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Abstract

Modern machine learning systems such as deep neural networks are often highly
over-parameterized so that they can fit the noisy training data exactly, yet they
can still achieve small test errors in practice. In this paper, we study this “benign
overfitting” phenomenon of the maximum margin classifier for linear classification
problems. Specifically, we consider data generated from sub-Gaussian mixtures,
and provide a tight risk bound for the maximum margin linear classifier in the
over-parameterized setting. Our results precisely characterize the condition under
which benign overfitting can occur in linear classification problems, and improve on
previous work. They also have direct implications for over-parameterized logistic
regression.

1 Introduction

In modern machine learning, complex models such as deep neural networks have become increasingly
popular. These complicated models are capable of fitting noisy training data sets, while at the same
time achieving small test errors. In fact, this benign overfitting phenomenon is not a unique feature of
deep learning. Even for kernel methods and linear models, [5] demonstrated that interpolators on
the noisy training data can still perform near optimally on the test data. A series of recent works
[4, 20, 11, 2] theoretically studied how over-parameterization can achieve small population risk.

In particular in [2] the authors considered the setting where the data are generated from a ground-truth
linear model with noise, and established a tight population risk bound for the minimum norm linear
interpolator with a matching lower bound. More recently, [23] further studied benign overfitting in
ridge regression, and established non-asymptotic generalization bounds for over-parametrized ridge
regression. They showed that those bounds are tight for a range of regularization parameter values.
Notably, these results cover arbitrary covariance structure of the data, and give a nice characterization
of how the spectrum of the data covariance matrix affects the population risk in the over-parameterized
regime.

Very recently, benign overfitting has also been studied in the setting of linear classification [6, 19, 25].
Specifically, [19] studied the setting where the data inputs are Gaussian and the labels are generated
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from a ground truth linear model with label flipping noise, and showed equivalence between the hard-
margin support vector machine (SVM) solution and the minimum norm interpolator to study benign
overfitting. [6, 25] studied the benign overfitting phenomenon in sub-Gaussian/Gaussian mixture
models and established population risk bounds for the maximum margin classifier. [6] leveraged
the implicit bias of gradient descent for logistic regression [22] to establish the risk bound. [25]
established an equivalence result between classification and regression for isotropic Gaussian mixture
models. While these results have offered valuable insights into the benign overfitting phenomenon
for (sub-)Gaussian mixture classification, they still have certain limitations. Unlike the results in the
regression setting where the eigenvalues of the data covariance matrix play a key role, the current
results for Gaussian/sub-Gaussian mixture models do not show the impact of the spectrum of the data
covariance matrix on the risk.

In this paper, we study the benign overfitting phenomenon in a general sub-Gaussian mixture model
that covers both the isotropic and anisotropic settings, where the d-dimensional features from two
classes have the same covariance matrix 3 but have different means p and —p respectively. We
consider the over-parameterized setting where d is larger than the sample size n, and prove a risk
bound for the maximum margin classifier. We show that under certain conditions on eigenvalues of X3,
the mean vector p and the sample size n, the maximum margin classifier for this problem is identical
to the minimum norm interpolator. We then utilize this result to establish a tight population risk
bound of the maximum margin classifier. Our result reveals how the eigenvalues of the covariance
matrix 32 affect the benign property of the classification problem, and is tighter and more general
than existing results on sub-Gaussian/Gaussian mixture models. The contributions of this paper are
as follows:

* We establish a tight population risk bound for the maximum margin classifier. Our bound works
for both the isotropic and anisotropic settings, which is more general than existing results in [6, 25].
When reducing our bound to the setting studied in [6], our result gives a bound exp(—Q(n||u||3/d)),
where 7 is the training sample size. Our bound is tighter than the risk bound exp(—€(||u|/3/d)) in
[6] by a factor of n in the exponent. Our result also gives a tighter risk bound than that in [25]'
in the so-called “low SNR setting”: our result suggests that ||u||3 = w(d/n) suffices to ensure an
o(1) population risk, while [25] requires ||||3 = w((d/n)3/2).

