
51

Oblivious Algebraic Data Types

QIANCHUAN YE, Purdue University, USA
BENJAMIN DELAWARE, Purdue University, USA

Secure computation allows multiple parties to compute joint functions over private data without leaking

any sensitive data, typically using powerful cryptographic techniques. Writing secure applications using

these techniques directly can be challenging, resulting in the development of several programming languages

and compilers that aim to make secure computation accessible. Unfortunately, many of these languages

either lack or have limited support for rich recursive data structures, like trees. In this paper, we propose a

novel representation of structured data types, which we call oblivious algebraic data types, and a language

for writing secure computations using them. This language combines dependent types with constructs for

oblivious computation, and provides a security-type system which ensures that adversaries can learn nothing

more than the result of a computation. Using this language, authors can write a single function over private

data, and then easily build an equivalent secure computation according to a desired public view of their data.

CCS Concepts: • Theory of computation→ Type theory; • Software and its engineering→ Data types
and structures; Functional languages; Semantics; • Security and privacy → Logic and verification.

Additional Key Words and Phrases: Dependent Types, Algebraic Data Types, Oblivious Computation, Multi-

party Computation

ACM Reference Format:
Qianchuan Ye and Benjamin Delaware. 2022. Oblivious Algebraic Data Types. Proc. ACM Program. Lang. 6,
POPL, Article 51 (January 2022), 29 pages. https://doi.org/10.1145/3498713

1 INTRODUCTION
It is often the case that the owners of some private data want to compute some joint function of their

data: a group of hospitals, for example, may want to calculate some statistics about their patients.

In the case that this data is sensitive, the parties may not want (or be legally allowed) to simply pool

their data and compute the result. Secure computation provides a solution in such scenarios, allowing
multiple parties to perform a joint computation while keeping their sensitive data secure. Secure

computation was formally introduced by Yao [1982] in the early 1980s, and has since found many

privacy-focused applications, including secure auctions, voting, and privacy-preserving machine

learning [Evans et al. 2018; Hastings et al. 2019; Laud and Kamm 2015]. There are two major

paradigms for secure computation: secure multiparty computation (MPC), wherein the computation

is performed jointly by all parties involved; and outsourced computation, where a computationally

powerful entity such as an untrusted cloud provider carries out the computation [Evans et al.

2018]. MPC is typically implemented using cryptography-based protocols, such as Yao’s Garbled

Circuits [Yao 1982] or secret-sharing [Goldreich et al. 1987], while outsourced computation can be

implemented using a variety of mechanisms, including cryptography-based fully homomorphic

encryption [Gentry 2009], virtualization [Barthe et al. 2014, 2019b] and secure processors [Hoekstra

2015].

Authors’ addresses: Qianchuan Ye, Purdue University, USA, ye202@purdue.edu; Benjamin Delaware, Purdue University,

USA, bendy@purdue.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART51

https://doi.org/10.1145/3498713

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

https://doi.org/10.1145/3498713
https://doi.org/10.1145/3498713

51:2 Qianchuan Ye and Benjamin Delaware

Writing secure applications which directly use these techniques can be quite challenging and

error-prone, however, even if the author has the requisite cryptographic expertise. Thus, starting

with Fairplay, the first publicly available MPC compiler [Malkhi et al. 2004], several high-level

programming languages and compilers have been proposed to make secure computation accessible

to non-experts [Hastings et al. 2019]. For example, Obliv-C [Zahur and Evans 2015] is a C-like

language for MPC applications which compiles down to Yao’s Garbled Circuits. Other notable

languages include ObliVM [Liu et al. 2015], Wysteria/Wys* [Rastogi et al. 2014, 2019], 𝜆obliv [Darais

et al. 2020].

Unfortunately, many of these languages either lack or have limited support for rich recursive

data structures, like trees. When such data structures are supported, they typically require leaking

information about the structure of the data: in Obliv-C, for example, users can define trees with

secure nodes using pointers, but the “shape” of the underlying tree will always be visible to

adversaries, as Obliv-C pointers are public data. In this paper, we propose a language that supports

algebraic data structures capable of hiding not only their secure payload, but also their own structure.

In this system, adversaries are not able to infer, say, whether an oblivious tree is left-heavy or

right-heavy by observing the data structures themselves or how they are used.

One major obstacle to securely implementing such data structures is the possibility of timing
channels in the programs that use them: the run time of any terminating computation reveals

some approximate information about the “size” of the data structures it uses. Authors of secure

computations must be careful to not inadvertently reveal more information through such timing

side-channels. As an example, consider the following Obliv-C program, which traverses an oblivious

array a:

for (i = 0; i < MAX_BOUND; i++) {
// some secure computation on a[i]

}

Here, the author has chosen to avoid timing-channels by using a upper bound, MAX_BOUND, on
the length of a. In effect, MAX_BOUND provides a sort of public view on the structure of a, which is

then used to ensure a consistent running time for the for loop. Of course, the author also must

ensure a has been padded out to this maximum bound and that there are no break statements that

depend on the contents of a in the body of the loop. In order to be secure, a computation over

structured data types must be carried out without revealing any information outside this public

view, including the structure of the private data.

While this trick to make programs constant-time [Barthe et al. 2014] is easy to implement for

computations over simple data types like arrays, it becomes more complicated for richer data

structures. First, users have to decide how to manually “pad” data structures, so they are consistent

with their public view. Second, programmers also have to track the public view throughout the

program, making sure it remains consistent throughout. Lastly, richer data structures can have

multiple public views, representing different trade-offs between privacy and performance. As an

example, the public views of an oblivious tree include both its maximum depth and its spine. If the

spine is known, less padding (and thus less “wasted” computation) is needed. Since the public view,

like MAX_BOUND above, directly affects how programs are written, programmers are forced to write

different versions of the same program even though the high-level program logic is exactly the

same. Ideally, these concerns should be separated, allowing programmers to write the program once

and for all, and then select the right public view for their security and performance requirements.

In this paper, we propose a novel representation of structured data types, which we call oblivious
algebraic data types (OADTs). Our solution combines dependent types with language constructs for

oblivious computation, and a security-type system which ensures that adversaries learn nothing

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:3

more than the output of the function and the input they provide. Using our language, clients can

write a single function over private data, and then build an equivalent oblivious computation over

some public view of that data. By switching views, users can explicitly trade off between how much

information is leaked via public channels and the performance of the underlying computation.

In summary, this paper presents the following contributions:

• We observe that public views of private ADTs can be naturally expressed using dependent

types with large elimination, allowing for a clean specification of what information is released

at runtime.

• Exploiting this observation, we develop 𝜆OADT, a core calculus for writing oblivious programs

using OADTs, whose strong type system ensures computations are secure.

• To enable both a more pleasant programming experience and more modular programs, we

develop an extension of 𝜆OADT, dubbed 𝜆OADT✚, which is equipped with a novel semantics

which enable creating, from one single public program, oblivious programs with different

public views.

Both 𝜆OADT and 𝜆OADT✚ and their metatheory have been mechanically formalized in the Coq proof

assistant. An artifact containing both these developments is publicly available [Ye and Delaware

2021].

2 OVERVIEW
data tree B leaf | node Z tree tree

def lookup (x : Z) (t : tree) : B B

case t of

leaf ⇒ false

node y tl tr ⇒
if x ≤ y

then if y ≤ x

then true

else lookup x tl

else lookup x tr

Fig. 1. Lookup element in a search tree

Input [t] =

12

4

3

13

lookup [4] [t]

→∗ case [t] of

leaf ⇒ false

node y tl tr ⇒ . . .

→
if [4] ≤ [12]

then if [12] ≤ [4] . . .

else lookup . . . ? ?

→
if [12] ≤ [4]

then true

else lookup . . .

4≤

? ?

→ lookup [4] . . .
4<

? ?

→∗
true

t4<

4

?

?

Fig. 2. Execution trace of lookup [4] [t].
The columns show the current state of the
program, and information learned by the
owner of the lookup key, respectively.

To illustrate our approach, consider the simple function

in Figure 1, which looks for an element in a search tree by

recursing over the tree. Suppose that Alice, the owner of

a search tree, and Bob, the owner of some integer, want to

check whether Bob’s integer is a member of Alice’s tree,

without revealing any information to each other beyond

what each can learn from their private data and the output.

We adopt a variation of the standard semi-honest threat

model from multiparty computation, where an untrusted

party can observe every intermediate execution step of the

program under a small-step operational semantics. Protect-

ing against such a powerful attacker inevitably impacts

the performance of secure applications, a point we will

discuss in more detail at the end of this overview. For now,

let us consider the implications of this attack model on our

current example.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:4 Qianchuan Ye and Benjamin Delaware

obliv �tree (k : N) B

if k = 0

then 𝟙

else 𝟙 +̂ Ẑ × �tree (k−1) × �tree (k−1)

(a) Maximum depth as public view

obliv �tree′ (s : spine) B

case s of

sleaf ⇒ 𝟙

snode sl sr ⇒ 𝟙 +̂ Ẑ × �tree′ sl × �tree′ sr

(b) Upper bound of spine as public view

Fig. 3. Oblivious trees

Under this threat model, Bob can glean information about Alice’s tree just by examining how it

affects the control flow of the program, even if the tree is perfectly obfuscated. To see how, consider

the execution trace of lookup [4] [t] shown in Figure 2, where [t] is the tree shown in the first row.

The first column of each subsequent row shows the current execution step, while the second column

shows what Bob can infer at that step. We use square brackets to denote that [t] is an oblivious value,
i.e., it cannot be directly observed by a party. At each recursive call to lookup, there are two points

that depend on the structure of the tree: the case statement that checks whether to recurse, and the

if statement that decides which subtree to recurse on. As the fourth row illustrates, the branch case

takes reveals some information about the structure of the current tree (it is non-empty) to Bob. The

fifth and sixth row of the figure similarly show how the if statement reveals information about the

relationship of the key to the value in the current node. By examining the program immediately

following each such test, Bob adds to his knowledge of Alice’s tree. At the end, Bob learns not only

output of the function, but also a partial view of the tree’s structure (including the exact node 4 is

stored in); this view could be further refined by subsequent lookup operations.

Note that the participants of any terminating multiparty computation have to agree to share some
public information: intuitively, simply knowing the number of intermediate steps in an execution

of lookup leaks some upper bound on the number of nodes in the tree. Once that concession is made,

the choice becomes what information to share– maybe the owner of the tree is okay with sharing

its spine, but not the values stored in its internal nodes, or perhaps with revealing some upper

bound on its depth
1
. The goal then, is to enable parties to compute functions over private data in a

way that only depends on some mutually agreed upon public view of that data.

𝟙 +̂ Ẑ

𝟙 +̂ Ẑ

𝟙 𝟙

𝟙 +̂ Ẑ

𝟙 𝟙

Fig. 4. Oblivious tree with a max-
imum depth of two

Oblivious Algebraic Data Types. The first component to our solu-

tion is our representation of both private data and its corresponding

public view using oblivious algebraic data types. Figure 3a gives

an example of an oblivious tree whose public view is its maximum

depth. The private part of this type is built up from a set of oblivious

type formers, e.g., Ẑ and +̂ are the formers for oblivious fixed-width

integers and oblivious coproducts, respectively. Section 3.4 formal-

izes oblivious data values, but the high-level intuition is that an

observer of an execution trace cannot distinguish between the val-

ues of an oblivious type. When examining the trace in Figure 2,

the oblivious integer [4] is indistinguishable from [12], for example.

The key idea behind oblivious ADTs is to construct a representation

of private data from the public view. For example, all oblivious trees

with a maximum depth of two are represented as:�tree 2 ≡ 𝟙 +̂ Ẑ × (𝟙 +̂ Ẑ × 𝟙 × 𝟙) × (𝟙 +̂ Ẑ × 𝟙 × 𝟙)

1
In the case the owner is okay with sharing the entire tree, the computation becomes quite efficient indeed!

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:5

Using data to compute a type is an example of large elimination from dependent type theory, where

it is commonly used to recursively define propositions from terms. In this example, the type of an

oblivious tree is computed from the public view 2, resulting in the type value on the right hand side,

which stipulates the “shape” of the private data. This type roughly corresponds to the tree shown in

Figure 4. Every tree of this type is padded to depth 2, even a single “leaf”, to avoid leaking structural

information. This padding is implied by the use of oblivious coproduct +̂, as the left injection and

the right injection of an oblivious sum will be indistinguishable. The adversaries can not tell them

apart by inspecting the payload, even if the two components have different types. The “tag” of a

sum value is of course obfuscated as well. Constructing oblivious data types in this way ensures

that all private values corresponding to a particular view are indistinguishable to an attacker.

