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ABSTRACT

Recently proposed self-supervised learning approaches have
been successful for pre-training speech representation mod-
els. The utility of these learned representations has been
observed empirically, but not much has been studied about
the type or extent of information encoded in the pre-trained
representations themselves. Developing such insights can
help understand the capabilities and limits of these mod-
els and enable the research community to more efficiently
develop their usage for downstream applications. In this
work, we begin to fill this gap by examining one recent and
successful pre-trained model (wav2vec 2.0), via its interme-
diate representation vectors, using a suite of analysis tools.
We use the metrics of canonical correlation, mutual infor-
mation, and performance on simple downstream tasks with
non-parametric probes, in order to (i) query for acoustic and
linguistic information content, (ii) characterize the evolution
of information across model layers, and (iii) understand how
fine-tuning the model for automatic speech recognition (ASR)
affects these observations. Our findings motivate modifying
the fine-tuning protocol for ASR, which produces improved
word error rates in a low-resource setting.

Index Terms— Self-supervised pre-training, representa-
tion analysis, speech representation learning

1. INTRODUCTION

Self-supervised learning (SSL) techniques leverage large-
scale unlabeled data to learn meaningful representations [1—
3]. In such techniques, the unlabeled data is used to design
an input and corresponding target output, without any man-
ual annotations. The learned representations are then used
as input to a supervised model (and often fine-tuned) for a
downstream task. The expected outcome is to either improve
downstream task performance or to reduce the amount of
labeled data required for training. For the speech domain,
various SSL techniques have recently been shown to improve
downstream task performance [4—13]. Although new and im-
proved approaches are being proposed at a rapid rate, the pre-
trained representations themselves are not well-understood,
leaving the development and application of SSL models as a
time- and resource-consuming process of trial and error.

We seck to fill this gap by analyzing pre-trained models
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(Sec. 5.2.1)
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Fig. 1. Visualization of properties encoded at different W2V2
layers. The curves measure different metrics on different
scales; they are shown together only to compare where ma-
Jjor peaks and valleys occur. Details in the indicated sections.

to understand how the representations evolve across layers,
how they relate to a range of linguistic properties, and how
they change when fine-tuned for a downstream task. We are
especially interested in developing tools to study represen-
tations directly, rather than training additional classifiers as
probes, to avoid the overhead and unclear dependence on de-
sign decisions involved in training classifiers. In this work, we
focus our analysis on the open-source wav2vec 2.0 (W2V2)
models [11], which have been successful for speech recogni-
tion [14-16] and translation [17]. Our main findings are:

* The W2V?2 transformer layers follow an autoencoder-style
behavior, where as we go deeper into the model, the repre-
sentation starts deviating from the input speech features fol-
lowed by a reverse trend where even deeper layers become
more similar to the input, as if reconstructing the input.

* The layer-wise evolution of the representations follows an
acoustic-linguistic hierarchy, where the shallowest layers
encode acoustic features, followed by phonetic, word iden-
tity, and word meaning information (and then followed by
areverse trend as described above), as illustrated in Fig. 1.

* Fine-tuning the model for ASR breaks the autoencoder-
style behavior in the final few layers, which accordingly
also get better at encoding word identity.

e The final convolutional (CNN) layers and initial trans-
former layers are highly correlated with mel spectrogram
features, suggesting that the model learns to extract features
similar to human-engineered ones.
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Fig. 2. Summary of our analyses using CCA and MI. Left: W2V2 architecture sketch. The Base and Large models have L = 12
and 24 transformer layers respectively. Right: Representations/labels used for each experiment. “Pool” refers to a pooling
operation to combine frame representations into a phone/word segment representation, shown here for a segment corresponding
to the phone [ay] and the word “agree”; in our experiments we use mean pooling. “AGWE” and “GloVe” refer to acoustically
grounded word embeddings and GloVe word embeddings respectively. See Sec. 4.2 for details.

* The model encodes some word meaning information.

* The last two layers often defy the previous layers’ trends.

* A fine-tuning protocol, designed based on these findings,
improves ASR performance in low-resource settings.

