“BRING YOUR OWN GREEDY”’-+MAX: Near-Optimal
1/2- Approximations for Submodular Knapsack

Grigory Yaroslavtsev
Indiana University
The Alan Turing Institute

Abstract

The problem of selecting a small-size repre-
sentative summary of a large dataset is a
cornerstone of machine learning, optimiza-
tion and data science. Motivated by applica-
tions to recommendation systems and other
scenarios with query-limited access to vast
amounts of data, we propose a new rigor-
ous algorithmic framework for a standard
formulation of this problem as a submodu-
lar maximization subject to a linear (knap-
sack) constraint. Our framework is based
on augmenting all partial GREEDY solutions
with the best additional item. It can be in-
stantiated with negligible overhead in any
model of computation, which allows the clas-
sic GREEDY algorithm and its variants to be
implemented. We give such instantiations
in the offline (GREEDY+MAX), multi-pass
streaming (SIEVE+MAX) and distributed
(DISTRIBUTED SIEVE+MAX) settings. Our
algorithms give (1/2 — €)-approximation with
most other key parameters of interest being
near-optimal. Our analysis is based on a new
set of first-order linear differential inequalities
and their robust approximate versions. Exper-
iments on typical datasets (movie recommen-
dations, influence maximization) confirm scal-
ability and high quality of solutions obtained
via our framework. Instance-specific approxi-
mations are typically in the 0.6-0.7 range and
frequently beat even the (1 — 1/e) =~ 0.63
worst-case barrier for polynomial-time algo-
rithms.
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1 Introduction

A fundamental problem in many large-scale machine
learning, data science and optimization tasks is finding
a small representative subset of a big dataset. This
problem arises from applications in recommendation
systems Leskovec et al. (2007); El-Arini and Guestrin
(2011); Bogunovic et al. (2017); Mitrovi¢ et al. (2017);
Yu et al. (2018); Avdiukhin et al. (2019), exemplar-
based clustering Gomes and Krause (2010), facility
location Lindgren et al. (2016), image processing Iyer
and Bilmes (2019), viral marketing Hartline et al.
(2008), principal component analysis Khanna et al.
(2015), and document summarization Lin and Bilmes
(2011); Wei et al. (2013); Sipos et al. (2012) and can
often be formulated as constrained monotone submod-
ular optimization under various constraints such as
cardinality Badanidiyuru et al. (2014); Bateni et al.
(2018); Kazemi et al. (2019), knapsack Huang et al.
(2017), matchings Chakrabarti and Kale (2014), and
matroids Célinescu et al. (2011); Anari et al. (2019)
due to restrictions demanded by space, budget, di-
versity, fairness or privacy. As a result, constrained
submodular optimization has been recently and ex-
tensively studied in various computational models,
including centralized Nemhauser et al. (1978), dis-
tributed Mirzasoleiman et al. (2013); Kumar et al.
(2015); da Ponte Barbosa et al. (2015); Mirrokni and
Zadimoghaddam (2015); Mirzasoleiman et al. (2016);
da Ponte Barbosa et al. (2016); Liu and Vondrak (2019),
streaming Badanidiyuru et al. (2014); Buchbinder et al.
(2015); Norouzi-Fard et al. (2018); Agrawal et al. (2019);
Kazemi et al. (2019), and adaptive Golovin and Krause
(2011); Balkanski and Singer (2018); Balkanski et al.
(2019); Fahrbach et al. (2019); Ene and Nguyen (2019b);
Chekuri and Quanrud (2019) among others.

In this paper we focus on monotone submodular maxi-
mization under a knapsack constraint, which captures
the scenario when the representative subset should have
a small cost or size. While a number of algorithmic tech-
niques exist for this problem, there are few that robustly
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scale to large data and can be easily implemented in
various computing frameworks. This is in contrast with
a simpler cardinality-constrained version in which only
the number of elements is restricted. In this setting
the celebrated GREEDY algorithm of Nemhauser et al.
(1978) enjoys both an optimal approximation ratio and
a simplicity that allows easy adaptation in various envi-
ronments. For knapsack constraints, such a simple and
universal algorithm is unlikely. In particular, GREEDY
does not give any approximation guarantee.

