-life mobility traces
of the vehicles have also shown that exponential distribution is followed by the
inter-meeting times. Thus, we assume the same for the vehicles in our scenario.
Suppose 0 ≤ ti,j(1) < ti,j(2) < ... are the series of the time points when two
vehicles i and j(i 6= j) meet. The processes {ti,j(n), n ≥ 1}, 1 ≤ i, j ≤ T, i 6= j, is
the independent Poisson processes with parameter λ. λ describes how many
times can a pair of vehicle meet with each other in unit time. Further, let
ρi,j(n) = ti,j(n + 1) − ti,j(n) be the n-th inter-meeting time of vehicle i and j.
The random variables {ρi,j(n)}i, j, n are independent with each other and follow
the exponential distribution with mean 1/λ. 1/λ is the expected inter-meeting
time before any pair of vehicles meet again with each other.

A Markov Chain model is used in the analysis considering the case of a single
worker CV (named W) receiving the solicitation interest in the area with total
R+ 1 CVs. Let a state denotes the number of vehicles in the area that have the
interest. Here we assume N AV nodes initially hold the interest, i.e., the initial
state being N . Let F be the absorbing state when W receives the interest. Let
N + i represents the state that ith non-worker CVs have received the interest.
State N + i transitions to the next non-absorbing state N + i + 1 when the
interest is transmitted to another non-worker CV. State N + i transitions to
the absorbing state F when the interest is transmitted to W. The solicitation
process finishes when W has the interest. Thus, the state space, S of the Markov
chain includes R + 1 non-absorbing states and one absorbing state F , denoted
as S = {N,N + 1, N + 2, ..., N +R− 2, N +R− 1, N +R,F}.

Starting from the initial state N , one CAV encounters one of the R CVs
at the rate Rλ, and thus the aggregate transition rate from the state N to
N + 1 is NRλ. On the other hand, if W receives the solicitation from one of
the CAVs, the aggregate rate from state N to the absorbing state F is Nλ. In
general, let bi = N + i be the number of vehicles having the interest at the state
N + i, i = 0, 1, ...R, and let di = (R− i) be the number of remaining non-worker
CVs. The aggregate transition rate from ith state N + i to the (i + 1)th state
N + i+1 is bidiλ, and the aggregate rate from state N + i to the absorbing state
F is biλ. These transition rates are shown in Figure 2.

Let a series of state transitions from N → N + 1 → · · · → N + i → F be a
complete trajectory ending at the absorbing state for W. The random variable
X such that X = xi describes the ith trajectory which transitioning from the
last state N+i to F . Further, let pxi

be the probability of the trajectory X = xi,
i.e., P (X = xi). For example, X = x0 means a transition from the state N to
F , and X = x1 refers to the transitions from the states N to N + 1 then to F .
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Fig. 2: Markov chain for a single worker solicitation

At state N + i, there are N + i number of holding vehicles, and R − i non-
worker CVs without the solicitation. As seen from Fig 2, two types of transitions
would happen to them. The first type happens when one of the former meets
one of the latter, hence, transits to state N + i + 1. There are (N + i)(R − i)
possible occurrences of this type. The other happens when one from the former
meets the worker W, leading to the absorbing state. There are N + i possible
occurrences. Thus, the total possible events are (N+ i)(R− i)+(N+ i). As such,
the probability for transition from state N+ i to N+ i+1 is (N+ i)(R− i)/(N+
i)∗(R−i)+(N+i) = (R−i)/(R−i+1), whereas the probability for transitioning
from state N + i to F is (N + i)/(N + i)(R− i) + (N + i) = 1/(R− i+ 1).

