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Abstract

Hierarchical Clustering is an unsupervised
data analysis method which has been
widely used for decades. Despite its popu-
larity, it had an underdeveloped analytical
foundation and to address this, Dasgupta
recently introduced an optimization view-
point of hierarchical clustering with pair-
wise similarity information that spurred a
line of work shedding light on old algo-
rithms (e.g., Average-Linkage), but also
designing new algorithms. Here, for the
maximization dual of Dasgupta’s objec-
tive (introduced by Moseley-Wang), we
present polynomial-time 0.4246 approxi-
mation algorithms that use MaAx-UNcCUT
BiISECTION as a subroutine. The previ-
ous best worst-case approximation factor
in polynomial time was 0.336, improving
only slightly over Average-Linkage which
achieves 1/3. Finally, we complement our
positive results by providing APX-hardness
(even for 0-1 similarities), under the SMALL
SET EXPANSION hypothesis.

1 Introduction

Hierarchical Clustering (HC) is a popular unsuper-
vised learning method which produces a recursive
decomposition of a dataset into clusters of increas-
ingly finer granularity. The output of HC is a hi-
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erarchical representation of the dataset in the form
of a tree (a.k.a. dendrogram) whose leaves corre-
spond to the data points. The internal nodes of the
tree correspond to clusters organized in a hierarchi-
cal fashion.

Since HC captures cluster structure at all lev-
els of granularity simultaneously, it offers several
advantages over a basic flat clustering (a parti-
tion of the data into a fixed number of clus-
ters) and it has been used for several decades
(see e.g., Ward’s method [WJ63]). It is one of
the most popular methods across a wide range
of fields e.g., in phylogenetics [SS62, JS68], where
many of the so-called linkage-based algorithms
(like Average/Single/Complete-Linkage) originated,
in gene expression data analysis [ESBB9S8|, the
analysis of social networks [LRU14, MMOO0S§],
bioinformatics [DBE'15], image and text classi-
fication [SKKT00], and even in financial mar-
kets [TLM10]. See classic texts [JMF99, MRSO08,
Jail0] for a standard introduction to HC and
linkage-based methods. Due to the importance of
HC, many variations (including linkage-based meth-
ods) are also currently implemented in standard sci-
entific computing packages and in large-scale sys-
tems [BBD117].

Despite the plethora of applications, until recently
there wasn’t a concrete objective associated with
HC methods (except for the Single-Linkage clus-
tering which enjoys a simple combinatorial struc-
ture due to the connection to minimum spanning
trees [GRG9]). This is in stark contrast with flat clus-
tering methods where k-means, k-median, k-center
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gap by introducing the following objective function:



Definition 1.1 (HC Objective [Dasl6]). Given a
similarity matriz with entries w;; > 0 corresponding
to similarities between data points i and j, let the hi-
erarchical clustering objective for a tree T be defined

as:
F(T) = Zwij|7-(i»j)|7
1<j
where |T(i,7)| denotes the number of leaves under
the least common ancestor of i and j.

The goal of HC under Dasgupta’s objective is to
minimize the function F~(7) among all possible
trees. Intuitively, the objective encourages solutions
that do not separate similar points (those with high
w;;) until the lower levels of the tree; this is because
|7 (i,7)| = n, if i,j are separated at the top split of
the tree T, whereas |T (i, 7)| = 2, if i, j are separated
at the very last level.

Dasgupta [Das16] further showed that many desir-
able properties hold for this objective with respect
to recovering ground truth hierarchical clusterings.
This was later strengthened both theoretically and
experimentally [CAKMTM19,RP16]. Although it is
not hard to see that the optimum tree should be
binary, it is not clear how one can optimize for it
given the vast search space. Surprisingly, [Das16]
established a connection with a standard graph par-
titioning primitive, SPARSEST-CUT, which had been
previously used to obtain HC in practice [MMOO8].
Later work [CC17] further showed a black-box con-
nection: an a-approximation for SPARSEST-CUT or
BALANCED-CUT gives an O(«)-approximation for
F~(T). Hence an O(+/logn)-approximation can
be computed in polynomial time by using the cel-
ebrated result of [ARV08]. A constant-factor hard-
ness is also known under the SMALL SET EXPANSION
hypothesis [CC17, RP16].