Figure 3b shows the type of oblivious trees using an upper bound on its spine as the public view,

where the spine is another user-defined ADT. This definition releases more public information than

the one in Figure 3a, but it also enjoys a more efficient representation, as it requires less padding

than a complete tree.

An Oblivious Language. Oblivious ADTs are only half the solution to secure computation– it still

remains to ensure computations over private values are also oblivious. Even if an attacker cannot

tell which values are being compared in if [4] ≤ [12] . . . , they can still learn something about

their relationship just by knowing the expression it steps to, as we saw in our previous example.

To prevent these sorts of information leaks, we have designed 𝜆OADT, a pure functional language

for writing secure computations over OADTs. 𝜆OADT is equipped with dependent types with large

elimination to express OADTs, and type-based information flow control to guarantee oblivious

computations.

Key to this calculus are its operations for securely constructing and destructing oblivious data

values. As an example of these operations, consider the following 𝜆OADT expression, which compares

two secure integers to determine what value to return:

mux ([3] ≤̂ [4]) ([5] +̂Z [1]) ([6] +̂Z [1])

We use ·̂ to denote the secure versions of standard operations, such that [4] +̂Z [3] −→ [7] and

[4] ≤̂ [3] −→ [false]. Here, mux is a special conditional which returns an oblivious value according

to the value of an oblivious boolean. In order to avoid leaking information, mux generates the same

evaluation trace regardless of the value of the discriminee. To do so, it fully evaluates both branches

before stepping to the final (oblivious) result:

mux ([3] ≤̂ [4]) ([5] +̂Z [1]) ([6] +̂Z [1]) −→∗ mux [true] [6] [7] −→ [6]

Replacing [3] with [5] in the initial expression yields the same execution trace, modulo the private

values at each step. Thus, nothing about the private information can be inferred by observing the

execution:

mux ([5] ≤̂ [4]) ([5] +̂Z [1]) ([6] +̂Z [1]) −→∗ mux [false] [6] [7] −→ [7]

The oblivious case statement behaves similarly, with the additional wrinkle that the pattern variables

of the “wrong” branch are bound to some arbitrary oblivious values, which Section 3 explains in

full detail.

𝜆OADT is equipped with a security-type system [Sabelfeld and Myers 2003], to ensure the correct

use of its secure operations. The full details of this type system can be found in Section 3.3, but at

a high-level it enforces three key polices. First, oblivious types can only be built from oblivious

types. For example, an oblivious coproduct cannot be built from public types, such as B +̂ Z. If this
were allowed, an adversary could infer whether a value of this type is a left or a right injection

by observing the payload. Second, secure operations like mux can only be applied to oblivious

terms. mux [true] 1 2 is prohibited, for example, as knowing the public result of this mux reveals the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:6 Qianchuan Ye and Benjamin Delaware

def lookupO (x : Ẑ) (k : N) : �tree k → B̂ B

if k = 0

then 𝜆 _ ⇒ sB false

else 𝜆 t ⇒ �case t of

înl _ ⇒ sB false

înr (y, tl, tr) ⇒
mux (x ≤̂ y) (mux (y ≤̂ x) (sB true) (lookupO x (k−1) tl)) (lookupO x (k−1) tr)

Fig. 5. Oblivious lookup function in 𝜆OADT

oblivious discriminee. Third, types are treated as public information, otherwise the parties could

not even agree on the data representation. Thus, oblivious types can only depend on public terms:

mux [true] B̂ Ẑ is not a valid type in 𝜆OADT.

Figure 5 presents an oblivious implementation of the lookup function for the oblivious tree from

Figure 3a. While the high-level program logic is the same, extra care is needed to ensure correct use

of the oblivious tree. First, the function takes an extra argument for the public view; the argument

needs to be correctly passed to every recursive call. Second, the function eliminates the public

view, following the definition of �tree, before accessing any secure data. Third, public constants

and operations are replaced by their secure counterparts: e.g., if is replaced by mux. Similarly, the

constants true and false are wrapped by the sB operation, which acts like a coercion from public

booleans to oblivious booleans.

(𝑥, 𝑡) 𝑜

(𝑥, 𝑡) 𝑜

lookup

sB(rZ, rtree) �lookup
Fig. 6. Sketch of a secure
lookup function

A More Ergonomic Oblivious Language. While the implementation

of lookupO is guaranteed to be secure, it is quite far from the “standard”

implementation of lookup in Figure 1, as its control flow has been re-

structured to only depend on public inputs and to meet the demands

of a secure type system. As a consequence, a programmer must write

distinct versions of lookup for each public view, despite the fact that

the high-level program logic is exactly the same. Note that lookup is, in

fact, a valid 𝜆OADT program, as long as it is applied to public data. This

observation suggests the implementation of �lookup sketched to the right

in Figure 6, which simply converts its private inputs to public versions, applies lookup to those

arguments, and converts the result back to an oblivious value. From a cryptographic perspective,

the arrow labeled (rZ, rtree) corresponds to decrypting the secure inputs, while the arrow labeled

sB corresponds to encryption. We refer to these two conversion functions as retraction and section to
reflect their desired relationship: a retraction is a left inverse for section, i.e., if we apply the section

function to a value, the retraction function converts the result back to the initial value. In other

words, decrypting an encrypted value should return the original value. There is a fundamental flaw

with this approach, however: applying a retraction in this manner completely leaks the private

inputs of �lookup! Thus, this program must be rejected by 𝜆OADT’s type system as insecure.

The ideal language for oblivious computation would permit implementations that combine the

clarity of lookup with the security guarantees of lookupO. In pursuit of this goal, we have developed

an extension of 𝜆OADT, called 𝜆OADT✚, that allows implementations that follow the recipe sketched in

Figure 6 without compromising obliviousness. Our key idea is to have the semantics of 𝜆OADT✚ repair

or “tape up” potentially leaky expressions during execution. This allows users to write section

and leaky retraction functions that convert between oblivious and public values, relying on the

semantics to ensure oblivious execution of any program that uses those functions.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:7

tape (if (îf [true] then true

else false)

then [5]

else [4])

↓
tape (îf [true]

then if true then [5]

else [4]

else if false then [5]

else [4])

↓
tape (îf [true] then [5]

else [4])

↓
mux [true] [5] [4]

↓
[5]

(a) îf inside if

tape ((îf [true]

then (𝜆x ⇒ x +̂Z [1])

else (𝜆x ⇒ x)) [4])

↓
tape (îf [true]

then (𝜆x ⇒ x +̂Z [1]) [4]

else (𝜆x ⇒ x) [4])

↓
tape (îf [true] then [4] +̂Z [1]

else [4])

↓∗
mux [true] [5] [4]

↓
[5]

(b) îf inside application

tape (sZ (rZ [2] + rZ [3]))

↓
tape (sZ (rZ ([2] +̂Z [3])))

↓
tape (sZ (rZ [5]))

↓
tape [5]

↓
[5]

(c) retraction of integer

Fig. 7. Example 𝜆OADT✚ execution traces

To understand how this works, consider the execution trace of the simple 𝜆OADT✚ program shown

in Figure 7a. The new conditional îf is similar to mux in 𝜆OADT, but it allows non-oblivious branches.

Note that this îfwould leak the value of its private condition if it was evaluated using the semantics

of mux. Similar leaks occur for any îf expression whose branches can evaluate to a public value. The

idea behind the semantics of 𝜆OADT✚ is straightforward: since îf only leaks information when it is

evaluated, we will simply not do that! Rather, the surrounding tape annotation tells 𝜆OADT✚ to defer

reducing îf until it is safe to do so. This example makes progress by distributing the surrounding if

statement into its branches and then evaluating both branches to oblivious values instead. Once

both branches of an îf are evaluated to oblivious values, it can be securely reduced to a mux to

produce the final result. Note that swapping [true] with [false] in this example produces the exact

same trace, modulo oblivious values.

This example demonstrates the two key ideas behind the semantics of 𝜆OADT✚: avoid leaks by

delaying evaluation of potentially insecure expressions, while still making progress by distributing

the surrounding context into such expressions. This strategy works for contexts like function

application as well, as the example in Figure 7b shows. Figure 7c includes an example of a potential

leak of oblivious integers via the rZ operation, a leak that is ultimately patched using sZ. The

program first progresses by distributing the insecure addition operation into retraction, then

obliviously adding the result. After evaluating the oblivious addition, we have [5], and sZ and rZ

can “cancel” each other, as the functions are effectively inverses. As [5] is already an oblivious

value, tape becomes a no-op in this example.

Figure 8 shows the section and retraction functions for �tree, along with a version of �lookup
implemented using the recipe from Figure 6. While the section function is not used in �lookup, it
is needed for functions that return an oblivious tree. Function definitions in 𝜆OADT✚ require an

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:8 Qianchuan Ye and Benjamin Delaware

def stree {⊥} (t : tree)⊤ (k : N)⊥ : �tree k B

if k = 0

then ()

else tape (case t of

leaf ⇒ înl ()

node x tl tr ⇒ înr (tape (sZ x, (stree tl (k−1)), (stree tr (k−1)))))

def rtree {⊤} (k : N)⊥ : (�tree k)⊤ → tree B

if k = 0

then 𝜆 _ ⇒ leaf

else 𝜆 t ⇒ �case t of

înl _ ⇒ leaf

înr (x, tl, tr) ⇒ node (rZ x) (rtree (k−1) tl) (rtree (k−1) tr)

def �lookup {⊥} (x : Ẑ)⊤ (k : N)⊥ (t : �tree k)⊤ : B̂ B

sB (lookup (rZ x) (rtree k t))

Fig. 8. Oblivious lookup function in 𝜆OADT✚

additional annotation which signals if the function body includes any potentially leaky operations

(e.g., îf) that needs to be patched by the context surrounding the function call. Section 4 discusses

how the type system of 𝜆OADT✚ uses these annotations in more detail. At a high level, its type system

enforces two polices. First, as types are always public, they should not contain any potential leaks:

any type which depends on îf [true] 𝟙 B̂ is disallowed, for example. Next, because only terms that

evaluate to oblivious values can be patched up, our type system ensures that terms with potential

leaks, e.g., a call to a retraction function or an îf, are obliviously typed.

The ThreatModel. Before presenting a detailed accounting of our calculi for oblivious computation,

we pause to discuss the consequences of our chosen threat model. This strong threat model reflects

both those of standard MPC protocols based on simultaneous execution of the program, e.g., secret-

sharing [Beimel 2011; Goldreich et al. 1987], and those based on outsourced computation where

the untrusted evaluators perform the execution, e.g., fully homomorphic encryption [Gentry 2009].

In these protocols, any party involved in the computation could be an attacker, including the ones

executing the program, forcing us to protect against an attacker capable of observing the whole

execution, including every intermediate program state. As a result, we have to obscure which

branches the program takes. This threat model also naturally covers weaker adversaries, including

those who can only observe the timing behavior.

Protecting against such a strong attacker necessarily comes with a cost: many of the asymptotic

efficiency benefits normally enjoyed by ADTs are lost in the MPC setting. While the lookup function

from our running example provides a simple and familiar illustration of OADTs, it is also not as

performant as its insecure counterpart. In order to avoid leaking private information via control flow

channels, lookupmust touch all the elements in the tree— there is no way to implement a logarithmic

oblivious lookup function for this particular OADT in 𝜆OADT✚. For fold-like computations that touch

the entire data structure (e.g., map), however, the right choice of a public view (e.g., a tree whose

spine is its public view) allows OADTs to feature similar asymptotic behavior to standard ADTs.

