INTERNATIONAL JOURNAL OF © 2021 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 18, Number 5, Pages 712-721

EXTRAPOLATING THE ARNOLDI ALGORITHM TO IMPROVE
EIGENVECTOR CONVERGENCE

SARA POLLOCK AND L. RIDGWAY SCOTT

Abstract. We consider extrapolation of the Arnoldi algorithm to accelerate computation of
the dominant eigenvalue/eigenvector pair. The basic algorithm uses sequences of Krylov vectors
to form a small eigenproblem which is solved exactly. The two dominant eigenvectors output
from consecutive Arnoldi steps are then recombined to form an extrapolated iterate, and this
accelerated iterate is used to restart the next Arnoldi process. We present numerical results
testing the algorithm on a variety of cases and find on most examples it substantially improves
the performance of restarted Arnoldi. The extrapolation is a simple post-processing step which
has minimal computational cost.

Key words. Eigenvalue computation, extrapolation, Arnoldi algorithm.

1. Introduction

There are many applications in which the smallest eigenvalues of large systems
must be computed, e.g., in stability analysis of numerical schemes [6] and in stability
analysis of partial differential equations [16]. The (inverse) power method is often
preferred due to its ease of implementation and the limited amount of storage
required. In many cases [16], all that is required to implement the inverse power
method is to solve the associated system of equations repeatedly. Thus it is easy
to modify a code for a solver to become a code for the inverse power method.

Extrapolation has been shown [11] to provide an effective way to improve the
power method. Here we consider a different approach in which the power method
is first generalized. We then examine extrapolation of the method.

One generalization of the power method is to use a small number k£ > 1 of
approximation vectors and to project the eigenproblem onto the corresponding
k-dimensional space. One then solves the projected k-dimensional eigenproblem
and extracts the eigenvector corresponding to the extreme eigenvalue as the next
iterate. This can lead to faster convergence with a controlled increase in storage. A
natural set of vectors to use is a Krylov basis, and we dub this approach the k-step
Krylov method. We show that the popular LOBPCG method is of this form. There
could of course be other ways of generating appropriate vectors at each step, e.g.,
a random process.

We show that the Arnoldi algorithm provides a very stable implementation of
the k-step Krylov method. We further demonstrate how a simple extrapolation
technique, which takes a combination of the two latest Arnoldi outputs as the next
approximation, can be used to further enhance the rate of convergence. Since the
basic k-step method is Arnoldi, it is remarkable that this algorithm can be improved
by extrapolation.

Received by the editors January 28, 2021 and, in revised form, July 5, 2021.
2000 Mathematics Subject Classification. 65B05,65F15.

712

EXTRAPOLATING THE ARNOLDI ALGORITHM 713

2. k-step Krylov methods

We can define general k-step Krylov methods as follows. We start with a vector
y1 and define y; 11 = Ay;, forj =1,...,k—1. We seek to find coefficients a1, ..., ax
such that

(].) AZajyj = /\Zajyj.
J J

Taking dot products, we see that this is equivalent to
Ka = \Ma,
where
Ky =yidyj, My =yiy;.
Thus we can determine a by solving the eigenproblem
(2) M™'Ka =)a.

Due to the close connection with Ritz methods, a is called the Ritz vector and A is
the Ritz value. A great deal is known about how these approximate eigenvectors
and eigenvalues for A as k increases [14].

We define the output of the k-step method as A1,... A, (m < k) and

k
y = Z AiYis
i=1

where a is the eigenvector corresponding to the extreme eigenvalue \; for (2), and
Ao, ... A\ are the remaining eigenvalues in descending order.

The eigenproblem (2) can be solved analytically for k < 4. In [13], the case k = 2
is described in detail.

2.1. Orthogonalization of Krylov vectors. Unfortunately, the naive approach
(2) to the k-step method fails for larger k, due to ill conditioning, as described in
[13]. Thus we consider orthogonalization of the Krylov vectors.

Now we modify the steps leading to (2). We start with a vector y; and de-
fine Krylov vectors y;11 = Ay;, for j = 1,...,k. Then we orthogonalize to get
¥1,-.., Yk by the modified Gram—Schmidt algorithm [2, 12]. We provide the details
n [13]. In this setting, the matrix M is the identity.

