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Abstract

Google’s CECPQ1 experiment in 2016 integrated a

post-quantum key-exchange algorithm, newhope1024, into

TLS 1.2. The Google-Cloudflare CECPQ2 experiment in

2019 integrated a more efficient key-exchange algorithm,

ntruhrss701, into TLS 1.3.

This paper revisits the choices made in CECPQ2, and

shows how to achieve higher performance for post-quantum

key exchange in TLS 1.3 using a higher-security algorithm,

sntrup761. Previous work had indicated that ntruhrss701

key generation was much faster than sntrup761 key genera-

tion, but this paper makes sntrup761 key generation much

faster by generating a batch of keys at once.

Batch key generation is invisible at the TLS protocol layer,

but raises software-engineering questions regarding the diffi-

culty of integrating batch key exchange into existing TLS li-

braries and applications. This paper shows that careful choices

of software layers make it easy to integrate fast post-quantum

software, including batch key exchange, into TLS with minor

changes to TLS libraries and no changes to applications.

As a demonstration of feasibility, this paper reports suc-

cessful integration of its fast sntrup761 library, via a lightly

patched OpenSSL, into an unmodified web browser and an

unmodified TLS terminator. This paper also reports TLS 1.3

handshake benchmarks, achieving more TLS 1.3 handshakes

per second than any software included in OpenSSL.

1 Introduction

The urgency of upgrading TLS to post-quantum encryption

has prompted a tremendous amount of work. There were al-

ready 69 proposals for post-quantum cryptography (PQC) sub-

mitted to NIST’s Post-Quantum Cryptography Standardiza-

tion Project in 2017, including 49 proposals for post-quantum

encryption. Each proposal included complete software imple-

mentations of the algorithms for key generation, encryption,

and decryption. Given the cryptographic agility of TLS, one

might imagine that TLS software can simply pick a post-

quantum algorithm and use it. Constraints that make this

more difficult than it sounds include the following:

• Performance: Post-quantum algorithms can send much

more data than elliptic-curve cryptography (ECC), and

can take many more CPU cycles. Performance plays a

“large role” [27] in the NIST standardization project.

• Integration: Many assumptions about how cryptogra-

phy works are built into the TLS protocol and existing

TLS software. These range from superficial assumptions

about the sizes of objects to more fundamental structural

assumptions such as the reliance of TLS 1.3 upon “Diffie–

Hellman”—a key-exchange data flow not provided by

any of the proposals for NIST standardization.

• Security: 30 of the 69 proposals were broken by the end

of 2019 [9]. New attacks continue to appear: e.g., [6]

uses under a single second of CPU time to break any

ciphertext sent by the “Round2” lattice-based proposal.

In July 2020, the NIST project began its third round [1],

selecting 4 “finalist” and 5 “alternate” encryption proposals

to consider for standardization at the end of the round and

after a subsequent round. Meanwhile, there have been various

experiments successfully integrating post-quantum encryp-

tion systems into TLS. The proposals that have attracted the

most attention, and that are also the focus of this paper, are

“small” lattice proposals. These include

• three of the finalist proposals (Kyber [4], NTRU [17],

and SABER [5]), although NIST says it will standardize

at most one of these three;

• one of the alternate proposals (NTRU Prime);

• the newhope1024 algorithm [2] used inside Google’s

CECPQ1 experiment in 2016; and

• the ntruhrss701 algorithm (a variant of one of the al-

gorithms in the NTRU proposal) used inside the Google-

Cloudflare CECPQ2 experiment in 2019.

These are called “small” because they use just a few kilobytes

for each key exchange—much more traffic than ECC, but

much less than many other post-quantum proposals.



Table 1: Cryptographic features of the post-quantum com-

ponents of CECPQ2 (previous work) and OpenSSLNTRU

(this paper). Core-SVP in the table is pre-quantum

Core-SVP (see [12, Section 6]); post-quantum Core-SVP

has 10% smaller exponents. See [13] regarding cyclo-

tomic concerns. The ntruhrss701 cycle counts are from

supercop-20210423 [10] on hiphop (Intel Xeon E3-1220

V3). The sntrup761 cycle counts are old→new, where “old”

shows the best sntrup761 results before our work and “new”

shows results from this paper’s freely available software; Ap-

pendix A presents the slight enc and dec speedups, and Sec-

tion 3 presents the large keygen speedup.

CECPQ2 OpenSSLNTRU

cryptosystem ntruhrss701 sntrup761

key+ciphertext bytes 2276 2197

keygen cycles 269191 814608→156317

enc cycles 26510 48892→46914

dec cycles 63375 59404→56241

Core-SVP security 2136 2153

cyclotomic concerns yes no

1.1 Contributions of this paper

This paper introduces OpenSSLNTRU, an improved in-

tegration of post-quantum key exchange into TLS 1.3.