* We establish population risk lower bounds achieved by the maximum margin classifier under two
different settings. In both settings, the lower bounds match our population risk upper bound up to
some absolute constants. This suggests that our population risk bound is tight.

* Our analysis reveals that for a class of high-dimensional anisotropic sub-Gaussian mixture models,
the maximum margin linear classifier on the training data can achieve small population risk
under mild assumptions on the sample size n and mean vector . Specifically, suppose that the
eigenvalues of 3 are {\; = k= }¢_, for some parameter o € [0, 1), and treat the sample size n
as a constant. Then our result shows that to achieve o(1) population risk, the following conditions
on ||| suffice:

w(d/A=a/?), ifa €[0,1/2),
el = w((og(d)/*), ifa=1/2,
w(l). ifa e (1/2,1).

More specifically, when o« = 1/2, the condition on the mean vector p only has a logarithmic
dependency on the dimension d, and when « € (1/2,1), the condition on g for benign overfitting
is dimension free.

* Qur proof of the population risk bound introduces some tight intermediate results, which may
be of independent interest. Specifically, our proof utilizes the polarization identity to establish
equivalence between the maximum margin classifier and the minimum norm interpolator. This is,
to the best of our knowledge, the first equivalence result between classification and regression for
anisotropic sub-Gaussian mixture models.

Additional Related Work Our study is closely related to the phenomenon of double descent
studied in recent works. [3, 4] showed experimental results and provided theoretical analyses on some

! After we posted our paper on arXiv, we noticed that the authors of [25] updated their paper a week later to
include the results for mixture of anisotropic Gaussians and sharpened their bounds. Our results are still more
general as we covered the mixture of anisotropic sub-Gaussian, and we also proved a matching lower bound.



specific models to demonstrate that the risk curve versus over-parameterization has a double descent
shape. These results can therefore indicate that over-parameterization can be beneficial to achieve
small test risk. [11, 26] studied the double descent phenomenon in linear regression under the setting
where the dimension d and sample size n can grow simultaneously but have a fixed ratio, and showed
that the population risk exhibits a double descent curve with respect to the ratio. More recently,
[17, 15, 18] further extended the setting to random feature models and studied double descent when
the sample size, data dimension and the number of random features have fixed ratios.

Our work is also related to the studies of implicit bias, which analyze the impact of training algorithms
when the over-parameterized models have multiple global minima. Specifically, [22] showed that if
the training data are linearly separable, then gradient descent on unregularized logistic regression
converges directionally to the maximum margin linear classifier on the training data set. [13] further
studied the implicit bias of gradient descent for logistic regression on non-separable data. [9] studied
the implicit bias of various optimization methods for generic objective functions. [10, 1] established
implicit bias results for matrix factorization problems. More recently, [16] showed that gradient flow
for learning homogeneous neural networks with logistic loss maximizes the normalized margin on the
training data set. These studies of implicit bias offer a handle for us to connect the over-parameterized
logistic regression with the maximum margin classifiers for linear models.

2 Problem Setting and Notation

Notations. We use lower case letters to denote scalars, and use lower/upper case bold face letters
to denote vectors/matrices respectively. For a vector v, we denote by ||v||2 the 3-norm of v. For
a matrix A, we use ||A||2, ||A| r to denote its spectral norm and Frobinuous norm respectively,
and use tr(A) to denote its trace. For a vector v € R? and a positive definite matrix A, we define

[Ivlla = V'vT Av. For an integer n, we denote [n] = {1,2,...,n}.