The use of orthogonal Krylov vectors allows extension to more steps k, but for
slightly larger & the algorithm still fails due to the increasing condition number of
K, as indicated in [13].

2.2. Arnoldi algorithm. The Arnoldi algorithm makes a small change in the
order of orthogonalization and multiplication by the matrix A. Instead of first cre-
ating the Krylov vectors all at once, we multiply by A only after orthogonalization.
Thus y; = ||91]|7'¥1. Then for n =1,2,...,k — 1, define

yn - Ayn - Z hj,an 5 hj,n = thA}’n ;] =1,... n,
(3) =1

hn+1,n = ||§nHa Yn+1 = h;}rl,nyn

For n = k, we compute hj = ythyk for j = 1,...k, but we do not perform the
orthogonalization steps in the first line of (3) for n = k.

One can show by induction that the vectors y; are orthogonal, so that, in exact
arithmetic, H = K. But this subtle change makes the algorithm far more robust, as
shown in Figure 1(a). The k-step algorithm approximates accurately many of the

714 S. POLLOCK AND L.R. SCOTT

100 Arnoldi k-step 100 Arnoldi k-step, 2nd eigenvalue error
<-- residual norm
10°° 107°
10710 eigenvalue error --> 10710 | second eigenvalue error -->
10°15 10-15 ‘ ‘ ‘
50 100 150 200 0 50 100 150 200
(a) number of steps k (b) number of steps k

F1cURE 1. The Arnoldi k-step method for the n x n diagonal ma-
trix A where a;; = n/i, i =1,...,n, for n = 1000. (a) Errors for
the largest eigenvalue (which is 1) and corresponding eigenvector
residual norm. (b) Errors for the second-largest eigenvalue (which
is1—1/n).

largest eigenvalues. Figure 1(b) plots the error for the second-largest eigenvalue.
Figure 1(a) further displays the expected [3] behavior that the eigenvalue error is
proportional to the square of the eigenvector error.

2.3. Restarted Arnoldi algorithm. Our k-step algorithm described above is a
restarted Arnoldi algorithm [17]. What is different is that here we propose the
restart for purely algorithmic purposes (e.g., minimizing storage) as opposed to
deflation or stability considerations [10].

2.4. Rationale for k-step algorithm. Assessments of efficiency are problem
dependent, and so we look in detail at one application. Suppose that the matrix
A is sparse and of size N x N. We quantify the sparseness by assuming that a
matrix-vector multiplication Ay costs N3¢ operations. Vector dot products cost N
operations. Thus the Arnoldi method requires

kN + k2N

operations. In many cases, multiplication by A actually requires solving a system
of equations [16], and so 3 might be as large as 1000 or larger, and perhaps increas-
ing as NV increases for solvers that are not optimal order. And in many physical
applications, only a few eigenvalues are of interest.

One limit on k is the required kN storage of the Krylov vectors. Thus there may
be a need for several iterations of a k-step method for a fixed k, even though one
iteration for a much larger £ might be more efficient.

The restarted algorithm requires solving a k x k eigenproblem at each step. Let
us assume that the reduced eigenproblem takes on the order of k3 operations. Then
if K << min{s, N}, the cost of the reduced eigensolve is negligible.

3. Accelerating the k-step method with extrapolation

A depth-1 extrapolation can be applied to the k-step or restarted Arnoldi method
as a simple low-cost post-processing procedure. As discussed and shown below,
this can be advantageous particularly for smaller values of k. Here we discuss
the extrapolation with iteration j parameter 7; as summarized in the following

algorithm. In order for the first two approximate eigenvalues)\gj) and)\gj) to provide
meaningful information, generally & > 4 makes sense. However, if the second

EXTRAPOLATING THE ARNOLDI ALGORITHM 715
approximate eigenvalue is not being used to define the extrapolation parameter -;,
then k& > 2 makes sense.