We develop a framework that augments solutions con-
structed by GREEDY and its variations and gives almost
1/5-approximations® in various computational models.
For example, in the multi-pass streaming setting we
achieve optimal space and almost optimal number of
queries and running time. We believe that our frame-
work is robust to the choice of the computational model
as it can be implemented with essentially the same com-
plexity as that of running GREEDY and its variants.

Preliminaries and our contributions. A set func-
tion f: 2V — R is submodular if for every S C T C U
and e € U it holds that f(eUT)—f(T) < f(eUS)—f(S5).
Moreover, f is monotone if for every S C T C U it
holds that f(T") > f(S). In the monotone submodu-
lar maximization problem subject to a knapsack con-
straint, each item e has cost ¢(e). Given a parameter
K > 0, the task is to maximize a non-negative mono-
tone submodular function f(S) under the constraint
c(S) = cgcle) < K. Without loss of generality, we
assume that min.cg c(e) > 1, which can be achieved
by rescaling the costs and taking all items with cost 0.
Then K = min(n, K) is an upper bound on the number
of elements in any feasible solution.

Any algorithm for submodular maximization requires
query access to f. As query access can be expensive, the
number of queries is typically considered one of the per-
formance metrics. Furthermore, in some critical appli-
cations of submodular optimization such as recommen-
dation systems, another constraint often arises from
the fact that only queries to feasible sets are allowed
(e.g. when click-through rates can only be collected for
sets of ads which can be displayed to the users). Prac-
tical algorithms for submodular optimization hence
typically only make such queries, an assumption com-
monly used in the literature (see e.g. Norouzi-Fard et al.
(2018)). For any algorithm that only makes queries on
feasible sets, it is easy to show that Q(n?) queries are
required to go beyond !/2-approximation under various
assumptions on f (Theorem 2.9). Hence it is natural
to ask whether we can get a !/2-approximation, while
keeping other performance metrics of interest nearly

! Algorithm gives an a-approximation if it outputs S
such that f(S) > af(OPT).

optimal and hence not compromising on practicality.
We answer this question positively.

We first state the following simplified result in the most
basic offline model (i.e. when an algorithm can access
any element at any time) to illustrate the main ideas
and then improve parameters in our other results. In
this model, we are given an integer knapsack capacity
K € Z* and a set E of elements e, ..., e, from a finite
universe U.?

Theorem 1.1 (Offline GREEDY-+MAX)

Let K = min(n,K). There exists an offline algo-
rithm GREEDY+MAX (Algorithm 1) that gives a 1/2-
approximation for the submodular mazximization prob-
lem under a knapsack constraint with query complexity

and running time O (f(n) (Theorem 2.4).

In the single-pass streaming model, the algorithm
is given K and a stream FE consisting of elements
e1,...,en € U, which arrive sequentially. The objective
is to minimize the auxiliary space used by algorithm
throughout the execution. In the multi-pass streaming
model, the algorithm is further allowed to make mul-
tiple passes over E. This model is typically used for
modeling storage devices with sequential access (e.g.
hard drives) while using a small amount of RAM. In
this setting minimizing the number of passes becomes
another key priority. Note that since Q(K) is a trivial
lower bound on space and (n) is a trivial lower bound
on time and query complexity of any approximation
algorithm that queries feasible sets, our next result is
almost optimal in most parameters of interest.

Theorem 1.2 (Multi-pass streaming algorithm
SIEVE+MAX) Let K = min(n, K). There ezists a
multi-pass streaming algorithm SIEVE+MAaX (Algo-

rithm 2) that uses O (f() space and O (1/€) passes

over the stream and outputs a (1/2 — €)-approximation
to the submodular maximization problem under a knap-
sack constraint, with query complexity and running

time* O (n(l/e + log f()) .