2. RELATED WORK

There has been extensive work on analyzing supervised
speech models [18-20], but research on analyzing SSL mod-
els has been limited. Some very recent work has explored the
phonetic, paralinguistic, and semantic content in SSL models
using classifier probes [10, 16, 21, 22] and relationships be-
tween models with different training objectives and architec-
tures [23]. The 2021 Zero Resource Speech Benchmark [24]
introduces zero-shot analysis datasets and metrics to evaluate
the ability of SSL speech representations to encode different
levels of linguistic information. While we share much of the
motivation of [21,22,24], we focus on layer-wise analysis
of a range of acoustic-linguistic content using lightweight
methods that don’t rely on training classifiers or collecting
any additional labels for analysis, making it easier to scale.
Layer-wise analysis of linguistic structure has also been
done before for visually grounded speech [25] and SSL text
models [26]. Our methods of canonical correlation analy-
sis (CCA) and discrete mutual information (MI) estimates
are closest to Voita et al.’s work on text models [27]. MI
has also been used to analyze supervised ASR models [20].
Unlike prior work, we apply these methods to the analysis
of the relationship between representations and both discrete
labels and continuous embeddings, and between representa-
tions from pre-trained and fine-tuned models. To our knowl-
edge, this is the first work to analyze an SSL speech model on
arange of linguistic properties using non-parametric probes.

3. ANALYSIS METHODS

Fig. 2 sketches the W2V2 model structure and the represen-
tations used in many of our analyses.

Canonical Correlation Analysis. CCA [28] is a statis-
tical technique that measures the relationship between two
continuous-valued random vectors as represented by the max-
imum correlations between their linear projections. CCA has
been previously used as a measure of similarity to compare
representations within and across neural network models [27,
29,30]. Here we use it in the same way, and also to mea-
sure the similarity between a layer representation and another
vector, such as word embeddings or acoustic features.

CCA takes n pairs of vectors {(z1,41), s (Tn,Yn)}s
sampled from the random vectors (or “views”) X € R Y €
R? as input and returns a correlation score as a measure of
similarity between the two views. The solution can be de-
fined iteratively as follows: First we define the directions of
maximum correlation between linear projections of X and
Y: vy, wy = argmax, , corr(v? X, w”Y). The subsequent
directions v;, w; Vi € [2,k], K = min(d;,ds), maximize
the same correlation subject to each new projection being
uncorrelated with others in the same view.

In standard CCA the canonical correlation CCA(X,Y) is
the sum (or mean) of the correlations p; = corr(v} X, wl'Y).
We use a variant, projection-weighted CCA (PWCCA) [31],
which computes a weighted mean of the p;s, with higher
weights for directions accounting for a higher proportion of
the input. PWCCA has been found to be more robust to
spurious correlations in the data. Since PWCCA is asym-
metric, we report the mean of the two quantities CCA(X,Y)
and CCA(Y, X). Henceforth we refer to this average as the



“CCA similarity”, and it has a maximum value of 1.

As illustrated in Fig. 2, we use PWCCA to measure sim-
ilarity between the W2V2 layer representations and various
continuous-valued quantities of interest, either (i) from a
different layer of the same model (CCA-intra), (ii) from a
fine-tuned version of the model (CCA-inter), or (iii) from an
external representation. For the third type of analysis we use
mel filter bank features (CCA-mel), acoustically grounded
word embeddings [32] (cca-agwe)' and GloVe word embed-
dings [33] (cca-glove) as ways to assess the local acoustic,
word-level acoustic-phonetic, and word meaning information
encoded in the W2V2 representations respectively.

Mutual information. While CCA is natural for relating
continuous-valued vectors, we use mutual information (MI)
to measure dependence between the representations, y”"™ or
y*"¢ from Fig. 2, and the corresponding phone (MI-phone)
or word (MI-word) label. We cluster the continuous-valued
representations to obtain discrete clusters, as in [20,27].