OpenSSLNTRU improves upon the post-quantum portion

of CECPQ2 in two ways: key-exchange performance and

TLS software engineering. These are linked, as explained

below. OpenSSLNTRU offers multiple choices of key sizes;

for concreteness we emphasize one option, sntrup761 [12],

to compare to CECPQ2’s ntruhrss701.

Each of ntruhrss701/sntrup761 is a “key-encapsulation

mechanism” (KEM) consisting of three algorithms: a key-

generation algorithm generates a public key and a correspond-

ing secret key; an “encapsulation” algorithm, given a public

key, generates a ciphertext and a corresponding session key; a

“decapsulation” algorithm, given a secret key and a ciphertext,

generates the corresponding session key. The key exchange

at the beginning of a TLS session involves one keygen, one

enc, and one dec. Before our work, both KEMs already had

software optimized for Intel Haswell using AVX2 vector in-

structions; keygen was 3.03× slower for sntrup761 than for

ntruhrss701, making total keygen+enc+dec 2.57× slower.

One can remove keygen cost by reusing a key for many

TLS sessions (see Section 2.5.2). This paper instead directly

addresses the speed problem with sntrup761 key genera-

tion, by making sntrup761 key generation much faster. Our

sntrup761 software outperforms the latest ntruhrss701

software, and at the same time sntrup761 has a higher secu-

rity level than ntruhrss701. See Table 1.

The main bottleneck in sntrup761 key generation is com-

putation of certain types of inverses. This paper speeds up

those inversions using “Montgomery’s trick”, the simple idea

of computing two independent inverses 1/a and 1/b as br and

ar respectively, where r = 1/ab. Repeating this trick converts,

e.g., 32 inversions into 1 inversion plus 93 multiplications.

This paper generates a batch of 32 independent keys, com-

bining independent reciprocals across the batch. This batch

size is large enough for inversion time to mostly disappear,

and yet small enough to avoid creating problems with latency,

cache misses, etc. We designed new algorithms and software

to optimize sntrup761 multiplications, since the multipli-

cations used previously were “big×small” multiplications

while Montgomery’s trick needs “big×big” multiplications;

see Section 3.

A new key sent through TLS could have been generated

a millisecond earlier, a second earlier, or a minute earlier;

this does not matter for the TLS protocol. However, for TLS

software, batching keys is a more interesting challenge, for

two reasons. First, key generation is no longer a pure stateless

subroutine inside one TLS session, but rather a mechanism

sharing state across TLS sessions. Second, the TLS software

ecosystem is complicated (and somewhat ossified), with many

different applications using many different libraries, so the

same state change needs to be repeated in many different

pieces of TLS software.

To address the underlying problem, this paper introduces

a new choice of software layers designed to decouple the

fast-moving post-quantum software ecosystem from the TLS

software ecosystem. The point of these layers is that optimiza-

tion of post-quantum software does not have to worry about

any of the complications of TLS software, and vice versa. As a

case study demonstrating the applicability of these layers, this

paper describes successful integration of its new sntrup761

library, including batch key generation, into an existing web

browser communicating with an existing TLS terminator, us-

ing OpenSSL on both ends. This demo involves no changes

to the web browser, no changes to the TLS terminator, and

very few changes to OpenSSL.

The integration of OpenSSLNTRU into TLS means that,

beyond microbenchmarks, we can and do measure full

TLS handshake performance. The bottom line is that, in

a controlled and reproducible end-to-end lab experiment,

sntrup761 completes more sessions per second than com-

monly deployed pre-quantum NIST P-256, and even com-

pletes more sessions per second than commonly deployed

pre-quantum X25519 (see Section 4.4). This remains true

even when we replace sntrup761 with higher-security

sntrup857.

2 Background

2.1 Polynomial rings in NTRU Prime

Streamlined NTRU Prime [12], abbreviated sntrup, uses

arithmetic in finite rings R /3 = (Z/3)[x]/(xp− x− 1) and

R /q = (Z/q)[x]/(xp− x−1), where R = Z[x]/(xp− x−1).



The parameters p,q are chosen so that R /q is a field.

Short means the set of polynomials in R that are small,

meaning all coefficients in {−1,0,1}, and weight w, meaning

that exactly w coefficients are nonzero, where w is another

parameter. The parameters (p,q,w) are (653,4621,288),
(761,4591,286), (857,5167,322) for the KEMs sntrup653,

sntrup761, sntrup857 respectively.