We also use standard asymptotic notations O(-), (-), o(+), and w(-). Let {a,} and {b,} be two
sequences. If there exists a constant C' > 0 such that |a,| < C|b,| for all large enough n, then
we denote a,, = O(b,). We denote a,, = Q(b,,) if b, = O(ay,). Moreover, we write a,, = o(by,)
if lim |ay, /by,| = 0 and a,, = w(by,) if lim |a,, /b, | = co. We also use O(-) and 2(+) to hide some
logarithmic terms in Big-O and Big-Omega notations.

At last, for a random variable Z, we denote by || Z||y, and || Z||,, the sub-Gaussian and sub-
exponential norms of Z respectively.

Sub-Gaussian Mixture Model. We consider a model where the feature vectors are generated from
a mixture of two sub-Gaussian distributions with means p and —u and the same covariance matrix
3. We assume that each data pair (x, y) are generated independently from the following procedure:

1. The label y € {+1, —1} is generated as a Rademacher random variable.

2. Arandom vector u € R? is generated from a distribution such that the entries of u are independent
sub-Gaussian random variables with E[u;] = 0, E[u}] = 1 and [Ju;||y, < oy, forall j € [d].

3. Let X be a positive definite matrix with eigenvalue decomposition 3 = VAV ", where A =
diag{A1,...,Aq} and V is an orthonormal matrix consisting of the eigenvectors of 3. We
calculate the random vector g based on u as ¢ = VA'/2u. This ensures that q has mean zero
and a covariance matrix 3.

4. The feature is given as x = y - p + q, where o € R? is a vector. Clearly, the mean of x is p when
y =1andis —p wheny = —1.

We consider n training data points (x;, y;) generated independently from the above procedure, and
denote

X=yu' +Q,

where X = [x1,...,%,] ", Q= [q1,.--,q,] " €R"™ ¥ andy = [y1,...,y,]" € {£1}". For any
0 € R4, the population risk of the linear classifier x — (6, x) is defined as:

R(6) =P(y-(6,x) <0).



In this paper, we consider the maximum margin linear classifier Osyy, i.e., the solution to the
hard-margin support vector machine:

Bsym = argmin [|0]|2, subject to y; - (6,x;) > 1,4 € [n],

and study its population risk R(ésvm).

A recent work [6] has studied a similar sub-Gaussian mixture model under an assumption that
tr(X) = Q(d), and considered additional label flipping noises. In this paper, we do not introduce the
label flipping noises for simplicity, but we consider a general covariance matrix X to cover the general
anisotropic setting. It is worth noting that although our model is not exactly the same as [6] because
we don’t have additional label flipping noise, there is still noise in our model because of the nature of
sub-Gaussian mixture model. For example, consider a mixture of two Gaussian distributions. The
two Gaussian clusters have non-trivial overlap, and the Bayes optimal classifier has non-zero Bayes
risk as long as ||pt||2 < oo. Therefore, the Bayes optimal classifier and the interpolating classifier
are generally quite different. In general, a model is appropriate for the study of benign overfitting
whenever the optimal classifier has non-zero Bayes risk.

Our model is rather general and covers the following examples.

Example 2.1 (Gaussian mixture model). The most straight-forward example is when the data are
generated from Gaussian mixtures N (p, X) and N (—p, ). This is covered by our model when the
sub-Gaussian vector u is a standard Gaussian random vector.

Example 2.2 (Rare/weak feature model). The rare-weak model is a special case of the Gaussian
mixture model where 3 = I and p is a sparse vector with s non-zero entries equaling +.

The rare/weak feature model was originally investigated by [8, 14], and was recently studied by [6].

Connection to Over-parameterized Logistic Regression. Our study of the maximum margin
classifier is closely related to over-parameterized logistic regression. In logistic regression, we
consider the following empirical loss minimization problem:

1 n
i L9 = — 1 ]. —Y; - 0, i .
min L(8) ”;:1 og[l + exp(—yi - (6,x;))]

We solve the above optimization problem with gradient descent
ot — gt _ . VL(Q(t))7 2.1)

where 1 > 0 is the learning rate.