While sacrificing some performance gains for security, OADTs provide other advantages over

unstructured data, much like their non-oblivious counterparts. OADTs enable users to more easily

write computations over data that is naturally represented using ADTs, such as file systems,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:9

e,τ F Expressions:

| 𝟙 | B | B̂ | τ × τ | τ + τ | τ +̂ τ simple types

| Πx:τ, τ dependent function type

| x variable

| () | true | false unit and boolean values

| 𝜆x:τ ⇒ e function abstraction

| e e expression and type application

| if e then e else e conditional

| mux e e e atomic conditional

| (e, e) | π𝑏 e pair and projection

| in𝑏<τ> e | în𝑏<τ> e (oblivious) sum injection

| case e of x ⇒ e | x ⇒ e sum elimination

| �case e of x ⇒ e | x ⇒ e oblivious sum elimination

| fold<X> e | unfold<X> e iso-recursive type intro. and elim.

| sB e section for boolean

| [b] | [in𝑏<ω̂> v̂] runtime boxed values

D F Global Definitions:

| data X B τ algebraic data type definition

| def x:τ B e (recursive) function definition

| obliv X̂ (x:τ) B τ (recursive) oblivious type definition

ω̂ F 𝟙 | B̂ | ω̂ × ω̂ | ω̂ +̂ ω̂ Oblivious Type Values

v̂ F () | [b] | (̂v, v̂) | [in𝑏<ω̂> v̂] Oblivious Values

v F v̂ | b | (v, v) | 𝜆x:τ ⇒ e | in𝑏<τ> v | fold<X> v Values

Fig. 9. 𝜆OADT syntax

organizational hierarchies, probability tree diagram, query languages, and decision trees. With

OADTs, users can quickly prototype secure computations over structured data by simply writing

their applications in a conventional functional language. Using the recipe illustrated by the �lookup
function in Figure 8, programmers can use OADTs to explore the impact of different public views

on a computation by simply providing different section and retraction functions.

3 𝜆OADT, FORMALLY
This section formalizes 𝜆OADT, a core calculus for programming with OADTs. The calculi described

in this section and the next have been mechanized in the Coq proof assistant; both developments

can be found in the publicly available artifact [Ye and Delaware 2021].

3.1 Syntax
The core syntax of 𝜆OADT is shown in Figure 9. The full language, which can be found in the

supplementary material, also includes let bindings. For simplicity, the core calculus of 𝜆OADT does

not include primitive fixed-width integers. We discuss how the language may be extended with

primitive integers in Section 4.5. As 𝜆OADT is dependently typed, types and terms belong to the

same syntactic class, although by convention, we use the metavariable τ to refer to types, and e

to terms. 𝜆OADT programs consist of an expression and a global context of public ADTs, oblivious

ADTs, and functions. These are defined using data, obliv, and def, respectively. Using a global set of

function definitions naturally supports general recursion and mutual recursion. When possible, we

use lower case x for function names, upper case X for public ADT names, and X̂ for the names of

oblivious ADTs.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:10 Qianchuan Ye and Benjamin Delaware

Types in 𝜆OADT include dependent function types (Π), sums (+), products (x), and booleans (B); as

well as oblivious sums (+̂) and booleans (B̂). We do not include a type for oblivious products, as

they can be encoded via normal products with oblivious components. In 𝜆OADT, the typing rules and

semantics for oblivious types are quite different from their public counterparts, which is why we

choose to assign them distinct syntax, as opposed to using security labels [Zdancewic 2002]. 𝜆OADT
supports type-level computation via large elimination, allowing users to compute types from terms

using application, if, and case. Sum and product types are also allowed to have both oblivious and

public components, allowing types to contain a mixture of public and private data.

Terms in 𝜆OADT are largely standard. A subscript distinguishes between left or right injection

(in𝑏) and projection (π𝑏), where the metavariable b is either true or false. We also use the more

conventional synonyms inl (inr) and π1 (π2) for intrue (infalse) and πtrue (πfalse). Injections are

annotated with their full type, in order to completely determine its data representation. 𝜆OADT has

a nominal type system, so fold and unfold take the name of a public ADT, instead of a recursive

type definition (i.e., 𝜇 type). mux is the core oblivious construct in 𝜆OADT; as Section 2 discussed,

mux fully evaluates both of its branches before taking a single atomic step to the correct branch.

Other oblivious constructs include boolean section sB, which builds an oblivious boolean from its

argument, and constructors (în𝑏) and an eliminator (�case) for oblivious sums.

In addition to the expected sorts of public values, 𝜆OADT also includes oblivious values for booleans

([b]) and sums ([in𝑏<ω̂> v̂]). In general, these oblivious values do not appear in the definitions in the

global context: they are either provided by the data owner as the arguments to a global function at

runtime, or created by evaluating sB or în𝑏 . As Section 2 discussed, these “boxed” values represent

secure data which cannot be observed by an adversary. Since 𝜆OADT has type level computation,

we also define a class of oblivious type values (ω̂). Such values are built from a combination of

oblivious base types and the other oblivious polynomial type formers.

3.2 Semantics
Figure 10 defines a relation for the small-step operational semantics of 𝜆OADT. The judgments of

this relation have the form Σ ⊢ e −→ e′, and are read as “e steps to e′ under the global context Σ”.

Since a 𝜆OADT program is evaluated under a fixed global context, we often abbreviate this judgment

as e −→ e′, referring to Σ only when needed. The S-Ctx rule uses the evaluation contexts (E)
defined at the bottom of Figure 10 to evaluate subexpressions. While these evaluation contexts are

not inductively defined, it is possible to recursively apply S-Ctx when evaluating subterms. This

formulation is more convenient for the 𝜆OADT✚ formalization in the next section.

Most of the non-oblivious reduction rules are standard, with some small deviations to keep the

definitions succinct. In order to use the same syntax for both term-level and type-level application,

for example, the rule for application evaluates the right expression before the left. In 𝜆OADT, the head

of a type application is the global name of an oblivious type, which is not a value, so in order to

avoid getting stuck when evaluating type-level application, we simply opt to evaluate arguments

first. Adopting a dedicated syntax for type-level application would avoid this situation at the cost of

some verbosity. In addition, several of the rules use the ite meta-function, which returns e1 when

its first argument is true, and e2 otherwise. S-If is essentially the following two rules, for example:

S-If-True

if true then e1 else e2 −→ e1

S-If-False

if false then e1 else e2 −→ e2

To ensure that oblivious rules avoid leaking information, they require that any subexpressions

have been fully evaluated before an oblivious expression is reduced. As an example, S-Ctx must be

used to reduce the type and payload of an oblivious injection în to values before the S-OInj rule

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:11

e −→ e′

S-Ctx

e −→ e′

E[e] −→ E[e′]

S-App

(𝜆x:τ ⇒ e) v −→ {v/x}e

S-If

if b then e1 else e2 −→ ite(b, e1, e2)

S-Case

case in𝑏<τ> v of x1 ⇒ e1 | x2 ⇒ e2 −→ ite(b, {v/x1}e1, {v/x2}e2)

S-Proj

π𝑏 (v1, v2) −→ ite(b, v1, v2)

S-Unfold

unfold<X> (fold<X′> v) −→ v

S-Fun

def x:τ B e ∈ Σ

x −→ e

S-OADT

obliv X̂ (x:τ′) B τ ∈ Σ

X̂ v −→ {v/x}τ

S-Sec

sB b −→ [b]

S-OInj

în𝑏<ω̂> v̂ −→ [in𝑏<ω̂> v̂]

S-Mux

mux [b] v1 v2 −→ ite(b, v1, v2)

S-OCase

v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2�case [in𝑏<ω̂1 +̂ ω̂2> v̂] of x1 ⇒ e1 | x2 ⇒ e2 −→
mux [b] ite(b, {̂v/x1}e1, {̂v1/x1}e1) ite(b, {̂v2/x2}e2, {̂v/x2}e2)

E F
| □ × τ | ω̂ × □ | □ +̂ τ | ω̂ +̂ □
| e □ | □ v

| (□, e) | (v, □) | π𝑏 □
| in𝑏<τ> □ | în𝑏<□> e | în𝑏<ω̂> □
| if □ then e else e

| case □ of x ⇒ e | x ⇒ e

| �case □ of x ⇒ e | x ⇒ e

| mux □ e e | mux v □ e | mux v v □

| sB □ | fold<X> □ | unfold<X> □

v̂ ⇐ ω̂

OT-Unit

() ⇐ 𝟙

OT-OBool

[b] ⇐ B̂

OT-Prod

v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2

(̂v1, v̂2) ⇐ ω̂1 × ω̂2

OT-OSum

v̂ ⇐ ite(b, ω̂1, ω̂2)

[in𝑏<ω̂1 +̂ ω̂2> v̂] ⇐ ω̂1 +̂ ω̂2

Fig. 10. 𝜆OADT semantics

can be applied to obtain the oblivious value. The other oblivious rules (e.g., S-Sec and S-Mux) are

similar.

The most interesting evaluation rule is S-OCase, which also ensures that an adversary can not

infer anything about the oblivious value being eliminated. In contrast to other oblivious elimination

rules like S-Mux, each branch binds the value stored in the sum to its pattern variables. This begs

the question of how to instantiate this variable when evaluating the “wrong” branch. Since this

branch is eventually discarded when the resulting mux is evaluated, we opt to simply instantiate this

variable with an arbitrary payload of the right type. This value is synthesized using the auxiliary

relation, v̂ ⇐ ω̂, which is also shown in Figure 10. Equipped with this relation, S-OCase can be

straightforwardly reduced to a mux expression. To see how, consider the rule corresponding to the

case where b is false:

v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2�case [infalse<ω̂1 +̂ ω̂2> v̂] of x1 ⇒ e1 | x2 ⇒ e2 −→ mux [false] {̂v1/x1}e1 {̂v/x2}e2

In the true branch of the resulting mux expression, the pattern variable x1 is instantiated with

an arbitrary oblivious value, v̂1, while the corresponding pattern variable in the false branch is

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:12 Qianchuan Ye and Benjamin Delaware

instantiated with the actual payload v̂. Using this rule, the expression on the left below can step to

either of the (indistinguishable) expressions on the right:�case [infalse<(B̂ × B̂) +̂ B̂> [false]] of

x1 ⇒ π2 x1 | x2 ⇒ x2

mux [false] (π2 ([false], [true])) [false]

mux [false] (π2 ([true], [false])) [false]

3.3 Type System
The type system of 𝜆OADT ensures that well-typed programs are secure, in that adversaries cannot

glean information about private data by observing public information. To guarantee this, kinds

in 𝜆OADT are augmented with a security label which constrains how information flows through a

program:

κ F

| ∗A Any

| ∗P Public

| ∗O Oblivious

| ∗M Mixed

M

P O

A

Fig. 11. Semi-lattice
on 𝜆OADT kinds.

Types that can be treated as either public or oblivious are labeled with A.

In practice, this is almost always the unit type, but it includes other singleton

types, e.g., 𝟙 × 𝟙. Types which are entirely public or entirely private have the

labels P and O, respectively. Finally, types with a mixture of public and private

data, e.g., B × B̂, are labeled with M. This label is also used to classify function

types, which we will discuss in more detail shortly. Kinds form a secure join

semi-lattice, as shown in Figure 11, with M being the most restrictive label.

Unlike most secure type systems where types with a public label can be

promoted to their secure counterparts, in 𝜆OADT public and oblivious labels are

not compatible. We elide the security label of a kind when it is not relevant,

e.g., Γ ⊢ τ :: ∗.
Programs in 𝜆OADT are typed using a pair of typing and kinding judgments; we denote these as

Σ; Γ ⊢ e : τ and Σ; Γ ⊢ τ :: κ, respectively. Figure 12 and Figure 13 give the kinding and typing

rules for 𝜆OADT. We elide Σ from these definitions, as they both assume a fixed global context. For

brevity, we omit some side conditions about kinding from the typing rules; these can be found in

the Coq development.

The kinding rules for 𝜆OADT are shown in Figure 12. The rules for base types are straightforward.