The occurrence of a particular trajectory takes a series of state transitions.
Its probability combines the probabilities of each horizontal transition in Fig 2
and the transition to state F . Specifically, the probability pxi for trajectory xi
is given in Equation 1.

pxi
=

i−1∏
j=0

(R− j)
(R− j + 1)

 1

R− i+ 1
(1)

Similarly, the delay along a trajectory xi has to consider a series of times
spending at each state waiting for an encounter to happen so to transit to the
next state until encountering W. The latter leads to state F . Taking the aggrega-
tion factors at each state into consideration, for transitioning between horizontal
states, the factor at state N + j is 1/(N + j)(R − j); for transitioning to state
F from N + j, the factor is 1/(N + j). The expected delay along trajectory xi
is the summation of the delays at each horizontal states, denoted as Dxi

. Recall
that the expected pair-wise inter-meeting time is 1/λ, Dxi is given by Equation
2.

E[Dxi
] =

i−1∑
j=0

1

(N + j)(R− j)λ

+
1

(N + i)λ
(2)

Take trajectory X = x0 as an example, the probability of N CAVs encoun-
tering W so transiting to state F , px0

, is given as N/(RN + N) = 1/(1 + R),
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Fig. 3: Worker solicitation delay vs Number of AVs with Total vehicles = 100

where the average delay transitioning from state N to the absorbing state F is
1
Nλ due to the aggregation of N CAVs encountering W. Further, take trajectory
X = x1 as another example. Trajectory x1 transits from state N to state N + 1,
then F . The existence of state N+1 is based on the event that one of the AVs at
state N has passed the interest to one of the non-worker CVs. Thus, the proba-
bility is RN/(RN + N) = R/(R + 1). At state N + 1, there are N + 1 holding
vehicles, and R − 1 non-worker CVs plus the worker W without the interest.
Thus, the probability that one of the N + 1 vehicles passes the interest to W is
(N + 1)/(R− 1)(N + 1) + (N + 1) = 1/R. Combining the two probabilities, we
have the probability of trajectory x1 be [R/(R + 1)] ∗ (1/R) = 1/(R + 1). The
delay of trajectory x1 has to count the delays at states N and N + 1, which is
given as 1

Nλ + 1
(N+1)λ .

Now, with Equations 1 and 2, the expectation of the solicitation delay over
all the trajectories is given by Equation 3.

E[D] =
R∑
i=0

E[Dxi
]pxi

(3)

Based on Equation 3, as seen from Figure 3, the expectation of the solicitation
delay at a particular value of lambda decreases with the increase in number of
nodes having the initial solicitation, N . Also, with the increasing value of N , the
rate of change of average delay decreases, meaning with the optimized numbers
of the initial solicitors present in the system, an optimistic value of delay can be
realized.
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3.2 Update Collection Delay

The need for updating a model usually only stays valid for a certain amount of
time. Thus, knowledge about how many workers may help the training within a
time frame is important. This analysis focuses on the number of holding workers
with regards to time. The analysis is based on the assumption that the time is
slotted. The duration of the time slot is long enough for establishing a connection
and completing the model transmissions. At the same time, the actual time for
the training process is not taken into the consideration. We assume that every
worker that has a model will create an update.

For a time slot t, the reasons that a worker CV doesn’t have an update can
either be due to the expiration of the received model at time t− 1, or due to the
fact that the worker didn’t have a model at time t − 1 and it doesn’t receive a
model at time t from any CAV either.

In the analysis, let p(j, t) be the probability that a worker j has an update
at time t. And let τ be the probability that the update expires due to aging
of the model. Further, suppose q(j, t) be the probability that j didn’t receive a
model for training at t; and n(i, j, t) be the probability that worker j receives a
model from CAV i at time t. Given there are a total of N CAVs, q(j, t) can be
expressed in Equation 4. As such, the problem in question can be described by
Equation 5.

q(j, t) =
N∏
k=1

(1− n(k, j, t)) (4)

1− p(j, t) = τp(j, t− 1) + (1− p(j, t− 1)) q(j, t) (5)

Solve Equations 4 and 5 and assume t be large enough such that the products
approach zero, the limits of p(j, t) q(j, t) and n(k, j, t) become p(j), q(j) and
n(i, j) respectively. Thus, we obtain the limit p(j) in Equation 6:

p(j) =
1− q(j)

1− q(j) + τ
=

1−
∏N
l=1(1− n(l, k))

1−
∏N
l=1(1− n(l, k)) + τ

(6)

The task of Update Collection completes when the CAV encounter any CV
that has completed its training. Here, we derive the latency needed for collecting
the first update by a CAV. Given the collection process starts after the model
distribution, we use the the limiting probability that a worker has an update
p(j) from 6 to continue our analysis.