In the over-parameterized setting where d >> n, it is evident that the training data points are
linearly separable with high probability (for example, XX T is invertible with high probability and
the minimum norm interpolator §LS = X T(XX ")~ ly separates the training data.). For linearly
separable data, a series of recent works have studied the implicit bias of (stochastic) gradient descent
for logistic regression [22, 13, 21]. These results demonstrate that among all linear classifiers that
can classify the training data correctly, gradient descent will converge to the one that maximizes the
{5 margin. Such an implicit bias result is summarized in the following lemma.

Lemma 2.3 (Theorem 3 in [22]). Suppose that the training data set {(x;, y;)} is linearly separable.
Then as long as 7 > 0 is small enough, the gradient descent iterates 8(*) for logistic regression
defined in (2.1) has the following direction limit:

. 0" Bsvm
1im =
5 00

1Bsvallz

where Ogyy is the maximum margin classifier.

Lemma 2.3 suggests that our risk bound of the maximum margin classifier §SVM directly implies a
risk bound for the over-parameterized logistic regression trained by gradient descent.



3 Main Results

In this section, we present our main result on the population risk bound of the maximum margin
classifier, and then give a lower bound result to demonstrate the tightness of our upper bounds. We
also showcase the application of our results to isotropic and anisotropic sub-Gaussian mixture models
to study the conditions under which benign overfitting occurs.

The main result of this paper is given in the following theorem, where we establish the population
risk bound for the maximum margin classifier R(@sym)-

Theorem 3.1. Suppose that tr(2) > C max {n*/?| 2|2, n||Z| p, n\/log(n) - [|p||= } and ||pu|3 >
C||t||s for some absolute constant C'. Then with probability at least 1 — n~!, the maximum margin
classifier Ogyy has the following risk bound

~ —C'n||pll3
R(Osym) < exp ;
nllplg + I1IZ1F + 023

where C’ is an absolute constant.

Theorem 3.1 gives the population risk bound of the maximum margin classifier §SVM. Based on the
implicit bias of gradient descent for over-parameterized logistic regression (Lemma 2.3), we have
that the gradient descent iterates @) satisfy that

Jim R(O®) = lim RO /[0 ]2) = R@sv/|8svull2) = RBsvm).

Therefore, the same risk bound in Theorem 3.1 also applies to the over-parameterized logistic
regression trained by gradient descent.

Population Risk Lower Bound We further present lower bounds on the population risk achieved
by the maximum margin classifier, which demonstrate that our population risk upper bound in
Theorem 3.1 is tight. We have the following theorem.

Theorem 3.2. Consider Gaussian mixture model with covariance matrix 32 and mean vectors p and

— . Suppose that tr(E) > C max {n¥/2[[ 2, nl| |, ny/log(n) - il }, and [ull3 > Clluls
for some constant C. Then there exist absolute constants C’, C”’, such that the following results hold:

1. If n|jp||% > C(|Z||% + n||X||3), then with probability at least 1 — n =1,
R(Osvm) > C" exp (= C'||pl2/ | 1ll)-

2. If | Z||% > Cn(||p|l% + ||2]|3), then with probability at least 1 — n™!,

R(Bsvm) > C" exp (— C'n||u]l3/1=]1%).

Theorem 3.2 gives lower bounds for the population risk in two settings: (i) n|pl|% > C(|| 2% +
n||X]3); and (i) [|[X]|% > Cn(||nl|% + [|X]|3). Note that in the population risk upper bound in
Theorem 3.1, there are three terms in the denominator of the exponent: ||p]|%, ||2|/%, and n||X||3.
Therefore, setting (i) and setting (ii) in Theorem 3.2 correspond to the cases when the first or the
second term is the leading term, respectively. Moreover, it is also easy to check that under both
settings, our lower bound in Theorem 3.2 matches the upper bound in Theorem 3.1. This suggests
that our population risk bound in Theorem 3.1 is tight.