Word discrimination. (word-disc) is the task of detecting
whether two speech segments correspond to the same or dif-
ferent words [34] and is commonly used to evaluate acoustic
word embeddings and other acoustic representations [35-38].
We follow a typical evaluation protocol, where we label a pair
of segments as “same word” if the cosine similarity between
their word-level representations is above some threshold, and
measure performance via the average precision as the thresh-
old is varied. We use this task-specific measure primarily to
corroborate our findings from MI-word.

Word similarity tasks. We perform a suite of 11 stan-
dard word similarity tasks (word-sim) [39] as an additional
measure of word meaning information.”> We extract context-
independent word embeddings from W2V2, as described in
Sec. 4.2. The semantic similarity score for each word pair is
measured as the cosine similarity between these embeddings.
Performance is measured as the Spearman’s p correlation be-
tween these scores and the human similarity judgements.

4. EXPERIMENTAL SETUP

4.1. Representation Learning Model

The W2V2 model [11] maps raw waveforms to higher-level
contextual features via a set of convolutional layers followed
by self-attention (transformer) layers, as shown in Fig. 2, and
is trained with a contrastive objective that measures the abil-
ity of the model to differentiate between a true masked input
segment and a set of distractors. The self-attention layers in
the transformer allow the model to encode information from
the context surrounding a given masked segment.

We analyze three W2V?2 variants: (i) Base: 12 layers,
trained on 960 hours of LibriSpeech [40], (ii) Large-960: 24
layers, trained on 960 hours of LibriSpeech, (iii) Large-60k:

'AGWE:s are trained to be close to acoustic embeddings of the corre-
sponding words, so we expect they encode mainly acoustic-phonetics.
Zhttps://github.com/vecto-ai/word-benchmarks

Experiment | # labels # representation examples
CCA-intra,
CCA-inter, n/a 150k frames
CCA-mel
CCA-agwe,
CCA-glove 2.7k words 4.8k word segments
train: 187k phone segments
MI-phone 39 phones dev: 7.6k phone segments
MI-word 500 words train: 427k word segments
dev: 6.9k word segments
. 2.4k word segments
word-disc 300 words (2.9M pairs)

Table 1. Data subsets curated for our analysis. We repeat
each experiment on four sample sets. The numbers here are
averages across the four sets. For MI experiments, the train
subsets are used to define the clustering. For word-disc, we
use words that are at least 5 characters and 500ms long.

24 layers, trained on 60k hours of LibriVox [41]. We also
analyze W2V?2 fine-tuned for ASR with 10 minutes (ft-10m),
100 hours (ft-100h), and 960 hours (ft-960h) of labeled Lib-
riSpeech.> Fine-tuning consists of adding a randomly ini-
tialized linear layer to the pre-trained model, and then train-
ing with character-level connectionist temporal classification
(CTC) loss [42], while keeping the CNN layers frozen [11].
We refer to this as the “standard approach” in Sec. 6.

4.2. Setup Details

We perform all experiments on LibriSpeech. The sampled
utterances (details in Tab. 1) are passed through each W2V2
model, and the outputs from all layers are extracted. Random
masking is turned off except for experiments analyzing the
effect of masking (Sec. 5.5).

Representation extraction: We use LibriSpeech align-
ments generated using the Montreal forced aligner [43, 44]
to define phone and word segments. As illustrated in Fig. 2,
word-level representations 4" are obtained by averaging the
frame representations of all frames in a given word segment.
Phone-level representations yP"" are obtained by averaging
the frame representations of the central third of each phone
segment; the first and last third are discarded to reduce co-
articulation effects. These segment representations are used
for all experiments in Tab. 1 except the first row. The context-
independent embedding (used for the word-sim experiments)
for each word is computed by averaging the 5" representa-
tions across all the instances of that word in train-clean.*

Mel filter bank features: 80-dimensional mel filter bank
(fbank) features are extracted using a frame length of 25ms
and an overlap of 10ms. In order to make the W2V2 represen-
tations comparable to the fbank features, we compute moving
averages of CNN features or downsample fbank features as
needed to ensure their strides and receptive fields match.

3AIl models are downloaded from the wav2vec 2.0 repository:
https://github.com/pytorch/fairseq/blob/master/examples/wav2vec

4We also tried weighted mean pooling, using averaged attention weights
from all the attention heads, which produced similar results.