Building on Dasgupta’s work, Moseley and
Wang [MW17] gave the first approximation anal-
ysis of the Average-Linkage method. Specifically,
for the complement of Dasgupta’s objective (see
Definition 2.1), they proved that Average-Linkage
achieves a 1/3 approximation in the worst case.
That factor was marginally improved to 0.3363
in [CCN19] via an ad-hoc semidefinite programming
formulation of the problem. This was the state-of-
the-art in terms of approximation prior to this work
and was arguably complicated and impractical.

Contributions: In this paper, we extend the re-
cent line of research initiated by Dasgupta’s work
on objective-based hierarchical clustering for sim-
ilarity data, by significantly beating the previous
best-known approximation factor for the [MW17]
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objective and doing so with natural algorithms. Our
algorithm is based on a combination of MAX-UNCUT
BISECTION and AVERAGE-LINKAGE and guarantees
0.4246 of the value of the optimum hierarchical clus-
tering, whereas previous work based on semidefinite
programming [CCN19] only achieved 0.3363. An ad-
vantage of our algorithm is that it uses the MAX-
UNCUT BISECTION primitive as a black-box and the
approximation ratio gracefully degrades as a func-
tion of the quality of this primitive; this is in con-
trast with previous approaches [CCN19] which solve
complicated convex relaxations tailored to the ob-
jective. Since both theoretical and practical solu-
tions for MAX-UNCUT BISECTION are readily avail-
able in [ABG16, SS13], this results in a family of
algorithms which can be analyzed both rigorously
and empirically. We also complement our algorith-
mic results with hardness of approximation (APX-
hardness): assuming the SMALL SET EXPANSION
hypothesis, we prove that even for 0-1 similarities,
there exists ¢ > 0, such that it is NP-hard to ap-
proximate the [MW17] objective within a factor of
(1 —¢). A summary of our results compared to the
previous work is given in Table 1. Here we also point
out that % is a simple baseline achieved by a random
binary tree [MW17] and hence our work gives the
first major improvement over this baseline.

[MW17] | [CCN19] | Our paper

Approx. 1/3 0.3363 0.4246
Hardness || NP-hard - APX-hard
under SSE

Table 1: Our results for the [MW17] objective.

Further Related Work: HC has also been stud-
ied in the “semi-supervised” or “interactive” case,
where prior knowledge or expert advice is avail-
able, with or without the geometric information
on the data points. Examples of these works
include [EDSN11, EZK18], where they are inter-
ested in minimizing the number of (pairwise or
triplet) queries necessary to determine a ground
truth HC, and [VD16, CNC18] who provide tech-
niques for incorporating triplet constraints (the ana-
log of split/merge feedback [BB08, ABV17] or must-
link/cannot-link constraints [WCR™01, WC00] in
standard flat clustering) to get better hierarchical
trees. Furthermore, assuming the data points lie in
a metric space (instead of w;; being arbitrary simi-
larities), there are previous works that measure the
quality of a HC using standard flat-clustering ob-
jectives like k-means, k-median or k-center as prox-
ies [CCFMO04, Das02, Pla06, LNRW10] in order to



get approximation guarantees. Finally, in high di-
mensions when even running simple algorithms like
single-linkage becomes impractical due to the expo-
nential dependence on the dimension [YV17], one
can still efficiently achieve good approximations if
the similarities are generated with the fairly com-
mon Gaussian Kernel and other smooth similarity
measures, as is shown in [CCNY18].

Organization: We start by providing the neces-
sary background in Section 2. Then, we give our
0.4246 approximation algorithm for HC based on
Max-UNCUT BISECTION in Section 3 and our hard-
ness of approximation result in Section 4. Our con-
clusion is given in Section 5.

2 Preliminaries

We begin by setting the notation used throughout
the paper. The input to the HC problem is given
by an (explicit or implicit) n X n matrix of pairwise
similarities with non-negative entries w;; > 0 cor-
responding to the similarity between the i-th and
j-th data point (no triangle inequality is assumed
for the similarities). Sometimes we also refer to the
underlying weighted graph as G(V, E, w).

We denote by T a rooted tree whose leaves corre-
spond to the n vertices. For two leaves i, j, T(i,7)
denotes the subtree rooted in the least common an-
cestor of ¢ and j in T and |7 (4,7)| the number of
leaves contained in 7T (1, 7).

For a set S CV, w(S) == > (;jjesxs Wij denotes
the total weight of pairwise similarities inside S. For
a pair of disjoint sets (S,T) € V x V, w(S,T) =
> ies jer Wij denotes the total weight of pairwise
similarities between S and T.

