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Abstract

We consider speeding up stochastic gradient descent (SGD) by parallelizing it
across multiple workers. We assume the same data set is shared among N workers,
who can take SGD steps and coordinate with a central server. While it is possible
to obtain a linear reduction in the variance by averaging all the stochastic gradients
at every step, this requires a lot of communication between the workers and the
server, which can dramatically reduce the gains from parallelism. The Local SGD
method, proposed and analyzed in the earlier literature, suggests machines should
make many local steps between such communications. While the initial analysis
of Local SGD showed it needs Q(v/7") communications for 7" local gradient
steps in order for the error to scale proportionately to 1/(NT'), this has been
successively improved in a string of papers, with the state of the art requiring
Q (N (poly(logT))) communications. In this paper, we suggest a Local SGD
scheme that communicates less overall by communicating less frequently as the
number of iterations grows. Our analysis shows that this can achieve an error that
scales as 1/(NT') with a number of communications that is completely independent
of T In particular, we show that (V') communications are sufficient. Empirical
evidence suggests this bound is close to tight as we further show that v/N or N3/4
communications fail to achieve linear speed-up in simulations. Moreover, we
show that under mild assumptions, the main of which is twice differentiability on
any neighborhood of the optimal solution, one-shot averaging which only uses
a single round of communication can also achieve the optimal convergence rate
asymptotically.

1 Introduction

Stochastic Gradient Descent (SGD) is a widely used algorithm to minimize convex functions f in

which model parameters are updated iteratively as
X = xt g,

where g! is a stochastic gradient of f at the point x! and 7, is the learning rate. This algorithm can be
naively parallelized by adding more workers independently to compute a gradient and then average
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them at each step to reduce the variance in estimation of the true gradient V f(x*) (Dekel et al., 2012).
This method requires each worker to share their computed gradients with each other at every iteration.
We will refer to this method as "synchronized parallel SGD."

However, it is widely acknowledged that communication is a major bottleneck of this method for
large scale optimization applications (McMahan et al., 2017; Konec¢ny et al., 2016; Lin et al., 2018b).
Often, mini-batch parallel SGD is suggested to address this issue by increasing the computation
to communication ratio. Nonetheless, too large mini-batch size might degrade performance (Lin
et al., 2018a). Along the same lines of increasing the computation over communication effort, local
SGD has been proposed to reduce communications (McMahan et al., 2017; Dieuleveut, Patel, 2019).
In this method, workers compute (stochastic) gradients and update their parameters locally, and
communicate only once in a while to obtain the average of their parameters. Local SGD improves
the communication efficiency not only by reducing the number of communication rounds, but also
alleviates the synchronization delay caused by waiting for slow workers and evens out the variations
in workers’ computing time (Wang, Joshi, 2018b).

On the other hand, since individual gradients of each worker are calculated at different points, this
method introduces residual error as opposed to fully synchronized SGD. Therefore, there is a trade-
off between having fewer communication rounds and introducing additional errors to the gradient
estimates.

The idea of making local updates is not new and has been used in practice for a while (Mangasarian,
1995; Konecny et al., 2016). However, until recently, there have been few successful efforts to
analyze Local SGD theoretically and therefore it is not fully understood yet. Zhang et al. (2016)
show that for quadratic functions, when the variance of the noise is higher far from the optimum,
frequent averaging leads to faster convergence. The first question we try to answer in this work is:
how many communication rounds are needed for Local SGD to have the similar convergence rate of
a synchronized parallel SGD while achieving performance that linearly improves in the number of
workers?

Stich (2019) was among the first who sought to answer this question for general strongly convex
and smooth functions and showed that the communication rounds can be reduced up to a factor of
H = O(,/T/N), without affecting the asymptotic convergence rate (up to constant factors), where
T is the total number of iterations and N is number of parallel workers.

Focusing on smooth and possibly non-convex functions which satisfy a Polyak-Lojasiewicz condition,
Haddadpour et al. (2019) demonstrate that only R = Q((T'N)'/?) communication rounds are
sufficient to achieve asymptotic performance that scales proportionately to 1/N.