Algorithm 3.1 (Extrapolated k-step Arnoldi). Choose ©) and k > 2.
Compute [y,)\go)’)\éo)] = Arnoldi(y®, A k). Set u(*) =y,

forj=1,2 ...
a. Compute [y(jJrl),)\gj),)\gj)} = Arnoldi(u), A, k)
b. Set ;
c. Set ulth) = (1 —)yt 4 ~y0)

end

In the tests of subsections 3.2 and 3.3, the condition to exit the loop on conver-
gence is [|AyUtD) — APy U+ < £o1, for a given tolerance tol.

The choice of extrapolation parameter v; is the key to a successful extrapolation.
In [11], where the power iteration is accelerated by extrapolation, the parameter ;
which gives asymptotically exponential convergence for positive semidefinite prob-
lems is an approximation of —(Ay/\1)7, where the eigenvalues of A are labeled in
descending magnitude. Here we will see the approximation of —(Aa/\1)’ produced
by the k-step Arnoldi method gives an effective acceleration of the k-step method;
but, it is not clear that this is necessarily the best choice.

The complication in setting the extrapolation parameter lies in understanding
the approximate eigenvector 3+ produced from Arnoldi(u?), A, k) as an expan-
sion in the eigenbasis of A; in contrast to the power iteration, this expansion is not
available in closed form for the k-step method for general values of k. For concrete-
ness, suppose A is diagonalizable with a basis of orthonormal eigenvectors {v; }7_,
corresponding to eigenvalues {\;} ,, labeled with decreasing magnitude.

3.1. Analysis of extrapolation. By construction, the first generated iterate
y € Kp(y®) = span{y®, Ay .. A1y} the k-dimensional Krylov space
generated by A applied to y(*). The next iterate y® € K(y™") € Kor_1(y),
and in general y'*! € Ky (y™®) € K(j11yp—; (¥).

A formal expansion of each y/) in terms of the eigenbasis of A can be expressed

as
. 1 &N n] 1/2
) — = @y Yoy -)y))\2
Y J) = hj ;pi ()\z)vzy h] = (;(pi ()\z)) > ,
where pgj) (\i) is a polynomial of degree at most kj—(j—1) in ;. Now let’s consider

the ratio of the components of ©U*1) and y¥) in the direction of each eigenvector
v;. First define
(4) Gn _ vieProj, yU D by ptU(y) pz('j+1)()‘i)/hj+1.

n; = ; N j o j
vi - proj,, ¥y hipr pU(y)) P () /by

Then, noting

(3) (G+1)
. i pi (A h; p; Ai
proj,, u T = %Uz((l— j h_] T(Z) %‘)’
J J+1l p; (Ai)
we have
A . proj. uUtD ,

R v; - PIoj, u

(5) AT = LB (1Y

v; - proj,,, y\9)
We are first interested in how to use (5) to select values of parameter ~; that are
useful for accelerating convergence. We can understand the correct interval from

716 S. POLLOCK AND L.R. SCOTT

TABLE 1. Number of iterations to residual convergence of 10~7 for
constant and dynamically chosen extrapolation parameters used in
Algorithm 3.1 with k£ = 8.

5 12 J
)\gJ)

, N N
Mot 0 | —025 | —05] —0.75 | — 2| ||| e
A 192 94 73 76 80 97 98
Ay =Kuu 86 47 53 54 43 56 46
As =ifissmat || 165 | 105 83 42 79 72 68
A4 =gearbox 157 | 48 52 52 56 82 82
As =ssi 85 93 91 95 212 390 75
Ag =Si8THT76 63 32 37 37 32 37 33

which to choose this parameter by considering the special cases in the following
proposition.

(4+1)

i

~(F+1)

Proposition 3.2. Consider n given by (4) and 17, given by (5). Then

if vj=1 then ﬁgﬂ_l) =1,
if 7, =0 then ﬁgﬂ_l) ni(j—H),

if v =—1 then ﬁ;j—i_l) = 277i(j+1) — 1.