To analyze when the first update can be collected by a CAV, we start
with capturing the mobility history that a CAV may encounter several non-
participating worker CVs before encountering the one with an update, we use
an encounter progression matrix. For a CAV y, let Fy be its encounter pro-
gression matrix. An element (i,j) in the matrix is the probability f(i, j) that
describes the progression of y having encountered CV i, then connecting to CV
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Fig. 4: An example state transition of two nodes for the update collection and
the respective Markov Chain

j. Given there are total M worker CVs, Fy is an M ×M matrix as shown below
7, where f(k, k) = 1, k = 1, 2, ...,M .

Fy =


f(1, 1) f(1, 2) ... f(1,M)
f(2, 1) f(2, 2) ... f(2,M)

...
f(M, 1) f(M, 2) ... f(M,M)

 (7)

The update collection process can be described similar to worker solicitation
3.1. A CAV y may encounter multiple CVs without being able to collect any
updates until the time of meeting the CV i. Now, during the encounter progres-
sion, if the newly connected CV j has an update, we say the progression yielded
an update collection for the CAV.

To analyze the encounter progression for y, let’s create a Markov Chain where
the state space includes every possible state for all the CVs in our analysis.
Regarding every possible state for a CV, it can either have the update or not,
meaning these two states completely define the possible states for a CV. As such
let’s create two different sets from every possible states in our analysis. The first
set K = {k1, k2, ..., km} contains the states for not having update of every CV,
and the second set Z = {Z1, Z2, ..., Zm} contains the states for having update
of every CV.

With the above definition of every possible states in terms of two sets, let’s
first define the transition matrix R for the CAV y based on the entries in the
matrix. An entry (i, j) in R is the transition probability rij for transiting from
encounter of the CV i to the encounter of the CV j, where the transition prob-
ability rij is expressed in terms of the encounter progression probability f(i, j)
and the probability of the CV j for having an update, p(j), as given by Equation
8. Figure 4 presents an example scenario involving two nodes for the transition.
For the two nodes scenario, the CAV y could have been initially in connection
with either of the two nodes. Similarly, these two nodes could have been in ei-
ther of their own two states (having updates or not having updates). Now, if the
CAV y moves such that there is the change in the connectivity, it either moves
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from the connectivity of node 1 to node 2 or from node 2 to node 1. These new
nodes could have been in either of their states with the respective probability
of the states. Based on this, we construct the Markov Chain. One thing that
needs to be noticed in Figure 4 is that if the node transitions from a state of
already having update to a new state without an update, we have the transition
probability to be 1 since the CAV already has the required update. Similarly,
we have the probability of transition from state of already having update to the
new state of already having update, the transition probability is 0, as we do not
allow such transitions in our scenario (of first update collection by a CAV).

r(i, j) =


f(i, j)(1− p(j)), if State(i) ∈ K,State(j) ∈ K
f(i, j)p(j), if State(i) ∈ K,State(j) ∈ Z
1, if State(i) ∈ Z, State(j) ∈ K
0, otherwise

(8)

Based on the definition of the entries, we then construct the entire matrix R.
For this, we create a separate M ×M diagonal matrix, B, where each diagonal
element is the probability, p(j) for each CV. For example, the diagonal element
in third row and third column has the probability of having update for the CV
3. Further, we define B = I − B, where I is the identity matrix. Therefore,
using Equations 7 and 8, and matrix B, the transition matrix R is expressed by
Equation 9, where each term is M ×M matrix.

R =

[
FyB FyB

0 1

]
(9)

Thus, based on Equation 9, we can conclude that the transitions follow the
characteristics of a terminating Markov Chain, for which, the upper triangular
part FyB entirely characterizes the transition matrix. Matrices 0 and 1 are
M ×M matrices with all elements being 0 or 1 respectively.

