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Abstract

Weighted model integration (WMI) is a framework to perform advanced probabilistic
inference in hybrid domains, i.e., on distributions over mixed continuous-discrete
random variables and in the presence of complex logical and arithmetic constraints.
In this work, we advance the WMI framework on both the theoretical and algorithmic
side. First, we trace the boundaries of tractability for WMI inference in terms of two
key properties of a WMI problem’s dependency structure: sparsity and diameter.
We prove that exact inference is only efficient if that structure is tree-shaped with
logarithmic diameter. While this result deepens our theoretical understanding of
WML it hinders the practical applicability of exact WMI solvers to large problems.
To overcome this, we propose the first approximate WMI solver that does not resort
to sampling, but performs exact inference on an approximate model. Our solution
iteratively performs message passing in a relaxed problem structure to recover lost
dependencies. As our experiments show, it scales to problems that are out of the
reach of exact WMI solvers while delivering accurate approximations.

1 Introduction

Consider an autonomous agent operating under uncertainty in a real-world scenario, for instance a
self-driving vehicle. It has to model both continuous variables like the speed and position of other
cars and discrete ones like the color of traffic lights and the number of pedestrians. Moreover, in
order to make decisions, it needs to perform advanced probabilistic reasoning. For example, it has to
reason about physical constraints while computing the probability of a grounded scene described via
complex algebraic constraints, such as the geometry of vehicles and the roads ahead.

Performing probabilistic inference in these constrained and hybrid (mixed continuous-discrete)
scenarios goes beyond the limited inference capabilities of intractable probabilistic models such
as variational autoencoders [28] and generative adversarial networks [25]. This is also the case
for classical probabilistic graphical models for hybrid domains [27, 32] and more recent tractable
alternatives [33, 38, 40] which struggle to either perform inference over complex algebraic constraints
or make too simplistic representational or distributional assumptions.
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On the other hand, Weighted Model Integration (WMI) [8, 34] is a modeling and inference framework
that supports general hybrid probabilistic reasoning over algebraic constraints, by design. Indeed, in
the WMI framework, mixed complex continuous-discrete interactions can be easily expressed in the
language of Satisfiability Modulo Theories (SMT) [7] and answering probabilistic queries involving
algebraic constraints can be naturally cast as integration of certain weight functions over the regions
that satisfy those constraints.

In this paper we advance the WMI framework on two fronts. First, we deepen the theoretical
understanding of the complexity of WMI inference on real-world problems by proving hardness
results. Second, we deliver an efficient and accurate approximate WMI solver as a practical algorithmic
solution to deploy WMI inference at a larger scale.

Specifically, we study the dependency structure of WMI problems as specified by the primal graph of
their SMT formula [22]. We prove that performing exact inference is #P-hard if the primal graph
has a treewidth larger than one or a diameter that is linear in the number of variables. Second, to
overcome these negative results, we introduce REColn , a practical algorithmic solution that extends
the relax-compensate-and-recover framework [14, 16, 17] for approximate discrete inference to hybrid
inference scenarios with algebraic constraints. As our experiments suggest REColIn candidates as the
best alternative, in terms of scalability and accuracy of the delivered approximations, in the current
panorama of general-purpose WMI solvers.

The rest of the paper is organized as follows. In Section 2 we introduce the notation and background
needed to later prove our theoretical results in Section 3 and to introduce REColn in Section 4. Before
evaluating REColn in Section 6 we discuss related work in Section 5.

2 Background

Notation. Uppercase letters denote random variables (X, B) and lowercase letters denote their
assignments (x, b). We use bold for sets of variables (X, B), and their joint assignments (x, b). We
use capital Greek letters for logical formulas (I, A). Literals are atomic formulas or their negation,
and are denoted using either £ or lowercase Greek letters (y, §). We let x |= A denote the satisfaction
of a formula A by an assignment x. Its corresponding indicator function is [[x |= A].

Satisfiability Modulo Theories . To represent complex relationships between discrete and continu-
ous variables, we harness the language of Satisfiability Modulo Theories (SMT) [7] which generalizes
Boolean propositional logic [6]. Specifically, we use SMT over linear real arithmetic (LRA) which
has been used as an expressive modeling language for probabilistic programming [13], model checking
[23] and robotics [20]. As is common, we adopt quantifier-free SMT(LRA) formulas and we assume
them to be in conjunctive normal form (CNF), that is, a conjunction of clauses. For brevity, we will
refer to them as simply SMT formulas. To characterize the dependency structure of an SMT formula
we make us of its primal graph representation.

Definition 2.1. (Primal Graph) Let A be an SMT formula. Then its primal graph Ga = (V, &) is the
undirected graph whose vertex set “V is the set of variables in formula A, and whose edge set & has
edge X —Y iff variable X and variable Y appear together in one clause I € A.

Example 2.2 (SMT formula and its primal graph). Consider the SMT formula A on the left over
continuous variables X,Y, Z and boolean variable B, its primal graph G is shown on the right.
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Weighted Model Integration (WMI). Weighted Model Integration (WMI) [8, 34] is a framework
for probabilistic modeling and inference over mixed continuous-discrete distributions in presence of
algebraic constraints defined as SMT formulas. These representations are captured by WMI models.

Definition 2.3. (WMI model) Let X be a set of continuous random variables assuming values in R,
and B a set of Boolean random variables assuming values in B = {true, false}. A WMI model is a
pair (A, w), where A is an SMT formula over X and B, and w : (x,b) — R is a positive function,
called the weight function.



We consider classes of WMI problems whose weight function comes from a parametric function
family, denoted . Moreover, we adopt the common assumption of weight functions w to be
defined as products of per-literal weights [8, 11, 41]. That is, w is definable via a set of functions
W = {we(x)}rer, where L are the literals in A. and where each wy is defined over variables in
literal £. Then, the weight of assignment (x, b) is: w(x, b) = [, , we(x, b)Ix2E Hence, we will
represent WMI models as pairs (A, ‘W).

Definition 2.4. (WMI task) Let (A, "' W) be a WMI model over real variables X and Boolean variables
B. The WMI task for (A, W) is to compute

WMI(A, W; X, B) 2 Z / n{ezw{»(x,b)[[x’“:‘)]]dx. (1)
(x,b)[FA
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That is, the task is to sum over all possible Boolean assignments b € BBl while integrating over the
weighted assignments of X that satisfy the formula: (x,b) |= A.

When all weights we(x) are constants and all variables continuous (B = ) we retrieve the model
integration (MI) task [41], whereas when all variables are Boolean (i.e., X = 0) WMI equals the
well-known weighted model counting (WMC) task [11]. In the general case, solving WMI(A, ‘W; X, B)
equals to computing the partition function of the unnormalized probability distribution induced by
weights ‘W on formula A and restricted to the regions where A is SAT.

As such, computing the probability of an event represented as an SMT formula ® involving algebraic
constraints w.r.t. the distribution induced by ‘W on A can be done by computing the WMI of the
conjunction of formula A and formula ®, normalized by the partition function:

Pra(®) = WMI(A A &, W; X, B) / WMI(A, W: X, B).

