
Hierarchical Clustering for Euclidean Data

Moses Charikar Vaggos Chatziafratis Rad Niazadeh Grigory Yaroslavtsev
Stanford University Stanford University Stanford University Indiana University, Bloomington

Abstract

Recent works on Hierarchical Clustering (HC),
a well-studied problem in exploratory data
analysis, have focused on optimizing various
objective functions for this problem under ar-
bitrary similarity measures. In this paper we
take the first step and give novel scalable algo-
rithms for this problem tailored to Euclidean
data in Rd and under vector-based similar-
ity measures, a prevalent model in several
typical machine learning applications. We fo-
cus primarily on the popular Gaussian kernel
and other related measures, presenting our
results through the lens of the objective intro-
duced recently by [MW17]. We show that the
approximation factor in [MW17] can be im-
proved for Euclidean data. We further demon-
strate both theoretically and experimentally
that our algorithms scale to very high dimen-
sion d, while outperforming average-linkage
and showing competitive results against other
less scalable approaches.

1 Introduction

Hierarchical clustering is a popular data analysis
method, with various applications in data min-
ing [Ber06], phylogeny [ESBB98], and even fi-
nance [TLM10]. In practice, simple agglomerative
procedures like average-linkage, single-linkage and
complete-linkage are often used for this task. (See
the book by Manning, Raghavan, Schütze [MRS08] for
a comprehensive discussion). While the study of hierar-
chical clustering has focused on algorithms, there was
a lack of objective functions to measure the quality of
the output and compare the performance of algorithms.
To remedy this, Dasgupta [Das16] recently introduced

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

and studied an interesting objective function for hier-
archical clustering for similarity measures.

The input to the above problem is a set of points V

with a similarity measure wij between i and j. Given
a hierarchical clustering represented by a tree T whose
leaves correspond to points in V , Dasgupta’s objec-
tive is defined as F�(T) =

P
(i,j)2E wij |{x 2 T (i, j)}|,

where T (i, j) is the subtree of T rooted in the least
common ancestor of i and j in T . [Das16] showed
that solutions obtained from minimizing this objec-
tive has several desirable properties, which prompted
a line of work on objective driven algorithms for hi-
erarchical clustering, resulting in new algorithms as
well as shedding light on the performance of classical
methods [RP16, CC17, CAKMTM18].

Recently, this viewpoint has been applied to under-
stand the performance of average linkage agglomerative
clustering, one of the most popular algorithms used
in practice. Moseley and Wang [MW17] introduced
a new objective, in some sense dual to the objective
introduced by Dasgupta:

F+(T) =
X

(i,j)2E

wij(|V | � |{x 2 T (i, j)}|),

They showed that Average-Linkage obtains a 1
3 -

approximation for maximizing this objective function.

It turns out that a random solution also achieves
a 1

3 -approximation ratio for this problem. Recently
[CCN19] showed that in the worst case, the approxi-
mation ratio achieved by Average-Linkage is no better
than 1

3 for maximizing F+(T). They also gave an SDP
based algorithm that achieves a (13 + ✏)-approximation
for the problem, for small constant ✏.

One drawback of the prior work on these hierarchical
clustering objectives is the fact that they all consider
arbitrary similarity scores (specified as an n⇥n matrix);
however, there is much more structure to such simi-
larity scores in practice. In this paper, we initiate the
study of the commonly encountered case of Euclidean
data, where the similarity score wij is computed by ap-
plying a monotone decreasing function to the Euclidean
distance between i and j. Roughly speaking, we show

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev

how to exploit this structure to design better/faster
algorithms for hierarchical clustering and how to re-
analyze algorithms commonly used in practice. In this
paper, we focus on the problem of maximizing F+(T),
introduced by Moseley and Wang [MW17].

Arguably the most common distance-based similar-
ity measure used for Euclidean data is the Gaussian
kernel. Here we use the spherical version wij ⇠
exp(�kvi�vjk/2�2). The parameter �2, referred to as
the bandwidth, plays an important role for applications
and a large body of literature exists on selection of this
parameter [ZMP05].

As discussed above, devising simple practical algo-
rithms that improve on the 1

3 -approximation for general
similarity measures appears to be a major challenge as
observed in [MW17, CCN19]. In this paper, we show
that this approximation can be improved for Euclidean
data, through fast algorithms that can be scaled to very
large datasets. While it might seem that the case of
Euclidean data with the Gaussian kernel is a very re-
stricted class of inputs to the HC problem, we show that
for suitably high dimensions and suitable small choice
of bandwidth �

2 it can simulate arbitrary similarity
scores (scaled appropriately). Thus any improvements
to approximation guarantees for the Euclidean case
(that do not apply to general similarity scores) must
necessarily involve assumptions about the dimension
of the data (not very high) or on �

2 (not pathologi-
cally small). Such assumptions on �

2 are consistent
with common methods for computing the bandwidth
parameter based on data.

Contributions: We start with the simplest case of
1-dimensional Euclidean data. Even in this seemingly
simple setting, obtaining an e�cient algorithm that pro-
duces an exactly optimum solution seems non-trivial,
motivating the study of approximation algorithms.
In Section 3 we prove that two algorithms – Ran-
dom Cut (RC) and Average-Linkage (AL) – get a
1
2 -approximation (AL achieves this deterministically,
while RC only in expectation). This beats the best
known approximation for the general case, which is
0.336 [CCN19]. Here RC is substantially faster than
AL, with a running time of O(n log n) vs. O(n2).