Recently, Khaled et al. (2020) and Stich, Karimireddy (2019) improve upon the previous works by
showing linear speed-up for Local SGD with only € (N poly log (T")) communication rounds when
data is identically distributed among workers and f is strongly convex. Their works also consider the
cases when f is not necessarily strongly convex as well as the case of data being heterogeneously
distributed among workers.

More recently, Yuan, Ma (2020) proposed a new accelerated method that requires only
Q (N 1/3 poly log (T)) communication rounds for linear speed-up. While their results improve
upon the earlier work, the communication requirements remain dependent on the total iterations 7.

One-Shot Averaging (OSA), a method that takes an extreme approach to reducing communication,
involves workers performing local updates until the very end when they average their parameters
(Mcdonald et al., 2009; Zinkevich et al., 2010; Zhang et al., 2013c; Rosenblatt, Nadler, 2016;
Godichon-Baggioni, Saadane, 2020). This method can be seen as an extreme case of Local SGD
with R = 1 and H = T local steps. Dieuleveut, Patel (2019); Godichon-Baggioni, Saadane (2020)
provide an analysis of OSA and show that asymptotically, linear speed-up in the number of workers
is achieved for a weighted average of iterates. However, both of these works make restrictive
assumptions such as uniformly three-times continuously differentiability and bounded second and
third derivatives or twice differentiability almost everywhere with bounded Hessian, respectively.
The second question we attempt to answer in this work, is whether these assumptions can be relaxed
and OSA can achieve linear speed-up in more general scenarios.

In this work, we focus on smooth and strongly convex functions with a general noise model. Our
contributions are three-fold:



Table 1: Comparison of Similar Works

Reference Conergence rate Communication Noise
FET) — fra Rounds R model

Stich (2019) 10) (% + S+ Z—gi)b Q(VTN) uniform
Haddadpour et al. (2019) O (% + ot ﬁ—;}) Q((TN)3) ‘::;gg;";:;‘;‘:h
Stich, Karimireddy (2019) O <exp. decay + #‘IT;T)d Q(N *poly(log T)) 2332;2:;\1;&
Woodworth et al. (2020) O (exp. decay + JVZT + %) Q(N *poly(log T)) uniform
Khaled et al. (2020) o é";ﬁ; + :%ZT + ZZT—";) Q(N *poly(log T)) uniform
Yuan, Ma (2020) O (exp. decay + N"% + /f;‘}; >e Q(N'3 % poly(log T))  uniform
(=it e gy o o,

2 Depending on the work, X7 is either the last iterate or a weighted average of iterates up to 7.

® G is the uniform upper bound assumed for the I norm of gradients in the corresponding work.
¢ This noise model is defined in Assumption 5.

4 O(.) ignores the poly-logarithmic and constant factors.

¢ This is the bound for Fed AC-II. Fed AC-I requires R = Q(N''/2 x poly(log T')).

f ¢ is the multiplicative factor in the noise model defined in Assumption 5.

1. We propose a communication strategy which requires only R = Q(N) communication
rounds to achieve performance that scales as 1/N in the number of workers. To the best of
the authors’ knowledge, this is the only work to show that the number of communications
can be taken to be completely independent of 7". All previous papers required a number
of communications which was at least N times a polynomial in log(7T'), or had a stronger
scaling with T'. A comparison of our result to the available literature can be found in Table
1.

2. We show under mild additional assumptions, in particular twice differentiability on a
neighborhood of the optimal point, OSA reaches linear speed-up asymptotically, i.e., with
only one communication round we achieve the convergence rate of O(1/(NT)).

3. We simulate a simple example which is not twice differentiable at the optimum and observe
that our bounds for part 1. are reasonably close to being tight. In particular, using 1 or /N

or N3/4 communications does not appear to result in a linear speed-up in the number of
workers (while N communications does give a linear speed-up).

We notice that FedAC (Yuan, Ma, 2020) has a better dependence on the number of workers IV, in
expense of (poly logarithmic) dependence on 7". With that in mind, we still believe our communication
strategy is of independent interest, particularly in the framework of non-accelerated methods. We
have performed extensive numerical experiments and comparisons between the two methods and
highlighted the regimes where each method outperforms the other.