As previously mentioned, function types are assigned a mixed label. The reasons for this are

two-fold: firstly, 𝜆OADT does not support oblivious function values. Secondly, this prevents function

values from being used as the public view of oblivious types, making it easier for users to be sure

oblivious types terminate. The subsumption rule K-Sub allows kinds to be converted to a more

restricted label. This rule can be used with K-Prod to label a product type with the join of the

labels of its components. K-Sum is similar, but it also includes the public label in the join, as the

tag of a public sum is practically public. For example, 𝟙 + 𝟙, which is equivalent to B, should be

kinded ∗P instead of ∗A. Similarly, B̂ + B̂ has to be kinded ∗M, the join of ∗P and ∗O, as using it in

an oblivious context risks leaking the tag. For similar reasons, K-OSum requires the components

of oblivious sums to also be oblivious. K-OADT requires the argument of an oblivious type to be

well-typed according to its definition in the global context. It does not need to check the index is

public, as it is done when typing the global context. K-If and K-Case are the key components for

large elimination. They both require the discriminee to be well-typed and the returned types to

be obliviously kinded. The K-Case rule is rather permissive in that it does not require the type of

discriminee e0 to be completely publicly typed. While it is unclear when a programmer would ever

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:13

Γ ⊢ τ :: κ

K-ADT

data X B τ ∈ Σ

Γ ⊢ X :: ∗P

K-Unit

Γ ⊢ 𝟙 :: ∗A

K-Bool

Γ ⊢ B :: ∗P

K-OBool

Γ ⊢ B̂ :: ∗O

K-Pi

Γ ⊢ τ1 :: ∗ x:τ1,Γ ⊢ τ2 :: ∗

Γ ⊢ Πx:τ1, τ2 :: ∗M

K-Prod

Γ ⊢ τ1 :: κ Γ ⊢ τ2 :: κ

Γ ⊢ τ1 × τ2 :: κ

K-Sum

Γ ⊢ τ1 :: κ Γ ⊢ τ2 :: κ

Γ ⊢ τ1 + τ2 :: κ ⊔ ∗P

K-OSum

Γ ⊢ τ1 :: ∗O Γ ⊢ τ2 :: ∗O

Γ ⊢ τ1 +̂ τ2 :: ∗O

K-OADT

obliv X̂ (x:τ) B τ′ ∈ Σ Γ ⊢ e : τ

Γ ⊢ X̂ e :: ∗O

K-If

Γ ⊢ e0 : B Γ ⊢ τ1 :: ∗O Γ ⊢ τ2 :: ∗O

Γ ⊢ if e0 then τ1 else τ2 :: ∗O

K-Case

Γ ⊢ e0 : τ′
1
+ τ′

2
x1:τ

′
1
,Γ ⊢ τ1 :: ∗O x2:τ

′
2
,Γ ⊢ τ2 :: ∗O

Γ ⊢ case e0 of x1 ⇒ τ1 | x2 ⇒ τ2 :: ∗O

K-Sub

Γ ⊢ τ :: κ′ κ′ ⊑ κ

Γ ⊢ τ :: κ

Fig. 12. 𝜆OADT kinding rules

actually use a type-level discriminee with oblivious components, it does not leak any information

either.

The typing rules for public constructs are largely standard. Since 𝜆OADT is dependently typed,

T-If and T-Case rely on an implicit motive that is specialized when typing branches
2
. This motive,

(τ), has a special free variable (x) which stands in for the term being eliminated. The type used

for the then branch in T-If ({true/x}τ) concretizes the occurrences of this variable with true, for

example. The typing rules for oblivious constructs are largely similar to their public counterparts,

with the caveat that they place more constraints on their subterms: T-OInj requires the type of its

payload to have an oblivious kind, for example. In addition to requiring that their branches have

oblivious kind, the typing rules for oblivious eliminators (T-Mux and T-OCase) are required to

return types that do not depend on the discriminees, in order to avoid leaking information about

the discriminees via their types. T-BoxedLit and T-BoxedInj type oblivious values, with the latter

simply outsourcing it to the relation used in S-OCase.

The final typing rule, T-Conv, allows any well-typed term to be typed using an equivalent type,

denoted Σ ⊢ τ ≡ τ′. This equivalence is defined directly in terms of a parallel reduction relation,

Σ ⊢ e ⇛ e′, or simply e ⇛ e′. Parallel reduction is a more liberal version of our call-by-value

semantics which allows, for example, reduction under binders and congruence rules. Two terms are

then said to be equivalent when they can parallel reduce to the same term in zero or more steps:

Σ ⊢ τ ≡ τ′ ≜ ∃ τ′′. Σ ⊢ τ ⇛∗ τ′′ ∧ Σ ⊢ τ′ ⇛∗ τ′′

Parallel reduction also plays an important role in the metatheory of 𝜆OADT, particularly in the proof

of obliviousness (Theorem 3.7).

A subset of the parallel reduction rules are shown in Figure 14; the remaining rules can be found

in our Coq development; despite their importance in the metatheory of 𝜆OADT, the parallel reduction

rules are straightforward. As the figure shows, the rules are essentially more permissive versions

of their counterparts in the step relation from Figure 10. As an example, the parallel reduction rule

2
This strategy is in line with other dependently typed languages (e.g., Coq), which try to infer a motive when none is

supplied by the programmer.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:14 Qianchuan Ye and Benjamin Delaware

Γ ⊢ e : τ

T-Var

x:τ ∈ Γ

Γ ⊢ x : τ

T-Unit

Γ ⊢ () : 𝟙

T-Lit

Γ ⊢ b : B

T-Fun

def x:τ B e ∈ Σ

Γ ⊢ x : τ

T-Abs

x:τ,Γ ⊢ e : τ′ Γ ⊢ τ :: ∗

Γ ⊢ 𝜆x:τ ⇒ e : Πx:τ, τ′

T-App

Γ ⊢ e1 : Πx:τ2, τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : {e2/x}τ1

T-Pair

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

T-Proj

Γ ⊢ e : τ1 × τ2

Γ ⊢ π𝑏 e : ite(b, τ1, τ2)

T-Inj

Γ ⊢ e : ite(b, τ1, τ2) Γ ⊢ τ1 + τ2 :: ∗

Γ ⊢ in𝑏<τ1 + τ2> e : τ1 + τ2

T-If

Γ ⊢ e0 : B

Γ ⊢ e1 : {true/x}τ Γ ⊢ e2 : {false/x}τ

Γ ⊢ if e0 then e1 else e2 : {e0/x}τ

T-Case

Γ ⊢ e0 : τ1 + τ2

x1:τ1,Γ ⊢ e1 : {inl<τ1+τ2> x1/x}τ x2:τ2,Γ ⊢ e2 : {inr<τ1+τ2> x2/x}τ

Γ ⊢ case e0 of x1 ⇒ e1 | x2 ⇒ e2 : {e0/x}τ

T-Fold

data X B τ ∈ Σ

Γ ⊢ e : τ

Γ ⊢ fold<X> e : X

T-Unfold

data X B τ ∈ Σ

Γ ⊢ e : X

Γ ⊢ unfold<X> e : τ

T-Sec

Γ ⊢ e : B

Γ ⊢ sB e : B̂

T-Mux

Γ ⊢ e0 : B̂ Γ ⊢ τ :: ∗O

Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ mux e0 e1 e2 : τ

T-OInj

Γ ⊢ e : ite(b, τ1, τ2) Γ ⊢ τ1 +̂ τ2 :: ∗O

Γ ⊢ în𝑏<τ1 +̂ τ2> e : τ1 +̂ τ2

T-OCase

Γ ⊢ e0 : τ1 +̂ τ2 Γ ⊢ τ :: ∗O

x1:τ1,Γ ⊢ e1 : τ x2:τ2,Γ ⊢ e2 : τ

Γ ⊢ �case e0 of x1 ⇒ e1 | x2 ⇒ e2 : τ

T-BoxedLit

Γ ⊢ [b] : B̂

T-BoxedInj

[in𝑏<ω̂> v̂] ⇐ ω̂

Γ ⊢ [in𝑏<ω̂> v̂] : ω̂

T-Conv

Γ ⊢ e : τ′ τ′ ≡ τ Γ ⊢ τ :: ∗

Γ ⊢ e : τ

Fig. 13. 𝜆OADT typing rules

for mux, R-Mux, does not reduce its branches to values, but immediately takes the corresponding

branch, just like S-If. While this rule would leak information if the condition of the mux could be

reduced to an oblivious value, this does not occur in practice. The reason for this is that parallel

reduction is only used for statically type checking programs, and this rule will therefore never be

used at runtime, when private data is made available.

To type a 𝜆OADT program, we also check the definitions in the global context using the rules in

Figure 15. DT-Fun is straightforward: the type ascription needs to be well-kinded and the definition

needs to be well-typed using an empty typing context. A definition may recursively refer to the

name being defined, which is included in Σ. DT-ADT, the typing rule for public ADTs, simply

requires the type to be completely public. The typing rule for oblivious ADTs, DT-OADT, requires

that its index be completely public, as it is used as the public view. In contrast, the rest of the

definition has to have an oblivious kind, under a context that includes the index x.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:15

e ⇛ e′

R-Refl

e ⇛ e

R-App

e1 ⇛ e′
1

e2 ⇛ e′
2

(𝜆x:τ ⇒ e2) e1 ⇛ {e′
1
/x}e′

2

R-Fun

def x:τ B e ∈ Σ

x ⇛ e

R-OADT

obliv X̂ (x:τ′) B τ ∈ Σ

e ⇛ e′

X̂ e ⇛ {e′/x}τ

R-Mux

e1 ⇛ e′
1

e2 ⇛ e′
2

mux [b] e1 e2 ⇛ ite(b, e′
1
, e′

2
)

R-Sec

sB b ⇛ [b]

R-OInj

în𝑏<ω̂> v̂ ⇛ [in𝑏<ω̂> v̂]

R-OCase

v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2 e1 ⇛ e′
1

e2 ⇛ e′
2�case [in𝑏<ω̂1 +̂ ω̂2> v̂] of x1 ⇒ e1 | x2 ⇒ e2 ⇛

mux [b] ite(b, {̂v/x1}e
′
1
, {̂v1/x1}e

′
1
) ite(b, {̂v2/x2}e

′
2
, {̂v/x2}e

′
2
)

Fig. 14. Subset of 𝜆OADT parallel reduction rules

Σ ⊢ D

DT-Fun

· ⊢ τ :: ∗ · ⊢ e : τ

Σ ⊢ def x:τ B e

DT-ADT

· ⊢ τ :: ∗P

Σ ⊢ data X B τ

DT-OADT

· ⊢ τ′ :: ∗P x:τ′ ⊢ τ :: ∗O

Σ ⊢ obliv X̂ (x:τ′) B τ

Fig. 15. 𝜆OADT global definition typing rules

3.4 Type Safety and Obliviousness
This section presents sketches of the keymetatheory proofs for 𝜆OADT’s type system. All the theorems

in this section assume a well-typed global context. Firstly, 𝜆OADT enjoys the standard progress and

preservation theorems:

Theorem 3.1 (Progress). If · ⊢ e : τ, then either e −→ e′ for some e′, or e is a value.
If · ⊢ τ :: ∗O, then either τ −→ τ′ for some τ′, or τ is an oblivious type value.

The proof of progress proceeds by mutual induction on typing and kinding derivation. The S-OCase

case relies on the fact that every oblivious type value is inhabited, in order to find the oblivious

value needed to reduce the “wrong” branch.

The preservation theorem also consists of two parts.

Theorem 3.2 (Preservation). If Γ ⊢ e : τ, and e −→ e′, then Γ ⊢ e′ : τ.
If Γ ⊢ τ :: κ and τ −→ τ′, then Γ ⊢ τ′ :: κ.

The induction hypothesis for a direct proof of preservation is too weak to prove the T-If and T-Case

cases. Instead, we show that the step relation refines parallel reduction and then prove preservation

for the more general relation.

Lemma 3.3 (Preservation for parallel reduction). If Γ ⊢ e : τ, and e ⇛ e′, then Γ ⊢ e′ : τ.
If Γ ⊢ τ :: κ and τ ⇛ τ′, then Γ ⊢ τ′ :: κ.

The proof of Lemma 3.3 depends on two additional lemmas. The first is a regularity lemma needed

for the kinding constraints used by several typing rules.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:16 Qianchuan Ye and Benjamin Delaware

Lemma 3.4 (Regularity). If Γ ⊢ e : τ, then Γ ⊢ τ :: κ for some κ.

The second is that parallel reduction is confluent.

Lemma 3.5 (Confluence of parallel reduction). If e ⇛∗ e1 and e ⇛∗ e2, then there exists e′

such that e1 ⇛∗ e′ and e2 ⇛
∗ e′.

Interestingly, the regular call-by-value semantics of 𝜆OADT are not confluent, thanks to a combi-

nation of the (limited) nondeterminism in S-OCase and nontermination. Observe that S-OCase

can be applied with different choices of the arbitrary oblivious values. This is not a problem if

the oblivious case expression terminates because the “wrong” branch will eventually be discarded.

However, it is possible that the mux expression it steps to loops forever, such that the “wrong” branch

is never discarded. Thankfully, the R-Mux rule is more liberal than S-Mux, ensuring that parallel

reduction is confluent. Whenever �case parallel reduces to a mux expression, however, R-Mux will

immediately discard the “wrong” branch, forcing both choices to converge within one step.