2.2 Montgomery’s trick for batch inversion

In this section, we review Montgomery’s trick for batch inver-

sion [24] as applied to many inputs. The algorithm batchInv

takes n elements (a1,a2, . . . ,an) in a ring, and outputs their

multiplicative inverses (a−1
1 ,a−1

2 , . . . ,a−1
n ). Montgomery’s

trick for batch inversion proceeds as follows:

1. Let b1 = a1 and compute bi = ai ·bi−1 for i in (2, . . . ,n).
After n−1 multiplications, we obtain

(b1,b2, . . . ,bn) = (a1,a1 ·a2,a1 ·a2 ·a3, . . . ,Π
n
i=1ai) .

2. Compute the single multiplicative inverse

tn = b−1
n = (Πn

i=1ai)
−1 .

3. Compute ci = ti ·bi−1 and ti−1 = ti ·ai for i in (n, . . . ,2).
After 2n−2 multiplications, we have two lists

(cn, . . . ,c2) = (a−1
n , . . . ,a−1

2 ) and

(tn−1, . . . , t2, t1) = ((Πn−1
i=1 ai)

−1, . . . ,(a1 ·a2)
−1,a−1

1 ) .

4. Output (a−1
1 ,a−1

2 , . . . ,a−1
n ).

In summary, the algorithm uses 3n− 3 multiplications and

one inversion to compute n inverses.

2.3 NTT-based multiplication

This section reviews techniques for polynomial multiplica-

tion commonly used in lattice-based cryptography. We adopt

terminology from [7].

The number theoretic transform (NTT) algorithm maps an

element in a polynomial ring into values by lifting the ring

element to a polynomial and evaluating the polynomial on a

particular set. An NTT-based multiplication algorithm applies

NTTs to two input elements in the polynomial ring, performs

component-wise multiplication for the transformed values,

and applies an inverse NTT, converting the multiplied values

back to the product in the same form of inputs.

Computing a size-n NTT, where n is a power of 2, com-

prises log2 n stages of the radix-2 FFT trick. Given a poly-

nomial ring (Z/q)[x]/(xn−b2) where b ∈ Z/q, the FFT trick

maps elements in (Z/q)[x]/(xn− b2) to ((Z/q)[x]/(xn/2−
b))× ((Z/q)[x]/(xn/2 + b)). Due to the Chinese remainder

theorem (CRT), the mapping is invertible when 2b is in-

vertible. Specifically, let f = f0 + f1x + · · ·+ fn−1xn−1 ∈
(Z/q)[x]/(xn−b2). The trick maps f to

( f mod (xn/2 +b) , f mod (xn/2−b))

=(( f0−b fn/2)+ · · ·+( fn/2−1−b fn−1)x
n/2−1,

( f0 +b fn/2)+ · · ·+( fn/2−1 +b fn−1)x
n/2−1)

with n multiplications by b, n/2 additions, and n/2 subtrac-

tions. Setting b = 1, by recursively applying the FFT trick,

an NTT transforms f into a list f̂ = ( f̂0, . . . , f̂ j, . . . , f̂n−1) ∈

(Z/q)n where f̂ j = f mod (x−ψ j) = ∑
n−1
i=0 fiψ

i j, and ψ ∈

Z/q is a primitive n-th root of unity, i.e., ψn/2 =−1.

When Z/q lacks appropriate roots of unity, Schönhage’s

trick [31] manufactures them by introducing an interme-

diate polynomial ring. Given f ∈ (Z/q)[x]/(x2mn− 1), the

trick first introduces a new variable y = xm and maps f

from (Z/q)[x]/(x2mn− 1) to ((Z/q)[x][y]/(y2n− 1))/(xm−
y). Then, it lifts f to (Z/q)[x][y]/(y2n−1), which is a poly-

nomial in variable y with coefficients in (Z/q)[x]. Since the

coefficients of f are polynomials with degree less than m,

it is safe to map them to (Z/q)[x]/(x2m + 1) such that co-

efficient multiplication needs no reduction by x2m +1. Now

x∈ (Z/q)[x]/(x2m+1) is a primitive 4m-th root of unity, since

x2m =−1.

Nussbaumer’s trick [28] is another method to manu-

facture roots of unity. Given f ∈ (Z/q)[x]/(x2mn − 1),
the trick maps f to ((Z/q)[y]/(y2n + 1))[x]/(xm − y), lifts

to ((Z/q)[y]/(y2n + 1))[x], and maps to ((Z/q)[y]/(y2n +
1))[x]/(x2n− 1) for n ≥ m. As noted in [7], Nussbaumer’s

trick sometimes uses slightly smaller ring extensions than

Schönhage’s trick, but Schönhage’s trick is more cache-

friendly, since it uses contiguous data in x.