It is worth mentioning that although the the communication complexity by Woodworth et al. (2020)
depends on 7', their bound has a lower dependence on condition number «. Hence, their results are
stronger than ours only when k = Q(log T).

The rest of this paper is organized as follows. In the following subsection we outline the related
literature and ongoing works. In Section 2 we define the main problem and state our assumptions.
We present our theoretical findings in Section 3 followed by numerical experiments in Section 4 and
conclusion remarks in Section 5.

1.1 Related work

There has been a lot of effort in the recent research to take into account the communication delays
and training time in designing faster algorithms (McDonald et al., 2010; Zhang et al., 2015; Bijral
et al., 2016; Kairouz et al., 2019). See (Tang et al., 2020) for a comprehensive survey of commu-



nication efficient distributed training algorithms considering both system-level and algorithm-level
optimizations.

Many works study the communication complexity of distributed methods for convex optimization
(Arjevani, Shamir, 2015; Woodworth et al., 2020) and statistical estimation (Zhang et al., 2013Db).
Woodworth et al. (2020) present a rigorous comparison of Local SGD with H local steps and mini-
batch SGD with H times larger mini-batch size and the same number of communication rounds (we
will refer to such a method as large mini-batch SGD) and show regimes in which each algorithm
performs better: they show that Local SGD is strictly better than large mini-batch SGD when the
functions are quadratic. Moreover, they prove a lower bound on the worst case of Local SGD that is
higher than the worst-case error of large mini-batch SGD in a certain regime. Zhang et al. (2013b)
study the minimum amount of communication required to achieve centralized minimax-optimal
rates by establishing lower bounds on minimax risks for distributed statistical estimation under a
communication budget.

A parallel line of work studies the convergence of Local SGD with non-convex functions Zhou, Cong
(2018). Yu et al. (2019) was among the first works to present provable guarantees of Local SGD
with linear speed-up. Wang, Joshi (2018b) and Koloskova et al. (2020) present unified frameworks
for analyzing decentralized SGD with local updates, elastic averaging or changing topology. The
follow-up work of Wang, Joshi (2018a) presents ADACOMM, an adaptive communication strategy
that starts with infrequent averaging and then increases the communication frequency in order to
achieve a low error floor. They analyze the error-runtime trade-off of Local SGD with nonconvex
functions and propose communication times to achieve faster runtime.

Another line of work reduces the communication by compressing the gradients and hence limiting
the number of bits transmitted in every message between workers (Lin et al., 2018b; Alistarh et al.,
2017; Wangni et al., 2018; Stich et al., 2018; Stich, Karimireddy, 2019).

Asynchronous methods have been studied widely due to their advantages over synchronized methods
which suffer from synchronization delays due to the slower workers (Spiridonoff et al., 2020).
Wang et al. (2019) study the error-runtime trade-off in decentralized optimization and proposes
MATCHA, an algorithm which parallelizes inter-node communication by decomposing the topology
into matchings. However, these methods are relatively more involved and they often require full
knowledge of the network, solving a semi-definite program and/or calculating communication
probabilities (schedules) as in Hendrikx et al. (2019).

The homogeneous data assumption. In this work, we focus on the case when the data distribution
is the same across workers. A number of previous works (Khaled et al., 2020; Haddadpour et al.,
2019; Stich, 2019; Dieuleveut, Patel, 2019) studied local SGD under this assumption. The assumption
is valid when the same data set is either shared across multiple workers in the same cluster, or
the assignment of data points to workers is random so that any distributional differences are small.
Sharing the data set across multiple workers in this way is a popular strategy to speed up training.
For example, such data sharing is implemented in (Chen et al., 2012; Yadan et al., 2013; Zhang
et al., 2013a) to speed up training of deep neural networks with multiple GPUs within a single
server. While there are many widely used mechanisms such as Horovod (Sergeev, Del Balso, 2018)
for synchronous data-parallel distributed training, they share a major communication bottleneck of
broadcasting gradients to all workers (Grubic et al., 2018). Local SGD improves on these methods by
reducing the communication of model parameters from every iteration to a smaller number of rounds
during the entire optimization process. Our approach further reduces the communication overhead by
communicating less as the number of iterations grows.