Example 2.5 (Advanced probabilistic inference with WMI). Consider the SMT formula A in
Example 2.2 with per-literal weights W = {wg,(B) = 2; we,(x) := x%; we,(y,2) = 2yz} where
€1 =B, 0 :=x2>1,0;3 :=y+z <3 and all the weights associated to other literals are constantly 1.
Then the WMI of formula A evaluates to:
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WMI(A,’W;X,B)z/ dx/ dy/ X2 Q41 - (x+y)-2yzdz = ——.
1 1 —x+2 480

Moreover, for the two formulas ®. = (B = true) and ®; =0 < z < 1, then
Pra(®|®.) = WMIA A O A O, W;X, B) | WMI(A A D, W; X, B) = 18936 / 78211 ~ 0.242.

From here on, w.l.o.g. we will assume WMI problems to be defined on continuous variables only.
We leverage the polytime reduction introduced in Zeng and Van den Broeck [41] to map a WMI
problem (A, ‘W) over continuous and Boolean variables X and B to a new WMI problem (A’, W)
over continuous variables X’ only. This is done by properly introducing auxiliary variables in X’ to
account for B. The resulting primal graph G is isomorphic to Ga. For instance, we can replace B in
Example 2.5 by a real variable Tp having values in [—1, 1] without changing the WMI task nor the
treewidth or the diameter of the primal graph (cf. Appendix A).

3 On the hardness of WMI

While the general formulation of WMI we have provided in the previous section is elegant and
appealing for advanced probabilistic reasoning, it is, however, not practical in general. In fact, it
requires solving an arbitrarily complex integral, which is a #P-hard problem [5].

To fill this gap, recent works have started looking for classes of tractable WMI problems, i.e., problems
for which a solution can be computed exactly in polytime [41, 42]. These classes of problems can be
characterized by two parameters: the treewidth and the diameter of the primal graph of the SMT
formulas considered, where the latter is generally expressed as a function of the number of variables
in the problem. Note that this is strikingly different from classical discrete probabilistic graphical
models, where most of the complexity results are stated in terms of the treewidth alone [31, 36].

Definition 3.1. (WMI(Q, 6, t) Problem Class) Let WMI(R, 6, t) be the class of WMI problems over
models of the form (A, W) on real domains, having primal graph Ga with diameter of ©(6(n)) and
treewidth t, where n is the number of variables in the formula A; and having per-literal weights ‘W in
a function family Q.



The largest tractable WMI class known so far has been introduced in Zeng et al. [42] as
WMI(L, log(n), 1), i.e., the class of problems over n real variables whose primal graph is tree-
shaped (treewidth 1) and has diameter of length logarithmic in n, and whose weight functions belong
to a function family Q satisfying some conditions called tractable weight conditions (TWCs).

Definition 3.2. (TWCs) Given a parametric weight function family Q, it satisfies the TWCs iff

i) it is closed under product, i.e, Vf,g € Q, f-g € Q;
ii) it is closed under definite integration, i.e., ¥V € Q, F(u(x)) — F(I(x)) € Q where F is the
antiderivative of f, and 1(x), u(x) are SMT(LRA) integration bounds for any x € X;
iii) the symbolic antiderivative of any f € € can be tractably computed by symbolic integration.

Examples of weight functions in family € include the largely adopted family of (piecewise)
polynomials [8], the family of exponentiated linear functions and the family of their products. In the
following analysis, we will restrict our attention to weight function families satisfying the TWCs.

In Zeng et al. [42] the tractability of problem class WMI(Q, log(n), 1) is demonstrated by construction,
where they introduce a message passing scheme, named MP-WMI, that runs in polytime on tree-shaped
and diameter-bounded primal graphs. That is, some sufficient conditions for tractable WMI classes are
provided. Here we provide a finer charting of the “tractable islands” of WMI problems by questioning
the necessity of the above conditions while looking for larger tractable classes. We prove that unless
P = NP, larger classes are not tractable. We begin by proving that increasing the diameter of a
tree-shaped problem structure makes it hard.

Theorem 3.3. Let WMI(R, n, 1) be the class of WMI problems whose weight function family €
satisfies the TWCs. Then inference in WMI(Q, n, 1) is #P-hard.

Sketch of proof. We build a polytime reduction from a #P-complete variant of the subset sum
problem [24, 12, 26] to a WMI problem with constant weights and whose primal graph G is a chain
with diameter exactly n. A complete proof is in Appendix B. O

Next, we turn our attention to another class of WMI problems, the class WMI(Q, log(n), 2), having
logarithmic diameter but treewidth 2. This class is also supposed to be “easy” in the sense that it extends
the tractable class WMI(L, log(n), 1) by slightly increasing the treewidth by one. Unfortunately,
inference in WMI(Q, log(n), 2) is also hard.

Theorem 3.4. Let WMI(R, log(n), 2) be the class of WMI problems whose parametric weight function
SJamily Q satisfies the TWCs. Then inference in WMI(L, log(n), 2) is #P-hard.

Sketch of proof. Analogously to Theorem 3.3, we prove it by constructing a polytime reduction from
a #P-complete variant of the subset sum problem to a MI problem whose primal graph has treewidth
two but diameter being at most log(n). A complete proof is provided in Appendix B. O

Note that our result differs from the one presented in [42] for the hardness of the class 2WMI(L),
containing WMI problems with SMT formulas being conjunctions of clauses comprising at most
two variables. In fact, WMJI(Q, log(n), 2) is contained in 2WMI(Q). As such, we trace the tractablity
boundaries of WMI inference with higher precision, as the next corollary states. Its proof follows
from Theorems 3.3 and 3.4 and from the sufficiency as demonstrated in Zeng et al. [42].

Corollary 3.5. Let WMI(R,log(n),t) be the class of WMI problems whose parametric weight
Sunction family Q satisfies the TWCs. Then WMI(Q, log(n), t) is a tractable WMI class for inference
if-and-only-if treewidth t = 1.

These complexity results set the standard for the solver complexity: every exact WMI solver that aims
to be efficient, needs to operate in the regime of Corollary 3.5. However, real-world problems do not
always conform to the structural desiderata for primal graphs stated in it. This implies that efficient
approximations might not only be useful in these scenarios, but needed. In the next section we fill
this gap, by introducing our approximate WMI solver that navigates the tractable islands in WMI
problems by performing efficient inference on a relaxed version of intractable WMI problems.



4 ReColn: Relax, compensate and then integrate

Our algorithm to approximate WMI inference comprises three phases: i) RElaxing an intractable
WMI model into a simpler one amenable to exact inference by removing dependencies from it; then
ii) introduce certain literals and weights to COmpensate for the dependency structure lost in this way
and iii) optimize them by solving a series of exact INtegration problems. We name it REColn. With
REeColn we can navigate a spectrum of approximations — with the original primal graph Gx on one
end, and a fully disconnected version on the other — by removing more and more edges. As such,
REeColn can be viewed as extending the relax-compensate-recover (RCR) framework [14, 16, 17] for
approximate inference on discrete probabilistic models to continuous representations and in presence
of algebraic constraints.