Proof. This follows directly from evaluating (5) with v; = —1,0, 1. O
Since ﬁfﬂ T is defined by an affine transformation of ni(j +1), we can use these

three data points to choose an appropriate interval for parameter ;. Setting v; =1
yields stagnation: no improvement in any mode 4 from step j to step j+ 1. Setting
v; = 0 returns ngﬁl) for any mode ¢ (no extrapolation). Values of «y; in (0, 1) then
function as a relaxation parameter. On the other hand, setting v = —1 amplifies

(jJFl) ’\(j+1) c [_1 1}

the damping of modes 7 for which 1/3 < 7, < 1, and maintains 7,

for n£j+1) € [0,1].
We are next interested in describing how the modes defined by (5) grow or decay

compared to those defined by (4) for v; € (—1,0). These results are summarized

in the following proposition.

(3+1)

i

~(3+1)

Proposition 3.3. Let v; € (—1,0), and consider n given by (4) and n;

given by (5). Then

A9 <D for /(v —2) < Y <1,
A <1, for (i 1)/(y— 1) <Y <1,

A =0, for g™V = —5;/(1 7).

Proof. This follows directly from (5) which states ﬁz(j 1 in terms of a shifting and
scaling of 771@ 1 in terms of the parameter ;. O

Proposition 3.3 shows that choosing 7, € (—1,0) is beneficial for modes that
slowly decrease (with no sign change) from Arnoldi(k). Modes which Arnoldi(k)
damps very quickly (ngJ 1 close to zero), are still decreased in magnitude, but not

as much. The modes which Arnoldi(k) damps slowly but with a change of sign

EXTRAPOLATING THE ARNOLDI ALGORITHM 717

however increase in magnitude. This explains some of the nonmonotonic behavior
in the convergence plots of Subsection 3.2.

Remark 3.4. For example, as shown in Subsection 3.2, the constant extrapolation
parameter v; = —0.75 performs well on most of the tests. From Proposition 3.5,
setting v; = —0.75 yields

A <t for 3/11 < gt < 1,
G <1, for —1/7 <Pt <1,

ﬁgﬂ—l) =0, for ngj—H) =3/7.

The parameters v; = —0.5 and v; = —0.25 are also considered. From Proposition
3.3, the parameters closer to zero satisfy |ﬁ§j+1)| < n§j+1), on a slightly wider posi-
tive interval, and |7’7\§j+1)| < 1, on a wider interval. However, the modes damped the
most for v; = —0.75 are those that decay more slowly than those damped the most
by v; = —0.25 and v; = —0.5, and this plays a significant role the the performance

of the method.

Finally, the justification for the dynamically chosen parameter v, used in Subsec-
tion 3.2 is contained in the next result. Here we consider the choice v; = —|A2/A1|7.
The effectiveness of an approximation to this choice using)\é]) and)\gj), the latest
approximation of the two dominant eigenvalues as returned from Arnoldi(uw?, A, k)
at iteration j of Algorithm 3.1, is demonstrated in Subsection 3.2.

Lemma 3.5. Consider ngjﬂ) given by (4) and ﬁ§j+1) given by (5). Set v, =

—[X2/A1)7, and suppose 0 < pI) < IXi/A1]7. Then

Ai

| Ai
A A1

J J J

D < ‘ Az
A1

The assumption that |n§j+1)| < |Ai/A1}? is heuristically justified by the suppo-
sition that Arnoldi(k) damps subdominant modes faster than the standard power
iteration; see [15] and the numerical tests of Subsection 3.2. The assumption that
171(] > 0 will not necessarily hold at each iteration of Algorithm 3.1, but as
seen in Lemma 3.3, this is the assumption that guarantees accelerated damping of

subdominant modes.
Proof. For the first inequality
i = e/l = e/ Xl > e/ Ml
For the second inequality
A < I ME e/ AP /AP = o/l < /AP Ihi/ Al
O

3.2. Convergence tests. All of our numerical tests were performed in Mat-
lab, and the k x k eigenproblems required by Arnoldi(k) were solved using the
command eig. In Table 1, the number of iterations to convergence with six
choices of extrapolation parameter 7; are compared on the following test set:
A; = diag(1000,—-999,998,...,2, —1); Ay =Kuu, symmetric positive definite with
n = 7102; A3 = ifiss mat, neither positive definite nor symmetric, with n = 96307;
A4 = gearbox, symmetric and not positive definite, with n = 153746; A5 = ss1,
neither positive definite nor symmetric, with n = 205282; Ag = Si87H76, symmetric