1.2 Notation

For a positive integer s, we define [s] := {1,...,s}. We use bold letters to represent vectors. We
denote vectors of all Os and 1s by 0 and 1, respectively. We use || - || for the Euclidean norm of a
vector and spectral norm of a matrix. Finally, A'(x, 02) denotes a normal distribution with mean 1
and variance o2,



2 Problem formulation

Suppose there are N workers V = {1,..., N}, trying to minimize f : R? — R in parallel. We
assume all workers have access to f through noisy gradients. In Local SGD, workers perform local
gradient steps and occasionally calculate the average of all workers’ iterates. Each worker ¢ holds a
local parameter x! at iteration ¢. There is a set Z C [T'] of communication times and nodes perform
the following update:

t+1 xh — g, ift+1¢17,
X, = 1 N t At . (1)
¥ (X —mgt), ift+1€eT,

where g! is an unbiased stochastic gradient of f at x!. When Z = [T, we recover fully synchronized
parallel SGD while Z = {T'} recovers one-shot averaging. Pseudo-code for Local SGD is provided
as Algorithm 1.

Algorithm 1 Local SGD

I: Input: x9 = x° for all i € [n], total number of iterations 7, the step-size sequence {7; }—,", and
ZcT]

2: fort=0,...,T—1do

3 forj=1,...,Ndo

4 evaluate a stochastic gradient g;.
5 ift+1eZ theljlv

6: X;H = N i (X — m8f)
7 else

s X =x gl

9 end if
10:  end for
11: end for

Next we state the assumptions that we will use in our results. Note that we will not require all of
them to hold at once.

Assumption 1 (smoothness). The function f : R® — R is continuously differentiable and its
gradients are L-Lipschitz, i.e.,

IVIx) =Vl <Lix=yll,  vxy.
Assumption 2 (strong convexity). f is u-strongly convex with 11 > 0, i.e.,

F0)+ {8y —x) + SlIx—yI* < f(v).  ¥xyeR’ Vg € Of(x),

where O f (x) denotes the set of subgradients of [ at x. When f is also continuously differentiable,

9f(x) ={Vf(x)}.

Note that when f satisfies Assumption 2, it has a unique optimal point x* where f(x*) = f* where
f* = miny f(x).
Assumption 3 (Polyak-F.ohasiewicz condition). f is u-Polyak-Lohasiewicz (u-PL for short) if

IVFEI? = 2u(f(x) = f5),  ¥x.
where f* = miny f(x) is the global minimum of f. We further assume that f has a unique optimal
point x* where f(x*) = f*.

When f satisfies both Assumptions 1 and 2 or Assumptions 1 and 3, we define kK = L/ as the
condition number of f.

Strong convexity implies the PL condition but the reverse does not always hold. For instance, the
logistic regression loss function satisfies the PL condition over any compact set (Karimi et al., 2016).
In fact, a PL function is not even necessarily convex. Charles, Papailiopoulos (2018) show that
deep networks with linear activation functions are PL almost everywhere in the parameter space.
Allen-Zhu et al. (2018) show, with high probability over random initializations, that sufficiently wide
recurrent neural networks satisfy the PL condition. Therefore, the PL condition is more applicable,
especially in the context of neural networks (Madden et al., 2020).



Assumption 4 (twice differentiability at the optimum). f is twice continuously differentiable on an
open set containing the optimal point X*.

We make the following assumption on the noise of stochastic gradients, using w! = g! — V f(x!) to
denote the difference between the stochastic and true gradients.

Assumption 5 (uniform with strong-growth noise). Conditioned on the iterate X!, the random
variable w! is zero-mean and independent with its expected squared norm error bounded as,

E[[|wi[[*|x{] < e Vf(xD)? + o2,
where o2, ¢ > 0 are constants.