Discrete cluster IDs: For MI experiments, we discretize
the continuous-valued W2V2 representations. Specifically,
we cluster a set of phone/word-level representations sampled
from the train-clean LibriSpeech split with roughly the same
number of examples of each label,? using mini-batch k-means
with k=500 for MI-phone and k=5000 for MI-word, and as-
sign each development set example to the nearest cluster.

5. FINDINGS

We present results for experiments done on the dev-clean split
on some of the W2V2 variants (base, base-{t-960, large-60k,
large-60k-ft-960); the findings generalize to dev-other and to
the large-960 model unless stated otherwise. We analyze pre-
trained models in Sec. 5.1-5.3 and their fine-tuned counter-
parts in Sec. 5.4.° Each plot below gives the mean of the
relevant measure across the four sample sets; typical varia-
tion across the sets is < 0.02 for CCA measures, < 0.07 for
MI, and < 2% for word-disc. We refer to the output of trans-
former layer [ as the representation at layer [ and the output
of the CNN feature encoder as layer O or "local features”.

5.1. How do the representations evolve across layers?
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Fig. 3. CCA similarity with local features.

In Fig. 3 we compare (via CCA similarity) the transformer
layer representations with the “local features” extracted by
the CNN module (layer 0). We see that the pre-trained model
(solid black curve) follows an autoencoder-style behavior,
where as we go deeper into the model, the representation
starts deviating from the input features, followed by a reverse
trend where even deeper layers become more similar to the
input, as if reconstructing the input (although this trend seems
to break for the last two layers; see Sec. 5.5). Since the train-
ing objective is to distinguish the masked input segment from
distractors, it is natural for the final layers to have similar
properties to the input. A similar behavior, referred to as
context-encoding and reconstruction, has been observed for
the BERT text model [27], where the objective is based on
masked reconstruction rather than contrastive prediction.

SSimilar trends are obtained when the chosen instances are uniformly
sampled from the data instead.
The Sec. 5.1-5.3 figures combine both pre-trained and fine-tuned models.

5.2. Where is acoustic/linguistic information encoded?

Next we consider how certain properties are encoded in differ-
ent layers. As a reminder, all our experiments are performed
on features extracted locally from a short span of frames
(frame/phone/word-level). Any increase in “information”
across layers for these local representations is possible due
to contextualization from the self-attention layers that enable
each frame-level output to access the whole utterance. For
the same reason, any decrease in “information” across layers
could be attributed to de-localization, i.e. the information is
no longer localized to the frame/phone/word segment.

)

.2.1. Frame-level acoustic content
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Fig. 4. CCA similarity between layer representations and
fbank; Ci: CNN layer i, Tj: transformer layer j.

Fig. 4 shows the layer-wise CCA similarity between fbank
vectors and Base model layers. For the first few layers the cor-
relation increases with depth. The Large models follow a sim-
ilar curve, with high correlation for layers C4-T2 (> 0.75).
We can infer that the model learns to compute features much
like fbank, suggesting a potential simplification to W2V2 to
take fbank as input (which we leave to future work).

5.2.2. Phonetic information

591 / ____________ Sw=
o

=

N \
= (a) Base pre-trained -== ft-960h

o 1 2 3 4 5 6 1 8 9 10 11 1

13
2, 0.75
°
S

504
UO.JU

2 34

o

=

221

El-
<3

2 (.75
o0
b (d) Large-
S
S 050

01234567 80101112131415161718192021222324
Transformer layer number

Fig. 5. MI with phone labels (max: 3.6) and CCA similarity
with AGWE.

We measure the phonetic information encoded in the pre-
trained model in two ways, MI-phone and CCA-agwe’ (see

7We use AGWEs trained on LibriSpeech similarly to [32].



Sec. 3), both shown in Fig. 5. We expect AGWEs to en-
code mostly phonetic information, and indeed the phone and
AGWE curves in Fig. 5 follow broadly similar trends.