We also give an algorithm in the massively-parallel
computation (MPC) model Karloff et al. (2010) used
to model MapReduce/Spark-like systems. We use the
most restrictive version, which only allows linear to-
tal memory, running time and communication per

W.lo.g. for all e we have 1 < ¢(e) < K as one can
rescale the capacity and costs and filter out all items with
cost more than K (in all our results this means replacing
K with the aspect ratio K/ minecg c(e)).

3Note that when % < K, in terms of running time
our streaming algorithm is more efficient than our offline
algorithm. Hence, in the offline setting one can use the best
of the two algorithms depending on the parameters.



Grigory Yaroslavtsev, Samson Zhou, Dmitrii Avdiukhin

round Andoni et al. (2014). In this model, the in-
put set E of size n is arbitrarily distributed across m
machines, each with s = O(n/m) memory so that the
overall memory is O (n). A standard setting of pa-

rameters for submodular optimization is m = y/n/K

and s = O(VnK) (see e.g. Liu and Vondrak (2019);
Avdiukhin et al. (2019)). One of the machines is desig-
nated as the central machine and outputs the solution
in the end. The machines communicate to each other in
a number of synchronous rounds. In each round, each

machine receives an input of size O(V'nK), performs
a local linear-time computation, and sends an output

of size O(VnK) to other machines before the next
round begins. The primary objective in this model is
minimizing the number of rounds. Our main result in
this model is given below.

Theorem 1.3 (MPC algorithm DISTRIBUTED
SIEVE+MAX) Let K = min(n, K). There exists an

MPC algorithm that runs in O (1/€) rounds on \/n/K

machines, each with O(VnK) memory. Each machine

uses query complexity and runtime O(V nK') per round.
The algorithm outputs a (1/2 — €)-approzimation to the
submodular mazximization problem under a knapsack
constraint.

In particular, our algorithm uses execution time

O(VnK /e) and total communication, CPU time and
number of queries O (n/e). Details are given in the
supplementary material.

Relationship to previous work. The classic ver-
sion of the problem considered in this work sets ¢(e) = 1
for all e € U and is known as monotone submodu-
lar maximization under a cardinality constraint and
has been extensively studied. The celebrated result
of Nemhauser et al. (1978) gives a 1 — /e = 0.63-
approximation using GREEDY, which is optimal unless
P # NP, Feige (1998). The problem of maximizing
a monotone submodular function under a knapsack
constraint was introduced by Wolsey (1982), who gave
an algorithm with ~ 0.35-approximation. Khuller et al.
(1999) gave a simple GREEDYORMAX algorithm with
1 —1/ye ~ 0.39-approximation as well as a more com-
plicated algorithm PARTIALENUM+GREEDY which re-
quires a partial enumeration over an initial seed of
three items and hence runs in O (f( n4> time. PAR-
TIALENUM-+GREEDY was later analyzed by Sviridenko
(2004) who showed a (1 — 1/¢) &~ 0.63-approximation,
matching the hardness of Feige (1998). While faster
algorithms with (1—1/e—e)-approximation exist Badani-
diyuru and Vondrak (2014); Ene and Nguyen (2019a),
they are self-admittedly impractical due to their expo-

nential dependence on large polynomials in 1/e.

Compared to the well-studied cardinality-constrained
case, streaming literature on monotone submodular
optimization under a knapsack constraint is relatively
sparse. A summary of results in the streaming setting
is given in Figure 1. Prior to our work, the best re-
sults in streaming are by Huang et al. (2017); Huang
and Kakimura (2019). While the most recent work
of Huang and Kakimura (2019) achieves the (1/2 — ¢)-
approximation, its space, runtime and query complex-
ities are far from optimal and depend on large poly-
nomials of 1/e, making it impractical for large data.
Compared to this result, our Theorem 1.2 gives an
improvement on all main parameters of interest, lead-
ing to near-optimal results. On the other hand, for
the cardinality-constrained case, an optimal single-pass
(1/2 — €)-approximation has very recently been achieved
by Kazemi et al. (2019). While using different ideas,
our multi-pass streaming result matches theirs in terms
of approximation, space and improves slightly on the

number of queries and runtime (from O (nlog K/ e) to

0 (n(l/e + log f())) only at the cost of using a constant
number of passes for constant e.