2.4 The AVX2 instruction set

Since NIST specified Intel Haswell CPU as its highest pri-

ority platform for performance evaluation [26], we optimize

sntrup for the Haswell architecture in this work.

Specifically, we target the Advanced Vector Extensions 2

(AVX2) instruction set. AVX is a single-instruction-multiple-

data (SIMD) instruction set in modern (decade or less) x86

CPUs. It provides sixteen 256-bit ymm registers; each ymm

register splits into two 128-bit xmm lanes. The instruction set

treats data in ymm registers as lanes (independent partitions)

of 32×8-bit, 16×16-bit, 8×32-bit, etc.; every instruction op-

erates simultaneously on the partitioned data in the ymm reg-

isters. In 2013, the Haswell architecture extended AVX to

AVX2 for enhanced integer operations.

2.5 Related works



2.5.1 NTT-based multiplication in other PQC finalists

Among the lattice based KEM of NIST’s finalists, Kyber [4]

operates in a radix-2 NTT friendly polynomial ring and imple-

ments NTT-based multiplication in the proposal. SABER [5]

and NTRU [17] operate in polynomial rings with a power-

of-two modulus which are considered NTT-unfriendly. The

earlier implementations of two schemes used a combination

of Toom-4 and Karatsuba based polynomial multiplication.

Recently, [18] showed that NTT-based multiplication out-

performs previous Toom-Cook multiplication for implement-

ing NTT-unfriendly SABER and most parameters of NTRU.

To use NTT-based multiplication in an NTT-unfriendly ring,

they raise the coefficients to a combination of several NTT-

friendly polynomial rings, perform several NTT-based multi-

plications, and map back to original ring with CRT. For NTRU

on the AVX2 platform, they reported significant improvement

for parameters with polynomials of degree greater then 700.

For Saber, they also reported a pronounced performance gain

although the degree of polynomials are only 255. It is because

the matrix-vector multiplication allows them to save the input

NTT transforms for the elements in the common vector which

performs inner products with different rows in the matrix.

2.5.2 Integrating cryptographic primitives

Related to OpenSSLNTRU, several previous works studied

integrations between post-quantum implementation and real

world applications and protocols.

The Open Quantum Safe (OQS) project [34] includes a

library of quantum-resistant cryptographic algorithms, and

prototype integrations into protocols and applications. It also

includes (and requires) a fork of the OpenSSL project. Con-

versely, in our contribution we apply a minimal patchset, striv-

ing to maintain API and ABI compatibility with the OpenSSL

version available to the end-users. This avoids the need of re-

compiling existing applications to benefit from the new library

capabilities. While [34] focused primarily on key agreement,

the OQS OpenSSL fork does also support signatures and cer-

tificates using post-quantum algorithms, and their negotiation

in TLS. See [29] for a study, conducted using OQS, bench-

marking post-quantum TLS authentication. We also note that

the end-to-end experiment we present in this paper is limited

to one candidate and two sets of parameters (sntrup761 and

sntrup857), while the OQS project provides implementa-

tions for all finalists.

Similarly, the PQClean project [22] collects a number of

implementations for the candidates. However, it does not

aim to include integration into higher-level applications or

protocols.

CECPQ2 actually included two experiments: CECPQ2a

used ntruhrss701, while CECPQ2b used an isogeny-based

proposal. Compared to ntruhrss701, the isogeny-based pro-

posal had smaller keys and smaller ciphertexts, but used much

more CPU time, so it outperformed CECPQ2a only on the

slowest network connections.

In general, the importance of a few kilobytes depends on

the network speed and on how often the application creates

new TLS sessions. A typical multi-megabyte web page is un-

likely to notice a few kilobytes, even if it retrieves resources

from several TLS servers. A session that encrypts a single

DNS query is handling far less data, making the performance

of session establishment much more important. Similar com-

ments apply to CPU time.

Schwabe, Stebila, and Wiggers [32] present an alter-

native to the TLS 1.3 handshake to solve both key ex-

change and authentication using post-quantum KEM. In

contrast, for our experiment we aimed at full compatibil-

ity with the TLS 1.3 ecosystem, focusing exclusively on

the key exchange. This ensures post-quantum confiden-

tiality, but does not address the post-quantum authentica-

tion concerns. Therefore, showcasing how at the protocol

level our experiment does not alter the TLS 1.3 message

flow, in Figure 1 we only highlight the cryptographic op-

erations and material involved in the key exchange—carried

in the ClientHello and ServerHello messages—while

keys and signatures used for authentication—as part of the

Certificate and CertificateVerify messages—do not

address post-quantum concerns.