We notice that phonetic information appears to be most
salient around layer 6-7 for Base (similarly to [10], which
includes a similar experiment). For Large-60k (Fig. 5), how-
ever, layers 11 and 18/19 appear equally adept at encoding
phonetic information, with a drop in between.

5.2.3. Word identity
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Fig. 6. MI with word labels (max: 6.2).

Fig. 6 shows the mutual information between the layer repre-
sentations and word labels. For Base, the trends are similar to
those of MI-phone (Fig. 5a). For Large-60k (Fig. 6b), word
identity appears to be encoded similarly well by layers 12 to
18, without the dip seen in the MI-phone curve.
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Fig. 7. Average precision (AP) for word discrimination.
As another measure of word identity content, Fig. 7
shows word discrimination performance, which follows a
similar trend to MI-word (Fig. 6a). We experiment with all of
the W2V?2 variants (including ones not shown here), and find
that MI-word and word-disc are always highly correlated.

5.2.4. Evidence for the most contextual layers

For the Large-60k model, the curves measuring acoustic-
phonetic information (Figs. 3b, 5c, 5d) all have a dip around
layers 13-17 (see also Fig. 1). These are also the same layers
that seem to have the most word content (Fig. 6b). This sug-
gests that around these layers, the model may be extracting
the most contextual and high-level information, and retaining
less lower-level information like phonetic content. Beyond
these layers, the model enters the reconstruction phase, thus
encoding more local representations at even deeper layers.

The Base model does not have the same significant inter-
mediate drop for phonetic content (Figs. 1, 5a, 5b) as does
Large-60k, which could indicate less contextualization. In
experiments on Large-960 (not shown here), the MI-phone
and CCA-agwe scores do not show this drop either, implying
that this effect is the result of the larger training set of Large-
60k, and not its larger model size.

5.3. Does the pre-trained model learn word meaning?

069 ommmmeeao L —— pre-trained
O 044

01 23 456 7 8 9101112
Transformer layer number

Fig. 8. CCA similarity with GloVe embeddings.

While some linguistic properties seem essential for the model
to learn to solve the self-supervised task, it is not obvious
that word meaning is one such property. We probe for word
meaning in W2V2 by measuring the CCA similarity between
word segment representations and the popular text-based
GloVe embeddings [33], shown in Fig. 8. These plots (also a
part of Fig. 1) provide further evidence that the central layers
(7-8 for Base and 14-16 for Large-60k) encode the most con-
textual information. Note that these curves have a narrower
plateau of maximum performance around these layers than
the MI-word curves (Fig. 6), suggesting that the most con-
textual layers are better at encoding word meaning while the
peripheral layers are good at encoding lower-level linguistic
content but not meaning.
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Fig. 9. Word similarity performance (mean across tasks).

To further calibrate our measure of semantic information,
we evaluate the W2V2 representations on standard word sim-
ilarity benchmarks, as described in Sec. 3. Fig. 9 reports the
performance of the best layers for Large-60k and Large-60k-
ft-960. The best performance for both models occurs at layer
15, which again agrees with our hypothesis that layers 14-16
contain the most semantic information.

We also present two baselines: (i) the naive baseline de-
fines word distance as the character edit distance for each
word pair; this baseline has non-trivial performance when or-
thography is a helpful clue (ii) the AGWE baseline uses AG-
WE:s in place of the W2V2 representations, and may succeed
for word pairs where acoustic-phonetic similarity correlates
with semantic similarity. We also include two models that are
trained specifically to encode semantics: (i) Speech2Vec [45]
learns word embeddings from speech using an approach sim-
ilar to word2vec [46] and is trained on LibriSpeech, and (ii)
GloVe embeddings [33]. Since W2V2 is not trained with an
explicit semantic criterion, it is not surprising that it is out-
performed by Speech2Vec and GloVe. It is interesting, how-
ever, that W2V2 representations perform better than the non-
semantic baselines, suggesting that some meaning is being
encoded.



5.4. How does fine-tuning affect the above observations?
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Fig. 10. CCA similarity between each layer of a pre-trained
model and the same layer of fine-tuned models.