3.4.1 Obliviousness. Adversaries should not be able to infer any information about the private

information (i.e., oblivious values) of well-typed 𝜆OADT programs by observing the whole execution

of a 𝜆OADT program. To prove this, we first formalize a notion of indistinguishability for 𝜆OADT
expressions:

Definition 3.6 (Indistinguishability). We say two expressions are indistinguishable, denoted by

e ≈ e′, if

(1) they are both oblivious boolean values: [b] ≈ [b′], or

(2) they are both oblivious injections with the same type: [in𝑏<ω̂> v] ≈ [in𝑏′<ω̂> v′], or

(3) they are the same expression with indistinguishable sub-expressions.

Intuitively, two expressions are indistinguishable if they only differ in their oblivious val-

ues. Note that indistinguishability is a completely syntactic notion: two lambda abstractions

are indistinguishable only if their bodies are indistinguishable. This is a direct consequence

of our strong threat model: dishonest parties are capable of peeking “under the binders”, i.e.,

lambda abstractions are not black boxes to them. As an example, the functions 𝜆x y ⇒ x + y and

𝜆x y ⇒ y + x are not indistinguishable, even though their “big-step” behaviors are the same: if

mux [true] (𝜆x y ⇒ x + y) (𝜆x y ⇒ y + x) were to step to 𝜆x y ⇒ x + y, an attacker could learn

about the private condition by inspecting the resulting function. More pleasantly, this syntac-

tic definition enjoys a congruence property: plugging indistinguishable partial programs into

indistinguishable contexts is guaranteed to result in indistinguishable whole programs.

Equipped with this relation, we can now formally state the obliviousness theorem for 𝜆OADT:

Theorem 3.7 (Obliviousness). If e1 ≈ e2 and · ⊢ e1 : τ1 and · ⊢ e2 : τ2, then
(1) e1 −→𝑛 e′

1
if and only if e2 −→𝑛 e′

2
for some e′

2
.

(2) if e1 −→𝑛 e′
1
and e2 −→𝑛 e′

2
, then e′

1
≈ e′

2
.

We write e −→𝑛 e′ to mean e reduces to e′ in exactly 𝑛 steps. The first piece of this theorem is a

generalization of progress, and ensures that information is not leaked via a termination channel.

The second piece says that for any two indistinguishable programs, an observer cannot learn

anything about their oblivious values by examining the states they can step to. Taken together,

these two properties ensure that an observer cannot learn anything about the private values in a

well-typed 𝜆OADT program, even given the entire execution trace of that program. If we treat the

observable parts of the intermediate execution states as a public channel, obliviousness provides a

sort of noninterference property [Goguen and Meseguer 1982; Sabelfeld and Myers 2003], in that

different private (i.e., high-security) inputs do not leak any information via this public channel.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:17

e,τ F Extended Expressions:

| . . .

| îf e then e else e oblivious leaky conditional

| tape e tape operation

| 𝜆x:𝑙 τ ⇒ e | Πx:𝑙 τ, τ function and function types with leakage label

D F Extended Global Definitions:

| . . .

| def x:𝑙 τ B e (recursive) function definition with leakage label

𝑙 F ⊤ | ⊥ Leakage Label

Fig. 16. 𝜆OADT✚ syntax

The proof of Theorem 3.7 is by induction on the derivation of e1 −→𝑛 e′
1
. The first part of the

proof of obliviousness is a direct consequence of progress and the fact that well-typed values

are only indistinguishable from other values. The second part is more involved, and requires the

following two key lemmas to prove the S-Mux case:

Lemma 3.8. If Γ ⊢ v : τ and Γ ⊢ v′ : τ, and Γ ⊢ τ :: ∗O, then v ≈ v′.

Lemma 3.9. If v ≈ v′, Γ ⊢ v : τ, Γ ⊢ v′ : τ′, and Γ ⊢ τ :: ∗O, then τ ≡ τ′.

Lemma 3.8 states that all values of the same oblivious type are indistinguishable, and Lemma 3.9

ensures that two indistinguishable, obliviously-typed values have the same type up to type equiva-

lence. The proofs of both lemmas proceed by induction on the typing derivation. Most of the proofs

are straightforward, except for the case of T-Conv in both lemmas. Since applying the induction

hypothesis requires that τ′ also be oblivious, we need to show that two equivalent, well-kinded

types simultaneously have oblivious kinds, which follows from Lemma 3.3:

Lemma 3.10. If τ ≡ τ′, Γ ⊢ τ :: ∗O, and Γ ⊢ τ′ :: ∗, then Γ ⊢ τ′ :: ∗O.

In practice, well-typed 𝜆OADT programs are functions that take arguments of oblivious types,

such as �lookup from Figure 8. The program built by supplying such a function with private inputs

of the right types is indistinguishable from one built using different private inputs, thanks to

the congruence property of indistinguishability and Lemma 3.8. As a direct consequence of the

obliviousness theorem, an attacker can not glean any information about the private inputs of such

programs. This fact is captured in the following corollary about open 𝜆OADT programs:

Corollary 3.11. If x:τ′ ⊢ e : τ with · ⊢ τ′ :: ∗O, then for any two values v1 and v2 of oblivious
type τ′:
(1) {v1/x}e −→𝑛 e1 if and only if {v2/x}e −→𝑛 e2 for some e2.
(2) {v1/x}e −→𝑛 e1 and {v2/x}e −→𝑛 e2 implies that e1 and e2 are indistinguishable, i.e., e1 ≈ e2.

4 𝜆OADT✚, FORMALLY
This section formalizes 𝜆OADT✚, an extension to 𝜆OADT that permits implementations in the vein of

Figure 6.

4.1 Syntax
The extended syntax of 𝜆OADT✚ is shown in Figure 16. These extensions permit 𝜆OADT✚ expressions that

potentially leak information locally, as long as they can eventually be repaired by the surrounding

context. The new îf operation is similar to mux, but its branches are permitted to be non-oblivious,

causing a potential leak if îf is evaluated naively. The new tape annotation acts as a boundary for

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:18 Qianchuan Ye and Benjamin Delaware

e −→ e′

S-OCase

v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2�case [in𝑏<ω̂1 +̂ ω̂2> v̂] of x1 ⇒ e1 | x2 ⇒ e2 −→
îf [b] then ite(b, {̂v/x1}e1, {̂v1/x1}e1) else ite(b, {̂v2/x2}e2, {̂v/x2}e2)

S-OIf

Ê[îf [b] then v1 else v2] −→ îf [b] then Ê[v1] else Ê[v2]

S-TapeOIf

tape (îf [b] then v1 else v2) −→ mux [b] (tape v1) (tape v2)

S-TapeOVal

v̂ is oblivious value but not pair

tape v̂ −→ v̂

S-TapePair

tape (v1, v2) −→ (tape v1, tape v2)

Weak Values

v F . . .

| îf [b] then v else v

Evaluation Contexts

E F . . .

| îf □ then e else e

| îf v then □ else e

| îf v then v else □

| tape □

Leaky Contexts

Ê F
| □ v

| π𝑏 □

| if □ then e else e

| case □ of x ⇒ e | x ⇒ e

| sB □

| unfold<X> □

Fig. 17. 𝜆OADT✚ semantics

potential leaks, and is used to ensure that they never occur during execution, as Section 4.2 will

discuss in more detail. Finally, 𝜆OADT✚ updates the syntax for anonymous functions, function types

and function definitions with a leakage label. A leakage label is either ⊤ or ⊥, and signals either the

presence or the absence of a potential leak, respectively.

4.2 Semantics
The semantics of 𝜆OADT✚ are an extension of the semantics of 𝜆OADT. Figure 17 shows the new and

updated rules; the rest are identical to the rules in Figure 10. This semantics introduces a new

syntactic class of weak values, which are used to ensure that îf does not leak information when

evaluated. Weak values simply extend the values in 𝜆OADT with îf: a îf is a weak value if all its

subexpressions are weak values. All references to v in the reduction rules (including those not

shown in Figure 17) now refer to weak values unless explicitly identified as a value. The semantics

also extend evaluation contexts to handle îf and tape expressions.

The S-OIf rule captures the key idea of distributing surrounding context into the branches of îf.

Like S-Mux, this rule requires its branches to first be evaluated to weak values using S-Ctx. Note

that not all contexts need to be distributed into these branches in order to make progress– pushing

fold into îf in the expression fold<tree> (îf [true] . . .) does not gain us anything, for example,

since the expression is already a weak value. Figure 17 defines the leaky contexts (Ê) that can be

distributed through îf. For simplicity, we adopt a minimal set of leaky contexts, though allowing

more contexts is a potential avenue for optimizing executions. This does not limit the expressivity

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:19

of 𝜆OADT✚, for similar reasons to the fold example from above. The semantics of �case are also updated
to allow potential leaks, with S-OCase now evaluating to îf instead of mux.

The last three rules in Figure 17 show how to evaluate tape annotations. The key idea is to use

tape as a signal that the context surrounding an îf expression has been sufficiently distributed to

prevent leaks. Mechanically, whenever a tape annotation is applied to îf expression whose branches

are weak values, it is safe to reduce expression to a secure mux using S-TapeOIf. As an example,

consider the following expression:

tape (sB (îf [true]

then false

else true))

−→
tape (îf [true]

then (sB false)

else (sB true))

−→∗
mux [true]

(tape [false])

(tape [true])

−→∗
[false]

After applying S-OIf to distribute the surrounding boolean section sB, the îf expression is now

annotated with tape, and S-TapeOIf can be applied. The tape annotations are pushed inside the

branches of mux to ensure any îf expressions they may contain are also repaired. The final two

rules ensure tape annotations are eventually dropped from oblivious values. An oblivious (non-pair)

value annotated with tape cannot leak any information, and S-TapeOVal can be applied to remove

the extraneous tape. S-TapePair allows tape annotations to be distributed into the components of

an oblivious pair, in order to eventually repair any îf expressions they may contain.

4.3 Type System
The typing judgment of 𝜆OADT✚ now includes a leakage label for the typed expression: Γ ⊢ e :𝑙 τ, as

do entries in typing contexts Γ. Figure 18 shows a subset of the typing rules of 𝜆OADT✚; the omitted

rules are copies of those from 𝜆OADT with straightforward leakage labels annotations. As mentioned

in Section 4.1, leakage labels signal whether an expression might contain a potential leak. The

reason for these labels is similar to the security labels found in other security-type systems [Sabelfeld

and Myers 2003; Zdancewic 2002], where type-based information flow control is used to enforce

noninterference between high- and low- security information. In 𝜆OADT✚, expressions with ⊤ labels

should not influence expressions with ⊥ labels. In order to minimize the extension to 𝜆OADT, we do

not annotate every type with a leakage label, opting to only annotate top-level definitions and

function parameters with leakage labels. While it is certainly possible to implement a more precise

analysis, this coarse-grained analysis is strong enough for our purposes.

The leakage label of base types is always ⊥, e.g., in T-Unit. Leakage labels for local or global

variables is taken directly from the context, e.g., T-Var. For most public constructs, e.g., T-Pair and

T-Proj, the label is the join (⊔) of the labels of all sub-expressions, where⊥⊔⊥ ≡ ⊥ and⊤ otherwise.