Implications for Specific Examples. Theorem 3.1 holds for general covariance matrices X, and
illustrates how the spectrum of 3 affects the population risk of the maximum margin classifier. This
makes our result more general than the recent results in [6, 25], where the population risk bounds are
given only in terms of the sample size n, dimension d and the norm of the mean vector ||¢||2. In fact,
when we specialize our general result to the isotropic setting, our result also provides a tighter risk
bound than these existing results. Specifically, our population risk bound for the isotropic setting is
given in the following corollary.



Corollary 3.3 (Isotropic sub-Gaussian mixtures). Consider the setting where 3 = I. Suppose that
d > Cmax {n? n\/log(n) - ||pll2} and ||p||2 > C for some absolute constant C. Then with

probability at least 1 — n~!, the maximum margin classifier §SVM has the following risk bound

Cnllpll3 )

R(Osym) < exp (‘ alelz+d
2

where C' is an absolute constant.

Remark 3.4. [6] recently gave a risk bound of order exp(—Q(||zt||3/d)) for sub-Gaussian mixture
models under the condition that d = Q(max{n? log(n),n|/w||3}). In comparison, our result in Corol-
lary 3.3 only requires the condition d = Q(max{n?, n/log(n) - ||p||2}), which is milder. Moreover,
when the stronger condition d = Q(n||u||2) holds, our risk bound becomes exp(—Q(n||u|/3/d)),
which is better than the result of [6] by a factor of n in the exponent.

Besides being tighter than previous results when reduced to the isotropic setting, Theorem 3.1 covers
both the isotropic and anisotropic settings. In the following, we provide some case studies under the
anisotropic setting and show how the decay rate of the eigenvalues of the covariance matrix 3 affects
the population risk.

It is worth noting that the assumption of Theorem 3.1 requires that tr(X) is large enough, while
the risk bound in Theorem 3.1 only depends on | X|| r and || X||2. In the over-parameterized setting
where the dimension d is large, it is possible that for certain covariance matrices 3 with appropriate
eigenvalue decay rates, tr(X) > 1 while | X||p, | Z|l2 = O(1). This implies that for many
anisotropic sub-Gaussian mixture models, the assumptions in Theorem 3.1 can be easily satisfied,
while the risk bound can be small at the same time. Following this intuition, we study the conditions
under which the the maximum margin interpolator Osyy achieves o(1) population risk. We denote
by A the k-th largest eigenvalue of ¥, and consider a polynomial decay spectrum { A = k~¢ Z:l’
where we introduce a parameter o to control the eigenvalue decay rate. We have the following
corollary.

Corollary 3.5 (Anisotripic sub-Gaussian mixtures with polynomial spectrum decay). Suppose that
A = k~%, nis a large enough constant, and one of the following conditions hold:

1oa€0,1/2),d=Q((|ulls) ™), and ||z = w(1 + d'/4=/2),
2. a=1/2,d=Q(|ul}), and [|p]lz = w((log(d))"/*).

3. a e (1/2,1),d=Q((|pls)T=), and |u]2 = w(1).

Then with probability at least 1 — n !, the population risk of the maximum margin classifier satisfies
R(OSVM) = 0(1)

Corollary 3.5 follows by calculating the orders of tr(3) = 2221 Ap and | 2% = ZZ:1 A7. Here
we treat the sample size n as a constant for simplicity. A full version of the corollary with detailed
dependency on n is given as Corollary C.1 in Appendix C together with the proof. Intuitively, when
||£e]|2 is large, the two classes are far away from each other and therefore linear classifiers can achieve
small population risk. From Corollary 3.5, we can see that the decay rate of the eigenvalues of
the covariance matrix 3 determines how large ||1¢||2 needs to be to ensure small population risk:
when the {\;} decays faster (i.e., when « is larger), the maximum margin classifier can achieve o(1)
population risk with a smaller || g/2.