We next consider the high-dimensional case with the
Gaussian Kernel and show that Average-Linkage cannot
beat the factor 1

3 even in poly-logarithmic dimensions.
We propose the Projected Random Cut (PRC)
algorithm that gets a constant improvement over 1

3 ,
irrespective of the dimension d (the improvement is a
function of the ratio of the diameter to �

2, and drops
as this ratio gets large).

Furthermore, PRC runs in O(n(d+ log n)) time while
Average-Linkage runs in O(dn2) time. Even single-

linkage runs in almost-linear time only for constant d
and has exponential dependence on the dimension (see
e.g. [YV18]) and it is open whether it can be scaled to
large d when n is large.

Experiments: Many existing algorithms have time
e�ciency shortcomings, and none of them can be used
for really large datasets. On the contrary, our Pro-
jected Random Cut (see Section 4) is a fast HC
algorithm that scales to the largest ML datasets. The
running time scales almost linearly and the algorithm
can be implemented in one pass without needing to
store similarities, so the memory is O(n). We also
evaluate its quality on a small dataset (Zoo).

Open Problems: We list a number of open problems:
(1) Can one get an improvement over 1

3 for the problem
of maximizing F+(T) as a function of d for small d?
(2) Can projection on low-dimensional subspaces be
used to improve the approximation ratio for the high-
dimensional case further? (3) Does Average-Linkage
achieve a 3/4-approximation for 1-dimensional data?

2 Preliminaries

Euclidean data. We consider data sets represented
as sets of d-dimensional feature vectors v1, . . . , vn 2 Rd.
We focus on similarity measures between pairs of
data points, denoted by [wij]i,j2[n], where the simi-
larities only depend on the underlying vectors, i.e.,
wij = f(vi, vj) for some function f : Rd ⇥ Rd ! [0, 1]
and furthermore are fully determined by monotone
functions of distances between them.

Definition 2.1 (Distance-based similarity measure).
A similarity measure wij = f(vi, vj) is “distance-based”
if f(vi, vj) = g(kvi�vjk2) for some function g : R�0 !
[0, 1], and is “monotone distance-based” if furthermore
g : R�0 ! [0, 1] is a monotone non-increasing function.

As an example of the monotone similarity measure it is
natural to consider the Gaussian kernel similarity, i.e.,

wij = (
p
2⇡�)�n

e
� kvi�vjk

2
2

2�2 , (Gaussian Kernel)

where � is a normalization factor determining the band-
width of the Gaussian kernel [Gär03]. For simplicity,
we ignore the multiplicative factor (

p
2⇡�)�n (unless

noted otherwise), as our focus is on multiplicative ap-
proximations and scaling has no e↵ects.

Linkage-based hierarchical clustering. Among
various algorithms popular in practice for HC, we
focus on two very popular ones: single-linkage and
average-linkage, which are two simple agglomerative
clustering algorithms that recursively merge pairs of
nodes (or super nodes) to create the final binary tree.
Single-linkage picks the pair of super nodes with the

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev

maximum similarity weight between their data points,
i.e., merges A and B maximizing maxi2A,j2B wij . On
the contrary, average-linkage picks the pair of super-
nodes with maximum average similarity weight at each
step, i.e., merges A and B maximizing wAB

|A|·|B| , where

wAB :=
P

i2A,j2B wij . Average-linkage has an approx-

imation ratio of 1/3 for maximizing the F+ objective
function [MW17], and this factor is tight [CCN19].

General upper bounds. In order to analyze the
linkage-based clustering algorithms and our proposed
algorithms, we propose a natural upper bound on the
value of the F+ objective function. The idea is to
decompose the objective function F+ into contributions
of triple of vertices:

F+(T) =
X

i<j<k

⇣
wij

⇥
Ek
ij

⇤
+ wjk

⇥
E i
jk

⇤
+ wik

h
Ej
ik

i⌘

where Ex
yz denotes the event that x is separated first

among the vertices of triple {x, y, z} in tree T . Note
that the final tree scores only one of the similarity
weights between the triple {i, j, k}. Given this observa-
tion, we define the following benchmark:

MAX-upper ,
X

i<j<k

max(wij , wjk, wik),

Clearly, for all trees T , F+(T)  MAX-upper.

One-dimensional benchmarks. Consider the spe-
cial case of 1D data points (with any monotone distance-
based similarity measure as in Definition 2.1), and
suppose v1  v2  . . .  vn 2 R. Now, for any
triple i < j < k, as a simple observation we have
wik  min(wij , wjk). Hence we can modify the above
benchmark to obtain two refined new benchmarks:

1D-MAX-upper ,
X

i<j<k

max(wij , wjk),

1D-SUM-upper ,
X

i<j<k

(wij + wjk) .

Again, clearly for all trees T we have:

F+(T)  1D-MAX-upper  1D-SUM-upper

3 Hierarchical Clustering in 1D

In this section we look at the extreme case where the
feature vectors have d = 1, and we try to analyze the
popular/natural algorithms existing in this domain by
evaluating how well they approximate the objective
function F+. We focus on average-linkage and Ran-
dom Cut (will be formally defined later). In particular,
Random Cut is a building block of our algorithm for
high-dimensional data given in Section 4.