In the distributed setting, Mirzasoleiman et al. (2013)
give an elegant two round protocol for monotone sub-
modular maximization subject to a knapsack constraint
that achieves a subconstant guarantee. Kumar et al.
(2015) later give algorithms for both cardinality and
matroid constraints that achieve a constant factor ap-
proximation, but the number of rounds is O(log A),
where A is the maximum increase in the objective due
to a single element, which is infeasible for large datasets
since A even be significantly larger than the size of the
entire dataset. da Ponte Barbosa et al. (2015, 2016)
subsequently give a framework for both monotone and
non-monotone submodular maximization under cardi-
nality, matroid, and p-system constraints. Specifically,
the results of da Ponte Barbosa et al. (2016) achieves
almost 1/2-approximation for these settings using two
rounds, a result subsequently matched by Liu and Von-
drak Liu and Vondrak (2019) without requiring the
duplication of items, as well as a (1 — 1/e — €) approxi-
mation using O (1/¢) rounds. da Ponte Barbosa et al.
(2015) also gives a two-round algorithm for a knapsack
constraint that achieves roughly 0.17-approximation in
expectation.

For extensions to other constraints, non-monotone ob-
jectives and other generalizations see e.g. Chakrabarti
and Kale (2014); Chekuri et al. (2015); Chan et al.
(2017); Elenberg et al. (2017); Epasto et al. (2017);
Mirzasoleiman et al. (2018); Feldman et al. (2018);
Chekuri and Quanrud (2019).



“BRING YOUR OWN GREEDY”’4+MaAXx: Near-Optimal 1/2-Approximations for Submodular Knapsack

Reference \ Approx. \ Passes \ Space \ Runtime and Queries ‘
Huang et al. (2017) 1/3 — ¢ 1 O (1K 1ogK) O (inlogK)
Huang et al. (2017) 4 —e 1 @) (%Klog K) o (%nlog K)
Huang et al. (2017) 25— ¢ 3 O (LK log’ K) O (inlogK)
Huang and Kakimura (2019) | Y2—¢ | O(Ye) | O (%Klog2 K) O (e%nlog2 K)
SIEVE+ MAX (Alg. 2) 2 —¢ | O(Ye) O (K) O (n(L+logK))

Fig. 1: Monotone submodular maximization under a knapsack constraint in the streaming model.

Our techniques. Let f(e|S) = f(eUS)— f(5) be
the marginal gain and p(e|S) = f (e|S) /c(e) be the
marginal density of e with respect to .S. GREEDY starts
with an empty set G and repeatedly adds an item that
maximizes p (e|G) among the remaining items that
fit. While by itself this does not guarantee any ap-
proximation, the classic result of Khuller et al. (1999)
shows that GREEDYORMAX algorithm, which takes
the best of the greedy solution and the single item
with maximum value, gives a 0.39-approximation but
cannot go beyond 0.44-approximation. Our algorithm
GREEDY-+MAX (Algorithm 1) instead attempts to aug-
ment every partial greedy solution with the item giving
the largest marginal gain. For each i, let G; be the set
of the first ¢ items taken by greedy. We augment this
solution with the item s; which maximizes f (s;|G;)
among the remaining items that fit. GREEDY-+MAX
then outputs the best solution among such augmenta-
tions.

Our main technical contribution lies in the analysis
of this algorithm and its variants, which shows a 1/2-
approximation (this analysis is tight, see the supple-
mentary material). Let o1 be the item from OPT with
the largest cost. The main idea is to consider the last
partial greedy solution such that o; still fits. Since
01 has the largest cost in OPT, we can augment the
partial solution with any element from OPT, and all of
them have a non-greater marginal density than the next
selected item. While GREEDY+MAX augments partial
solutions with the best item, for the sake of analysis it
suffices to consider only augmentations with o; (note
that the item itself is unknown to the algorithm).