Our approach to OpenSSL integration via an ENGINE mod-

ule is based on the methodology suggested in [36], where

the authors instantiated libsuola. In this context, an ENGINE

module is a a dynamically loadable module. Using a dedicated

API, such a module is capable of injecting new algorithms or

overriding existing ones. The implementations it provides can

be backed by a hardware device, or be entirely software based.

Our new ENGINE, engNTRU, builds upon libbecc [15], which

is itself derived from libsuola. Both previous works applied

the ENGINE framework to integrate alternative ECC imple-

mentations. The latter is particularly close to engNTRU, as it

also featured a transparent mechanism to handle batch key

generation. Section 4.2 details how engNTRU evolved from

these works and the unique features it introduces.

Shacham and Boneh [33] integrated RSA batching to im-

prove SSL handshake performance already in 2001. However,

their methodology required integrating changes directly in the

server application. In contrast, OpenSSLNTRU acts on the

middleware level, transparent to client and server applications.

Comparison table. Based on the previous discussions in this

section, Table 2 compares select TLS integration experiments

regarding post-quantum algorithms.

The “Hybrid” criterion tracks approaches that simultane-

ously protect the key agreement with “traditional” (usually

ECC) and post-quantum encryption (see, e.g., [14, 35]). This

paper does not make recommendations for or against hybrids;

our performance and software-engineering contributions are

equally applicable to hybrid and non-hybrid scenarios. Fig-

ure 1 illustrates how any NIKE system can be transformed





ity of each g. In Section 3.1.1 we optimize an isInvertible

subroutine for this test.

Algorithm 1 BatchKeyGen

Input : an integer n

Output: n key pairs of sntrup

1: G← [·] ⊲ an empty list

2: F ← [·]
3: while len(G)< n do

4: g
$
←− R /3 ⊲ $: uniform random

5: if not isInvertible( g ) : continue

6: f
$
←− Short

7: G.append(g)
8: F.append( f )
9: end while

10: Ḡ← batchInv(G)
11: F̄ ← batchInv([3 · f for f ∈ F ])
12: H←

[

g · f̄ ∈ R /q for g ∈ G, f̄ ∈ F̄
]

13: return
[

(h,( f , ḡ)) for h ∈ H, f ∈ F, ḡ ∈ Ḡ
]

3.1.1 Invertibility check for elements in R /3

At a high level, we check the invertibility of an element g ∈
R /3 by computing its remainder of division by the irreducible

factors of xp−x−1 modulo 3, as suggested in [12, p. 8]. This

section optimizes this computation.

For convenience, we always lift the ring element g to its

polynomial form g ∈ (Z/3)[x] in this section. In a nutshell,

if g mod fi = 0 for any factor fi of xp− x− 1, then g is not

invertible in R /3.

We calculate the remainder of g mod fi with Barrett reduc-

tion [23]. Suppose the polynomial xp− x−1 ∈ (Z/3)[x] has

m irreducible factors ( f1, . . . , fm), i.e., xp− x− 1 = Πm
i=1 fi.

Given a polynomial g ∈ (Z/3)[x] and p > deg(g)> deg( fi),
we calculate the reminder r = g mod fi as follows. In the

pre-computation step, choose Dg > deg(g) and D fi > deg( fi),
and calculate qx as the quotient of the division xDg/ fi, i.e.,

qx =
⌊

xDg/ fi

⌋

, where the floor function ⌊·⌋ removes the

negative-degree terms from a series. In the online step, com-

pute h =
⌊

g ·qx/xDg
⌋

= ⌊g/ fi⌋, i.e., the quotient of the divi-

sion g ·qx/xDg . Finally, return the remainder r = g−h · fi. We

show this gives the correct r in Appendix C.

Some observations about the degree of polynomials

help to accelerate the computation. While computing h =
⌊

g ·qx/xDg
⌋

, we compute only terms with degree in the inter-

val [0,D f ), since r = g− h · fi uses terms exclusively from

this interval for deg(r)< deg( fi).
In the case of sntrup761, the polynomial f = x761 −

x− 1 ∈ (Z/3)[x] has three factors, with degrees deg( f1) =
19, deg( f2) = 60, and deg( f3) = 682, respectively. We

choose D f1 = 32, D f2 = 64, and Dg = 768 for computing

g mod f0 and g mod f1. For computing g mod f3, we note

the pre-computed quotient qx =
⌊

x768/(x682 + · · ·)
⌋

satisfies

deg(qx) = 88. Hence, the multiplication h =
⌊

g ·qx/x768
⌋

in-

volves deg(g) = 768 and deg(qx) = 88 polynomials. By par-

titioning the longer polynomial into several shorter segments,

we perform the multiplication by several polynomial multi-

plications of length equal to the shorter polynomial (less than

128). Therefore, to check invertibility, we use polynomial

multiplications in (Z/3)[x] with lengths in {32,64,128}.