4.1 Relaxation: introducing and then ‘“breaking’ equivalence constraints

The aim of the relaxation step is to obtain a new SMT formula A" such that its associated primal
graph G,rel, serves as the simplification of the original G by removing a given set of edges. We will
show that the removal of any edge can be formulated as the removal of an equivalence edge [17].
This process consists of two steps. First, we create an augmented formula A9 by introducing
new variables to A and enforcing them to act as copies of certain original variables by explicitly
adding equivalence constraints. Second, we deliver the relaxed G,rel by removing these equivalence
constraints.

Augmentation. The detailed process of distilling a new augmented model (A9, ‘W3a49) from
(A, W), given a subset of edges E; € & in Ga to remove, is listed in Algorithm 2 in Appendix C.
At its core, there are routines for copying one variable and adding the corresponding equivalence
constraints and compensating literals. For each edge X; — X; € &4 to be removed, one of its variables
is arbitrarily selected, say X;. Then a variable X1, as a copy of the chosen X;, is introduced in A3Y9 as

well as one equivalence constraint between the two as the literal ¢ : (X{ = X;) with associated weight
function 6(X;, X) where ¢ is the Dirac delta function. Then we properly rename all occurrences of X;
by X¢ in the literals appearing in the clauses of A2“9 that also contain X; and introduce copied literals
for the univariate clauses over X; only. These steps cause the primal graph Gaaug to now contain the
dependency X; — X{ — X; but not X; — X;.

Note that the augmented WMI model (A9, ‘1/349) now contains more variables than the original
one. Specifically, for each variable X; € Ga we might have introduced C; different copies in Gpaug,
denoted as X 1.1, e, XiC" , if we removed C; edges over X;. We will denote the original X; as le for
notation consistency. Even if the dimensionality of the augmented WMI problem is increased by
augmentation, the next propositions are guaranteeing that we are not altering the partition function
and the marginal distributions of Prp, and that introducing equivalence constraints does not alter the
induced distribution.

Proposition 4.1. Let A be an SMT formula with primal graph Ga and per-literal weight functions
W, and let A3Y® and W3€ be the output of Algorithm 2 when applied to A and Ga given a certain
subset of edges in Ga. Then it holds that WMI(A, W) = WMI(A3YS, W3aY9), Moreover, for any X; in
Ga and univariate literal € over X;, it holds that Pra(€) = Praaw(€).

Removing equivalence constraints. Given an augmented model (A2Y9, ‘W3a'9) we remove equiv-
alence constraints introduced at the augmentation step to obtain the relaxed model (A", ‘W'®). As a
result, each original variable in G,re Will be detached from its copies, thus ignoring the dependencies
encoded by the edges &, that were marked to be removed. Algorithm 3 details this procedure. Note
that relaxation “breaks” the augmented formula A29 into a relaxed part A’ and a “remaining part”
A™™ which contains the equivalence constraints just removed.

Example 4.2. Consider the WMI model (A, W) of Example 2.2. Its augmented formula A3Y9 obtained
by applying Algorithm 2 for edges E4 = {X — Z} to be removed (orange), and its relaxed formula
A" and remaining formula A™®™ obtained by Algorithm 3 have their primal graphs shown on the left,
center and right below respectively. The detailed WMI models for each are shown in Appendix A.

Which edges to relax? After relaxing enough constraints, we can obtain a WMI problem amenable
to exact inference, for example, one whose primal graph Grel has treewidth one and logarithmic



diameter. Running an exact WMI solver on such a problem would already deliver a cheap way
to perform approximate inference. However, the quality of such an approximation can be greatly
improved if we compensate for the relaxed constraints. We will discuss this in the next section.

@@

A question remains: how to select the set of edges &4 to relax? Note that the more edges we remove
from A, the easier it is to perform inference on A™ given fewer dependencies, but the lower the
approximation quality, and the harder to compensate for them all, since it would differ from the
augmented model more, and meanwhile from the original model as Proposition 4.1 indicates. For
example, removing all edges in G will yield a fully disconnected Gy wWhere performing exact
inference on each component is going to be embarrassingly parallelizable. This would correpond
to perform a loopy version of the MP-WMI algorithm. Analogous to its discrete counterpart, loopy
belief propagation, it would be susceptible to poor converge rates [31, 14]. Therefore we propose
a simple strategy for selecting the edges to be removed, which is to retrieve a spanning tree of the
original primal graph. In Section 6 we demonstrate its practical effectiveness on a range of inference
problems of increasing complexity. Devising and evaluating alternative relaxing strategies is an
interesting topic for future work.

4.2 Compensation

The aim of the compensation phase is to recover the relaxed equivalence constraints and hence, make
the distribution Pr el better approximate Praaus and thus better approximate Pry as Proposition 4.1
suggests. In order to do so, we introduce new literals, named compensating literals, to the variables
and their copies in the relaxed formula A™ and equip them with parameterized weights, named
compensating weights, and further we optimize them in order to synchronize the variable marginals
among a copied variable and its copies.

For each variable X; = Xl.O and its C; copies X, 1. XZ.C" in formula A™', we generate K different

univariate literals of the form £7, : (X( ) <oik-Tig)fork=1,...,Kandc =0,1,...,C; where
each o x and 7; & are respectively drawn at uniform from {+1, -1} and the support of X; as encoded in

Arel Note that the o7k, Ti k. are shared across all the copies. Algorithm 4 in Appendix C summarizes
this procedure. Each compensating literal é" is therefore responsible for a portion of the support of

the marginal distribution of X7, and also for the (unnormalized) marginal density of X by equipping
it with a parameterized welght wee,

To retain tractable inference, the parametric function family chosen for each wee ~should satisfy the

TWCs as discussed in section 3. Striving for simplicity, we employ constant welghts of the form
wee, 1= exp(@i ). Therefore, our induced marginal density takes the form of a piecewise constant
approximation. As such, by increasing the number of compensating literals K one could obtain a finer
approximation, however at the price of introducing more parameters to optimize for. We empirically
investigate the effect of increasing K in our experiments in section 6.

4.3 TIterative integration

Instead of matching marginal density functions we settle for the weaker condition of matching the
marginal probabilities of the newly introduced compensating literals. This in turn can be stated by
the following set of equivalence constraints for each variable X;:

Ci .
PrArem(/\czo g](;,i) = PrArel (5/(()’1) = PrArel (f]i’l) = = PrAreI( ) fOr k= 1 K. (2)

where the first term Prarem ( /\ 20 t’; l) is the probability of the compensating literals in the remaining

WMI model (A"™™M, Wrem) and Pr re (é"’ ) are the probabilities of compensating literals in the relaxed

formula A", Intuitively, for a single equivalence constraint that has been relaxed, there exists a set of



Algorithm 1 ReColn (A, W, K)
Input: a WMI model (A, ‘W), K number of compensating literals
Output: (A, W) a relaxed and compensated WMI model

1: &4 « initStrategy(A, W) > Select edges to remove
2: ABYS Waud r — augmentModel(A, W, E,)
3: (Afe', Wreh), (AeM, WreM) — relaxModel(AY9, ‘W39, 1)
4: A" el  addingCompensations(A™, W', £, K)
5: while not converged do
6:  for X; € copiedNodes(A™') do
7: for k =1,...,Kdo
8: rk WMI(Arem aremy / WMIA™™ A NS o0 kl,(W'em)
9: forc=0,1,...,C; do
10: 925”1) “— log(rka/k,a(c)) —log(1 — ak,(,(c)) Zc';tc liz(t)
11: Return (A" /el

parameters 6 for the compensating weights that exactly match the probabilities in Equation 2 and
hence guarantee exact marginal recovery [14]. The next theorem better formalizes it.