Corollary 3.5 also exhibits a certain “phase transition” regarding the eigenvalue decay rate and
the conditions on ||pu|l2. We can see that the eigenvalue decay rate can be divided into three
regimes o € [0,1/2), « = 1/2 and o € (1/2,1). Under the condition that d = Q((”[J;Hz)ﬁ),
achieving o(1) risk in each of these regimes requires |||z = w(d'/*), |||z = w([log(d)]'/*), and
[£e]]2 = w(1) respectively. Specifically, when « € (1/2,1), the condition on g is independent of the

dimension d. This means that when « € (1/2,1), for any € > 0, as long as ||u||2 = Q(1/log(e)), we
have

lim R(§SVM) S €.

d—oo



Therefore, our result covers the infinite dimensional setting when the eigenvalues of the covariance
matrix 3 have an appropriate decay rate, i.e., « € (1/2,1).

Another interesting observation in Theorem 3.1 is that it uses both ||u||s and ||pt||2, and therefore
the alignment between p and the eigenvectors of ¥ can affect the population risk bound. In our
discussion above, we have mainly focused on the worst case scenario where the direction of p aligns
with the first eigenvector of ¥. In the following corollary, we discuss the case where p is parallel to
the eigenvector of ¥ corresponding to the eigenvalue \.

Corollary 3.6 (Risk bounds for p along different directions). Suppose that Xy = A for some
k € [d], tr(2) > Cmax {n%2(| 2|, n||Z| r,ny/Aclog(n) - ||pll2} and ||p[|3 > CAy for some

absolute constant C. Then with probability at least 1 — n~!, the maximum margin classifier Ogyy
has the following risk bound

5. —C'n|lpl3
R(OSVM) S exp y
nAg - el + 121 + nl2]3

where C’ is an absolute constant.

We can see that, when p aligns with the eigendirections corresponding to a smaller eigenvalue of
3., then Corollary 3.6 holds under milder conditions on tr(X) and || /|2, and the population risk
achieved by the maximum margin solution is also better. This phenomenon perfectly matches the
geometric intuition of sub-Gaussian mixture classifications, as is illustrated in Figure 1.
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(a) p aligns with va (b) pe points at a random direction (c) p aligns with v

Figure 1: A 2-dimensional illustration of sub-Gausisan mixture classification problems with different
directions of p. We consider the setting where 3 € R2*2 has two eigenvalues \; > ) with the
corresponding eigenvectors vy, vy. (a) shows the setting where p aligns with vo. (b) shows the
setting where g points at a random direction. (c) is for the case when g aligns with v;. These figures
clearly show that (a) is the easiest case for classification and (c) is the hardest case. This matches the
result in Corollary 3.6.

At last, we can also apply our risk bound to the rare/weak feature model defined in Example 2.2. We
have the following corollary.

Corollary 3.7 (Rare/weak feature model). Consider the rare/weak feature model (Example 2.2).
Suppose that d > C max{n?, yn/slog(n)} and v,/s > C for some large enough absolute constant
C. Then when n is large enough, with probability at least 1 — n~!, the maximum margin classifier
§SVM has the following risk bound

- Iy A4 2
R(OSVM) Sexp(— C’fl’)/ 5 ),

ny2s+d
where C’ is an absolute constant.

By Corollary 3.7, we can see that our bound is tighter by a factor of n in the exponent compared
with the risk bound in [6] for the rare/weak feature model. Under the setting where n and ~ are
fixed constants, our bound can also be compared with the negative result in [14], which showed that
achieving a small population risk is impossible when s = O(d?). Our result, on the other hand,
demonstrates that when s = w(d?), o(1) population risk is achievable.



4 Proof of the Main Results

In this section, we explain how we establish the population risk bound of the maximum margin
classifier, and give the proof of Theorem 3.1.