3.2 Polynomial multiplication in (Z/3)[x]

In this section, we describe our multiplication in (Z/3)[x] for

sntrup, and its optimization in the AVX2 instruction set.

Based on the polynomial lengths, we implement polyno-

mial multiplication with different algorithms. We build a

16×16 polynomial multiplier as a building block for school-

book multiplication. We then use Karatsuba to build longer

multipliers, such as 32×32, 64×64, and further 2i×2i. For

3 ·256×3 ·256 multiplications, we start from Bernstein’s 5-

way recursive algorithm [8] for (Z/2)[x] and optimize the

same idea for (Z/3)[x].

3.2.1 Base polynomial multiplier

For representing (Z/3)[x] polynomials, we adjust the values

of coefficients to unsigned form and store polynomials as byte

arrays, with one coefficient per byte. For example, we store

the polynomial a0 + · · ·+ a15x15 ∈ (Z/3)[x] as a byte array

(a0,a1, . . . ,a15) in a 16-byte xmm register.

Besides a byte array, we can view a polynomial as an in-

teger by translating the monomial x = 256. For example, a

degree-3 polynomial a0 +a1x+a2x2 +a3x3 maps to the 32-

bit integer a0 +a1 ·2
8 +a2 ·2

16 +a3 ·2
24.

In this 32-bit format, we can perform a 4× 4→ 8 poly-

nomial multiplication using a 32×32→ 64 integer multipli-

cation, taking care to control the coefficient values. While

calculating the polynomial product (a0 +a1x+a2x2 +a3x3) ·
(b0+b1x+b2x2+b3x3) with a 32×32→ 64 integer multipli-

cation, if all coefficients ai,bi ∈ {0,1,2}, a term’s maximum

possible value is ∑i+ j=3 aib jx
3 ≤ 16, fitting in a byte. Hence,

we use 4× 4 polynomial multiplication (i.e., 32× 32→ 64

integer multiplication), as our building block to implement

16×16 polynomial multiplication with the schoolbook algo-

rithm.

3.2.2 Multiplying polynomials of length 3n

This section reduces a multiplication of 3n-coefficient poly-

nomials in (Z/3)[x] to 5 multiplications of ≈n-coefficient

polynomials, while optimizing the number of additions us-

ing techniques analogous to Bernstein’s optimizations [8] for

(Z/2)[x]. This section also streamlines the computation for

≤(3n−1)-coefficient polynomials, as in sntrup.



Take two polynomials F0+F1t+F2t2 and G0+G1t+G2t2

in (Z/3)[x], where deg(Fi)< n, deg(Gi)< n, and t = xn. Their

product H = H0 +H1t +H2t2 +H3t3 +H4t4 can be recon-

structed by the projective Lagrange interpolation formula

H =H(0)
(t−1)(t +1)(t− x)

x
+H(1)

t(t +1)(t− x)

x−1

+H(−1)
t(t−1)(t− x)

x+1
+H(x)

t(t−1)(t +1)

x(x−1)(x+1)

+H(∞)t(t−1)(t +1)(t− x) .

Here

H(0) = F0 ·G0,

H(1) = (F0 +F1 +F2) · (G0 +G1 +G2),

H(−1) = (F0−F1 +F2) · (G0−G1 +G2),

H(x) = (F0 +F1x+F2x2) · (G0 +G1x+G2x2), and

H(∞) = F2 ·G2

are the only five polynomial multiplications in the algorithm.

These polynomials expand from n to 2n terms, except H(x).

H simplifies to

H = H(0)− [U +(H(1)−H(−1))] · t

− [H(0)+(H(1)+H(−1))+H(∞)] · t2

+U · t3 +H(∞) · t4 ,

(1)

where U =V +H(0)/x−H(∞) · x and

V =
(H(1)+H(−1)) · x+(H(1)−H(−1))+H(x)/x

x2−1
.

There are two tricky issues while computing V . First,

deg(H(x)) ≤ 2n+2, introducing extra complexity since all

other polynomials have degree less than 2n. By requiring

deg(F2)≤ n−2 and deg(G2)≤ n−2, we force deg(H(x))≤
2n. Since H(x) is only used as H(x)/x in V , we can always

process polynomials with degree less than 2n.

The other issue concerns computing divisions by x2− 1

in (Z/3)[x]. Since long division is a sequential process and

not efficient in SIMD settings, we now present a divide-and-

conquer method for it.