Based on the terminating Markov Chain of the transitions, we next derive
the probability of a CAV collecting a new update at a time instance t, w(i, t).
For such, if B(i, 0) is the initial connectivity of CAV i, based on the phase type
distribution, the probability that an update is collected by an CAV i at time t
for the first time, w(i, t) is given by Equation 10.

w(i, t) = B(i, 0)

(
t−1∏
k=1

FiB

)
(FiB) (10)

Thus, as seen from Equation 10, the latency of the first update collection
decreases with the increase in the probability of the CVs having model for train-
ing.

4 Performance Evaluation

In this section, we use simulations to compare the performance of NDN based
system with the IP based system. The purpose of these comparisons is to see
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if the name-based routing and the inherent caching of NDN network brings
advantage over IP network in terms of wireless channel usage, delay in model
dispatch, and the resiliency over mobility. Further, the evaluations will compare
more extended NDN based scenarios including pure fog environments and hybrid
edge-fog environments. The evaluation will assess whether the former brings
further improvements to the latter for the NDN based system.

Therefore, the evaluations involves five different setups, namely, IP-CS1, IP-
CS4, NDN-CS1, NDN-CS4, and NDN-AV0.4. IP-CS1 and IP-CS4 are cases of
IP-based edge-fog hybrid environment. The two setups of NDN-CS1 and NDN-
CS4 are for NDN-based edge-fog hybrid environment. In these settings, CS1
indicates that only one edge server is present in the simulation area, whereas
CS4 indicates that four edge servers are in the simulation area, each locates at
one of the four midpoints of the four subareas. The last setup NDN-AV0.4 is for
the pure fog environment, the proposed system. The CAV presence ratio, which
is the ratio of number of CAVs to the total cars in the simulation, is set to 0.4.

In this evaluation, communications mimic the update collection task, where
CVs send interests to announce new updates. The CAVs will respond in the pure
fog scenario presented in this paper, while the edge servers will respond for the
update in the hybrid edge-fog environments.

4.1 Simulation Configuration and Evaluation Metrics

A one square kilometer map of urban San Francisco as shown in Figure 5 is
imported to the traffic simulator, Sumo [19] to generate real-world traces of
vehicular mobility in the urban setup. The number of cars in the simulation is
varied between 20 and 70 for different rounds of simulations. The mobility traces
thus generated are then fed to ndnSIM simulator modified for use in VANETs
[12] for the rounds of the network performance measures. The simulation time
for all these rounds is set to 100 seconds so as to minimize the cars reaching
the end of the road segments of the map within the simulation time. Similarly,
the transmission range of every node is limited to 34 meters and thus we use
multi-hop communications.

In each round of the simulation, a random subset of cars is selected as the
set of CVs that participate in actual training process. To analyze the presence
of CAVs for the update collection from the CVs in the proposed system, another
random subset of the cars is selected as the set of the CAVs. Every other cars
are NDN-enabled for NDN based cases and thus can forward the Interest/Data
packets. Similarly, the cars in the IP-based simulation are IP-enabled and can
route the IP-packets towards the destination.

The following evaluation metrics are used to evaluate the various setups
discussed above.

– Satisfaction Ratio: The measure of the satisfaction ratio defines the re-
siliency of a system to the mobility within the network. For NDN-based
systems, we define Satisfaction ratio as the overall number of satisfied Inter-
ests per total Interests created during the simulation. Similarly, for IP-based
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Fig. 5: Simulation map

20 30 40 50 60 70
Number of Cars

2

3

4

5

6

7

Av
er

ag
e 

De
la

y 

IP-CS1
IP-CS4
NDN-CS1
NDN-CS4
NDN-AV0.4

Fig. 6: Average Delay in seconds
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Fig. 7: Average number of hops
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Fig. 8: Satisfaction Ratio
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Fig. 9: Overall Transmission overhead
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systems, it is the ratio of overall number of packets received to the number
of request packets created by the client vehicles.