Theorem 4.3. Suppose that a relaxed model (A™, W' and a remaining model (A"®™, W) are
obtained by relaxing a single equivalence constraint (X; = X£) from an augmented model A% and
that the primal graph of A™ is split into two disconnected components by the relaxation. Let (ks €51)
fork =1,...,K be the K pairs of compensating literals introduced, and 0y ;, Hk pJork=1,....K, be

the parameters attached to the compensating weights. Then Equation 2 holds when the compensating
weight parameters satisfy the following equalities.

k k
—log — € _ge 4 =log—K _g; for k=1,....K 3)
- e © ’ I — o
where
. WMIA™™ A =i \ L, W)
¢ = WMIAR™ A 7o, £ ’(M/rem) , ag = Prye(Cix), ake = PrAre|(€£k), fork=1,...,K.
N) k,i’
4)

Theorem 4.3 suggests an iterative optimization scheme to find the fixed point solutions for all
the compensating parameters introduced to compensate multiple relaxed equivalence constraints.
Specifically, starting from a random initialization of the parameters of the compensating weights,> at

each iteration 7 + 1, we can update each parameter HC (4D ag

1 Y

925” ) log(r g 2(e)) = 10g(1 = @ n(c) — Zu ‘e 92,}0)7 %)

where 7 is a permutation over the copies and each ay (¢ is computed as the probability of é’”(‘)
according to the relaxed model.

Therefore, at each iteration ¢, we need to solve 2K integration problems for computing the ¥ terms
and C; - K integrations for PI’Are|(€ ‘)) for each pair of variable and its copies. While in principle
we could use any exact WMI solver to solve these problems, we adopt MP-WMI [42] because it is
the fastest solver yet for tree-shaped and bounded diameter problems, and even more importantly, it
allows to amortize inference across queries. That is, we can compute all the C; - K literal probabilities
in a single message-passing step with it.

From this perspective, RECoIN generates a sequence of induced distributions prl) Aol Pr(Azr)el, Pr(Atr)el,
that should converge to a fixed-point distribution. In practice to check for convergence, one can

monitor the quality of the literal probability approximations and stop when a threshold € is met before

3Following Choi and Darwiche [16], we initialize all parameters to 1.
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Figure 1: Average integrated absolute errors (left) and times in seconds (right) for 5 problems of
increasing size (n, x-axis) for REColn and competitors. Number of compensating literals (2-4) or
samples used are in parentheses. Mean values per problem size are connected by a line.

a certain number of iterations are done. We choose the threshold to be the maximum L-co norm of
compensation literal probability differences. To ease convergence, we apply dampening, that is, we

smooth each parameter update at iteration z+ 1 by a factor 4 > 0: 6‘ D) (1-2)- 6‘ (H])+/l GC (D)
This completes the steps in our REColn solver. Algorithm 1 recaps them.

5 Related Work

The RCR framework has been particularized for approximating marginals [14, 16, 18], partition
functions [17], and for maximization [15] or lifted inference scenarios [37], but always for discrete
variables. RECoIN is the first extension to hybrid domains with SMT(LRA) algebraic constraints.

Among the exact WMI solvers, the majority ignores the problem structure to be as general-purpose as
possible [8, 34, 35, 29]. However, by doing so they are unable to scale beyond tens of variables in
practice. Conversely, recent efficient alternatives such as SMI [41] and MP-WMI [42] can greatly
scale but only on WMI problems amenable to tractable inference (cf. Section 3). We leverage the
strengths of the latter to efficiently solve iterative integration problems in REColn.

So far, most approximate WMI solvers rely on sampling, and as such inherit all the classical issues
of Monte Carlo approaches like poor scalability and convergence [19]. Among these, SAMPO [43]
employs Gibbs sampling but does not support generic polynomial weights. A very recent alternative
is a fully polynomial randomized approximation scheme [1]. However, it can only operate on DNF
SMT formulas, and it is not applicable to our CNF representation as a conversion into DNF can blow
up the problem size. Other MCMC variants [3, 2, 4] operating with algebraic constraints, while
more effective, cannot be readily used for WMI inference problems. The only alternative to sampling
schemes is the hashing-based WMI algorithm [9] which is known to perform poorly on non-trivial
problems due the hardness of calibrating the #ilt [10].

In the next section we compare against the fastest baseline available, the rejection sampler implemented
in the pywmi library [30] and a more advanced variant of rejection sampling that greatly increases the
acceptance rate of the rejection sampler by compiling an SMT formula into an XSDD structure [44].

6 Experiments

We aim to answer the following questions: (Q1) how fast and scalable is RECoIn?, (Q2) how accurate
are its approximations?, (Q3) what is the effect of increasing the number of compensating literals K?

We generate WMI problems whose primal graphs are random Watts-Strogatz graphs [39] with
increasing size n = 1,..., 11, with two additional neighbor connections and probability of rewiring
0.5, to which we attach randomly generated clauses of length 2 and piecewise constant densities. For
each setting we generate 5 independent problems.

We run ReColn for up to 20 iterations, employing a dampening coefficient 4 = 0.5 in two settings
that differ by the number of compensating literals K = 2,4. We compare it against the fastest
sampling scheme available, the rejection sampler (REJ) implemented in [30] and the hybrid solver
XSDD(Sampling) [44] that employs sophisticated knowledge-compilation [21] techniques [29] to
guide sampling. For both REJ and XSDD we employ 100 thousand samples per query.



To compare the quality of approximations for a problem, we compute for a model M the mean

integral absolute error (IAE) as ﬁ leﬂ Z]B:l |Pra(X; € bj) — Pru(X; € b;)| where we partition the
support for each marginal i = 1, ..., n into B equal-widths bins b; for j = 1, ..., B and compare the
probability Pry according to model M against the ground truth Prg, which we compute using PA [34].
We employ PA as it is so far the most reliable general-purpose exact WMI solver [42]. Note that as
such REJ and XSDD are bounded to solve |X| - B independent WMI problems, while REColn can
naturally amortize |X| - B queries after a single run of optimization (cf. Section 4.3). We impose a
timeout of 1 hour.

Figure 1 reports the IAEs and running times (in seconds) for all problems, settings and competitors.
Concerning Q1 and Q2, ReColn is the best performer overall. The naive sampling strategy in REJ,
while being the fastest as expected, cannot exploit the structure in the problem and clearly suffers
from the curse of dimensionality. Conversely, XSDD can deliver accurate approximations thanks
to compiling the problem structure, but on highly loopy graphs compilation cannot scale beyond
n = 5. On the other hand, REColn gracefully scales to larger problem sizes and multiple queries, and
delivers very low IAE scores that are close to the best by XSDD on small problem sizes. Note that
while REColn can solve much larger problems within our timeout, we could not retrieve a ground
truth for them with PA in reasonable time (more than 24 hours per problem).