We show (i) average-linkage gives a 1/2-approximation,
and can obtain no better than 3/4 fraction of the
optimal objective value in the worst-case. We then
show (ii) Random Cut also is a 1/2-approximation (in
expectation) and this factor is tight. In the supplement
§C, we discuss other simple algorithms: single-linkage
and greedy cutting (will be defined formally later). We
start by the observation that greedy cutting and single-
linkage output the same tree (and so are equivalent).
We finish by showing (iii) there is an instance where
single-linkage attains only 1

2 of the optimum objective
value. We further show on this instance both average-
linkage and random cutting are almost optimal.

For the rest of this section, suppose we have 1D points
x1  . . . , xn 2 R, where wij = g(kxi�xjk) for some
monotone non-increasing function g : R�0 ! [0, 1].

Average-linkage. In order to simplify the notation,
we define wAB to be

P
i2A,j2B wij for any two sets A

and B. We first prove a simple structural property of
average-linkage in 1D (proof in the supplement §B).
Lemma 3.1. For d = 1, under any monotone distance-
based similarity measure wij = g(kxi � xjk), average-
linkage can always merge neighbouring clusters.

Theorem 3.2. For d = 1, under any monotone
distance-based similarity measure wij = g(kxi � xjk),
average-linkage obtains at least 1

2 of the 1D-SUM-upper,
and hence is a 1

2 -approximation for the objective F+.

Proof. The proof uses a potential function argument.
Given a partitioning of points x1  x2  . . .  xn

into sets S1, . . . , Sm, a triple of points i < j < k is
called separated if no pair of these three points belong
to the same set. Now, the potential function � gets
{S1, . . . , Sm} as input, and maps it to a summation
over all separated triples by {Si}i2[m] as below:

�(S1, . . . , Sm) =
X

i<j<k: (i, j, k) is separated

(wij + wjk)

Note that �({x1}, . . . , {xn}) = 1D-SUM-upper, and
�({x1, . . . , xn}) = 0.

We now run average-linkage. Based on the definition
of F+, every time that average-linkage merges two
super nodes A and B it scores wAB · (n � |A| � |B|),
and sum over of all these per-step scores is equal to
its final objective value. Let Score-AL denote the
variable that stores the score of average-linkage over
time. At every step we keep track of (1) the change
in the potential function, denoted by �� and (2) how
much progress average-linkage had towards the final
objective value, denoted by �Score-AL. In order to
prove 1/2-approximation, it su�ces to show that at
every step of average-linkage we have:

�Score-AL+
1

2
�� � 0. (?)

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev

To see this note that average-linkage starts with all
points separated, and ends with one cluster/super node
with all the points (TAL is the generated tree). There-
fore, by summing eq. (?) over all merging steps of
average-linkage and canceling the terms in the tele-
scopic sum, we have:

(F+(TAL)� 0)+

1

2
(�({x1, . . . , xn})� �({x1}, . . . , {xn})) � 0.

Plugging values of � at the start and the end, we get:

F+(TAL) �
1

2
(1D-SUM-upper),

which implies the 1/2-approximation factor.

To prove eq. (?), we focus on a single step of average-
linkage where by Lemma 3.1 some two neighboring
clusters denoted as A and B get merged. Let C denote
the nodes on the left of A and let D denote the nodes
on the right of B (Figure 1).1 By merging two clusters
A,B, the change in the score of average-linkage is:

�Score-AL = wAB(|C|+ |D|)

Moreover, any separated triple i < j < k such that

Figure 1: Illustration of the merging process in 1D.

either i 2 C, j 2 A, k 2 B or i 2 A, j 2 B, k 2 D will
not be separated anymore after this merge. For each
such triple, the potential function drops by wij + wjk.
Therefore:

��� = (wAB |C|+ wAC |B|) + (wAB |D|+ wBD|A|)

To compare the two, we show that wAB(|C|+ |D|) �
wAC |B|+ wBD|A|, and hence:

�Score-AL = wAB(|C|+ |D|) � wAC |B|+ wBD|A|
= �����Score-AL ,

which implies eq. (?) as desired. To prove the last
claim, note that average-linkage picks the pair (A,B)
over both (A,C) and (B,D). Therefore, by definition
of average-linkage:

wAB

|A||B| �
wAC

|A||C| =) wAB |C| � wAC |B|

1Note that C,D may be empty sets.

wAB

|A||B| �
wBD

|B||D| =) wAB |D| � wBD|A|

By summing above inequalities, we get wAB(|C| +
|D|) � wAC |B|+wBD|A|, which finishes the proof.

As a final note, in Section 5 we discuss hard instances
for average-linkage under Gaussian kernels when d = 1,
where we essentially show the result of Theorem 3.2
is tight when comparing against 1D-SUM-upper, and
there is no hope to get an approximation factor better
than 3

4 for average-linkage in general for d = 1.

Random Cut. The following algorithm (termed as
Random Cut) picks a uniformly random point r in
the range [x1, xn] and divides the set of points into left
and right using r as the splitter. The same process is
applied recursively until the leaves are reached.

Algorithm 1 Random Cut
Input: Integer n, points x1  · · ·  xn.
Output: Binary tree with leaves (x1, . . . , xn)

if n == 1 then
return New leaf containing x1.

end if
Pick r ⇠ U([x1, xn])
Let m be the largest integer such that xm  r.
Create new internal tree node x.
x.left = Random Cut(m,x1, . . . , xm)
x.right = Random Cut(n�m,xm+1, . . . , xn)
return x

Lemma 3.3. For d = 1 under any monotone distance-
based similarity measure wij = g(xi, xj) the algorithm
Random Cut obtains at least 1/2 fraction of the
1D-MAX-upper, and hence gives a 1

2 -approximation for
the objective F+ in expectation.