Definition 2.1 (HC Objective [MW17]). For a tree
T consider the hierarchical clustering objective:

FUT)= Y wiyln—|T(i.4))

1<i<j<n

()

If we denote the total weight of the graph by W =
ZKJ- w;;, then note that a trivial upper bound on
the value of this objective is (n — 2)W.

AVERAGE-LINKAGE: One of the main algorithms
used in practice for HC, it starts by merging clusters
of data points that have the highest average similar-
ity. It is known that it achieves 1/3 approximation
for the Moseley-Wang objective and this is tight in
the worst case’ [CCN19]. For a formal description,
please refer to Algorithm 1.

! As is common in worst-case analysis of algorithms,
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Max-UNcuT BIsecTION: This is the complement
problem to MIN-CUT BISECTION (which is perhaps
more standard in the literature), and the goal here
is to split the vertices of a weighted graph into two
sets (9,9), such that the weight of uncut edges
dijer Wij — D ics.jes Wij 1s maximized. It is known
that one can achieve at least .8776 of the optimum
value in polynomial time [ABG16, WDX15].

Algorithm 1 AVERAGE-LINKAGE

input: Similarity matrix w € RZ3".

Initialize clusters C < Uyev {v}.
while |C| > 2 do
Pick A, B € C to maximize:
w(A, B) = ﬁ > acAbeB Wab
Set C + CU{AUB}\ {A, B}

end while

Algorithm 2 HC via MAX-UNCUT BISECTION

1: input: Similarity matrix w € RZj".

2: Partition the underlying graph on n vertices
with edges weighted by w into two parts S and S
using MAX-UNcCUT BISECTION as a black box.
This creates the top split in the hierarchical clus-
tering tree.

3: Run AVERAGE-LINKAGE on S and on S to get
trees Ts and 7g.

4: Construct the resulting HC tree by first splitting
into (S,5), then building trees 7s and T3 on the
respective sets.

3 Owur 0.4246 approximation for HC

Our algorithm, based on MAX-UNCUT BISECTION
and AVERAGE-LINKAGE, is simple to state and is
given in Algorithm 2. It starts by finding an ap-
proximate solution to MAX-UNCUT BISECTION, fol-
lowed by AVERAGE-LINKAGE agglomerative hierar-
chical clustering in each of the two pieces?. Our
main result is that the better between Algorithm 1
and Algorithm 2 will produce a binary tree which
achieves 0.4246 of the optimum:

Theorem 3.1. Given an instance of hierarchical
clustering, either Algorithm 1 or Algorithm 2 will

the 1/3 tightness for Average-Linkage is based on a
rather brittle pathological counterexample, even though
its performance is much better in practice (see for exam-
ple [CCNY18]).

2With no change in approximation, one can also run
MAx-UNcUT BISECTION recursively, however running
AVERAGE-LINKAGE is typically substantially more effi-
cient.



output a tree achieving % —o(1) > 0.4246 (for
p = 0.8776) of the optimum according to the objec-
tive (*), if a p-approxzimation for the MAX-UNCUT
BISECTION problem is used as a black-bozx.

Remark: The current best approximation factor
achievable for MAX-UNCUT BISECTION in polyno-
mial time is p = 0.8776. This makes our analysis
almost tight, since one can’t get better than 0.444
even by using an exact MAX-UNCUT BISECTION al-
gorithm (with p = 1).

3.1 Overview of the proof

Before delving into the technical details of the main
proof, we present our high-level strategy through a
series of 4 main steps:

Step 1: Consider a binary® tree 7* corresponding
to the optimal solution for the hierarchical cluster-
ing problem and let OPT = FT(7T*) be the value
of the objective function for this tree. Note that
there exists a subtree 7* in this tree which contains
more than n/2 leaves while its two children contain
at most n/2 leaves each (see Figure 1). Given this
decomposition of the optimum tree into three size
restricted sets A, B, C, we provide an upper bound
for OPT as a function of the weight inside and across
these sets (see Proposition 3.2). We then need to do
a case analysis based on whether the weight across
or inside these sets is larger.

Step 2: In the former case, things are easy as
one can show that OPT is small and that the con-
tribution from AVERAGE-LINKAGE alone yields a
%—approximation. This is carried out in Proposi-
tion 3.4 based on the Fact 3.3.