3.2.3 Division by x2−1 on (Z/3)[x]

Dividing a polynomial f by x2−1 means producing a repre-

sentation of f = q · (x2−1)+ r, where q and r = r1x+ r0 are

the quotient and remainder, respectively. Assume that we have

recursively divided two 2m-coefficient polynomials f and g

by x2−1, obtaining f = q ·(x2−1)+r and g = s ·(x2−1)+t.

Then

r · x2m = (rx2m−2 + rx2m−4 + rx2m−6 + · · ·+ r)(x2−1)+ r ,

so the result of dividing f · x2m +g by (x2−1) is

f · x2m +g =
[

q · x2m + r · x2m−2
]

(x2−1)

+(s+ rx2m−4 + · · ·+ r)(x2−1)+(t + r) .
(2)

We carry out these divisions in place as follows: recursively

overwrite the array of f coefficients with q and r, recursively

overwrite the array of g coefficients with s and t, and then

simply add the lowest two coefficients from the f array into

every coefficient pair in the g array.

Because the recursive computations for f and g are inde-

pendent, this computation parallelizes. The overall parallel

computation for dividing a length-n polynomial by x2− 1,

assuming n = 2l , proceeds as follows. The computation com-

prises l−1 steps. The first step splits the polynomial into n/4

separate sub-polynomials; each sub-polynomial has degree

less than four. We divide a length-four sub-polynomial by

x2− 1 by adding two coefficients of higher degrees to the

lower two coefficients. We perform these divisions in parallel.

In each subsequent step, we double the sub-polynomial sizes,

and divide sub-polynomials by x2− 1 by adding two coef-

ficients of lower degree from the higher degree parts to the

lower parts of the polynomials as in Equation 2. Since each

step performs n/2 additions, the whole computation costs

n(log2(n)−1)/2 additions.

3.2.4 AVX2 optimization for the R /3 multiplier

Since we use integer arithmetic for Z/3 and integers grow, we

must control the values to prevent overflow. From the AVX2

instruction set, we use the vpshufb instruction to reduce the

values. The instruction reads the lower nibbles as indexes

from single-byte lanes of a register, then replaces the lane

values with those from a 16-entry table, using the four-bit

indexes. Thus, we use vpshufb to reduce integers in [0,16) to

integers in [0,3). We also reduce adjacent nibbles by moving

them to lower positions using bit-shift instructions.

Our software for 16×16 polynomial multiplication actu-

ally performs two independent 16×16 multiplications in the

two xmm lanes of ymm registers, respectively. The approach

avoids the high latency for moving data between different xmm

lanes in Haswell CPUs (see [21, p. 237] for the vperm2i128,

vextracti128, and vinserti128 instructions). Specifically,

our AVX2 multiplier takes two ymm registers as input and out-

puts products in two ymm registers. A ymm register comprises

two polynomials (a,c) where a,c ∈ (Z/3)[x] are stored in

different xmm lanes. Given two ymm inputs (a,c) and (b,d),
the multiplier outputs (abl ,cdl) and (abh,cdh) in two ymm reg-

isters, where a ·b = abl +abh · x
16 and c ·d = cdl + cdh · x

16.

Thus, we avoid the data exchange between xmm lanes.

3.3 Polynomial multiplication in (Z/q)[x]



Problem description and related multiplication. While ap-

plying NTT-based multiplication, NTRU Prime faces two

issues. First, recalling Section 2.1, NTRU Prime works on

the polynomial ring R /q = (Z/q)[x]/(xp − x− 1) where

xp− x−1 is irreducible in (Z/q)[x]; hence, there is no way

to apply FFT tricks on the ring. The standard workaround

is to lift ring elements in R /q to (Z/q)[x], and multiply

the lifted polynomials with an NTT-based multiplication in

(Z/q)[x]/(xN−1) where N ≥ 2p. Since two input polynomi-

als have degree less than p, their product will not overflow the

degree N. After the polynomial multiplication, the product is

reduced with a division by xp− x−1 for the result in R /q.

Secondly, q from the NTRU Prime parameter set is not

a radix-2 NTT friendly prime. For example, q = 4591 in

sntrup761, and since 4591−1 = 2 ·33 ·5 ·17, no simple root

of unity is available for recursive radix-2 FFT tricks. Alkim,

Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih,

Wälde, and Yang [3] presented a non-radix-2 NTT imple-

mentation on (Z/4591)[x]/(x1530−1) for embedded systems.

They performed radix-3, radix-5, and radix-17 NTT stages in

their NTT. We instead use a radix-2 algorithm that efficiently

utilizes the full ymm registers in the Haswell architecture.