The noise model of Assumption 5 is very general and it includes the common case with uniformly
bounded squared norm error when ¢ = 0. As it is noted by Zhang et al. (2016), the advantage of
periodic averaging compared to one-shot averaging only appears when ¢/o? is large. Therefore, to
study Local SGD, it is important to consider a noise model as in Assumption 5 to capture the effects
of frequent averaging. Among the related works mentioned in Table 1, only Stich, Karimireddy
(2019) and Haddadpour et al. (2019) analyze this noise model while the rest study the special case
with ¢ = 0. SGD under this noise model with ¢ > 0 and o2 = 0 was first studied in Schmidt, Roux
(2013) under the name strong-growth condition. Therefore we refer to the noise model considered in
this work as uniform with strong-growth.

Assumption 6 (sub-Gaussian noise). Conditioned on the iterate X', random variable w' is zero-mean,
independent and [w?]; is (o /\/d)-sub-Gaussian, forl = 1,....d, i.e.,

20.2
Blexp(Mwél ~ B ] < exp (27

), VAER,I=1,...,d.

Thus, it has uniformly bounded variance E[||w!|?|x!] < o2

A sub-Gaussian noise model is commonly assumed for deriving concentration bounds for SGD,
which we will use to prove our results for OSA.

As already mentioned in the Introduction, the main goal of this paper is to study the effect of
communication times on the convergence of the Local SGD and provide better theoretical guarantees.
In what follows, we claim that by carefully choosing the communication times, linear speed-up of
parallel SGD can be attained with only a small number of communication instances. Moreover, we
will obtain a set of sufficient conditions for OSA to achieve linear speed-up.

3 Convergence results

In this section we present our main convergence results for Local SGD and OSA. In what follows,

we denote by X' := (32| x!)/N the average of the iterates of all workers. Notice that x! = x* for

teZandi=1,...,N

3.1 Local SGD

Let us introduce the notation

O=1o<mn<...<7mp=T,
for the communication times. Further, let us define H; := 7,47 — 7; to be the ¢’th interc-
communication interval. Our first theorem gives a performance bound under the assumption that H;
grows linearly with <.
Theorem 1. Suppose Assumptions 1 (smoothness), 2 (strong convexity) and 5 (uniform with strong
growth noise) hold.

Choose the parameters as follows: Rsuchthat1 < R < 2T anda := [2T/R*] > 1, H; = a(i+1)

and 7,41 = min(r; + H;, T) fori = 0,..., R — 1. Choose 8 > max{9x, 12x%c max{In(3), In(1 +

T/(4kR?))} + 3k(1 + ¢/N)} and set the learning rate as n; = 3/u(t + B),t =0,1,...,T — 1.

Then using Algorithm I we have,

) B(F(RO) — f*)  9Lo?  144L2%0°

E T\ _ f* i )
FE =1 T2 T 52NT T T BRT

IN



Corrollary 1. Under the assumptions of Theorem I, selecting the number of communications
R = Q(kN) we obtain

PU I o (L)
p

The choice of communication times in Theorem 1 aligns with the intuition that workers need to
communicate more frequently at the beginning of the optimization. As the the step-sizes become
smaller and workers’ local parameters get closer to the global minimum, they diverge more slowly
from each other and therefore, less communication is required to re-align them. The advantage
of this communication strategy over fixed periodic averaging has been only empirically shown in
Haddadpour et al. (2019). The proof of Theorem 1 can be found in Appendix B.

3.2 One-shot averaging

The previous literature literature has shown OSA achieves asymptotic linear speed-up under some
restrictive assumptions. For instance, Dieuleveut, Patel (2019) show this for three times continuously
differentiable functions with second and third uniformly bounded derivatives. Similarly, Godichon-
Baggioni, Saadane (2020) require the objective function to be strongly convex, twice continuously
differentiable almost everywhere, with a bounded Hessian everywhere and gradients satisfying the
following condition for some constant C,,, and all x € R4,

[V£(x) = V2 (") (x = x) || < Conlxe — x|

This inequality is similar to the assumption from Dieuleveut, Patel (2019) of uniformly bounded third
derivatives. In the following theorem, we relax these assumptions and show that OSA achieves linear
speed-up under considerably milder assumptions.