Concerning Q3, more compensating literals (K = 4) are achieving marginally lower IAEs at the
expense of linearly increasing running times. Exploring the time-accuracy trade-off by increasing K
or employing different relaxation strategies is an interesting avenue to investigate in the future. All in
all, this empirical evidence candidates REColn as one of the best general-purpose approximate WMI
solvers in the current landscape of WMI solvers.

7 Conclusions

In this work we advanced the WMI framework by tracing the theoretical requirements for tractable
WMI inference with the highest precision so far. We introduced ReEColn as the first solver that by
exploiting our tractability insights can reliably scale approximate inference on general WMI problems.
We believe these two contributions can help strengthen our theoretical understanding on the challenges
and guarantees around approximate hybrid probabilistic inference and at the same time propel the
construction of more efficient and scalable WMI solvers.
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Broader Impact

Our contributions in this work can be filed under the label of basic research in probabilistic inference.
As a work of basic research it might have a very broad impact. Therefore it is hard to imagine specific
negative outcomes at this stage. Concerning benefits, on the other hand, our complexity results will
help the community working on probabilistic inference on hybrid domain at large as they lay the
foundation for more theoretical research. On the other hand, our general-purpose approximate WMI
inference scheme could be particularized by other researchers to fit specific application scenarios. It
is hard to foresee or restrict the range of these possible applications. We note that WMI and SMT
technologies have been previously used in probabilistic programming and program verification, two
very vast fields on their own. Lastly, we are focusing on and advancing inference per se, therefore
there is no specific learning phase, or data involved. Our solver is going to perform inference over the
distribution induced over an arbitrary SMT theory given as input, if such a theory encodes bias in
some form, this bias will clearly be reflected in the probabilistic queries the users are going to ask.
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A Examples

A.1 Reduction to WMI models on continuous variables only

In this section, we show one example of the polytime reduction from a WMI model with continuos
and discrete ones into one over continuous variables only, as introduced in [41].

Example A.1 (Reduction From WMI to WMIg). Consider the WMI model (A, W) where A is the
SMT formula over continuous variables X,Y, Z and Boolean variable B as introduced in Example 2.2
with the per-literal weights ‘W as introduced in Example 2.5. Then the WMI model (A','W'’) over
continuous variables only X,Y, Z, Tg, where Tg is a freshly introduced continuous variable, obtained
by the reduction of Zeng and Van den Broeck [41] is shown below.

0<X<2A1<Y<2A052Z<L2 e

A’:{le\/(—lsTle) .
X+Y<3AX+Z>2AY+Z<3 @ ° e

where W’ = {w,(Tg) := 2; we,(x) := x%; we, (0, 2) 1= 2yz; we(x,y) = x + y} where {1 :=0 <

Tg<1,b6:=x>21,03:=y+27<3, € :=x+y <3 and all the weights associated to other literals

are constantly 1 except =, which is 0.

Note that the primal graph Ga (above, right) is isomorphic to the primal graph Ga and that the
weighted model integral of model (A, ' W’) is left unchanged:

0 2 -x+3 -y+3
WMIA', W', X,Y,Z,Tg) = / dtB/ dx/ dy/ X2 1-(x+y) 2yzdz+
-1 1 1 -

X+2

1 2 —x+3 —y+3 11173
+/ dtB/ dx/ dy/ x> 2-(x+y)-2yzdz = —— = WMI(A,“'W; X, Y, Z, B).
0 1 1 —x+2 480

then we will denote the integrands as ui(x, y,z) = x*>-1-(x +y)-2yz, ua(x,y,z) = x>-2-(x+y)-2yz.

A.2 ReColn steps: from augmentation to relaxation

Here we complete Example 4.2 by providing the weight functions associated to the WMI models
REeColN operates on.

Example A.2 (Augmentation). Consider the WMI model (A’,'W') over continuous variables
X,Y,Z,Tp as introduced in Example A.1. Given the edges to remove E; = {X — Z}, the aug-
mented WMI model (A9, W3Y9) over variables X,Y,Z = Z°, Z', Ty as obtained from Algorithm 2
is represented below.

0<X<2A1<LY<?2

0<Z7%<2A0<27Z'<2 @ e °
-1<Tg <1

X>1vTg>0

X+Y<3AX+Z'>2AY+2°<3 @ @

7 =7

A3Ug _

and W39 = {we, (Tg) := 2; we(x) := x% we,(0,2°) = 2y2% we,(x,y) = x + 5 weg(2%2) o=
80,z where €, :=0<Tp, b :=x>1,0:=y+7°<3, & :=x+y<3,6:=2°=Z" and all
the weights associated to other literals are constantly 1 except —{» which is 0.

Note that the weighted model integral of model (A?9, W3Y9) is unchanged as below:

WMI(AZY9, W39; Xy, 70, 7!, Tp) =

0 2 —x+3 -y+3 |
= / dtp / dx/ dy/ / X% Q2+ (x+y)- 2yzo6(zo - zl)dzldzo
-1 1 1 0 —x+2

2 -x+3 -y+3
=/dx/ dy 2+ (x+y)-2y°d7°
1 1 -

x+2
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B lié(? = WMI(A', W XY, Z,Tp) = WMI(A, W: X, Y, Z, B).

Further we will show in Proof B.3 that generally the WMI of the augmented model remains unchanged.

Example A.3 (Relaxation). Consider the augmented WMI model (A%Y9, W39) over continuous

variables X, Y, ZO, 7Y Ty as introduced in Example A.2. Given the equivalence constraint to remove

{70 = 7"}, the relaxed WMI model (A", W' and its remaining part (A™™, W'™™) as obtained
0<X<2A1<Y<2A0<2Z°<2A0<2Z'<2

from Algorithm 3 are represented below.
A= X>1v(-1<Tg<1)
X+Y<3AX+Z'>2AY+2°<3 @ @
em [ 0<Z°<2A0<2Z' <2 @
R P

and W' = {we,(Tg) = 2; we(x) 1= x%5 we(3,20) i= 2y2% we(x,y) i= x + y}, Wem =
{wes (20 z") = 6(2% zY)}, and all the weights associated to other literals are constantly 1 except -,
which is 0.

B Proofs

B.1 THEOREM 3.3

Proof. We prove our complexity result by reducing a #P-complete variant of the subset sum
problem [24] to an MI problem over an SMT(LRA) formula A with tree primal graph whose diameter
is n. This problem is a counting version of subset sum problem saying that given a set of positive
integers S = {s1, 2, ,Su}, and a positive integer L, the goal is to count the number of subsets
S’ € S such that the sum of all the integers in the subset S’ equals to L. Notice that our proof can be
applied to rational numbers as well and we assume binary representations for numbers.

First, we reduce the counting subset sum problem in polynomial time to a model integration problem
by constructing the following SMT(LRA) formula A on real variables X whose primal graph is

shown in Figure 2:
- R ®
-

Figure 2: Primal graph Ga used for the #P-hardness reduction in Theorem 3.3. We construct the
corresponding formula A such that G has maximum diameter (it is a chain). We graphically augment
graph Ga by introducing blue nodes to indicate that integers s; in set S are contained in clauses
between two variables.