To simplify the presentation, in the analysis we rescale
f and the costs so that f(OPT) = 1 and K = 1.
Suppose that at some point, the partial greedy solution
has collected elements with total cost « € [0, 1]. We use
a continuous function g(z) to track the performance
of GREEDY. We also introduce a function g;(x) to
track the performance of augmentation with o; and
then show that g and g; satisfy a differential inequality
g1(z) + (1 —c(01))¢'(x) > 1 (Lemma 2.3), where ¢’
denotes the right derivative. To give some intuition
about the proof, consider the case when there exists

a partial greedy solution of cost exactly 1 — ¢ (o01). If
g1(1—c(01)) > 1/2, then the augmenation with oy gives
a 1/2-approximation. Otherwise, by the differential
inequality, ¢'(1 — ¢ (01)) > 1/2(1-c(01)). Since g(0) =0
and ¢’ is non-increasing, g(1—c(01)) > (1—c(01))g'(1—
c(o01)) > /2. See full analysis for how to handle the
cases when there is no partial solution of cost exactly
1—c¢ (01).

Our streaming algorithm SIEVE4+MAX and distributed
algorithm DISTRIBUTED SIEVE+MAX approximately
implement GREEDY-+MAX in their respective settings.
SIEVE-+MAaX makes O (1/¢) passes over the data, and
for each pass it selects items with marginal density
at least a threshold ﬁ(f((lo JFPET)Z
constant ¢ > 0. This requires having a constant-factor
approximation of f(OPT) which can be computed us-
ing a single pass. DISTRIBUTED SIEVE+MAX combines
the thresholding approach with the sampling technique
developed by Liu and Vondrak (2019) for the cardi-
nality constraint. The differential inequality which we
develop for GREEDY+MAX turns out to be robust to
various sources of error introduced through threshold-
ing and sampling. As we show, it continues to hold with
functions and derivatives replaced with their (1 + €)-
approximations, which results in (1/2—e¢)-approximation
guarantees for both algorithms.

in the i-th pass for some

2 Algorithms and analysis

Offline algorithm GREEDY-+MAX. We introduce
the main ideas by first describing our offline algorithm
GREEDY+MAX which is then adapted to the streaming
and distributed settings. Recall that GREEDY starts
with an empty set G and in each iteration selects an
item e with the highest marginal density p (e| G) that
still fits into the knapsack. GREEDY-+MAX is based
on augmenting each partial solution constructed by
GREEDY with the item of the largest marginal value
(as opposed to density) and taking the best among such
augmentations. Recall that G; is the set of the first
1 items in the greedy solution. GREEDY-+MAX finds
for each i an augmenting item s; which maximizes
f(si UG;) among all items that still fit. The final
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output is the best among all such augmented solutions.
Implementation is given as Algorithm 1. In the rest

Algorithm 1: Offline algorithm GREEDY+MAX

Input: Set of elements F = eq,...,e,, knapsack
capacity K, cost function ¢(-), non-negative
monotone submodular function f;

Output: %—approximation for submodular
maximization under knapsack constraint;

G 0,5« 0

while E # () do

s+ argmax,cp f (| G);

if f(S) < f(GUs) then
| S+ GUs;

a  argmax, s p (¢ | G);

G+ GUa;

K+ K — ¢(a);

Remove all elements e € E with c(e) > K;

return S

of this section we give an outline of the key technical
lemmas behind the proof that GREEDY+MAX gives
1/2-approximation.

W.lo.g. and only for analysis of approximation we
rescale the function values and costs so that f(OPT) =
1 and ¢(OPT) = K = 1*. We first define a greedy
performance function g(x) which allows us to track
the performance of the greedy solution in a continuous
fashion. Let ¢g1,g¢2,...,gm be the elements in G in the
order they were added and recall that G; = {g1,...,9:}-
For a fixed z, let i be the smallest index such that

c(G;) > .

Definition 2.1 (Greedy performance function)
For xz € [0,1] we define g(x) as:

g(x) = f(Gi—1) + (¥ — ¢(Gi-1))p (9i | Gi-1) -

For the function g; we only consider adding o7, the
largest item from OPT, to the current partial greedy
solution. Consider the last item added by the greedy
solution before the cost of this solution exceeds 1—c(o1).
We define ¢* so that 1 — ¢(01) — ¢* is the cost of the
greedy solution before this item is taken.