Proof. For every triple i < j < k conditioned on
partitioning the interval [i, k] for the first time the
longer edge amongst (xi, xj) and (xj , xk) gets cut with
probability p1 � 1/2 and the shorter with probability
p2  1/2 so that p1 + p2 = 1. W.l.o.g let’s assume
that (xi, xj) is the longer edge. Then the algorithm
Random Cut scores wjkp1+wij(1�p1) in expectation
for the (i, j, k) triple. Note that:

wjkp1 + wij(1� p1)

= (wjk � wij)

✓
p1 �

1

2

◆
+

1

2
(wij + wjk) �

1

2
(wij + wjk)

By the linearity of expectation taking the sum over
all triples i < j < k Random Cut scores at least
1/2 of 1D-MAX-upper in expectation and hence gives
1
2 -approximation for the objective F+.

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev

4 Hierarchical Clustering in High

Dimensions

We now describe an algorithm Projected Random
Cut which we use for high-dimensional data. This
algorithm is given as Algorithm 2. It first projects on
a random spherical Gaussian vector and then clusters
the resulting projections using Random Cut.

Algorithm 2 Projected Random Cut

Input: Integer n, vectors v1, . . . , vn 2 Rd.
Output: Binary tree with leaves (v1, . . . , vn)

Pick a random Gaussian vector g ⇠ Nd(0, 1)
Compute dot products xi = hvi,gi
xi1 , . . . xin = Sort(x1, . . . , xn)
return Random Cut(n, xi1 , . . . , xin)

Theorem 4.1. For any input set of vectors
v1, . . . , vn 2 Rd the algorithm Projected Random
Cut gives an ↵-approximation (in expectation) for
the objective F+ under the Gaussian kernel similarity
measure wij ⇠ e

�kvi�vjk2
2/2�

2

where ↵ = (1 + �)/3 for

� = mini,j exp(�kvi�vjk2
2

2�2).

Proof. 2 Recall an upper bound on the optimum:

OPT  MAX-upper =
X

i<j<k

max(wij , wik, wjk).

Fix any triple (i, j, k) where i < j < k. Note
that the objective value achieved by the algorithm
Projected Random Cut can also be expressed as
ALG =

P
i<j<k ALGi,j,k where ALGi,j,k is the contri-

bution to the objective from the triple (i, j, k) defined
as follows. Consider the tree constructed by the algo-
rithm. If vk is the first vector in the triple (vi, vj , vk)
to be separated from the other two in the hierarchical
partition (starting from the root) then Ai,j,k is defined
to be wij (in the other two cases when i or j are sepa-
rated first the definition is analogous). Note that since
Projected Random Cut is a randomized algorithm
ALGi,j,k is a random variable. By the linearity of
expectation we have E[ALG] =

P
i<j<k E[ALGi,j,k].

Thus in order to complete the proof it su�ces to show
that for every i < j < k it holds that:

E[ALGi,j,k] � ↵max(wij , wik, wjk).

Fix any triple (vi, vj , vk) which forms a triangle in
Rd. Conditioned on cutting this triangle for the first

2In the supplement, you can find this result (using ex-
actly the same proof) restated in terms of the multiplicative
Lipschitz constant of any given distance-based similarity
measure.

v1 v2

v3

✓1

✓2
✓3

(`3)

(`1)

(`2)

x

y

z

✓

gg?

Figure 2: Projecting the triangle (v1, v2, v3) on g.

time let (pij , pik, pjk) be the vector of probabilities
corresponding to the events that the corresponding
edge is not cut, i.e., this is the probability that we
score the contribution of this edge in the objective.
Note that pij + pik + pjk = 1.

Consider any triangle whose vertices are vi, vj , vk. To
simplify presentation we set i = 1, j = 2, k = 3. We
can assume that kv2 � v1k � kv2 � v3k � kv1 � v3k.
Let ✓1 = \ (v1 � v3, v2 � v3), ✓2 = \ (v2 � v1, v3 � v1)
and ✓3 = \ (v1 � v2, v3 � v2) so that ✓1 � ✓2 � ✓3.
See Figure 2. Note that the probability that the i-th
longest side of the triangle has the longest projection
is then ✓i/⇡.

Lemma 4.2. If (v1, v3) is the shortest edge in the
triangle (v1, v2, v3) then it holds that p13 � 1

3

Proof. Suppose that g forms an angle ⇡/2 � ✓ with
(v3 � v1), i.e. the vector g? orthogonal to g forms
angle ✓ with v3 � v1. We define three auxiliary points
x, y, z as follows (see also Figure 2.). Let `1 be a line
parallel to g? going through v3, let `2 to be a line
parallel to g going through v2 and let `3 be the line
parallel to `1 going through v1. We then let x be the
intersection of `1 and (v1, v2), y be the intersection of
`1 and `2 and z be the intersection of `2 and `3 (see
Fig 2).