1 1 1
S]—— <Xx1<8§1+—V-—-—<x < —
! 2n ! ! 2n 2n ! 2n

_ £(1,0) £(L1)
A= + ! <x < +5; + \Y, ! <x < + | =2,
Xi— ;i — — < Xx; < Xj— S; + — Xi-1 — — < X; < Xj— —, 1 =2,--n
i—-1 i n i i—-1 i n i—1 n i i—1 n
£(,0) £(i,1)

For brevity, we denote the first and the second literal in the i-th clause by £(i, 0) and £(i, 1) respectively
as shown above. Also We choose two constants / = L — % andu =L+ %

In the following, we prove that n*MI(A A (I < X,, < u)) equals to the number of subset S C S whose
element sum equals to L, which indicates that WMI problem whose tree primal graph has diameter
O(n) is #P-hard.
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Let a* = (ar,ap, - -+, ar) be some assignment to Boolean variables (A, Ay, - - -, Ax) with a; € {0, 1},

i € [k]. Given an assignment a*, we define subset sums to be S(a*) = Zle a;s;, and formulas
A k b

Ay = Ni, LG, a;).

Claim B.1. The model integration for formula Ay with an given assignment a* € {0, 1}* is
MI(A,x) = ( ). Moreover for each varzable X; in Agx, its satisfying assignments consist of the
interval [ =1

Jormula Agn can be denoted by the interval [S(a™) — %, S(a™) + %]

aisj = 5., ¥ =148+ a2, L. Specifically, the satisfying assignments for variable X, in

Proof. (Claim B.1) First we prove that MI(A,«) = (%)k. For brevity, denote a;s; by §;. By definition
of model integration and the fact that the integral is absolutely convergent (since we are integrating a
constant function, i.e., one, over finite volume regions), we have the following equation.

§1+i xk,2+§k,1+ﬁ xk,1+§k+i
M|(Aak) = 1 dJC] ce dxk = dX] s dxk,] 1 dxk
(1 x1 ) EA 4k Si-5 X2 +Sk-1— 2 Xpeo1+8k— 2

2.

Observe that for the most inner integration over variable x, the integration result is % By doing this
. . _ (1yk
iteratively, we have that MI(A,«) = (5;)".
Next we prove that satisfying assignments for variable X; in formula A« is the interval [Z;: L ajSj —
3 Z}:l a;sj + .| by mathematical induction. Fori = 1, since X) is in interval [a;s; — ﬁ, aps; + ﬁ],

the statement holds in this case. Suppose that the statement holds for i = m, i.e. variable X,,, has
its satisfying assignments in interval [Y" a;s; — 3+, 2" j L ajsi+ 50 Since variable X, has its

j=1
satisfying assignments in interval [X + A1 Sm+1 — 2n’ X + QGus1Sm+1 + 3 ] then its satisfying
assignments consist interval [Zm | ajsj — ”le , Zm | ajs; + m” %=1, that is, the statement also holds
fori = m + 1. Thus the claim holds m]

The above claim shows how to compute the model integration of formula A,«. We will show in the
next claim how to compute the model integration of formula A,» conjoined with a query I < X, < u.

Claim B.2. For each assignment a™ € {0, 1}", the model integration of formula Agn A (I < X, < u)
falls into one of the following cases:

i) If S(a™) < L or S(a™) > L, it holds that MI(Agn A (I < X, < u)) =0
ii) If S(a") = L, it holds that MI(Agn A (I < X, < u)) = (2).

Proof. (Claim B.2) From the previous Claim B.1, it is shown that variable X,, has its satisfying
assignments in interval [S(a™) — 1, S(a") + %] in formula A4~ for each a™ € {0, 1}". If S(a”) < L,
given that S(a™) is a sum of positive integers, then it holds that S(a™) + % <(L-1)+ % =L- % =1
and therefore, MI(Agn A (I < X, < u)) = 0; similarly, if S(a™) > L, then it holds that S(a") — % >u
and therefore, MI(Agn A (I < X,, < u)) = 0. If S(a™) = L, by Claim B.1 we have that the satisfying
assignment interval is inside the interval [/, u] and thus it holds that MI(Agn A (I < X,, < u)) =
MI(Agn) = (). o

In the next claim, we show how to compute the model integration of formula A as well as for formula
A conjoined with query / < X, < u based on the already proven Claim B.1 and Claim B.2.

Claim B.3. The following two equations hold:

i) MI(A) = X 00 MI(Agn).
ir) MIAA (I < X, <u))=2gn MI(Agn A (1 < X < u)).

Proof. (Claim B.3) Observe that for each clause in A, literals are mutually exclusive since each s; is a
positive integer. Then we have that formulas A,» are mutually exclusive and meanwhile A = \/n Agn.
Thus it holds that MI(A) = X ,» MI(Ag»). Similarly, we have formulas (Agr A (I < X, < u))’s are
mutually exclusive and meanwhile A A (I < X, < u) = Vgn Agn A (I < X, < u). Thus the second
equation holds. m}
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Figure 3: Primal graph used for #P-hardness reduction in Theorem 7. We also put blue nodes to
indicate that integer s;’s in set S are contained in some clauses and that model integration over some
cliques is the sum of some s;’s.

From the above claims, we can conclude that MI(A A (I < X, < u)) = t(%)" where ¢ is the number of
assignments a” s.t. S(a™) = L. Notice that for each a” € {0, 1}", there is a one-to-one correspondance
to a subset S” C S by defining a@” as a; = 1 if and only if s; € S’; and S(a™) equals to L if and only if
the sum of elements in S’is L. Therefore n"MI(A A (I < X,, < u)) equals to the number of subset
S’ C § whose element sum equals to L. This finishes the proof for the statement that inference in
WMI(L, n, 1) is #P-hard.

]

B.2 THEOREM 34

Proof. Again we prove our complexity result by reducing the #P-complete variant of the subset sum
problem [24] to an MI problem over an SMT(LRA) formula A with primal graph whose diameter is
O(log n) and treewidth two. In the #P-complete subset sum problem, we are given a set of positive
integers S = {s1, 52, - -, S}, and a positive integer L. Notice that our proof can be applied to rational
numbers as well and we assume binary representations for numbers. The goal is to count the number
of subsets S” C S such that the sum of all the integers in S’ equals L.

First, we reduce this problem in polynomial time to a model integration problem with the following
SMT(LRA) formula A where variables are real and « and / are two constants. Its primal graph is
shown in Figure 3. Consider n = 2%, n, k € N.

1 1 1 1
A= /\](_ﬂ < Xk+1,i < Ty TS Xicr1,i < T si)/\At

i€ln

1 1
where A, = /\ ot Xjr1,2i-1 + Xjy1,00 < Xji < T Xjt1,2i-1 + Xji1,2i
Jjelklie2/]

For brevity, we denote all the variables by X and denote the literal —ﬁ < Xk+1,i < ﬁ by £(i, 0) and
literal —ﬁ + 85 < Xgs1,i < ﬁ + s; by €(i, 1) respectively. Also We choose two constants [ = L — %

andu =L+ % In the following, we prove that (22)>""'MI(A A (I < X1,1 < u)) equals to the number
of subset S” C S whose element sum equals to L, which indicates that model integration problem
with primal graph whose diameter is ®(log n) and treewidth two is #P-hard.