For classification problems, one of the key challenges is that the maximum margin classifier usually
does not have an explicit form solution. To overcome this difficulty, [6] utilized the implicit bias
results (Lemma 2.3) to get a handle on the relationship between the maximum margin classifier and
the training data. More recently, [25] showed that for isotropic Gaussian mixture models, an explicit

form of Ogyy can be calculated by the equivalence between hard-margin support vector machine
and minimum norm least square regression. Notably, it was shown that such an equivalence result
holds under the assumptions of [6] and no any additional assumptions are needed. In this paper, we
also study the equivalence between classification and regression as a first step. However, our proof
works for a more general setting that covers both isotropic and anisotropic sub-Gaussian mixtures,
and introduces a novel proof technique based on the polarization identity that leads to a tighter bound.
We present this result in Section 4.

Step 1. Equivalence Between Classification and Regression. Here we establish an equivalence
guarantee for the maximum margin classifier and the minimum norm interpolator. Note that the

definitions of the minimum norm interpolator 9Ls and the maximum margin classifier OSVM are as
follows:

By := argmin ||0]|2, subject toy; - (8,x;) = 1,i € [n],

Bsym = argmin ||0]|2, subjectto y; - (8,x;) > 1,i € [n].
We can see that the two optimization problems have the same solution when all the training data are
support vectors, i.e., all the inequalities become equalities in the constraints [19, 12]. Here we derive
such an equivalence result for sub-Gaussian mixture models. The result is as follows.
Proposition 4.1. Suppose that tr(X) > C max{n®/?||3||z, n||2||r, n\/log(n) - |||} for some
absolute constant C'. Then with probability at least 1 — O(n~2), Osym = Oys.

The proof of Proposition 4.1 utilizes an argument based on the polarization identity to give a tight
bound, which may be of independent interest. The details are given in Appendix 4.1.

Step 2. Population Risk of the Maximum Margin Classifier. We derive the population risk
bound for the maximum margin classifier and provide the proof of Theorem 3.1. We first present the
following lemma on the risk bound of linear classifiers for sub-Gaussian mixture models.

Lemma 4.2. There exists an absolute constant C' such that, for any 6 € R?, the following risk bound

holds:
C HTH 2
>

A similar result is given in [6] where X is replaced by I. Our result here depends on the full spectrum
of the covariance matrix and is sharper than [6] when 3 has decaying eigenvalues.

The proof of Lemma 4.2 is given in Appendix A.2. In addition to this risk bound for general vector 6,
we also have the following explicit calculation for §SVM thanks to our analysis in Section 4. This is
because the minimum norm interpolator 8y s has the explicit form 8. = X T (XX T)~'y. Therefore
by Proposition 4.1, we also have §SVM = X (XX ")~ ly. Plugging this calculation into the risk
bound in Lemma 4.2 and utilizing the model definition X = yu " + Q, we are able to show the
following risk bound for §SVM.

Lemma 4.3. Suppose that tr(X) > C max{n/log(n), n*/?||Z||2, n||Z||r, n||||s} for some ab-
solute constant C'. Then with probability at least 1 — O(n=2),

BT
(y T(XXT)y)? el + 1QT(XXT)~1yll3;

R(ésvm) < exp {

where C’ is an absolute constant.



Lemma 4.3 utilizes the structure of the model to divide the denominator in the exponent into two
terms. Motivated by this result, we define

L=[y"(XXT) "' Xp]?, L=y (XXT)y)? - luls, =1QT(XXT) 'yl
This leads to our analysis in the next step.

Step 3. Bounds for /1, I; and /5. In the following, we develop a lower bound for /; and upper
bounds for 15 and I3 respectively. The following lemma summarizes the bounds.