Thus the projections of v3�v1, v2�v1 and v2�v3 on g
are y�z, v2�z and v2�y. Hence conditioned on (v1, v2)
having the longest projection the probability of scoring
the contribution of (v2, v3) is given as p1223(✓) =

ky�zk
kz�v2k

since we are applying the Random Cut algorithm
after the projection. Note that by Thales’s theorem
we have p

12
23(✓) =

ky�zk
kz�v2k = kx�v1k

kv2�v1k . Applying the law

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev

of sines to the triangles (v1, v2, v3) and (x, v1, v3) we
have:

sin ✓1
kv1 � v2k

=
sin(✓1 + ✓2)

kv1 � v3k
,

sin ✓

kv1 � xk =
sin(✓ + ✓2)

kv1 � v3k
,

where we used the fact that sin ✓3 = sin(⇡� ✓1 � ✓2) =
sin(✓1 + ✓2) and similarly sin(\ (v3 � x, v1 � x)) =
sin(✓ + ✓2). Using the above we can express p

12
23(✓)

as:

p
12
23(✓) =

sin ✓

sin(✓ + ✓2)

sin(✓1 + ✓2)

sin ✓1

Thus the overall probability of scoring the contribution
of the edge (v1, v3) conditioned on (v1, v2) having the
longest projection which we denote as p1213 is given as:

p
12
23 =

1

✓1

Z ✓1

0
p
12
23d✓

Similarly, consider the probability p
12
13 of scoring the

contribution of (v1, v3) conditioned on (v1, v2) having
the longest projection. We can express it as:

p
12
13 =

1

✓1

Z ✓1

0
p
12
13(✓)d✓,

where

p
12
13(✓) =

sin ✓

sin(✓ + ✓3)

sin(✓1 + ✓3)

sin ✓1
.

Below we will show that p
12
13 � p

12
23. In fact, we will

show that for any fixed ✓ 2 [0, ✓1] it holds that p1213(✓) �
p
12
23(✓). Comparing the expressions for both it su�ces

to show that sin(✓1+✓3)
sin(✓+✓3)

� sin(✓1+✓2)
sin(✓+✓2)

for all ✓ 2 [0, ✓1].
Since ✓1 = ⇡ � ✓2 � ✓3 this is equivalent to:

sin ✓3
sin(✓ + ✓2)

 sin ✓2
sin(✓ + ✓3)

It su�ces to show that:

sin ✓3 sin(✓ + ✓3)  sin ✓2 sin(✓ + ✓2)

Using the formula sin↵ sin� = 1
2 (cos(↵� �)� cos(↵+

�)) it su�ces to show that:

cos(✓ + 2✓3) � cos(✓ + 2✓2).

The above inequality follows for all ✓ 2 [0, ⇡ � ✓2 � ✓3]
since ✓3  ✓2 . This shows that p

12
13 � p

12
23. Since the

probability that (v1, v2) has the longest projection is
✓1/⇡ we have that the probability of scoring (v1, v3)
and (v1, v2) having the longest projection is at least
✓1
2⇡ . An analogous argument shows that the probabil-
ity of scoring (v1, v3) and (v2, v3) having the longest
projection is at least ✓2

2⇡ .

Putting things together:

p13 � 1

2

✓1 + ✓2

⇡
=

1

2

⇡ � ✓3

⇡
� 1

3
,

where we used that ✓3  ⇡/3 since ✓3  ✓2  ✓1.

We are now ready to complete the proof of Theorem 4.1.

Let � =
2
3 �

(1+�) and note that � � �/3 since �  1.

If p13 � 1/3 + � then the desired guarantee follows
immediately. Otherwise, if p13  1/3+ � then we have:

E[ALG1,2,3]

OPT1,2,3
=

p13w13 + p12w12 + p23w23

w13

� 1

3
+

✓
2

3
� �

◆
w12

w13
� 1

3
+

✓
2

3
� �

◆
�

=
1

3
+

2

3

�

1 + �
� 1 + �

3
,

where we used the fact that

w12

w13
= e

kv1�v3k22�kv1�v2k22
2�2 � e

�kv1�v2k22
2�2 � �.

4.1 Gaussian Kernels with small �

Theorem 4.1 only provides an improved approximation
guarantee for Projected Random Cut compared to
the factor 1/3 (i.e., the tight approximation guarantees
of average-linkage in high dimensions; see Section 5) if

� is not too small, where � = mini,j exp(�kvi�vjk2
2

2�2). In
particular, we get constant improvement if � = ⌦(1). Is
this a reasonable assumption? Interestingly, we answer
this question in the a�rmative by showing that if we
have � = exp(�⌦̃(n)), then the Gaussian kernel can en-
code arbitrary similarity weights (up to scaling, which
has no e↵ects on multiplicative approximations). For
simplicity, we only prove this result for {✏, 1} weights
here, while it can be generalized to arbitrary weights.

Theorem 4.3. Given any undirected graph G = (V,E)
on n nodes and ✏ > 0, there exist unit vectors {kv}v2V

in Rd and bandwidth parameter � 2 R+, such that
d = O(n2), 1

�2 = ⌦(n log(1/✏)), and for some ↵ > 0
we have:

8(u, v) 2 E : e�
kku�kvk22

2�2 = ↵,

8(u, v) /2 E : e�
kku�kvk22

2�2 = ↵✏.

Proof. Our proof is constructive. Let d =
�n
2

�
. Pick

orthogonal vectors {xe}e2E in Rd such that kxek2 =
1

dudv
, where du is the degree of node u in graph G. For

each v 2 V , define yv 2 Rd as follows:

yv ,
X

(u,v)2E

(dudv)xuv.