Leta” = (ay, az,- -+ ,a,) € {0, 1}" be some assignment to Boolean variables (A1, Ay, - - - , A;,). Given
an assignment a”, define the sum as S(a”) £ 3\7 | a;s;, and formula as Agn = AT, €@, a;) A A,.
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Claim B.4. The model integration for formula Agn with given a" € {0, 1}" is MI(Agn) = (ﬁ)z"‘l.
Moreover, for each variable X ; in formula Agn, its satisfying assignments consist of the interval

[>ars; — %, >yais;+ sz:’l] where | € {l | X111 is a descendant of X;;}. Specifically, the

satisfying assignments for the root variable X1,1 can be denoted the interval [S(a") — 22’—;1, S(a™) +

Zd] c [S@@") — 5, S(@™) + 31.

Proof. (Claim B.4) First we prove that MI(A,») = (ﬁ)”‘_l. For brevity, denote a;s; by §;. By
definition of model integration and the fact that the integral is absolutely convergent (since we are
integrating a constant function, i.e., one, over finite volume regions), we have the following equations

MI(Agn) = / 1dX
X ‘=Aan
T +n =+ T Xk L1+ Xk 1 n T X0, 14X
= / dxk+1,n N / dxk+1,1 / dxk’zk—l . / 1 dxl,l .
— 48 — -+ — I Xkes o1 Xk — e+ 14X
Observe that for the most inner integration over variable x; 1, the integration result is ﬁ By doing this
iteratively, we have that MI(A,x) = (ﬁ)”"l where the 2n — 1 comes from the number of variables.

Then we prove that satisfying assignments for variable X;; in formula Ag,» lie in the interval
k—j+2 k—j+2
[>aisi — 2 :1; =1 rais; + Z i:l =11 where [ € {I | Xk+1,1 is a descendant of X ;} by performing

mathematical induction in a bottom-up way.

For j = 1, any variable Xg>—;; withi € [2K+277] has satisfying assignments consisting of the interval
[aisi — ﬁ, a;s; + ﬁ]. Thus the statement holds for this case.

Suppose that the statement holds for j = m, that is, for any i € [2K*>7™], any variable Xi12_m.i
has satisfying assignments consisting interval [}; a;s; — %’210151 + %;1] where [ € {/ |
Xy+1,1 1s a descendant of Xy}

Then for j = m + 1 and any i € [2k+l‘m], the variable Xj.;_,,; has two descendants, variable
Xk+2-m2i—1 and variable X2, 2;. Moreover, we have that —ﬁ + Xk+2-m2i-1 + Xk+2-m2i <
Xir1-m,i < ﬁ + Xi12-m.2i-1 + Xg+2-m,2i- Then the lower bound of the interval for variable X |_, ;

. 1 om_1 _ 2m+17]. .. . . om+l_q
is —g-+2 ars;—25— = X a;s;— =, ; similarly the upper bound of the interval is }.; a;s;+*——,

where [ € {I | X1, is a descendant of Xj,1—p,;}. That is, the statement also holds for j = m + 1
which finishes our proof. O

The above claim shows what the model integration of formula A« is like. We’ll show in the next
claim what the model integration of formula A4~ conjoined with a query / < Xj; < u is like.

Claim B.5. For each assignments a” € {0, 1}, the model integration of Agn A (I < X1,1 < u) falls
into one of the following cases:

i) If S(a"™) < L or S(a™) > L, then MI(Agn A (I < X1,1 <u)) =0.
ii) If S(a™) = L, then Ml(Agn A (I < X141 < w)) = (5)*" 7L

Proof. (Claim B.5) From previous Claim B.4, it is shown that variable X ; has its satisfying

assignments in the interval [S(a") — %, S(a™) + 22;1] in formula A4 for each a™ € {0, 1}".

If S(a™) < L, given that S(a") is a sum of positive integers, then it holds that S(a") + % <
(L-1)+ 2L <L -1 =1and therefore, MI(Agn A (I < X1, < u)) = 0; similarly, if S(a") > L,
then it holds that S(a™) — % > u and therefore, MI(Agn A (I < X113 < u)) = 0. If S(a™) = L, then by
Claim B.4 we have that the satisfying assignment interval is inside the interval [/, ] and thus it holds

that Ml(Aan A (l < Xl,l < 1,{)) = M|(Aan) — (ﬁ)Zn—l‘ 0

Claim B.6. The following two equations hold:

i) MI(A) = 3 MI(Agn ).
ii) MI(AA( < X1 < u)) = Zan MI(Agn A (1 < X1 < u)).
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Proof. (Claim B.6) Observe that for each pair of literals €(i, 0) and £(i, 1), € [n], literals are mutually
exclusive since each s; is a positive integer. Then we have that formulas A,» are mutually exclusive
and meanwhile formula A = \/,n Agn. Thus it holds that MI(A) = 3 ,» MI(A4»). Similarly, we
have formulas (Ag» A (I < X1,1 < u))’s are mutually exclusive and meanwhile A A (I < X1 < u) =
Van Ban A (I < Xi,1 < u). Thus the second equation holds. O

From the above claims, we can conclude that MI(A A (I < X1 < u)) = t(ﬁ)zn‘l where ¢ is the
number of assignments a” s.t. S(a”) = L. Notice that for each a” € {0, 1}", there is a one-to-one
correspondence to a subset S’ C S by defining @” as a; = 1 if and only if s; € S’; and S(a™) equals to
L if and only if the sum of elements in S’ is L. Therefore (21)>""'MI(A A (I < X1,; < u)) equals to
the number of subset S” C § whose element sum equals to L. This finishes the proof for the statement
that inference in WMI(Q, log(n), 2) is #P-hard. O

B.3 PROPOSITION 4.1

Proof. W.l.o.g, consider the case where the augmented WMI model (A2Y9, 4349) is obtained by
removing an edge X; — X; and inducing the dependency X; — X — X; from the original WMI model
(A, ‘W) as shown in Algorithm 2.

Instrumentally to the proof, we introduce the concept of total truth assignments of an SMT(LRA)
formula A. A total truth assignment y is defined as a partitioning of all true literals in £, the set of all
literals in formula A, into a set of literals u+ interpreted as true for a certain total configurations of
the variables in A and and the complementary set u, containing the literals interpreted as false. Let
tta(A) be the set of all total truth assignments for formula A.

Notice that when operating on continuous variables only, the definition of WMI in Equation 1 can be
rewritten in terms of the total truth assignments to A as follows:

WMI(A, W) = Z / [x | y]]ﬂw(x)ﬂxl=flldx = Z Z,. (6)

uetta(A) tel petta(A)

Before we prove that the WMI remains unchanged for the augmented model, we need the following
claim.

Claim B.7. Let tta(A) and tta(AY9) be the set of total truth assignments of formula A and that of
Jormula A9 respectively. Then there exists a bijection between tta(A) and tta(A3Y9).