Step 3: In the latter case, we show that there ex-
ists a split of the graph into two exactly equal pieces,
so that the weight of the uncut edges is relatively
large. This is crucial in the analysis as having a
good solution to the Max-UncuT BISECTION di-
rectly translates into a high value returned by the
p-approximate black box algorithm (see Lemma 3.5,
Proposition 3.6 and Proposition 3.7).

Step 4: Finally, from the previous step we know
that the returned value of the black box is large,
hence taking into account the form of the HC objec-
tive, we can derive a lower bound for the value our
Algorithm 2. The proof of the main theorem is then
completed by Proposition 3.8 and Lemma 3.9.

3W.l.o.g. the optimal tree can be made binary.
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Figure 1: Splitting 7™ to size restricted sets A, B, C.

3.2 Proof of Theorem 3.1

For ease of presentation, we assume n is even (to
avoid the floor/ceiling notation) and we omit the
o(1) terms.

Proposition 3.2. Let A be the set of leaves in the
left subtree of T*, let B the set of leaves in the right
subtree of T* and C = V \ (AU B) be the set of

leaves outside of T*. Then*:
OPT < (w(A) + w(B) + w(C)) - (n — 2)+

+ (w(A, B) + w(B,C) +w(A,C)) - |C]

Proof. For an edge (i,7) whose endpoints lie in the
same cluster (i.e., A, B or C), its contribution to
the objective is at most w;;(n — 2), using the trivial
upper bound of (n—2) for the non-leaves term of the
objective. Consider any pair of leaves (i,j) € Ax B
in 7. The least common ancestor for this pair is the
root of 7* and hence the contribution of this pair to
the objective is equal to w;j(n — |T*|) = wy;|C|.
Similarly, for any pair of leaves (i,j) € A x C
(or in B x (), their least common ancestor is a

predecessor of the root of 7+ and hence the con-
tribution of this pair to the objective is at most
wij(n — |T*]) = w;;|C|. The desired bound now
follows by summing up all the contributions of all
distinct pairs of leaves. O

From now on, let a = w(A) + w(B) + w(C) and
let 8 = w(A,B)+ w(B,C) + w(A,C) denote the
total weights of similarities inside the three sets and

4By definition, A, B contain at most 5 leaves, while
C' contains strictly fewer than 7 leaves.



crossing a pair of these sets respectively. Note the
total weight of all similarities is W = a + .

Fact 3.3 (AVERAGE-LINKAGE [MW17]). The
AVERAGE-LINKAGE algorithm gives a solution
whose FT objective is at least W (n —2) = L(a +
B)(n—2).

Proposition 3.4. If o < 3, our Algorithm 2 out-
puts a solution of value at least 4/90PT > 0.440PT,
where OPT denotes the HC value of any optimum so-
lution.

Proof. Recall that by definition of C' it holds that
ICl <2 = |C| < 2%2—-1< ™2 Hence by
Proposition 3.2 we have OPT < a(n —2) + |C] - 8 <
a(n —2) + 2523, On the other hand, by Fact 3.3,
Average-Linkage outputs a solution whose expected
value is 3 (o + )(n—2). We have 3(a+ 3)(n—2) —
3(a(n —2) + 252B8) = (B — a) > 0. Hence, just
running Average-Linkage alone (i.e., Algorithm 1)
gives a %—approximation in this case. O

Lemma 3.5. Suppose o > (3. Then, there exists
a balanced cut (L, R) of the nodes in G, such that
the weight of the uncut edges is at least o — (v —

B)0maz(c), where ¢ = |C|/n and dpax(c) = s}

Proof. For the partition (A, B,C) we will refer to
edges whose endpoints are both inside one of the
three sets as red edges (i.e., (i,7) € (A x A) U (B x
B) U (C x C)). We refer to the edges whose two
endpoints are contained in two different sets as blue
edges (i.e., (i,j) € (Ax B)U (A x C)U (B x ()).
Our goal here is to give a randomized partitioning
scheme that produces the bisection (L, R) with high
value of uncut weight lying inside L, R.