Note that kyvk22 =
P

(u,v)2E d
2
ud

2
v

1
d2
ud

2
v

= dv As the

next step, pick a set of n orthonormal vectors {zv}
in the null space of {yv}v2V . Finally, for each v 2 V ,
define the final vector kv 2 Rd as follows:

kv ,
r
1� dv

n
zv +

r
1

n
yv

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev

First, note that these vectors have unit length:

kkvk22 = 1� dv

n
+

kyvk22
n

= 1� dv

n
+

dv

n
= 1

Now, pick any two vertices u and v. If (u, v) /2 E, then:

hku, kvi = h
r
1� dv

n
zu +

r
1

n
yu,

r
1� dv

n
zv +

r
1

n
yvi

=
1

n
hyu, yvi = 0 ,

where we used the fact that hzu, zvi = 0 , hzu, yvi =
hzv, yui = 0 and the fact that hxe, xe0i = 0 for every
edge e incident to u and every edge e

0 incident to v, as
e 6= e

0 when (u, v) /2 E. Similarly, when (u, v) 2 E:

hku, kvi =
1

n
hyu, yvi =

1

n
(d2ud

2
vkxuvk22) =

1

n

Now, consider a Gaussian kernel with bandwidth � =
(n log(1/✏))�

1
2 and vectors {kv}v2V . Since kku�kvk22 =

2(1� hku, kvi) from the above calculations of the inner
products it follows that:

8(u, v) 2 E : e�
kku�kvk22

2�2 = e
� 1�1/n

�2 ,

8(u, v) /2 E : e�
kku�kvk22

2�2 = e
� 1

�2 .

Thus the ratio is e�
1

n�2 = ✏, as desired.

5 Hard Instances for Average-Linkage

under Gaussian Kernel Similarity

High-dimensional case. We embed the construc-
tion of [CCN19] shown in Figure 3 into vectors with
similarities given by the Gaussian kernel.

Theorem 5.1. There exists a set of vectors
v1, . . . , vn 2 Rd for d = poly(log n) for which the
average-linkage clustering algorithm achieves an ap-
proximation at most 1

3 + o(1) for F+ under the Gaus-
sian kernel similarity measure.

Proof of Theorem 5. We start by this theorem:

Theorem 5.2 ([CCN19]). For any constant ✏ 2 (0, 1)
the instance I average-linkage clustering achieves the
value of F+ at most 1

6n
8/3+O(n7/3) while the optimum

is at least 1
2n

8/3 �O(n7/3).

Let �, ⌧ > 0 be real-valued parameters to be chosen
later. We use indices i and j to index our set of vectors.
For i 2 {1, 2, . . . , n1/3}, j 2 {1, 2, . . . , n2/3} let

vi,j = �(ei + (1 + ⌧)ek+j),

where k = n
1/3 and ei is the t-th standard unit vector

et = (0 . . . , 1, . . . , 0) with the 1 in the t-th entry. Then

K
n2/3

K
n2/3

K
n2/3

K
n1/3Kn1/3Kn1/3 K

n1/3Kn1/3Kn1/3

1� ✏

1

Figure 3: Hard instance I from [CCN19]. Vertices in
orange blocks form cliques of size n

2/3 connected by
edges of similarity 1� ✏, vertices in blue blocks form
cliques of size n

1/3 connected by edges of similarity 1,
all other pairs have similarity 0.

it is easy to see that for any fixed i 2 [n1/3] and j1 6=
j2 2 [n2/3] it holds that:

kvi,j1 � vi,j2k22 = 2(1 + ⌧)2�2

Similarly, for any fixed j 2 [n2/3] and i1 6= i2 2 [n1/3]
it holds that:

kvi1,j � vi2,jk22 = 2�2
.

Otherwise if i1 6= i2 2 [n1/3] and j1 6= j2 2 [n2/3] then:

kvi1,j1 � vi2,j2k22 = 2�2 + 2(1 + ⌧)2�2 � 4�2
.

By setting �2 = 2�2
c log n for a su�ciently large

constant c the contribution of pairs of vectors with
i1 6= i2 and j1 6= j2 can be made negligible. Let
2(1 + ⌧)2�2 = ↵ and 2�2 = �. The rest of the pairs
correspond to a hard instance I for which average-
linkage only achieves a 1

3 + o(1)-approximation com-
pared to the optimum. By setting ⌧ = 1/poly(log(n))

we have e(�
2�↵2)/2�2

= ⌦(1) and hence by Theorem 5.2
it follows that average-linkage clustering can’t achieve
better than 1/3 + o(1) approximation for this instance.

Finally, note that by applying the Johnson-
Lindenstrauss transform we can reduce the dimension
required for the above reduction to d = poly(log n).
Indeed, projecting on a random subspace of dimension
O(logn

⇠2) would preserve `
2
2-distances between all pairs

of vectors up to a multiplicative factor of (1±⇠) setting
⇠ = ⌧

10 = 1/poly(log n) it follows that our hard instance
can be embedded in dimension d = poly(log n).

Low-dimensional case. For d = 1 a hard instance
for average-linkage clustering can also be constructed.

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev

Lemma 5.3. For points x1, . . . , xn 2 R average-
linkage clustering achieves approximation at most 3/4
for F+ under the Gaussian kernel similarity measure.

Proof. The instance consists of four equally spaced
points on a line, i.e. 0,�, 2�, 3�. Slightly shifting
the two middle points leads average-linkage to first
connect the two middle points. An alternative solution
is to merge (0,�) and (2�, 3�) and then merge those
together (calculations are in the supplement).