718 S. POLLOCK AND L.R. SCOTT

——Power ——Power
——Augmented \ ——Augmented
g g 100 | 4-step &l g 100 w 8-step &l
2 —Power 2 W a-step 1=, 2 ’Mﬁ ——8-step 7= 1,
S ——Augmented © V[w'g - 4-step =75 0O 1o 8-step 4=-75
=) > =) LS
g 2t 3 ™ 3 &
©10° e 2step = ©10° M ©10° %
——2-step y=-.75 A W
0 500 1000 0 500 1000 0 500 1000
matrix-vector multiplies matrix-vector multiplies matrix-vector multiplies

FIGURE 2. Residual history for Algorithm 3.1, with & = 2 (left),
k = 4 (center) and k = 8 (right), with 7; = 0 (k-step), v; =
Vo = —()\éj)//\gj))] and v; = —0.75, compared with the power
iteration and Augmented method of [11] with n = 40, applied to
A, = diag(1000, —999, ...,2, —1).

and not positive definite, with n = 240369. Matrices A;—Ag are available from the
SuiteSparse matrix collection [4]. Each iteration is started with y(® = (1,... 1)
Three constant extrapolation parameters, v; = —0.25, —0.5, —0.75 are compared
with three dynamically chosen parameters, v; = f|)\g>/)\§])|2/4, v = f|)\(2])/)\§])\
and v, = —|/\gj) / /\§J)|j , Where /\gj) and)\é]) are the first and second eigenvalues re-
turned on iteration j from Arnoldi(u?), A, k). The parameter v; = —|/\é])/)\gj)|2/4
is related to that used in [5]. The parameters v; = —|AY) /AP | and v; = —|AF) /A3,
are based on the extrapolation parameter used in [11]. The last of these, v; = v, =
—|/\gj)/)\gj)\j is denoted with subscript “s” due to its similarity to the parameter
that defines the “simple” method in [11], which has established convergence prop-
erties for power iterations. All three dynamically chosen parameters are ensured
to satisfy —1 < «; < 0, which is the interval of interest, as per the discussion
above. On the whole, the constant extrapolation parameters significantly reduce
computation in most cases, with a minor increase in the number of iterations in
one tested case. The dynamically chosen parameter v; = f|)\(2]) /)\gj)\j reduced
the number of iterations in all cases, although not as effectively as the constant
extrapolation in the case of A4 =gearbox. With the exception of A; =ss1, the
extrapolation methods reduced the number of iterations (without any additional
matrix-vector multiplies) generally by 50% or more. The two extrapolation param-
eters from table 1 which provide the greatest benefit in most cases, while causing

minimal damage in the worst, are the constant parameter v; = —0.75, and the
dynamic paramter v; = —|AY /A7 7. These two successful parameters are next

considered for different choices k in the k-step method.

3.3. Convergence details. Figures 2—4 compare Algorithm 3.1 with parameters
v; = —0.75 and v; = v, = —|A§J)/A§”|J‘ with the k-step method (v, = 0) using
different values of k, together with the power iteration and an extrapolated power
iteration referred to as the Augmented method of [11]. Each plot shows the I3
norm of the residual for the dominant eigenpair on the y-axis, and the number of
matrix-vector multiplies on the z-axis. In figure 2 it is notable for matrix A; that
the constant extrapolation v; = —0.75 accelerates convergence for k = 4,8, whereas
the dynamically assigned parameter 7, accelerates convergence nearly as well, but
only for k¥ = 8. This illustrates that the constant parameter may be preferable
in cases where the second eigenvalue may not be approximated well. Figure 3
(left) with k = 4 illustrates with A5 = ifiss_mat that the extrapolation does not

EXTRAPOLATING THE ARNOLDI ALGORITHM 719

10° 10° 10°
——Power ——Power
——Augmented ——Augmented
E g 8-step g 16-step
e 2 < 8-step 7=, 2 1 o 16-step 7= 7,
© © T 8step 1=-75 [© | ~+16-step 7=-.75 []
-5 -5 -5
310 310 310 5“““‘
7] [7] 7] L1
[} [} [L \
o i< ‘ i< b
4 [\41
0 500 1000 0 500 1000 0 500 1000
matrix-vector multiplies matrix-vector multiplies matrix-vector multiplies