Definition 2.2 (GREEDY+MAX  performance
lower bound) For z € [0,1 — c¢(01) — ¢*] we define

g1(x) = g(x) + f (01| Gi-1)-

Lemma 2.3 (GREEDY+MAX inequality) Let ¢’
denote the right derivative of g. Then for all x €
[0,1 —c(01) — c*], the following differential inequality

“Note that if ¢(OPT) < K then we can set K = ¢(OPT)
first as this does not affect f(OPT).

holds:

g1(z) + (1 —c(o1))g'(x) > 1

We defer the proof of Lemma 2.3 to the supplementary
material.

Theorem 2.4 Recall that K = min(n, K) is an upper
bound on the number of elements in feasible solutions.
Then GREEDY+MAX gives a 1/2-approzimation to the
submodular mazximization problem under a knapsack

constraint and runs in O (f(n) time.

Proof: By applying Lemma 2.3 at the point =
1 —c¢(o01) — ¢*, we have:

gi(1—c(o) = ") + (1—c(o)g'(L - e (o) — ") > 1

If g1 (1—c(o1)—c*) > %, then we have %—approximation,
because g1 (1 —c(01) — ¢*) is a lower bound on the value
of the augmented solution when the cost of the greedy
part is 1 — ¢(01) — ¢*. Otherwise:

1—g1(1—c(o01) — c¥)
1—c(o1)

o

2(1 = c(o1))

g'(1—c(o) —¢) >

>

Note that since ¢g(0) = 0 and ¢’ is non-increasing by
the definition of GREEDY, for any x € [0, 1] we have

9(@) > ¢'(2) - 2

9(z) > / iog’(x)dx> / _

Therefore, applying this inequality at z = 1—c(01)—c*:
g(1—c(o)—c*)>(1—=c(o)—c)g' (1 —c(og) —c)
1—c(oy) —c*

2(1 —c(oy)) °

g (x)dx = g¢'(x) - x,

Y

Recall that 1 — c¢(01) — ¢* was the last cost of the
greedy solution when we could still augment it with oq;
therefore, the next element e that the greedy solution
selects has the cost at least (1 —c(01)) — (1 —c(01) —
¢*) = ¢*. Thus, the function value after taking e is at
least

g(1 —c(o1) =) +c"g' (1 —c(o1) — )
1—c(o)—c* c* 1
= 2(1—c(o1)) 2(1—c(oy)) 2

Hence, Algorithm 1 gives a %—approximation to the

submodular maximization problem under a knapsack
constraint. It remains to analyze the running time and
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query complexity of Algorithm 1. Since K is the maxi-
mum size of a feasible set, Algorithm 1 makes at most
K iterations. In each iteration, it makes O (n) oracle
queries, so the total number of queries and runtime is

O(Kn) m

Streaming algorithm SIEVE4+MAX. Our multi-
pass streaming algorithm is given as Algorithm 2. To
simplify the presentation, we first give the algorithm un-
der the assumption that it is given a parameter A, which
is a constant-factor approximation of f(OPT). We then
show how to remove this assumption using standard
techniques in the supplementary material. As discussed
in the description of our techniques SIEVE+MAX uses
O (1/€) passes over the data to simulate the execution
of GREEDY-+MAX approximately.

Algorithm 2: Multi-pass streaming algorithm

SIEVE+MAX

Input: Stream ey, ...,e,, knapsack capacity K,
cost function ¢(+), non-negative monotone
submodular function f, A which is an
a-approximation of f(OPT) for some fixed
constant a>0, € > 0;

Output: (1/2 — €)-approx. for submodular
maximization under a knapsack constraint;

T+ 0, 7 2

while 7 > ﬁ do // Thresholding stage

Take a new pass over the stream;
for each read item e do
if p(e|T)>7 and ¢c(e UT) < K then
| T+« TU{el};
T 7/(1+€);

For each i, let G; be the first i items selected in
the construction of T above and initialize s; = ()
for the best augmenting item for G;;