T-Proj shows why leakage is an overapproximation, as we cannot always tell which component

of a pair labeled with ⊤ is the source of the potential leak. In T-Abs, both the type and label of a

parameter are added to the typing context when typing the function body. The label assigned to

the function body is then propagated to the whole lambda abstraction. This strategy may seem a

bit counterintuitive, as a lambda abstraction is irreducible, and thus cannot leak any information

during further evaluation. Of course, while a lambda value will not leak any information on its own,

it does have the potential to leak when applied to an argument. Because our leakage analysis is

quite coarse, we simply consider an expression leaky if it may leak when it is “used”. T-App requires

a function to be applied to an argument whose label matches that of its parameter. Applying

a function with a potentially leaky parameter to a non-leaky argument can be typed by first

using the T-Conv rule, which allows the label of an expression to be downgraded. As an example,

these rules ensure both (𝜆x:⊤B ⇒ sB x) (îf [true] then true else false) and (𝜆x:⊤B ⇒ sB x) true

are well-typed expressions.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:20 Qianchuan Ye and Benjamin Delaware

Γ ⊢ e :𝑙 τ

T-Var

x:𝑙 τ ∈ Γ

Γ ⊢ x :𝑙 τ

T-Unit

Γ ⊢ () :⊥ 𝟙

T-Pair

Γ ⊢ e1 :𝑙1 τ1 Γ ⊢ e2 :𝑙2 τ2
𝑙 = 𝑙1 ⊔ 𝑙2

Γ ⊢ (e1, e2) :𝑙 τ1 × τ2

T-Proj

Γ ⊢ e :𝑙 τ1 × τ2

Γ ⊢ π𝑏 e :𝑙 ite(b, τ1, τ2)

T-Abs

x:𝑙 τ,Γ ⊢ e :𝑙′ τ′ Γ ⊢ τ :: ∗
Γ ⊢ 𝜆x:𝑙 τ ⇒ e :𝑙′ Πx:𝑙 τ, τ′

T-App

Γ ⊢ e1 :𝑙1 Πx:𝑙2 τ2, τ1 Γ ⊢ e2 :𝑙2 τ2

Γ ⊢ e1 e2 :𝑙1 {e2/x}τ1

T-If

Γ ⊢ e0 :⊥ B 𝑙 = 𝑙1 ⊔ 𝑙2

Γ ⊢ e1 :𝑙1 {true/x}τ Γ ⊢ e2 :𝑙2 {false/x}τ

Γ ⊢ if e0 then e1 else e2 :𝑙 {e0/x}τ

T-IfNoDep

Γ ⊢ e0 :𝑙0 B 𝑙 = 𝑙0 ⊔ 𝑙1 ⊔ 𝑙2

Γ ⊢ e1 :𝑙1 τ Γ ⊢ e2 :𝑙2 τ

Γ ⊢ if e0 then e1 else e2 :𝑙 τ

T-Case

Γ ⊢ e0 :⊥ τ1 + τ2 𝑙 = 𝑙1 ⊔ 𝑙2

x1:⊥τ1,Γ ⊢ e1 :𝑙1 {inl<τ1+τ2> x1/x}τ x2:⊥τ2,Γ ⊢ e2 :𝑙2 {inr<τ1+τ2> x2/x}τ

Γ ⊢ case e0 of x1 ⇒ e1 | x2 ⇒ e2 :𝑙 {e0/x}τ

T-CaseNoDep

Γ ⊢ e0 :𝑙0 τ1 + τ2 𝑙 = 𝑙0 ⊔ 𝑙1 ⊔ 𝑙2

x1:𝑙0 τ1,Γ ⊢ e1 :𝑙1 τ x2:𝑙0 τ2,Γ ⊢ e2 :𝑙2 τ

Γ ⊢ case e0 of x1 ⇒ e1 | x2 ⇒ e2 :𝑙 τ

T-Conv

Γ ⊢ e :𝑙′ τ′ τ′ ≡ τ Γ ⊢ τ :: ∗
𝑙′ ⊑ 𝑙

Γ ⊢ e :𝑙 τ

T-Mux

Γ ⊢ e0 :⊥ B̂ Γ ⊢ τ :: ∗O
Γ ⊢ e1 :⊥ τ Γ ⊢ e2 :⊥ τ

Γ ⊢ mux e0 e1 e2 :⊥ τ

T-OInj

Γ ⊢ e :⊥ ite(b, τ1, τ2)

Γ ⊢ τ1 +̂ τ2 :: ∗O

Γ ⊢ în𝑏<τ1 +̂ τ2> e :⊥ τ1 +̂ τ2

T-OIf

Γ ⊢ e0 :⊥ B̂
Γ ⊢ e1 :𝑙1 τ Γ ⊢ e2 :𝑙2 τ

Γ ⊢ îf e0 then e1 else e2 :⊤ τ

T-OCase

Γ ⊢ e0 :⊥ τ1 +̂ τ2
x1:⊥τ1,Γ ⊢ e1 :𝑙1 τ x2:⊥τ2,Γ ⊢ e2 :𝑙2 τ

Γ ⊢ �case e0 of x1 ⇒ e1 | x2 ⇒ e2 :⊤ τ

T-Tape

Γ ⊢ e :𝑙 τ Γ ⊢ τ :: ∗O

Γ ⊢ tape e :⊥ τ

Fig. 18. 𝜆OADT✚ typing rules

𝜆OADT✚ has dependent and nondependent versions of the typing rule for if. In the dependent

version, T-If, the discriminee is not allowed to contain a potential leak, as it may appear in the type.

In the nondependent version T-IfNoDep, there is no such restriction, but the type is not allowed to

depend on the discriminee. The typing rules for case, T-Case and T-CaseNoDep, are similar.

The remaining typing rules deal with expressions that either repair or introduce potential leaks.

An expression annotated with tape is always assigned the ⊥ label, as long as that expression has an

oblivious type. This is in line with the semantics of tape: when applied to an oblivious expression,

it eventually evaluates to an oblivious value or a weak value (îf). The former is already safe, and

the latter can be repaird by S-TapeOIf. The ⊥ label in the rule captures the idea that tape safely

repairs a local leak, such that the surrounding computation can treat it as non-leaky. The rules

for îf and �case reflect the fact that they are sources of potential leaks, as both expressions are

labeled with ⊤. Both rules require their discriminees to be free of potential leaks, but this does not

affect expressiveness, since their discriminees can always be wrapped with tape. T-OInj and T-Mux

feature similar requirements.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:21

Γ ⊢ τ :: κ

K-OADT

obliv X̂ (x:τ) B τ′ ∈ Σ Γ ⊢ e :⊥ τ

Γ ⊢ X̂ e :: ∗O

K-If

Γ ⊢ e0 :⊥ B Γ ⊢ τ1 :: ∗O Γ ⊢ τ2 :: ∗O

Γ ⊢ if e0 then τ1 else τ2 :: ∗O

K-Case

Γ ⊢ e0 :⊥ τ′
1
+ τ′

2
x:τ′

1
,Γ ⊢ τ1 :: ∗O x:τ′

2
,Γ ⊢ τ2 :: ∗O

Γ ⊢ case e0 of x1 ⇒ τ1 | x2 ⇒ τ2 :: ∗O

Fig. 19. 𝜆OADT✚ kinding rules

e ⇛ e′

R-OIfCtx

e1 ⇛ e′
1

e2 ⇛ e′
2

Ê ⇛ Ê′

Ê[îf [b] then e1 else e2] ⇛ îf [b] then Ê′[e′
1
] else Ê′[e′

2
]

R-TapeOIf

e1 ⇛ e′
1

e2 ⇛ e′
2

tape (îf [b] then e1 else e2) ⇛ mux [b] (tape e′
1
) (tape e′

2
)

R-TapePair

e1 ⇛ e′
1

e2 ⇛ e′
2

tape (e1, e2) ⇛ (tape e′
1
, tape e′

2
)

R-TapeOVal

v̂ is oblivious value but not pair

tape v̂ ⇛ v̂

R-OIf

e1 ⇛ e′
1

e2 ⇛ e′
2

îf [b] then e1 else e2 ⇛ ite(b, e′
1
, e′

2
)

Fig. 20. Subset of 𝜆OADT✚ parallel reduction rules

Figure 19 shows the updated kinding rules for 𝜆OADT✚; the other kinding rules are identical to

those in Figure 12. The updated rules require types to only depend on terms that do not contain

potential leaks, i.e., those assigned the ⊥ label. To see why, consider the following ill-kinded type:

if (îf [true] then true else false) then 𝟙 else B̂

After distributing the surrounding if into îf, this reduces to îf [true] then 𝟙 else B̂. Similar ex-

pressions at the term level can be repaired by, e.g., distributing sB through the branches to secure

the result of the îf. At the type level we have no such recourse, however: since types are always

public, there is no corresponding way to repair this type by securing its branches.

Figure 20 shows a subset of the updated and new parallel reduction rules. Again, the rules for

oblivious constructs are similar to the corresponding step rules. In R-OIfCtx, we write Ê ⇛ Ê′
to

mean all the subexpressions in the leaky context take a parallel reduction step. R-OIf is required

for confluence, similar to R-Mux. We say a 𝜆OADT✚ program is well-typed if the global context

is well-typed (the updated typing rules for the global context are trivial) and the expression is

well-typed with ⊥ label. The latter restriction ensures that all potential leaks in a 𝜆OADT✚ program

are eventually repaired.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:22 Qianchuan Ye and Benjamin Delaware

4.4 Type Safety and Obliviousness
The guarantees of the type system of 𝜆OADT✚ are quite similar to those of 𝜆OADT, although they

have been adapted slightly to account for leakage labels. The statement of progress for 𝜆OADT✚, for

example, is limited to expressions without potential leaks:

Theorem 4.1 (Progress). If · ⊢ e :⊥ τ, then either e −→ e′ for some e′, or e is a value.
If · ⊢ τ :: ∗O, then either τ −→ τ′ for some τ′, or τ is an oblivious type value.

This updated statement reflects the fact that leaky expressions only reduce to weak values. The
proof of this theorem is a consequence of a stronger lemma which also accounts for potentially

leaky expressions:

Lemma 4.2. If · ⊢ e :𝑙 τ, then either e −→ e′ for some e′, or e is a weak value.

The proof of this stronger lemma proceeds similarly to the proof of progress for 𝜆OADT, with

the canonical form lemmas extended to weak values. One technicality needed by this proof is a

notion of weak oblivious value, which extends oblivious values to include îf expressions. For the

T-Tape case, we have to show that a weak value with an oblivious type is also a weak oblivious

value, as tape can only be reduced when it is applied to weak oblivious values. This extra lemma

requires an updated version of Lemma 3.10, so the proof of progress for 𝜆OADT✚ now depends on type

preservation for parallel reduction. With this lemma in hand, the progress theorem immediately

follows from the fact that a weak value is a value if it labeled with ⊥.
The statements of preservation and obliviousness must also be updated to deal with leakage

labels, but are otherwise identical:

Theorem 4.3 (Preservation). If Γ ⊢ e :𝑙 τ, and e −→ e′, then Γ ⊢ e′ :𝑙 τ.
If Γ ⊢ τ :: κ and τ −→ τ′, then Γ ⊢ τ′ :: κ.

Theorem 4.4 (Obliviousness). If e1 ≈ e2 and · ⊢ e1 :𝑙1 τ1 and · ⊢ e2 :𝑙2 τ2, then
(1) e1 −→𝑛 e′

1
if and only if e2 −→𝑛 e′

2
for some e′

2
.

(2) if e1 −→𝑛 e′
1
and e2 −→𝑛 e′

2
, then e′

1
≈ e′

2
.

Proofs of both theorems follow the same structure as their counterparts in 𝜆OADT, although many

of the lemmas used in the proof of obliviousness now use weak values instead of values.

4.5 Extending 𝜆OADT✚

This section considers how additional base types might be added to the core calculus of 𝜆OADT✚, using

fixed-width integers as an example. Figure 21 shows a subset of the syntax, semantics and typing

rules needed for this new primitive type. The extended language includes public and oblivious

versions of integer types, literals, and operators. For simplicity, we only consider a comparison

operation, but additional operators could be added in a similar manner. In order to move between

the public and oblivious types, section (sZ) and retraction (rZ) operations for integers are also added;

both have similar semantics to their boolean counterparts
3
. rZ always introduces a potential leak,

and rZ v̂ is considered weak value.

When defining the semantics of potentially leaky expressions like ≤, it is important that the

semantics does not leak information via the execution trace. When comparing oblivious values

with ≤, for example, SI-RetLe1 combines ≤̂ and rB to first securely compare the operands before

retracting the resulting oblivious boolean. SI-RetLe2 and SI-RetLe3 are similar, but they apply to

cases when one of the operands is not a retraction of an oblivious value by lifting it to oblivious

3
Although 𝜆OADT✚ does not include boolean retraction rB as a primitive, it is easily defined in terms of îf:

rB e ≜ îf e then true else false.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:23

e,τ F Extended Expressions:

| . . .

| Z | Ẑ Primitive integer types

| i | [i] (Runtime) integer literals

| e ≤ e | e ≤̂ e Integer operators

| sZ e | rZ e Integer section and retraction

(a) Extended syntax

Γ ⊢ e :𝑙 τ

TI-Ret

Γ ⊢ e :⊥ Ẑ

Γ ⊢ rZ e :⊤ Z

TI-OLe

Γ ⊢ e1 :⊥ Ẑ

Γ ⊢ e2 :⊥ Ẑ

Γ ⊢ e1 ≤̂ e2 :⊥ B̂

(b) Extended typing rules

e −→ e′

SI-Sec

sZ i −→ [i]

SI-SecRet

sZ (rZ [i]) −→ [i]

SI-RetLe1

rZ [i1] ≤ rZ [i2] −→ rB ([i1] ≤̂ [i2])

SI-RetLE2

rZ [i1] ≤ i2 −→ rB ([i1] ≤̂ sZ i2)

SI-RetLE3

i1 ≤ rZ [i2] −→ rB (sZ i1 ≤̂ [i2])

(c) Extended semantics

Fig. 21. A subset of extended language for fixed-width integers

values first. The semantics of other operators can be defined through similar uses of section and

retraction functions. As an example, integer addition returns an integer instead of boolean, so we

apply rZ to the result of oblivious addition. If a leaky integer expression is used in a well-typed

context, then rZ will eventually meet sZ and they can be canceled out via SI-SecRet. Updated

versions of evaluation contexts, leaking contexts and the other reduction rules are omitted, as they

are straightforward extensions of their counterparts in 𝜆OADT✚. The extended typing and kinding

rules are also straightforward, and are similar to those for the primitive types in 𝜆OADT✚. Figure 21

gives the rules for integer retraction (TI-Ret) and oblivious less-than (TI-OLe) as examples.