Before proceeding, let us define the step-size sequence {6, } as

i fort=0,...,to — 1,
PICESBER) ort = o,

where to = |2L/u|. Notice that 6, < 1/L for all ¢.

Theorem 2. Under Assumptions 1 (smoothness), 3 (PL condition), 4 (twice differentiability at the
optimum) and 6 (sub-Gaussian noise) and with step-size sequence {n;} = {6} defined in (2), we

have for T' > t,
2} < 402 n l
=3i2NT T O\T )"

We are thus able to relax the conditions from the earlier literature, which required everywhere or
almost everywhere higher derivatives with uniform bounds on third derivatives to merely twice
differentiability at a single point. As a bonus, we also replace strong convexity with the PL condition.

E |7 - x*

This theorem is proved in Appendix C. The main difference between Theorem 2 and Corollary 1 is
that Theorem 2 shows a linear speed-up with only one communication round but with slightly more
restrictive assumptions such as sub-Gaussian noise model and twice-differentiable objective function
at the optimal point. On the other hand, our results for OSA only require the PL-condition instead of
strong convexity.

4 Numerical experiments

To verify our findings and compare different communication strategies in Local SGD, we performed
the following numerical experiments, using an Nvidia GTX-1060 GPU and Intel Core 17-7700k
processor.

4.1 Quadratic function with strong-growth condition

As discussed in Zhang et al. (2016); Dieuleveut, Patel (2019), under uniformly bounded variance, one-
shot averaging performs asymptotically as well as mini-batch SGD, at least for quadratic functions.
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Figure 1: Minimizing (3) using Local SGD with different communication strategies. Figures (a) and
(b) show the error over iteration and communication rounds, respectively.

Therefore, to fully capture the importance of the choice of communication times Z, we design a hard
problem, where noise variance is uniform with strong-growth condition, defined in Assumption 5.
Let us define,

d .
F(x) =E¢f(x,¢), Z%mf (142 l)—&—x Zo, 3)
=1

where ( = (z1,22) and 1,22 € R? 21 ; ~ N(0,¢1) and z2; ~ N(0,c2), Vi € [d], are random

variables with normal distributions. We assume at each iteration ¢, each worker i samples a ¢! and

uses V f(x,¢}) as a stochastic estimate of VF(x). It is easy to verify that F'(x) is 1-strongly convex

and d-smooth, F* = 0 and E;[||V f(x,¢) — VF(x)||?] = ¢|VF(x)||* + %, where ¢ = ¢; and
2 = dCQ.

We use Local SGD to minimize F'(x) using different communication strategies, namely, synchronized
SGD where H = 1, H ~ /TN Stich (2019), H ~ (T'N)'/3 Haddadpour et al. (2019), R = N with
constant H ~ T'/N Stich, Karimireddy (2019); Khaled et al. (2020) and finally the communication
strategy proposed in this work with R = N and linearly growing H; local steps. We used N = 20
workers, T = 1000 iterations, ¢; = 1.0 and ¢ = 10710 with d = 3 and step-size sequence
e = 3/(u(t + 1)). To estimate the expected value of errors, we repeated the optimization using each
strategy 100 times and reported the average and 1-standard-deviation error bar in Figure 1.

‘We make the following observations from Figure 1:

* Figure 1(a) shows that a communication strategy with increasing local steps (proposed in
this work), outperforms all the other methods, both in transient and final error performance,
specifically the one with the same number of communication rounds evenly spread through-
out the whole optimization. This confirms the advantage of more frequent communication
at the beginning of the optimization, especially when the ratio of ¢ to o2 in the noise with
growth condition is large (see the definition in Assumption 5).

* Figurel(b) shows that our communication method uses fewer communication rounds, 20
versus 28 (Haddadpour et al., 2019), 143 (Stich, 2019) and 1000 rounds for synchronized
SGD.