For simplicity, recall that n is even. The case of
odd n is handled similarly. Denote a = |A|/n and
b = |B|/n. Let a = 1/2 — a, b= 1/2 — b, and
¢ =1/2—c. Note that a, b are non-negative, and ¢ is
strictly positive due to the size restrictions. Define:

2b¢ 2a¢ 2ab
A= === B= =—=3, IC = ——=—
(b+2)2 (a+0)? (@+ )2
and
4= qgBqc
9498 + qBYc + qaqc’
oy = qaqc
qa9B + 9Bqc + qaqc’
qdAqB
pc =

qAqB + qBqc + qaqc
We also denote the following expression by ¢:
_ q4A 4B 4c
qAqB + qBqc + qaqc

Consider the following partitioning procedure:

e Pick one of the sets A, B, or C with probability
pA, P, and pc, respectively (note that pa +
pp +pc =1).

e If the chosen set is A, partition it into two ran-
dom sets Sp and S¢ of size b|A|/(b + ¢) and

¢|A|/(b+ ¢) and output the cut L = B U S,
R=CUS¢.

e Similarly, if the chosen set is B, we partition
it into two random sets S4 and Sc of size
a|B|/(a + ¢) and ¢|B|/(a + ¢) and output the
cut L=CUSe, R=AUS,4.

e If the chosen set is C, we partition it into two
random sets S4 and Sp of size a|C|/(a+b) and
b|C|/(@+ b) and output the cut L = AU Sy,
R=BUSg.

We first observe that each of the output sets L and
R has n/2 vertices, i.e., (L, R) is a bisection of the
graph. If for instance, the algorithm picks set A at
the first step, then the set L contains |B|+b|A|/(b+
¢) vertices. We have

b 1/2—b
|L|:|B|+~—~\A|:bn+/7~an:
o 1—b—c
1/2 -0
:bn+ / 'an:g-

The set R is the complement to L, thus, it also con-
tains n/2 vertices. The cases when the algorithm
picks the set B or C' are identical.

We now compute the expected weight of red edges
in the bisection (L, R).

Proposition 3.6. The expected weight of uncut red
edges is (1 — 0)a.

Proof. Again, assume that the algorithm picks the
set A at the first step. Then, the sets B and C are
contained in the sets L and R, respectively. Conse-
quently, no edges in B and C' are in the cut between
L and R. Every edge in A is cut with probability
2b¢/(b + ¢)2. Thus, the weight of red edges in the
cut between L and R (denoted as E"*?(L, R)) given
that the algorithm picks set A equals:

E [|[E™(L,R)| | algorithm picks A at first step| =
2b¢

~ w

(b+¢)?

(4) = qaw(A).



Similarly, if the algorithm picks the set B or C,
the expected sizes of the cuts equal ¢pw(B) and
gow(C), respectively. Hence, the expected weight
of the red edges between L and R (when we do not
condition on the first step of the algorithm) equals

E [|[E™(L, R)|] = pagaw(A)+ppgpw(B)+pc gcw(C)

Observe that

qA 9B qc
qAqB + 9Bqc + qaqc

bAgA = PBYB = pPcqc =

Then, the expected weight of red edges between L
and R equals:

E [|E™(L, R)|] = 6(w(A) + w(B) + w(C)) = da.

Here, we used that w(A) + w(B) + w(C) = a and
we conclude that the expected weight of uncut red
edges equals (1 — d)a. O

We now lower bound the weight of uncut blue edges.

Proposition 3.7. The expected weight of uncut blue
edges is at least 5.

Proof. We separately consider edges between sets A
and B, B and C, A and C. Consider an edge (u,v) €
A x B. This edge is not in the cut (L, R) if both
endpoints u and v belong to L or both endpoints
belong to R. The former event — {u,v € L} — occurs
if the set B is chosen in the first step of the algorithm
and the set S4 contains vertex v; the latter event —
{u,v € R} — occurs if A is chosen in the first step
of the algorithm and the set Sp contains vertex u.
The probability of the union of these events is”

a b
P , L,R)| = 1+ .= =
r[(u,v) & ( )l =pB it e pa Tic
a-+c E—l—c
:pBQB'( 2~Aj+pAQA'( ;j-
c 2c

Since paga = ppgs = 9, we have

a+b+2e  _1/2+¢
P L R)]=6- =" > 0.

t(wv) ¢ (L, R) . s
The last inequality holds because (1/2 + ¢)/¢ > 2
for all ¢ € (0,1/2]. The same bound holds for edges
between sets B and C and sets A and C. Therefore,
the expected weight of uncut blue edges is at least

55. O

5Note that & = 0 cannot happen by definition of the
sets A, B, C.
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By the above two propositions (Proposition 3.6 and
Proposition 3.7) the expected total weight of uncut
edges is at least:

E[w(L) +w(R)] > (1 —-0)a+d3=a— (a—B)J.