4.6 𝜆OADT✚ in action
To demonstrate the expressiveness of 𝜆OADT✚, we have written some example oblivious functions and

oblivious types with different public views. We have directly encoded these in our Coq development,

as well as some accompanying typing and evaluation derivations. All of the examples described in

this section are included in our public artifact [Ye and Delaware 2021].

We have encoded the following OADTs for lists and trees. Each oblivious type consists of its

type definition, a section function and a retraction function.

• List with the upper bound of its length.

• Tree with the upper bound of its depth.

• Tree with the upper bound of its spine.

• Tree with the upper bound of the number of its vertices (including leaves and nodes).

The second and third of these examples were presented in Section 2. The oblivious tree with the

upper bound of its total vertices is the most complicated: while its type definition is effectively an

oblivious list, its section and retraction functions correspond to flattening a tree and rebuilding a

tree from a list.

In addition to the lookup function from Section 2, we have also written a tree insertion function as

a demonstration of how oblivious ADTs are constructed. A more interesting example is a standard

map function over oblivious trees, which shows that higher-order functions can be naturally written

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:24 Qianchuan Ye and Benjamin Delaware

in 𝜆OADT✚. The following code snippet for an oblivious map function follows the recipe in Figure 6.

Label annotations are omitted for brevity, and we use a boolean payload for simplicity.

def m̂ap (f : B → B) (k : N) (t : �tree k) : �tree k B

stree (map f (rtree k t)) k

The function argument of m̂ap takes a public boolean to public boolean, but m̂ap could be adapted

to accept a function from oblivious boolean to oblivious boolean by composing boolean section

and retraction to appropriately “transport” the function argument. The m̂ap function could also be

adapted any oblivious tree definition by simply replacing �tree, stree, and rtree.

5 RELATEDWORK
Secure computation was first formally introduced by Yao [1982] alongside his proposed solution,

Garbled Circuits. In secure computation, an untrusted party may observe the whole execution of

the secure program, or infer some private information from other side-channels. Enabling secure

computations that use algebraic data types that also hide their structures is a key motivation of

this work. Secure computation techniques can be broadly divided into those using multiparty

computation and those relying on outsourced computation [Evans et al. 2018; Hazay and Lindell

2010]. Those in the former category typically use protocols based on either Garbled Circuits or

secret-sharing schemes [Beimel 2011; Goldreich et al. 1987; Maurer 2006]. In the realm of outsourced

computation, solutions are typically based on fully homomorphic encryption [Acar et al. 2018;

Gentry 2009], but can also be supported by virtualization [Barthe et al. 2014, 2019a] or secure

processors [Hoekstra 2015]. These protocols can be used to implement the semantics of 𝜆OADT and

𝜆OADT✚.

Many high-level programming languages have been proposed that support some form of secure

computation [Hastings et al. 2019]. Their goals are similar to ours in that they provide high-level

language support for writing secure programs. However, most do not support (recursive) data

structures at all, or assume the structural information is always public. Obliv-C [Zahur and Evans

2015] is a C-like oblivious language. Algebraic data types can be encoded with the C-style struct
keyword with pointers. Since their oblivious types are restricted to base C types, however, the

structure of the defined ADT is public. It would be possible to implement oblivious ADT in Obliv-C

by manually padding and using the data types according to their public views. The language

provides a ~obliv keyword that can be used to dynamically track the maximum bound of a data

type, at the cost of some additional user effort. Moreover, if the programmers decide to use a

different public view, they have to fix every place where this data type is used. ObliVM [Liu et al.

2015] is a Java-like language which also has a struct keyword to define data types, but only

supports public structures, much like Obliv-C. Wysteria and Wys
∗
[Rastogi et al. 2014, 2019] are

functional languages that focus on mixed-mode computation. While they do not support recursive

data types, both languages include simple polynomial types and primitive arrays. In contrast, our

language does not consider mixed-mode computation. Symphony [Sweet et al. 2021] is a successor

of Wysteria which permits more reactive applications through a combination of first-class support

for coordinating parties and primitives for secret-sharing and -recombination. Symphony also

supports recursive data types which may contain private data, e.g., a tree whose leaves contain

oblivious payloads, but does not obfuscate the structure of those datatypes.

Constant-time languages protect programs from inadvertently leaking private information

through timing channels by providing atomic constructs and carefully tracking information control.

This is also a goal of our system, and our solution to this problem is similar. The first formal

study of constant time algorithms was in the context of cache-based attacks [Barthe et al. 2014].

Barthe et al. [2019b] extended the formally verified CompCert compiler [Leroy 2009] to ensure

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:25

constant time execution. Though we do not have a compiler for 𝜆OADT or 𝜆OADT✚, our obliviousness

theorem does provide a formal guarantee of a constant-time property. FaCT [Cauligi et al. 2019]

is a high-level language for writing constant-time computation using (non-recursive) data types.

One of its unique features is a front-end compiler to transform a well-typed (but potentially not

constant-time) FaCT program to a constant-time FaCT program. In 𝜆OADT✚, the programmers can

simply encode programs in the conventional fragment and then lift them to oblivious programs

(that are constant-time) by composing section and retraction functions.

𝜆obliv [Darais et al. 2020] is a functional programming language for oblivious computation that fo-

cuses on probabilistic programs, making it suitable for implementing some oblivious cryptographic

algorithms, such as ORAM, although it does not include algebraic data types. In contrast, our work

does not consider probabilistic programs, though it could be an interesting future direction. Our

two approaches share similar threat models and guarantees of obliviousness.

Our approach of type-based information flow control to enforce obliviousness, a form of nonin-
terference, follows a body of work in security-type systems [Sabelfeld and Myers 2003; Zdancewic

2002]. To the best of our knowledge, our system is the first to combine a dependent type system

with large elimination and a security-type system. Our notion of retraction bears some resem-

blance to delimited information release [Sabelfeld and Myers 2004]. In a system with delimited

information release, the programmers may choose to reveal some private information, similar to

retraction functions in 𝜆OADT✚. However, our semantics guarantees retraction never releases any

private information. Another difference with a standard security-type system is that we use explicit

coercion via section functions instead of implicit subtyping to convert public types to secure types.

On the one hand, our typing rules and semantics for oblivious types and non-oblivious types are

quite different. On the other hand, implicit subtyping does not make sense in the case of ADTs. To

convert a public ADT to an oblivious one, we not only need to know how the oblivious ADT is

represented, but also to infer the public views.

Our oblivious types can also be viewed as a kind of refinement types [Kawaguchi et al. 2009;

Rondon et al. 2008; Xi and Pfenning 1999]: the oblivious tree in our running example can be

understood as trees with a maximum depth stipulated by the type index, for example. However,

this declarative specification does not explain how to represent such an oblivious tree. Nonetheless,

this view of subset types suggests a future direction of integrating refinement typing into our

system to ensure the correct use of public indices. Dependent type systems with large elimination

can be found in many theorem provers, such as Coq [The Coq Development Team 2021] and

Agda [Norell [n.d.]]. These languages are designed more towards theorem proving and thus only

admit total functions, while our languages allow general recursion and hence nontermination. A

notable dependently typed languages with nontermination is Zombie [Sjöberg 2015; Sjöberg et al.

2012; Sjöberg and Weirich 2015], though our goals are drastically different.

Nanevski et al. [2013] show how Relational Hoare Type Theory can be used to encode and

verify a variety of security policies in a theorem prover using dependent types. While capable

of specifying security policies like noninterference, their encoding does not address termination

behavior and only characterizes the final output value, and thus does not protect against control

flow leaks. In addition, users have to manually verify these properties in the proof assistant. In

contrast, we consider a much stronger threat model, and both our oblivious calculi protect against

a larger class of leaks. Both calculi additionally provide a fixed security guarantee in the form of

our obliviousness theorem, which any well-typed program enjoys “for free”, without any additional

user effort.

In our mechanized formalization, the correctness and security guarantees provided by the

underlying cryptographic primitives are baked into our semantics and notion of indistinguishability.

There is a body of work about formally verified cryptography [Abate et al. 2021; Barthe et al. 2011,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

51:26 Qianchuan Ye and Benjamin Delaware

2009], which could be integrated into our work in the future to provide a stronger formal guarantee.

Some of these solutions have focused on verifying multiparty computation [Backes et al. 2010;

Haagh et al. 2018].

Another popular cryptographic technique for hiding private information of data structures is

oblivious RAM [Goldreich 1987; Goldreich and Ostrovsky 1996; Stefanov et al. 2013] (ORAM).

ORAM provides primitives to access an encrypted memory buffer without revealing the access

pattern, except for the number of accesses. There have been proposals for generically constructing

oblivious data structures using ORAM [Wang et al. 2014]. Oblivious data structures constructed this

way hide the access patterns of a sequence of data structure operations. This line of work in general

does not consider leakage through side-channels. While our solution also naturally hides access

patterns, we also assume a much stronger adversary who can observe the whole computation.

6 DISCUSSION AND FUTUREWORK
In contrast to our “dynamic” approach of repairing potential leakage in 𝜆OADT✚, it is also possible to

repair programs statically, at least for some simple programs. The key observation is that we can

apply fusion techniques [Ohori and Sasano 2007; Wadler 1990] to implementations like the one in

Figure 8. By fusing the composition of section, public function and retraction, it is possible to build

an implementation from oblivious input to oblivious output, without the intermediate public trees

generated by the retraction function. While this method works for some simple examples like an

append function for lists, only a limited amount of functions can be fully fused. Nonetheless, we

believe this is a direction worth exploring in the future.

One natural next step is the implementation of an algorithmic type checker, although the

possibility of nontermination in our languages poses a potential challenge to dependent type

checking. One solution is to simply ask the programmers to provide a “fuel” to bound how many

steps the type checker can take, similar to Zombie [Sjöberg et al. 2012]. We could also only allow

total functions at the type level. As dependent types only occur in section and retraction functions,

which have rather specialized forms, we believe a weaker and incomplete type checker would

work in practice. Building an implementation of 𝜆OADT✚ is also an important piece of future work,

where performance may play a critical role. While oblivious programs are generally quite slow in

practice due to timing channel protections, our unconventional semantics may introduce additional

overheads.

Other future directions include the formalization of a general algorithm for synthesizing imple-

mentations like Figure 8, synthesizing section and retraction functions, inference of leakage labels,

and automatic insertion of tape annotations.

7 CONCLUSION
To our best knowledge, this work is the first programming language that supports hiding the

structure of rich recursive data types in secure computations. We have presented 𝜆OADT, a core

calculus for encoding oblivious programs over oblivious algebraic data types. 𝜆OADT combines

dependent types with large elimination to represent oblivious algebraic data types, and provides

a security-type system to ensure that computations reveal no private information over what is

provided by the public view of the data. To enable programmers to write a single function and

easily build secure programs with different public views, we have also developed 𝜆OADT✚. This

language is equipped with a novel semantics that repairs potential leaks without compromising

the security guarantees of 𝜆OADT. We have proved, mechanically, that our solution provides a strong

and formal security guarantee: an adversary can not infer any private information, even given the

entire execution trace of a program.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

Oblivious Algebraic Data Types 51:27

ACKNOWLEDGMENTS
We thank Robert Dickerson, Pedro Abreu, Aaron Stump, and the anonymous reviewers for their

detailed comments and suggestions. We also thank Kirshanthan Sundararajah, Milind Kulkarni,

Chaitanya Koparkar, Michael Vollmer and Ryan Newton for their stimulating discussions. This

material is based upon work partially supported by the National Science Foundation under Grant

CCF-1755880, the Office of the Director of National Intelligence (ODNI), Intelligence Advanced

Research Projects Activity (IARPA) under contract #2019-19020700004, and the Purdue Graduate

School under a Summer Research Grant. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do not necessarily reflect the views of

the NSF, ODNI, IARPA, or Purdue. The U.S. Government is authorized to reproduce and distribute

reprints for governmental purposes notwithstanding any copyright annotation therein.