* OSA appears to perform relatively well despite using only one communication round, though
not quite as well as other methods. This shows that the choice of communication is important
in this experiment. In other words, it is not true that the success of our communication
strategy is merely a byproduct of the experiment design, where any communication strategy,
as long as it communicates at least once, will succeed.
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Figure 2: Speed-up curves for different communication strategies, over different ranges of N and 7.
Figure (a) establishes the linear speed-up of local SGD with R = N communication rounds as well
as failure of OSA to achieve speed-up even with small number of workers N < 32 over T' = 1000
iterations. Figure (b) additionally plots speed-up curves for R ~ N3/ and R ~ N'/2 for larger
values of 32 < N < 256 and T' = 8000.

4.2 Speed-up curves

In this experiment, we minimize a one-dimensional function defined as,

{éxQ, x <0,

F(z) = x? x>0

“)
using Local SGD with gradients corrupted by a normal noise N (0,02). We chose this specific
cost function since it is not twice continuously differentiable at the minimizer z* = 0 and does not
satisfy Assumption 4 required by Theorem 2 for OSA to achieve linear speed-up. The results of this
experiment will help us understand whether twice differentiability is a necessary assumption for OSA
to obtain a linear speed-up.

The speed-up curve is derived by dividing the expected error of a single worker SGD by the expected
error of each method at the final iterate 7', over different number of workers /N. Thus in the case
where the error decreases linearly in the number of workers, we should expect to see a straight line
on the graph.

We plot the speed-up curve for N workers using different communication strategies: synchronized
SGD, R = N communication rounds with linearly increasing number of local steps H;, R = N with
constant number of local steps H ~ T'/R, as well as OSA with only R = 1 communication at the
end. We use the step-size sequence 1, = min{1/L,2/(u(t + 1))} withp =1,L = 2, and 0 = 8,
T = 1000.

Our results in Figure 2(a) show that Local SGD with R = N (increasing or constant H) achieves
linear speed-up in the number of workers, albeit with a worse constant compared to synchronized SGD.
However, OSA fails to scale as N increases. This suggests that the condition of twice differentiability
(Assumption 4) is necessary for Theorem 2, as this function satisfies all the other assumptions of that
theorem.

While our theoretical results provide only an upper bound on R to achieve linear speed-up, this setting
gives us a chance to find out if smaller number of communication rounds are enough. Therefore
we repeat this experiment for larger number of workers N and 7' = 8000, using R ~ N3/4 and
R =~ N2 communication rounds. Our results in Figure 2(b) show that R = N clearly achieves
speed-up for larger values of IV, as expected and R = 1 and R ~ N'/2 fail to speed-up. However,
R ~ N3/* also struggles to linearly speed-up in the number of workers, as the slope of the speed-up
curve declines with IV increasing. It would be of interest to look into a more granular choice of
communication rounds such as R ~ N%9 or even R ~ N9 but this would require much larger
values of IV and 7" and thus more repeated simulations, which is beyond our computational resources,
which were already exhausted by generating Figure 2(b).



It is worth mentioning that in both experiments of Figure 2(a) and 2(b), R = N with increasing H
outperforms the one with constant H, even though the noise model used in this experiment is simply
uniformly bounded, without strong-growth condition. This further endorses the use of more frequent
averaging at the beginning of optimization, when paired with decreasing step-size sequence.

4.3 Regularized logistic regression

We also performed additional numerical experiments with regularized logistic regression using two
large real datasets: (i) a national dataset (NSQIP) of surgeries performed in the U.S., seeking to
predict short-term hospital re-admissions, which consists of 722101 data points (surgeries) each
characterized by d = 231 features, (ii) the a9a dataset from LIBSVM (Chang, Lin, 2011) which
includes 32561 data points with d = 124 features. The results of these experiments are presented
and discussed in Appendix A.

5 Conclusion

In this work, we studied the communication complexity of Local SGD and provided an analysis
that shows that R = Q(N) number of communication rounds, independent of the total number of
iterations 7', is sufficient to achieve linear speed-up. Moreover, we showed only a single round of
averaging is needed provided that the objective is twice differentiable at the optimum point. This
assumption appears to be necessary, as our simulations show that not only one-shot averaging but
using N'/2 or N3/* communications in local SGD fails to deliver linear speed-up on a simple
example which is not twice differentiable at the optimum.
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