We see in CCA-intra, Fig. 3, that fine-tuning breaks the
autoencoder-style behavior. After fine-tuning for ASR, the
deeper layers that were originally reconstructing the input are
now diverging from the input, and presumably learning more
task-specific information. We also see from Fig. 10 that the
higher layers change the most in fine-tuning, suggesting that
the pre-trained model may not serve as a good initialization of
these top layers for ASR. This finding suggests re-initializing
these layers before fine-tuning, as has been recently discov-
ered for BERT [47]. We design a fine-tuning experiment to
validate this idea, described in Sec. 6.

MI-word consistently improves across the top layers (19-
24) after fine-tuning (Fig. 6). The same does not always hold
for phone identity (Fig. 5). These results indicate that, as
might be expected, fine-tuning with character-level CTC loss
is more directly related to the word identity than to phone
identity. For the semantic measures (CCA-glove and word-
sim) as well we don’t see the same large improvements as for
MI-word, again as may be expected since ASR does not nec-
essarily require high-quality word meaning representations.

5.5. What about those peculiar last two layers?

We see a peculiar pattern in most of the CCA similarity curves
for pre-trained W2V?2 models, where at least one of the last
two layers fails to follow the trend of the previous layers.
We find that this peculiarity disappears when we turn ran-
dom masking on and consider only the representations of the
masked segments. Moreover, the phonetic and word content,
as measured by MI, improves for the last two layers (while
reducing for the rest) when working with the representations
of masked segments. This finding suggests that the represen-
tations of the final two layers are more meaningful when the
input segment is masked. Furthermore, this discrepancy is not
present in the fine-tuned models, suggesting that this effect is
connected to the training objective, but the exact relationship
is unclear. We also note that this peculiarity has been ob-
served for local representations extracted from BERT [48].

6. PRACTICAL IMPLICATIONS FOR ASR

We have noted that the last few layers of W2V2 change the
most during fine-tuning (Fig. 10), and that the linguistic con-
tent that should be helpful for ASR is less well represented
in the final few layers (Figs. 5a, 6a). Based on these obser-
vations, we hypothesize that some of these final layers do not

trainset  n standard — re-init 12-n layers
test-clean test-other
10m 9 | 49.0 > 44.1 56.7 — 51.8
1h 11 | 20.3 — 19.8 29.8 —29.3
10h 11 | 11.3— 109 20.6 — 19.4

Table 2. Word error rates (%) for the modified fine-tuning
protocol for the Base model, using the best value of n based
on dev-clean performance, compared to standard fine-tuning.
A—B indicates that standard fine-tuning produces WER A,
and the proposed protocol produces WER B.

provide a good initialization for the task. To test this hypoth-
esis we modify the “standard approach” by re-initializing the
top layer(s) before fine-tuning. We conduct all ASR exper-
iments using the SpeechBrain toolkit [49]. We experiment
with W2V2-base and find that re-initializing the final 1-3 lay-
ers indeed outperforms the standard approach of initializing
all layers from the pre-trained model (Tab. 2), with large im-
provements when fine-tuning on the 10-minute training set
and minor improvements for larger training sets.

7. CONCLUSION

We have presented a set of analyses to assess the layer-
specific information in pre-trained speech representations,
applied to wav2vec 2.0 models. We find that various acous-
tic and linguistic properties tend to be encoded in different
layers, and the pre-trained model follows an autoencoder-
style behavior. We also find that the model encodes some
non-trivial word meaning information, although more work
is needed to determine the nature of the semantic content.
We corroborate most of our findings with multiple analyti-
cal measures and certain downstream tasks. Such analyses
can help understand the abilities and limitations of models
trained without external supervision, and also help direct re-
search toward additional useful modifications. For example,
some of our findings have motivated a modification to the
fine-tuning protocol, which leads to improved downstream
ASR performance in the very low-resource setting.

Our analyses focus on representations extracted locally
(over a frame/phone/word), so it does not measure the infor-
mation delocalization that may be happening as a result
of the self-attention layers. We leave in-depth analysis of
self-attention to future work. Additional future directions in-
clude applying the same analytical tools to additional models
with different architectures or training objectives, and further
studying the implications for additional downstream tasks.
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