FIGURE 3. Residual history for Algorithm 3.1, with & = 4 (left),
k =8 (center) and k = 16 (right), with v; = 0 (k-step), v; = vs =
— (AP /AP)? and 4; = —0.75, compared with the power iteration
and Augmented method of [11] with = 40, applied to Az =

ifiss_mat.
10° 10° 10°
2 ——Power
—+—Augmented
E g E 16-step
e or e e : ——16-step 4=,
T |- Augmented = D —+—16-step ~=-.75
3107° 310° 310° ¥
0 0 7]
o o o {
N R B b
0 500 1000 0 500 1000 0 500 1000
matrix-vector multiplies matrix-vector multiplies matrix-vector multiplies

FIGURE 4. Residual history for Algorithm 3.1, with k& = 2 (left),
k =4 (center) and k = 8 (right), with v; = 0 (k-step), v; = s =
—()\é])/)\gj))j and v; = —0.75, compared with the power iteration
and Augmented method of [11] with n = 40, applied to A5 = ss1.

necessarily induce convergence where the k-step method itself does not converge.
The center and right plots with £ = 8 and k = 16 illustrate that the extrapolation
can still significantly improve convergence where the residual for the k-step method
demonstrates oscillatory behavior. Figure 4 (left) with k = 4 illustrates with A5 =
ss1 an instance where the dynamically chosen v, reduces the number of iterations
more effectively than the constant parameter for a smaller value of k, however the
center and right plots with £ = 8 and k£ = 16 show little difference with or without
the extrapolation.

The examples shown in table 1 and figures 2—4 together illustrate that for large
enough values of k, the k-step method converges efficiently with respect to the
number of matrix-vector multiplies; however, for the range of k£ values for which the
k-step method converges but not efficiently, the extrapolation improves convergence
and restores efficiency. These results are consistent with the observations in [13] and
[15] that the restarted Arnoldi or k-step method with & = j x &k’ is more effective
than j iterations of the k’-step method. However, the extrapolation reduces the
sensitivity of the method to the choice of k, so that smaller values of k can produce
nearly the same efficiency, and with less demand on system memory.

4. LOBPCG and k-step methods

Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) methods
[1, 8, 9] have proved to be very effective for solving eigenproblems. Here we compare
them with the k-step methods. For simplicity, we restrict to the case that there

720 S. POLLOCK AND L.R. SCOTT

is no preconditioning and the eigenproblem is standard, not generalized. Referring
to the Wikipedia page! for LOBPCG, we can write the basic algorithm as follows.
First define the Rayleigh quotient p(x) by

and the residual
r(x) = Ax — p(x)x.
Given x;, LOBPCG defines

Xit1 = arg max p(y).
yé€ span{x;,r(x;)}

But assuming that Ax; # p(x;)x;, that is, the algorithm has not converged,
span{x;,r(x;)} = span{x;, Ax;}.

Therefore this form of LOBPCG is the same as the 2-step algorithm. In the
Wikipedia page for LOBPCG, the 3-step algorithm is also described.

5. Enhancements of k-step methods

There are several possible enhancements of k-step methods.

5.1. Block k-step methods. Block k-step methods can also be useful. For sim-
plicity, suppose that k is even. A block 2-step method, with block size k/2, would
work as follows. First pick k/2 initial vectors w;. (This could be done by generating
k/2 Krylov vectors.) Next perform one Krylov step for each i:

Wi+k/2 = AW2

and solve the reduced k x k eigenproblem arising by projecting onto this k-dimensional
subspace. Then pick the k/2 most extreme eigenpairs, (A\;, w;), i = 1,...,k/2.
With these k vectors, we form the reduced eigenproblem and repeat as desired. We
could of course also consider k£ to be a multiple of y for 1 > 2. We could then
retain only k/u vectors and perform p — 1 Krylov steps for each retained vector.

5.2. Preconditioning and generalized eigenproblems. The approach taken
to k-step methods described via LOBPCG methods can clearly be used to imple-
ment them. Thus preconditioning and generalized eigenproblems can also be used.
We postpone to a later publication the study of extrapolation in these contexts.