Proof. The proof is done by explicitly constructing a bijection f : tta(A) — tta(A®'9) which maps
u € tta(A) to y’ € tta(A3Y9) in the following way:

i) for every ¢ € A;, if £ € pr, then € € p’ and €{X; : Xf} € u’; otherwise £ € y| and
X XSy ey,
ii) forevery € € A;j,if € € pr, then £{X; : X£} € u’; otherwise ({X; : Xf} € u .
iii) forevery € ¢ A; and £ ¢ A;j,if € € ur, then £ € u’; otherwise £ € u’,.
iv) finally, by definition, literal X; = X{ is always in set u7 (otherwise u’ would not be a
satisfying assignment to formula A349)

where A; is the sub-formula containing all the univariate clauses in A referring to X; only and
analogously A;; is the sub-formula containing bivariate clauses in A referring to X; and X;.

First, note that the function f is well-defined since every literal in formula A29 is assigned to either set
(s or set i, by the construction of formula A2Y9 and this uniquely defines a ¢’ € tra(A3"9). Second,
by construction, if f(u;) = f(uz) for some uy, uy € tta(A), the two total truth assignments y; and up
should have the same set of positive literals as well as the same set of negative literals, which means
that ; = wy. Thus, the function f is a one-to-one mapping. Moreover, for each u’ € tta(A39), there
exists u € rta(A) obtained by substituting the variable x/ by X; and deleting literals in A;{X; : X}
and literal X; = X{, such that f(u) = p’. That is, the function f is also an onto mapping. Overall, the
function f is a bijection between rta(A) and rta(A2Y9). |

From Equation 6, it follows that to prove that WMI(A, W) = WMI(A3Y9, 14/349) it suffices to prove
that for each u € rta(A), Z,,, the integration inside summation corresponding to assignment y, equates
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Z?(li?) inside WMI(A349 with function f as defined in Claim B.7. Let X_; = X\ {X;}. Then the set of
variables appearing in formula A9 can be written as X_; U {X;} U {X{}. Let Aaug = A{Xi s X}

and A9 := A3U9 A (X; = XF). We explicitly formulate the integration Z, and Z Y9 as follows.

S )
z,= [bx s [ et Flax

e
Ziw = / Btcssot = P01 ] e s 55 F05 s, — a6t dd
£eAaug
) / l_[ we(x i, xi)ﬂx*i’xi =] .
£ eAaug
aug
LgA;;

/ n we(xf, x; XX EA 5 (i = x)x—i, xi, x7 = fQ)]ldx; |dxidx_;
aug

(’eA

Notice that by the property of Dirac Delta function and the construction of function f, it holds that

/ [T wetxs, x50 — xO)llx i x¢ = F)lldg = | | w2t = x = p]

ten’s Cehj

Therefore, it holds that

Z508 = / Lx b= pd [ weleos w0 [T wet, xpbeFax = 7

£eAdUg Ceh;j
(,eAaug )

Finally, we have that the WMI of the original model (A, ‘W) equates that of the augmented model
(A9, 'W319) by observing that WMI(A, W) = 3, Z = S () Z5 ) = WMI(A29, Wa9),

Moreover, for any univariate literal ¢, it can be shown by similar arguments that WMI(A A £, W) =
WMI(ABY9 A ¢, ‘W3Y9), Thus, it holds that Pra(€) = WMI(A A €, W)/WMI(A, W) = WMI(ABY9 A
£, Wau9) /WMI(A3Y9, ‘WaU9) = Prpaug(¢). O

B4 THEOREM 4.3

For the remaining WMI model (A™™, W"™™M) it holds that
WMIA™™™ A £y ; A £ W)
WMI(AI’em’ (Wl'em)
WMIA™™ A € AL, W)
= WMIA™®™ A Gy A W) + WMIGA™™ A =G A —CE, Wrem)
exp (i + ) ;)

Prarem (€x; A f;’i) =

e exp (Ok,i + 0 ;)

By substituting the sum of 6y ; and 6y . with the first equality in Equation 3, it holds that Prarem (¢x ; A
¢ ) = Pryei (6, ;); similarly, by substltutmg the sum with the second equality, it holds that Prarem (€ ; A
fcl) = Pryrei(£f ;), which finishes the proof.
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C Algorithms

Algorithm 2 augmentModel(A, W, E,)

Input: a WMI model with SMT formula A and per-literal weights ‘W and a set &, of edges to be
deleted
Output: augmented WMI model (A2Y9, ‘W3a49) and equivalence constraint set £
1: A%Y9 — copy(A)
2: WA — copy(W)

3 L}
4: for edge X; — X; € &4 do
5: X¢ « copy(X;)
6: (X =X5)
7: L — LU{}
8 A — AMIAQ
9: Wp = 6(Xi, ch)
10: WA — WAy {w;}
11: for clause I' € A; ; do
12: I" —T{X; : X}
13: N — AN{T: T}
14: for each literal £ € I do
15: U —t{X; - X{'}
16: wer — COpY(wy)
17: WaG — Wa Uy {we )\ {we}
18: for clause I' € A; do
19: I « copy(I)
20: AN — N AT{X;: X}
21: A9 — A/

22: return A9, Wau9 o

> Assume to copy X;

> Rename edges

> Copy and rename bounding-box literals
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Algorithm 3 relaxModel(A3Y9, ‘Wau9, 1)

Input: an augmented WMI model (A9, ‘Wa49), [: equivalence constraints to be relaxed
Output: a relaxed WMI model (A™, ‘W), and its “remaining-part” model (A™™, W4/"em),

PRI AR

°

10:
11:
12:
13:
14:
15:
16:
17: return (A™, Wrel), (Arem, qyrem)

Arem — T

Wrem — (}
Arel COpy(Aaug)
(Wrel — Copy((waug)
for each " : (X; = X) € L do
for clause I € A; do
A — AM AT AT{X; : X£}
for each literal £ € T do
f’ — f{Xl . XLL}
wer — COpy(wy)
(Wrel — (Wrel U {W‘”}
prem L qprem {we, we'}
Arel — Arel{f* . T}
(Wrel — rwrel \ {W{*}
ATEM (_ ATEM A px
(Wrem «— (Wrem U {W[*}

> disconnect X; and copy X/

Algorithm 4 addingCompensations(A™, ‘W' £ K)

Input: a relaxed WMI model (A", ‘W) K number of compensating literals to introduce
Output: the relaxed WMI model (A", ‘W) with compensating literals initialized.
1: Arel — Arel (Wrel — (Wrel
- By > Wy
2: X, « nonCopyVars(L)
3: for each X; € X, do

4
5:
6:
7.
8

9:
10:
11:
12:
13:
14:
15:
16:

17:

fork=1,...,Kdo
7.1 ~ Uniform(support(X;))
oix ~ Uniform({+1,-1})
lik — (Xi < 0k - Tik)
AL — AL G
Hi,k — 1
we, . = exp(Bix)
(Wiel — rWJ[eI U {Wﬂ’f,k}
for each ¢ : (X; = X7) € L do
€ic,k — (Xl.C < 0k 'Ti,k)
rel,c rel,c
A+,i - A+,i Alik
6¢, 1
i,k
wee, = exp(67,)
W — wrely {wee, }

18: Return (A, Wre')

> Gather original variables

> Randomly help support
> And pick one half

> Initiate potentials

> Initiate potentials
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