Corollary 5.4. In the instance of Lemma 5.3, the
1D-SUM-upper evaluates to (

p
2⇡�)�n6e��2/2�2

, and
hence average-linkage cannot obtain more than 1/2 of
1D-SUM-upper.

6 Experimental Results

In this section we demonstrate the quality of the solu-
tion returned by Projected Random Cut (PRC)
on a small dataset, and highlight that running time
only scales linearly on a large dataset. PRC does
not compute the similarity weights (i.e., it only takes
one pass over the feature vectors with dimension-free
memory requirements) and then sorts the projected
points in time O(n log n). Hence, it is fast even in
use-cases with over millions of datapoints (in contrast
to average-linkage, spectral clustering, or even single-
linkage which all have superlinear running times in
high dimensions). We run PRC algorithm on two real
datasets from the UCI ML repository [Lic13]: (i) the
Zoo dataset [Lic13, VD16] (the small dataset) that
contains 100 animals given as 16D feature vectors (this
dataset comes from applications in biology), and (ii)
the SIFT10M dataset [FMMA14] (the large dataset)
that contains around 10M datapoints, where each dat-
apoint is a 128D Scale Invariant Feature Transform
(SIFT) vector (this dataset comes from applications
in computer vision). For more details, refer to the
supplement §D.

Small dataset (Zoo). We compare PRC to (i) the
recursive spectral clustering using the second eigenvec-
tor of the normalized Laplacian of the weight matrix
(Spectral) [CNC18], (ii) average-linkage (AL), and
(iii) MAX-upper, an upper-bound on the objective value
of the optimum tree; see Section 2. In contrast to PRC,
these three benchmarks need to compute the weights
and are slow on large datasets. Table 3 summarizes
the results of this experiment for various values of �.
The fifth column gives an empirically observed approx-
imation guarantee for PRC by comparing it against
the upper bound on optimum MAX-upper for F+. We
observe that PRC attains better approximation factors
(⇡ [0.75, . . . , 0.92]) compared to Spectral and AL,
even though it runs faster (in almost linear-time).

� PRC Spectral AL MAX-upper PRC
MAX-upper

1.5 48 61 28 64 0.75
2 64 83 47 87 0.74
2.5 83 100 66 105 0.79
3 100 112 82 117 0.85
3.5 111 121 95 126 0.87
4 117 128 105 132 0.88
4.5 123 133 114 137 0.91
5 129 137 120 140 0.92

Table 1: Values of the objective (times 10�3) on the
Zoo dataset (averaged over 10 runs).

Size PRC (seconds) 1 Data Pass (seconds)

10K 1.7 1.5
100K 13 9.6
500K 67 46.4
1M 135 99.7
10M 1592 1144

Table 2: Running times of PRC and one pass.

On the choice of bandwidth parameter �, as a rule of
thumb, we find an interval [↵, �] such that the sim-
ilarity scores are meaningful: notice that if � is too
small (� < ↵) or too large (� > �), then all similar-
ities become close to 0 or 1 respectively, due to the
exponentiation of the Gaussian similarity; this would
result to artificially inflated approximation guarantees
(> 98%), since the graph is now almost a clique (with
the same edge weights) and it is known [Das16] that
all HC of such cliques have the same objective value.
We end up with ↵ = 1.5, � = 5. For completeness, in
the supplement, we also extend our experiments by
evaluating 4 more similarity scores: cosine similarity,
appropriately scaled `1 and `2 norms and Jaccard sim-
ilarity, achieving comparable results to the Gaussian
kernel.

Large dataset (SIFT10M) The focus of this ex-
periment is measuring the running time of PRC, and
showing that it only scales linearly with the dataset
size. Note that evaluating the performance of any other
algorithm or upper bound (or even one pass over the
similarity matrix) would be prohibitive. We run PRC
on truncated versions of SIFT10M of sizes 10K, 100K,
500K, 1M and 10M. � is set to 450 3. We emphasize
that our PRC algorithm runs extremely fast on a 2014
MacBook4. The running times are summarized in Ta-
ble 2. Observe that PRC scales almost linearly with
the data and has almost the same running time as just
a single pass over the datapoints.

3Note that the � value does not a↵ect the running time.
4System specs: 8 GB 1600 MHz DDR3 RAM, 2,5 GHz

Intel Core i5 CPU.

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev

References

[BBD+17] Mohammadhossein Bateni, Soheil
Behnezhad, Mahsa Derakhshan, Mo-
hammadTaghi Hajiaghayi, Raimondas
Kiveris, Silvio Lattanzi, and Vahab
Mirrokni. A�nity clustering: Hierar-
chical clustering at scale. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 30,
pages 6864–6874. Curran Associates,
Inc., 2017.

[Ber06] Pavel Berkhin. A survey of cluster-
ing data mining techniques. In Group-
ing multidimensional data, pages 25–71.
Springer, 2006.

[CAKMT17] Vincent Cohen-Addad, Varun Kanade,
and Frederik Mallmann-Trenn. Hier-
archical clustering beyond the worst-
case. In Advances in Neural Informa-
tion Processing Systems, pages 6202–
6210, 2017.

[CAKMTM18] Vincent Cohen-Addad, Varun Kanade,
Frederik Mallmann-Trenn, and Claire
Mathieu. Hierarchical clustering: Ob-
jective functions and algorithms. In
Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 378–397. SIAM,
2018.

[CC17] Moses Charikar and Vaggos Chatzi-
afratis. Approximate hierarchical clus-
tering via sparsest cut and spreading
metrics. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 841–
854. Society for Industrial and Applied
Mathematics, 2017.