Take a pass over the stream;

for each read item e do // Augmentation stage

if e ¢ T then
J = max{i|c(G;) + c(e) < K}
if f(GJ U Sj) < f(GJ U e) then
| s {e)s
return argmax f(G; U s;)

Let T be the set of items constructed SIEVE+MAX (as
in Algorithm 2) and let ¢1, o, ... be the order that they
are collected. We refer to the part of the algorithm
which constructs T as “thresholding” and the rest as
“augmentation” below. We use 7; to denote the set
containing the 7 items {t1,%2,...,t;}. We again use o1
to denote the item with highest cost in OPT. Similar
to the above, we define two functions representing the
values of our thresholding algorithm, and augmented

solutions given the utilized proportion of the knapsack.

Definition 2.5 (Thresholding

function) For any =z € [0,1],
smallest index such that c(T;) > =x.
t(x) = f(Ti1) + (z — c(Tiza))p (8 | Tiza)-

performance
let i be the
We define

We define a function ¢ (z) that lower bounds the perfor-
mance of SIEVE+MAX when the thresholding solution
collects a set of cost x:

Definition 2.6 (SIEVE+MAX performance func-
tion and lower bound) For any fived x, let i
be the smallest index such that c¢(T;) > x. Then
we define t1(x) = t(x) + f(o1|Ti—1), where 04 =
argmax,eopt C(€).

In order to analyze the output of the algorithm, we
prove a differential inequality for ¢1. If ¢(T) > 1 —¢(01)
then let ¢* > 0 be defined so that 1 — ¢(01) — ¢* is the
cost of the thresholding solution before the algorithm
takes the item which makes the cost exceed 1 — ¢(01).

Lemma 2.7 (SIEVE+MAX Inequality) If ¢(T) >
1—c(oy1) then for allx € [0,1—c(01) — c*], then t and
t1 satisfy the following differential inequality:

ti(z) + (1 +e)(1 —c(o))t' (z) > 1.

Theorem 2.8 There exists an algorithm that uses

@ (f() space and O (1/e) passes over the stream, makes
@] (”/s + nlog R’) queries, and outputs a (1/2 —€)-

approximation to the submodular mazximization problem
under a knapsack constraint.

The proofs are similar to the proofs of Lemma 2.3 and
Theorem 2.4 and are provided in the supplementary
material.

Query lower bound. We show a simple query lower
bound under the standard assumption Norouzi-Fard
et al. (2018); Kazemi et al. (2019) that the algorithm
only queries f on feasible sets.

Theorem 2.9 For a > /2, any a-approximation al-
gorithm for mazimizing a function f under a knapsack
constraint that succeeds with constant probability and
only queries values of the function f on feasible sets
(i.e. sets of cost at most K ) must make at least Q(n?)
queries if f is either: 1) non-monotone submodular,
2) monotone and submodular on the feasible sets, 3)
monotone subadditive.

We defer the proof of Theorem 2.9 to the supplementary
material.
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3 Experimental results

We compare our offline algorithm GREEDY-+MAX and
our streaming algorithm SIEVE4+MAX with baselines,
answering the following questions: (1) What are the
approximation factors we are getting on real data? (2)
How do the objective values compare? (3) How do the
runtimes compare? (4) How do the numbers of queries
compare? We compare GREEDY+MAX to the offline
baselines GREEDY, GREEDYORMAX Khuller et al.
(1999), as well as PARTIALENUM+GREEDY (Khuller
et al., 1999; Sviridenko, 2004), which enumerates knap-
sacks containing all subsets of d items, and then runs
the GREEDY algorithm upon each of those knapsacks.
PARTIALENUM + GREEDY uses Q(Kn9t!) runtime and
queries, so only d = 1 and the smallest ego-Facebook
dataset are feasible in our experiments. In streaming
we compare SIEVE-+MAX to SIEVE Badanidiyuru et al.
(2014) and SIEVEORMAX Huang et al. (2017), which
are similar thresholding-based algorithms. We also im-
plemented a single-pass BRANCHINGMRT by Huang
et al. (2017) that uses thresholding along with multiple
branches and gives a 4/11 ~ 0.36-approximation. We
did not implement Huang and Kakimura (2019) as
their algorithms are orders of magnitude slower than
BRANCHINGMRT which is already several orders of
magnitude slower than other algorithms.