REFERENCES
Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Cătălin Hriţcu, Kenji

Maillard, and Bas Spitters. 2021. SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq. In 2021
IEEE 34th Computer Security Foundations Symposium (CSF). 1–15. https://doi.org/10.1109/CSF51468.2021.00048

Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. 2018. A Survey on Homomorphic Encryption Schemes:

Theory and Implementation. ACM Computing Surveys (CSUR) 51, 4 (July 2018), 79:1–79:35. https://doi.org/10.1145/

3214303

Michael Backes, Matteo Maffei, and Esfandiar Mohammadi. 2010. Computationally Sound Abstraction and Verification of

Secure Multi-Party Computations. In IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2010) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 8), Kamal Lodaya and

Meena Mahajan (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 352–363. https:

//doi.org/10.4230/LIPIcs.FSTTCS.2010.352

Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie. 2014. System-Level Non-Interference for

Constant-Time Cryptography. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’14). Association for Computing Machinery, Scottsdale, Arizona, USA, 1267–1279. https://doi.org/10.1145/

2660267.2660283

Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. 2019a. System-Level Non-Interference of Constant-Time

Cryptography. Part I: Model. Journal of Automated Reasoning 63, 1 (June 2019), 1–51. https://doi.org/10.1007/s10817-

017-9441-5

Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2019b.

Formal Verification of a Constant-Time Preserving C Compiler. Proceedings of the ACM on Programming Languages 4,
POPL (Dec. 2019), 7:1–7:30. https://doi.org/10.1145/3371075

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. 2011. Computer-Aided Security Proofs

for the Working Cryptographer. In Advances in Cryptology – CRYPTO 2011 (Lecture Notes in Computer Science), Phillip
Rogaway (Ed.). Springer Berlin Heidelberg, 71–90.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal Certification of Code-Based Cryptographic

Proofs. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’09). ACM, New York, NY, USA, 90–101. https://doi.org/10.1145/1480881.1480894

Amos Beimel. 2011. Secret-Sharing Schemes: A Survey. In Coding and Cryptology (Lecture Notes in Computer Science),
Yeow Meng Chee, Zhenbo Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing (Eds.).

Springer, Berlin, Heidelberg, 11–46. https://doi.org/10.1007/978-3-642-20901-7_2

Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles

Barthe, Ranjit Jhala, and Deian Stefan. 2019. FaCT: A DSL for Timing-Sensitive Computation. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). Association for Computing

Machinery, Phoenix, AZ, USA, 174–189. https://doi.org/10.1145/3314221.3314605

David Darais, Ian Sweet, Chang Liu, and Michael Hicks. 2020. A Language for Probabilistically Oblivious Computa-

tion. Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 1–31. https://doi.org/10.1145/3371118

arXiv:1711.09305

David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic Introduction to Secure Multi-Party Computation.

Foundations and Trends® in Privacy and Security 2, 2-3 (2018), 70–246. https://doi.org/10.1561/3300000019

Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the Forty-First Annual ACM
Symposium on Theory of Computing (STOC ’09). Association for Computing Machinery, New York, NY, USA, 169–178.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

https://doi.org/10.1109/CSF51468.2021.00048
https://doi.org/10.1145/3214303
https://doi.org/10.1145/3214303
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.352
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.352
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1007/s10817-017-9441-5
https://doi.org/10.1007/s10817-017-9441-5
https://doi.org/10.1145/3371075
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3371118
https://arxiv.org/abs/1711.09305
https://doi.org/10.1561/3300000019

51:28 Qianchuan Ye and Benjamin Delaware

https://doi.org/10.1145/1536414.1536440

J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In 1982 IEEE Symposium on Security and Privacy.
11–11. https://doi.org/10.1109/SP.1982.10014

O. Goldreich. 1987. Towards a Theory of Software Protection and Simulation by Oblivious RAMs. In Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing (STOC ’87). Association for Computing Machinery, New

York, NY, USA, 182–194. https://doi.org/10.1145/28395.28416

O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game. In Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing (STOC ’87). Association for Computing Machinery, New York, New York, USA,

218–229. https://doi.org/10.1145/28395.28420

Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation on Oblivious RAMs. J. ACM 43, 3 (May

1996), 431–473. https://doi.org/10.1145/233551.233553

Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-Yves Strub. 2018. Computer-Aided Proofs

for Multiparty Computation with Active Security. In 2018 IEEE 31st Computer Security Foundations Symposium (CSF).
119–131. https://doi.org/10.1109/CSF.2018.00016

M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic. 2019. SoK: General Purpose Compilers for Secure Multi-Party

Computation. In 2019 2019 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA,

479–496. https://doi.org/10.1109/SP.2019.00028

Carmit Hazay and Yehuda Lindell. 2010. Efficient Secure Two-Party Protocols: Techniques and Constructions. Springer, Berlin ;

London.

Matthew E Hoekstra. 2015. Intel SGX for Dummies (Intel SGX Design Objectives). https://www.intel.com/content/www/

us/en/develop/blogs/protecting-application-secrets-with-intel-sgx.html

Ming Kawaguchi, Patrick Rondon, and Ranjit Jhala. 2009. Type-Based Data Structure Verification. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’09). Association for Computing

Machinery, Dublin, Ireland, 304–315. https://doi.org/10.1145/1542476.1542510

Peeter Laud and Liina Kamm (Eds.). 2015. Applications of Secure Multiparty Computation. Number volume 13 in Cryptology

and Information Security Series. IOS Press, Amsterdam, Netherlands.

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (July 2009), 107. https://doi.org/10.

1145/1538788.1538814

C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. 2015. ObliVM: A Programming Framework for Secure Computation. In

2015 IEEE Symposium on Security and Privacy. 359–376. https://doi.org/10.1109/SP.2015.29

Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay - a Secure Two-Party Computation System. In

Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13 (SSYM’04). USENIX Association, USA, 20.

Ueli Maurer. 2006. Secure Multi-Party Computation Made Simple. Discrete Applied Mathematics 154, 2 (Feb. 2006), 370–381.
https://doi.org/10.1016/j.dam.2005.03.020

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2013. Dependent Type Theory for Verification of Information

Flow and Access Control Policies. ACM Transactions on Programming Languages and Systems 35, 2 (July 2013), 6:1–6:41.

https://doi.org/10.1145/2491522.2491523

Ulf Norell. [n.d.]. The Agda Wiki. https://wiki.portal.chalmers.se/agda/Main/HomePage

Atsushi Ohori and Isao Sasano. 2007. Lightweight Fusion by Fixed Point Promotion. ACM SIGPLAN Notices 42, 1 (Jan. 2007),
143–154. https://doi.org/10.1145/1190215.1190241

A. Rastogi, M. A. Hammer, and M. Hicks. 2014. Wysteria: A Programming Language for Generic, Mixed-Mode Multiparty

Computations. In 2014 IEEE Symposium on Security and Privacy. 655–670. https://doi.org/10.1109/SP.2014.48

Aseem Rastogi, Nikhil Swamy, and Michael Hicks. 2019. Wys*: A DSL for Verified Secure Multi-Party Computations. In

Principles of Security and Trust (Lecture Notes in Computer Science), Flemming Nielson and David Sands (Eds.). Springer

International Publishing, 99–122. https://doi.org/10.1007/978-3-030-17138-4_5

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid Types. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’08). ACM, New York, NY, USA, 159–169.

https://doi.org/10.1145/1375581.1375602

A. Sabelfeld and A.C. Myers. 2003. Language-Based Information-Flow Security. IEEE Journal on Selected Areas in Communi-
cations 21, 1 (Jan. 2003), 5–19. https://doi.org/10.1109/JSAC.2002.806121

Andrei Sabelfeld and Andrew C. Myers. 2004. A Model for Delimited Information Release. In Software Security - Theories and
Systems (Lecture Notes in Computer Science), Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki (Eds.). Springer

Berlin Heidelberg, 174–191. https://doi.org/10.1007/978-3-540-37621-7_9

Vilhelm Sjöberg. 2015. A Dependently Typed Language with Nontermination. Publicly Accessible Penn Dissertations (Jan.
2015). https://repository.upenn.edu/edissertations/1137

Vilhelm Sjöberg, Chris Casinghino, Ki Yung Ahn, Nathan Collins, Harley D. Eades III, Peng Fu, Garrin Kimmell, Tim Sheard,

Aaron Stump, and Stephanie Weirich. 2012. Irrelevance, Heterogeneous Equality, and Call-by-Value Dependent Type

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/233551.233553
https://doi.org/10.1109/CSF.2018.00016
https://doi.org/10.1109/SP.2019.00028
https://www.intel.com/content/www/us/en/develop/blogs/protecting-application-secrets-with-intel-sgx.html
https://www.intel.com/content/www/us/en/develop/blogs/protecting-application-secrets-with-intel-sgx.html
https://doi.org/10.1145/1542476.1542510
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1016/j.dam.2005.03.020
https://doi.org/10.1145/2491522.2491523
https://wiki.portal.chalmers.se/agda/Main/HomePage
https://doi.org/10.1145/1190215.1190241
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1007/978-3-030-17138-4_5
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/978-3-540-37621-7_9
https://repository.upenn.edu/edissertations/1137

Oblivious Algebraic Data Types 51:29

Systems. Electronic Proceedings in Theoretical Computer Science 76 (Feb. 2012), 112–162. https://doi.org/10.4204/EPTCS.76.9
arXiv:1202.2923

Vilhelm Sjöberg and Stephanie Weirich. 2015. Programming up to Congruence. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). Association for Computing Machinery,

New York, NY, USA, 369–382. https://doi.org/10.1145/2676726.2676974

Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2013.

Path ORAM: An Extremely Simple Oblivious RAM Protocol. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (CCS ’13). Association for Computing Machinery, New York, NY, USA, 299–310.

https://doi.org/10.1145/2508859.2516660

Ian Sweet, David Darais, David Heath, Ryan Estes, William Harris, and Michael Hicks. 2021. Symphony: A Concise Language

Model for MPC. In Informal Proceedings of the Workshop on Foundations on Computer Secuirty (FCS).
The Coq Development Team. 2021. The Coq Proof Assistant. (Jan. 2021). https://doi.org/10.5281/zenodo.4501022

Philip Wadler. 1990. Deforestation: Transforming Programs to Eliminate Trees. Theoretical Computer Science 73, 2 (June
1990), 231–248. https://doi.org/10.1016/0304-3975(90)90147-A

Xiao Shaun Wang, Kartik Nayak, Chang Liu, T-H. Hubert Chan, Elaine Shi, Emil Stefanov, and Yan Huang. 2014. Oblivious

Data Structures. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS ’14).
Association for Computing Machinery, Scottsdale, Arizona, USA, 215–226. https://doi.org/10.1145/2660267.2660314

Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’99). Association for Computing Machinery,

New York, NY, USA, 214–227. https://doi.org/10.1145/292540.292560

Andrew C. Yao. 1982. Protocols for Secure Computations. In 23rd Annual Symposium on Foundations of Computer Science
(Sfcs 1982). 160–164. https://doi.org/10.1109/SFCS.1982.38

Qianchuan Ye and Benjamin Delaware. 2021. Oblivious Algebraic Data Types: POPL22 Artifact. Zenodo. https://doi.org/10.

5281/zenodo.5652106

Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-Oblivious Computation. Technical Report
1153. https://eprint.iacr.org/2015/1153

Stephan Arthur Zdancewic. 2002. Programming Languages for Information Security. Ph.D. Dissertation. Cornell University,
USA.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 51. Publication date: January 2022.

https://doi.org/10.4204/EPTCS.76.9
https://arxiv.org/abs/1202.2923
https://doi.org/10.1145/2676726.2676974
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/2660267.2660314
https://doi.org/10.1145/292540.292560
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.5281/zenodo.5652106
https://doi.org/10.5281/zenodo.5652106
https://eprint.iacr.org/2015/1153

	Abstract
	1 Introduction
	2 Overview
	3 OADT, formally
	3.1 Syntax
	3.2 Semantics
	3.3 Type System
	3.4 Type Safety and Obliviousness

	4 OADT✚, formally
	4.1 Syntax
	4.2 Semantics
	4.3 Type System
	4.4 Type Safety and Obliviousness
	4.5 Extending OADT✚
	4.6 OADT✚ in action

	5 Related Work
	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