[CCN19] Moses Charikar, Vaggos Chatziafratis,
and Rad Niazadeh. Hierarchical clus-
tering better than average-linkage. In
Proceeding of the ACM-SIAM Sympo-
sium on Discrete Algorithms, 2019.

[CNC18] Vaggos Chatziafratis, Rad Niazadeh,
and Moses Charikar. Hierarchical clus-
tering with structural constraints. In
International Conference on Machine
Learning, pages 773–782, 2018.

[Das16] Sanjoy Dasgupta. A cost function for
similarity-based hierarchical clustering.

In Proceedings of the forty-eighth an-
nual ACM symposium on Theory of
Computing, pages 118–127. ACM, 2016.

[DBE+15] Ibai Diez, Paolo Bonifazi, Iñaki Escud-
ero, Beatriz Mateos, Miguel A Muñoz,
Sebastiano Stramaglia, and Jesus M
Cortes. A novel brain partition high-
lights the modular skeleton shared by
structure and function. Scientific re-
ports, 5:10532, 2015.

[ESBB98] Michael B Eisen, Paul T Spellman,
Patrick O Brown, and David Botstein.
Cluster analysis and display of genome-
wide expression patterns. Proceedings
of the National Academy of Sciences,
95(25):14863–14868, 1998.

[FMMA14] Xiping Fu, Brendan McCane, Steven
Mills, and Michael Albert. Nokmeans:
Non-orthogonal k-means hashing. In
Asian Conference on Computer Vision,
pages 162–177. Springer, 2014.

[Gär03] Thomas Gärtner. A survey of kernels
for structured data. ACM SIGKDD
Explorations Newsletter, 5(1):49–58,
2003.

[GHP07] Gregory Gri�n, Alex Holub, and
Pietro Perona. Caltech-256 object cat-
egory dataset. 2007.

[JS68] N Jardine and R Sibson. A model for
taxonomy. Mathematical Biosciences,
2(3-4):465–482, 1968.

[Lic13] Moshe Lichman. Uci machine learning
repository, zoo dataset, 2013.

[LRU14] Jure Leskovec, Anand Rajaraman, and
Je↵rey David Ullman. Mining of mas-
sive datasets. Cambridge university
press, 2014.

[McS01] Frank McSherry. Spectral partitioning
of random graphs. In focs, page 529.
IEEE, 2001.

[MMO08] Charles F Mann, David W Matula, and
Eli V Olinick. The use of sparsest cuts
to reveal the hierarchical community
structure of social networks. Social
Networks, 30(3):223–234, 2008.

[MRS08] Christopher D. Manning, Prabhakar
Raghavan, and Hinrich Schütze. Intro-
duction to information retrieval. Cam-
bridge University Press, 2008.

Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, Grigory Yaroslavtsev

[MW17] Benjamin Moseley and Joshua Wang.
Approximation bounds for hierarchical
clustering: Average linkage, bisecting
k-means, and local search. In Advances
in Neural Information Processing Sys-
tems, pages 3097–3106, 2017.

[RP16] Aurko Roy and Sebastian Pokutta. Hi-
erarchical clustering via spreading met-
rics. In Advances in Neural Informa-
tion Processing Systems, pages 2316–
2324, 2016.

[SKK+00a] Michael Steinbach, George Karypis,
Vipin Kumar, et al. A comparison
of document clustering techniques. In
KDD workshop on text mining, volume
400, pages 525–526. Boston, 2000.

[SKK+00b] Michael Steinbach, George Karypis,
Vipin Kumar, et al. A comparison
of document clustering techniques. In
KDD workshop on text mining, volume
400, pages 525–526. Boston, 2000.

[SS62] Peter HA Sneath and Robert R
Sokal. Numerical taxonomy. Nature,
193(4818):855–860, 1962.

[TLM10] Michele Tumminello, Fabrizio Lillo,
and Rosario N Mantegna. Correlation,
hierarchies, and networks in financial
markets. Journal of Economic Behav-
ior & Organization, 75(1):40–58, 2010.

[VD16] Sharad Vikram and Sanjoy Dasgupta.
Interactive bayesian hierarchical clus-
tering. In International Conference on
Machine Learning, pages 2081–2090,
2016.

[VF10] Andrea Vedaldi and Brian Fulkerson.
Vlfeat: An open and portable library
of computer vision algorithms. In Pro-
ceedings of the 18th ACM international
conference on Multimedia, pages 1469–
1472. ACM, 2010.

[YV18] Grigory Yaroslavtsev and Adithya
Vadapalli. Massively parallel algo-
rithms and hardness for single-linkage
clustering under `p distances. In Pro-
ceedings of the 35th International Con-
ference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, pages 5596–
5605, 2018.

[ZMP05] Lihi Zelnik-Manor and Pietro Perona.
Self-tuning spectral clustering. In Ad-
vances in neural information processing
systems, pages 1601–1608, 2005.

	Introduction
	Preliminaries
	Hierarchical Clustering in 1D
	Hierarchical Clustering in High Dimensions
	Gaussian Kernels with small

	Hard Instances for Average-Linkage under Gaussian Kernel Similarity
	Experimental Results
	Further Related Work
	Deferred Discussions of sec:1d
	Deferred Proofs of Sections 3, 5
	Extension of Proof of thm:high-dimensional to General Similarities
	Greedy Cutting and Single-linkage.
	Deferred Discussions in sec:experiment