Our code is available at https://github.com/
aistats20submodular/aistats20submodular. We
used two types of datasets:

Graph coverage. For a graph G(V,F) and Z C V,
the objective is to maximize the neighborhood vertex
coverage function f(Z) := |ZUN(Z)|/|V|, where N(Z)
is the set of neighbors of Z. We ran experiments on
two graphs from SNAP Leskovec and Krevl (2014):
ego-Facebook and com-DBLP.

Movie ratings. We also analyze a dataset of movies
to model the scenario of movie recommendation. The
objective function, defined as in Avdiukhin et al. (2019),
is maximized for a set of movies that is similar to a
user’s interests. For more details about the settings,
see the supplementary material. We analyze the m1-20
MovieLens dataset GroupLens (2015).

Approximation and runtimes. We first give
instance-specific approximation factors for different
values of K for offline (Fig. 2) and streaming (Fig. 3)
algorithms. These approximations are computed us-
ing upper bounds on f(OPT) which can be obtained
using the analysis of GREEDY. GREEDY-+MAX and
SIEVE+MAX typically perform at least 20% better than
their 1/2 worst-case guarantees. In the supplementary
material we show that the value can be improved by
up to 50%, both by GREEDY-+MAX upon GREEDY and

by SIEVE+MAX upon SIEVE.

In the supplementary material we show that runtimes of
GREEDY+MAX and GREEDYORMAX are similar and
at most 20% greater than the runtime of GREEDY. On
the other hand, even though PARTIALENUM-+GREEDY
does not outperform GREEDY+MAX, it is only feasible
for d = 1 and the ego-Facebook dataset and uses on
average almost 500 times as much runtime for K = 10
across ten iterations of each algorithm.

For the streaming algorithms, Figure 4 shows that
runtimes of SIEVE+MAX, SIEVEORMAX, and SIEVE
performs generally similar; however in the case of the
com-dblp dataset, the runtime of SIEVE4+MAX grows
faster with K. This can be explained by the fact that
oracle calls on larger sets typically require more time
and augmenting sets typically contain more elements
than sets encountered during execution of SIEVE. On
the other hand, the runtime of BRANCHINGMRT was
substantially slower, and we did not include its runtime
for scaling purposes. E.g. for K = 5, the runtime of
BRANCHINGMRT was already a factor 80K more than
SIEVE.

In the supplementary material, we also compare the
number of oracle queries performed by the algorithms.
GREEDY-+MAX, GREEDYORMAX and GREEDY re-
quire the same amount of oracle calls, since computing
marginal gains and finding the best element for aug-
mentation can be done using the same queries. On the
other hand, PARTIALENUM-+GREEDY requires 544x
more calls than GREEDY for K = 8. For the streaming
algorithms, the number of oracle calls made by SIEVE,
SIEVE+MAX, and SIEVE, never differed by more than a
factor of two, while BRANCHINGMRT requires a factor
125K more oracle calls than SIEVE for K = 8.
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Fig. 2: Instance-specific approximations for different K. GREEDY+MAX performs substantially better than its
worst-case 1/2-approximation guarantee and typically beats even the (1 — 1/e) & 0.63 bound. Despite much higher
runtime, PARTIALENUM+GREEDY does not beat GREEDY-+MAX even on the only dataset where its runtime is

feasible (ego-Facebook).
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Fig. 3: Instance-specific approximations for different K. SIEVE+MAX performs substantially better than its
worst-case (1/2 — €)-approximation guarantee and robustly dominates all other approaches. It can improve by up
to 40% upon SIEVE. Despite much higher runtime, BRANCHINGMRT does not beat SIEVE+MAX
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Fig. 4: Ratios between average runtimes of streaming algorithms and average runtimes of SIEVE over ten
executions. Error bars show standard deviation across runs.
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