6. Conclusions and perspectives

We have considered using small eigenproblems as a technique to enhance the
performance of matrix-free methods, such as the power method. We introduce the
concept of the k-step method, which we identify as an Arnoldi method and also
the LOBPCG method. We have examined the performance as a function of &k for
various test matrices. But most importantly, we have shown that extrapolation
can be used as a simple post-processing procedure to enhance the k-step method at
essentially zero cost. Extrapolation can be added easily to packages such as SLEPc
[7].

1htt:ps ://en.wikipedia.org wiki_LOBPCG

EXTRAPOLATING THE ARNOLDI ALGORITHM 721

Acknowledgments

SP is supported in part by the National Science Foundation NSF DMS-1852876

and NSF DMS-2011519. Both authors would like to thank Nilima Nigam for valu-
able feedback on a preliminary version of the manuscript, and an anonymous referee
for suggestions that added significant clarity to this paper.

References

[1] P. Benner and T. Mach, Locally optimal block preconditioned conjugate gradient method

for hierarchical matrices, PAMM, 11 (2011), pp. 741-742.

[2] A. Bjorck, Numerics of Gram-Schmidt orthogonalization, Linear Algebra and Its Applica-

tions, 197 (1994), pp. 297-316.

[3] E. Cances and L. R. Scott, van der Waals interactions between two hydrogen atoms: The

Slater-Kirkwood method revisited, SIAM Journal on Mathematical Analysis, 50 (2018),
pp. 381-410.

[4] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Transactions

on Mathematical Software (TOMS), 38 (2011), pp. 1-25.

[5] C. De Sa, B. He, I. Mitliagkas, C. Ré, and P. Xu, Accelerated stochastic power iteration,

Proceedings of Machine Learning Research, 84 (2019), pp. 58-67.

| P. Farrell, L. Mitchell, L. R. Scott, and F. Wechsung, Robust discretization and multigrid

solution for incompressible and nearly incompressible continua, TBD, (2021).

[7] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the

solution of eigenvalue problems, ACM Transactions on Mathematical Software (TOMS), 31
(2005), pp. 351-362.

[8] A. Knyazev, Recent implementations, applications, and extensions of the Locally

Optimal Block Preconditioned Conjugate Gradient method (LOBPCG), arXiv preprint
arXiv:1708.08354, (2017).

[9] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block pre-

conditioned conjugate gradient method, STAM Journal on Scientific Computing, 23 (2001),
pp. 517-541.

[10] R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted arnoldi

iteration, STAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 789-821.

[11] N. Nigam and S. Pollock, A simple extrapolation method for clustered eigenvalues, Numerical

Algorithms, (2021) https://doi.org/10.1007/s11075-021-01108-7.

[12] C. C. Paige, M. Rozloznik, and Z. Strakos, Modified Gram-Schmidt (MGS), least squares,

and backward stability of MGS-GMRES, SIAM Journal on Matrix Analysis and Applications,
28 (2006), pp. 264-284.

[13] S. Pollock and L. R. Scott, Using small eigenproblems to accelerate power method iterations,

Research Report UC/CS TR-2021-10, Dept. Comp. Sci., Univ. Chicago, 2021.

[14] Y. Saad, On the rates of convergence of the Lanczos and the block-Lanczos methods, STAM

Journal on Numerical Analysis, 17 (1980), pp. 687-706.

[15] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric

matrices, Linear algebra and its applications, 34 (1980), pp. 269-295.

[16] L. R. Scott, Kinetic energy flow instability with application to Couette flow, Research Report

UC/CS TR-2020-07, Dept. Comp. Sci., Univ. Chicago, 2020.

[17] D. C. Sorensen, Numerical methods for large eigenvalue problems, Acta Numerica, 11 (2002),

pp. 519.

Department of Mathematics, University of Florida, Gainesville, FL. 32605, USA
E-mail: s.pollock@ufl.edu
URL: https://people.clas.ufl.edu/spollock/

Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
E-mail: ridg@uchicago.edu
URL: https://people.cs.uchicago.edu/~ridg/