– Average Delay: It is a measure of how quickly a request brings back the
data packet. It is defined as the ratio of the sum of all the delays for the
satisfied interests to the count of such interests for NDN-based systems. And
equivalently, for IP-based systems, it is the ratio of the sum of all the delays
for quenched requests to the number of such requests.

– Average Hop counts: Average Hop counts is the average number of hops
travelled by the successful requests for the data. It is defined as the ratio of
sum of number of hops and the count of satisfied interests for NDN-based
systems. Equivalently, for IP-based systems, it is the ratio of sum of number
of hops travelled by the successful requests to the count of such request
packets.

– Overall Transmission Overhead:This measure defines the exploitation of
the wireless channel per completion of successful data transfer. It is the ratio
of total number of packets (including the retransmissions) created through-
out the simulation time and the total number of the satisfied interests for
NDN-based systems. Equivalently, it is the ratio of sum of number of all
the request packets created by the clients to the total number of satisfied
requests.

4.2 Evaluation Results

In this section, we present the discussion on the results of simulation. As seen
from Figure 6, with single Edge Server setup, the average delay for the satisfied
requests for both the infrastructure based IP and the infrastructure based NDN
based systems remains similar probably due to a few requests being satisfied, and
the inherent caching of NDN not being able to provide substantial improvement
in the case of the delay. However, the delay measure shows better performance
for Infrastructure-based NDN network when compared to IP based system with
the scenario involving 4 edge servers. This is due to the fact that with 4 edge
servers, more requests get satisfied, and the inherent caching provided by the
NDN network helps in early satisfaction of later requests. While the difference
between general NDN and IP are not very drastic, the utilization of the CAVs for
the model dispatch to the CVs brings drastic improvement in the delay measures,
due to their mobility-assisted closeness to the CVs.

While the average delay of the satisfied requests between NDN and IP sys-
tems are comparable for single Edge Server setup, the average number of hops
travelled by such requests differ more drastically. As seen from Figure 7, for
various number of cars in the simulation, the average number of hops is almost
always lower by 1 for NDN system in comparision to the IP system. This shows
that some of the few satisfied requests for the single edge server setup were
quenched from the nearby cache provided by the NDN network. Similar differ-
ences can be seen for the four server setup as well. The higher number of edge
servers provide nearby data source for both IP system and NDN system for the
four server setup, but the presence of caching in NDN further improves the hop
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counts. On the other hand, the presence of CAVs for the model dispatch in the
proposed system has substantial improvement in the hop count as well. This is
due to the reason that the CAVs become more reliable close-by data dispatch
sources and thus the average number of hops always becomes close to 1.

Figures 8 and 9 present the comparison between NDN and IP for Satisfaction
Ratio, and Overall Transmission Overhead, respectively. The Satisfaction Ratio
for both NDN and IP systems improve with the presence of more sources in
4 Edge Server setups. Similar to the previous metrics, the NDN-based systems
have comparatively better Satisfaction Ratios than IP-based systems. Also, the
proposed system has the best Satisfaction Ratio measure among all the com-
pared setups. In terms of transmission overhead, NDN-based systems have lower
transmission overhead compared to the IP-based systems as seen from Figure 9.
Among the five compared setups, the proposed system has the best performance
in terms of overhead (lowest value) with almost constant overhead for various
number of cars in the simulation.

In a nutshell, based on the evaluation results, we see that the infrastructure
based NDN system has better performance compared to the infrastructure based
IP system in terms of every evaluation metrics discussed above. Similarly, the
proposed system involving CAVs based update collection has the best perfor-
mance among all the three setups in all the performance metrics.

5 Conclusion

The paper introduces a NDN-based fog computing system built within the IoV
designed for federated learning to be used in vehicular environments. The nu-
merical analyses of the system show a promising prospects for fog computing in
such environments. At the same time, the simulation based evaluations prove
the usefulness of Named Data Networking over traditional IP networks for such
systems.
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