Lemma 4.4. Suppose that tr(3) > Cmax{n n||Xl2, vol|Z| F,nllpls} and ||p]3 > C’||u||)3
for some absolute constant C'. Then when n is large enough with probability at least 1 — O(n~2),

I > c'~ 1H(H7Q7y7 ) : HNHZ?
L <C'Hp,Qy, %) n*-|pls,

L<CH(pQy, 2) (n-|[Z]F +n - |Z]3),
where H(u, Q,y,X) > 01is a strictly positive coefficient, and C’ > 0 is an absolute constant.

The proof of Lemma 4.4 is given in Appendix A.2. To illustrate the key idea in the proof of
Lemma 4.4, we take I3 as an example. Based on our model in Section 2, we have Q = ZAY2VT,
where Z € R™*? is a random matrix with independent sub-Gaussian entries, and A, V are defined
based on the eigenvalue decomposition ¥ = VAV T, By some linear algebra calculation (see the
proof of Lemma 4.4 in Appendix A.2 for more details), we have

Is=a' (ZAZ") 'ZA?Z" (ZAZ") a, 4.1)
where ||a|3 = O(D~?n) with
=y (QQN) ™y (Iul3 - £'QTQQN)™'Qu) + (1 +y"(QQT)"'Qu)*.
The key observation here is that while the term D above has a very complicated form, it is not
necessary to bound it. This is because D~2 is a common term that appears in all I;, I and I3
and therefore can be canceled out when calculating the ratio I; /(Is + I3). With the calculation in
(4.1), we are able to invoke the following eigenvalue concentration inequalities (see Lemma A.4 and

Lemma A.7 for more details) to give upper and lower bounds regarding the matrices ZA%2Z " and
ZAZ' respectively:

|ZAZ" — tx(2) 1|, < c1 - (][ Z[|2 + Vol 2] F),
|ZA2ZT —|[Z)|% I, < ex - (nl|B]3 + Vall 2] F),

where c; is an absolute constant. Plugging the above inequalities and the bound ||a|| = O(D~2n)
into (4.1), we obtain with some calculation that

Iy < e2H(p, Qy, 2) - (n- | S]F +n* - | 2]3)
with H(p, Q,y, X) = [D - tr(X)] 2, where c3 is an absolute constant. This gives the bound of I5.
Lemma 4.4 is significant in three-fold. First of all, the result does not have an explicit dependency on
d, which makes it applicable to infinite dimensional data. Second, Lemma 4.4 gives bounds with
great simplicity, and shows that the three bounds share a same strictly positive factor H(u, Q,y, X),
which can be canceled out since our final goal is to bound the ratio I; /(12 + I3). Lastly, Lemma 4.4

reveals the fact that the risk bound only depends on || 3|| r and || X||2, which can be small even though
the assumption requires tr(3) to be large.

We are now ready to present the proof of Theorem 3.1.

Proof of Theorem 3.1. Clearly, under the assumptions of Theorem 3.1, the conditions in Lemma 4.3
and Lemma 4.4 are both satisfied. By Lemma 4.4, we have

[y T(XX ") Xp]? > - |l
(yTXXD)y)?lpls + IQTXXT)Myls = n?lulls +n- |2 + 02 - |1 Z[3
where c; is an absolute constant. Therefore by Lemma 4.3 we have
—can||pll3
R(Bsvm) < exp
nllulls + 1217 +nl2]3

for some absolute constant cy. Note that by union bound, the above inequality holds with probability
atleast 1 — O(n=2) > 1 — n~! when n is large enough. This completes the proof. O




5 Conclusion and Future Work

We have studied the benign overfitting phenomenon for sub-Gaussian mxiture models, and established
a population risk bound for the maximum margin classifier. Our population risk bound is general and
covers both the isotropic and anisotropic settings. When reduced to the isotropic setting, our bound
is tighter than existing results. We have also studied a class of non-isotropic models which can be
benign even for infinite-dimensional data.

An interesting future work direction is to study the relation between the dimension and the population
risk and verify the double descent phenomenon. Studying benign overfitting for more complicated
learning models such as neural networks is another important future work direction.
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