Note that we are in the case with o« — 8 > 0. Thus
to establish a lower bound on the expectation, we
need to show an upper bound on §. Write

5= qAa 4B qc
94A9B + qBg9Cc + q9Aqc

1
- 1 -
T e
After plugging in the values of ¢4, g5, and qc, we

obtain the following expression for §.

1
422 | @+

2be 2ac

(@+b)?
2ab

+

Observe that a+b+c =1 and~6+5—|—52~1/2. Thus,
b+c=1/2—a,a+c=1/2—b,anda+b=1/2—C.
Hence,
1
3+ %(1/25—5 + 1/%—b + 1/25—6)

6:

1
TG D

C

Note that since the function ¢ — 1/t is convex for
t > 0, we have

WS TO IR B
2\a  p/ " g+p 1/2-¢ ¢
Therefore,
1 (1 —2¢)
>3 .1, 1 :
stet  1-3¢

We conclude that the expected weight of uncut edges
is at least & — (a— B3)0maz(¢), where 8,4, (c) = ¢(1—
2¢)/(1 — 3¢?). O

Proposition 3.8. Let p = 0.8776 be the approx-
imation factor of the MAX-UNCUT BISECTION al-
gorithm [ABG16, WDX15]. Then if B < «, our
Algorithm 2 outputs a solution of wvalue at least

20 (n —1) (1 = Smaz (€)@ + Smaz(c) B).-



Proof. Let (L, R) be the bisection produced by the
p-approximate MAX-UNCUT BISECTION algorithm.
This partition satisfies:

’LU(L) + w(R) 2> POPTMax-Uncut BIsECTION

Our Algorithm 2 produces a tree where at the top
level the left subtree is L, the right subtree is R
and both of these subtrees are then generated by
AVERAGE-LINKAGE. Hence each edge (i,j) € Lx L
(and similarly for edges in R x R) contributes:

wij (3 +35(5 —2)) = Fwii(n - 1)

to the objective. Thus the overall value of our solu-
tion is at least:

F(n =D (w(L) +w(R)) =

[\

> Ep(n - 1) - OPTMax-Uncur BISECTION
If 5 < « then by Lemma 3.5 we have that

OPTMax-Uncur BisecTion = & — (04 - 5)5maz (C) and the
proof follows by rearranging the terms. O

Lemma 3.9. The approxzimation factor & of our Al-
gorithm 2 is at least % > 0.42469.

Proof. First, note that if 8 > « then by Proposi-
tion 3.4 the approximation is at least 0.44. Hence it
suffices to only consider the case when 5 < a. Re-
call that by Fact 3.3, AVERAGE-LINKAGE outputs
a solution of value (a + 8)(n — 2) and by Propo-
sition 3.2, we have OPT < «a(n — 2) 4+ |C|8. Hence
if 1(a+ B)(n—2) > &(a(n—2)+]|C|B) then the
desired approximation holds.

Thus we only need to consider the case when %(a +
B)(n—2) <& (a(n—2) 4+ |C|B) or equivalently:

1

sa+8)<e(at %) —
3¢ -1

— Q.
-85

— pB<

Let ¢ = %(1—6771”(0)) and ¢y = %”(Xmm(c). In this
case by Proposition 3.8, our Algorithm 2 gives value
at least ¢1(n —1)a+ ca(n — 1)8. Hence it suffices to
show that ¢;(n—2)a+ca(n—2)5 > &{(a(n—2)+|C|5).
Or equivalently that:

BG5E — ) S ale - )
Using the bound on g above it suffices to show that:
3¢ -1

(e <ea -t

After simplifying this expression the above bound
holds for:

C1 — C2
fﬁ 1+38% ¢ — £ 3 !
n—2%1 n—2 C2

Hence it suffices to find the minimum of the RHS

over ¢ € [O,% — %] Plugging in the expressions for
c1 and ¢y after simplification the RHS is equal to:
2 p(l-o

32¢2p+ (1—3c2)

Differentiating over ¢ one can show that the min-
imum of this expression is attained for ¢ = % —
%. Indeed, the numerator of the derivative is a
quadratic function with negative leading coeflicient

whose roots are 1 + 7”“:“) for t = 2p — 3. The left
root is approximately 0.545 and hence the derivative
11

is negative on [0, 5 — ;-]. The value at the minimum

¢ =1 — Lis thus equal® to (p = 0.8776):

4p

———— >0.42469
32p+1) —

4 Hardness of Approximation

In this section, we prove that maximizing the
Moseley-Wang HC objective (*) is APX-hard:

Theorem 4.1. Under the SMALL SET EXPANSION
(SSE) hypothesis, there exists ¢ > 0, such that it
is NP-hard to approzimate the Moseley-Wang HC
objective function (*) within a factor (1 —¢).

Initially  introduced by Raghavendra  and
Steurer [RS10], SSE has been used to prove im-
proved hardness results for optimization problems
including BALANCED SEPARATOR and MINIMUM
LINEAR ARRANGEMENT [RST12].

Given a d-regular, unweighted graph G = (V, E)
and S C V, let u(S) := |S|/|V] and ®(S) :=
|E(S,V\S)|/d|S|. Raghavendra et al. [RST12] prove
the following strong hardness result. (While it is
not explicitly stated that the result holds for reg-
ular graphs, it can be checked that their reduction
produces a regular graph [Tul19].)

Theorem 4.2 (Theorem 3.6 of [RST12]). Assuming
the SSE, for any q € N and ¢,y > 0, given a reqular
graph G = (V, E), it is NP-hard to distinguish the
following two cases.

5Observe that our analysis based on Max-UNcuT BI-
SECTION is almost tight since even if we were given exact
access to the optimum (i.e., p = 1), the approximation
ratio for HC would only slightly increase to % = 0.444.



e YES: There exist q disjoint sets Sy, ...
such that for all £ € [q],

w(Se)=1/q  and

.S, CV

O(Sy) < e+ o(e).
e NO: For all sets S CV,

D(S) > b1-c/2(u(S)) — /()

where ¢1_./2(1(S)) is the expansion of the sets
of volume u(S) in the infinite Gaussian graph
with correlation 1 —e/2.

Proof of Theorem 4.1. Let us consider the instance
of Hierarchical Clustering defined by the same graph
where each pair has weight 1 if there is an edge, and
0 otherwise. Then W = |E| is the total weight.

e YES: The fraction of edges crossing between dif-
ferent S;’s is at most e+o(e), and all edges inside
some S; are multiplied by at least n(1 —1/¢) in
the objective function. So the objective func-
tion for Hierarchical Clustering is at least

(17570(5))Wo(1f%)n > nW(lf%fsfo(s)).

e NO: Consider an arbitrary binary tree 7 that
maximizes the Moseley-Wang objective func-
tion (*). For a tree node a € T, let T, be the
subtree of 7 rooted at a, and V, C V be the set
of graph vertices corresponding the leaves of Tj,.

Let b € T be a highest node such that n/3 <
[Vh| < 2n/3 (such a node always exists in a bi-
nary tree). By Theorem 4.2, we have

O(Vh) 2 b1cpa(p(Vs)) —v/n(Vs) > Cv/E

for some absolute constant C'. Here we use the
fact that

G1—c/2(1(V)) = QUVE) for u(V3) € [1/3,2/3]

and take v small enough depending on ¢.

So the total fraction of edges in E(V;, V' \V}) is
at least
(Vi) - (V) > S,

Note that edges in E(Tp, V \ Tp) will be multi-
plied by at most n/3 in the objective function.
(Let a be the parent of b. Then |V,| > 2n/3
by the choice of b and for any edge crossing V,
then the least common ancestors of the two end-
points will be a or one of its ancestors.) There-
fore, the objective function is at most

nW — SYEW . 20 — (1 - 2945,

Therefore, the value is at least nW (1 —1/¢ — e —
o(g)) in the YES case and nW (1 — (2C/¢/9)) in the
NO case. By taking ¢ > 0 sufficiently small and ¢
arbitrarily large, there is a constant gap between the
YES case value and the NO case value. O

5 Conclusion

In this paper, we presented a 0.4246 approxima-
tion algorithm for the hierarchical clustering prob-
lem with pairwise similarities under the Moseley-
Wang objective (*), which is the complement to Das-
gupta’s objective. Our algorithm uses MAX-UNCUT
BISECTION as a black box and improves upon previ-
ous state-of-the-art approximation algorithms that
were more complicated and only guaranteed 0.3363
of the optimum value. In terms of hardness of ap-
proximation, under the SMALL SET EXPANSION hy-
pothesis, we prove that even for unweighted graphs,
there exists ¢ > 0, such that it is NP-hard to ap-
proximate the objective function (*) within a factor
of (1 —e¢).
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