The fastest Haswell sntrup software before our work dealt

with the radix-2-NTT-unfriendly q by lifting the coefficients

to Z and then multiplying in (Z/7681)[x] and (Z/10753)[x].
Both 7681 and 10753 are NTT-friendly. This suffices for

“big×small” multiplications for all specified NTRU Prime pa-

rameters: one input is a small element of R /q, coefficients in

{−1,0,1}; the maximum coefficient of a “big×small” prod-

uct is below 7681 ·10753/2 in absolute value.

However, Montgomery’s trick involves general “big×big”

multiplications in R /q. Even if each coefficient for, e.g., q =
4591 is fully reduced to the range [−2295,2295], the prod-

uct here can have coefficients as large as 2295 ·2295 ·761 >
7681 ·10753. One way to handle these multiplications would

be to use more NTT-based multiplications over small moduli,

for example multiplying in (Z/7681)[x] and (Z/10753)[x]
and (Z/12289)[x], but this means 50% more NTTs, plus ex-

tra reductions since 12289 is larger than 10753. We take a

different approach described below.

Our polynomial multiplication. In this section, we present

a multiplication for polynomials in (Z/q)[x] with degree less

than 1024. We first map polynomials to (Z/q)[x]/(x2048−1).
Rather than switching from q to an NTT-friendly prime, we

use Schönhage’s trick (Section 2.3) to manufacture roots of

unity for radix-2 NTTs.

Specifically, define K as the ring (Z/q)[x]/(x64 + 1). We

map (Z/q)[x]/(x2048− 1) to ((Z/q)[y]/(y64− 1))[x]/(x32−
y), lift to (Z/q)[x][y]/(y64−1), and then map to K[y]/(y64−
1). Each 32 consecutive terms of a polynomial in (Z/q)[x]
are thus viewed as an element of K. We segment the original

polynomial of 1024 terms in x into 32 elements in K, associat-

ing each element in K to a new indeterminate y with different

degrees. The remaining problem is to multiply elements of

the ring K[y]/(y64−1).

We use NTTs to multiply in K[y]/(y64− 1), using x as a

primitive 128-th root of unity in K. NTT-based multiplica-

tion applies two NTTs for the input polynomials, performs

component-wise multiplication for the transformed values,

and applies one inverse NTT for the final product. Each NTT

converts one input element in K[y]/(y64−1) into 64 elements

in K, using additions, subtractions, and multiplications by

powers of x. Multiplication by a power of x simply raises the

degree of the polynomial in (Z/q)[x], and then replaces x64+i

by −xi, using negations without any multiplications in Z/q.

After transforming the input polynomials into a list of ele-

ments in K, we perform the component-wise multiplication

for the transformed vectors. The problem now is to multiply

two elements of K = (Z/q)[x]/(x64 +1).

We use Nussbaumer’s trick (Section 2.3) to manufacture

further roots of unity: map K to ((Z/q)[y]/(y8 +1))[x]/(x8−
y), lift to ((Z/q)[y]/(y8 +1))[x], and map to ((Z/q)[y]/(y8 +
1))[x]/(x16−1). The polynomial ring (Z/q)[y]/(y8 +1) sup-

ports a radix-2 NTT of size 16 with a primitive root of unity y.

Since the polynomials are short, we choose Karatsuba’s algo-

rithm for component-wise multiplication in (Z/q)[y]/(y8+1).
We use Montgomery multiplication [25] to calculate modular

products in Z/q.

For sntrup761 and sntrup653, the input polynomials

have degree less than 768, so we truncate some computations

in the NTT algorithm: we apply NTT on the ring K[y]/((y32+
1)(y16− 1)) instead of the original K[y]/(y64− 1). We map

the input polynomials to degree-24 polynomials in K[y], and

calculate the product with a truncated inverse NTT of 48 val-

ues. Our NTT sizes are within 18%, 1%, and 20% of optimal

for 653, 761, and 857 respectively; further truncation is pos-

sible at the expense of some complication in the calculations.

AVX2 optimization for the R /q multiplier. Since the

component-wise multiplication step comprises 48 or 64 mul-

tiplications on K, we perform the multiplications simultane-

ously in different 16-bit lanes of ymm registers. Our software

stores the first Z/q coefficient of 16 elements in K in a ymm

register, stores their second coefficients in a second register,

and so on. In this way, we avoid data movement between the

16-bit lanes inside a ymm register.

To apply this optimization, we first rearrange the coeffi-

cients of a polynomial to different registers with a 16× 16

matrix transposition. Given sixteen degree-15 polynomi-

als (a
(0)
0 + a

(0)
1 x+ · · ·+ a

(0)
15 x15), · · · ,(a

(15)
0 + · · ·+ a

(15)
15 x15),

data in (. . .) represents one ymm register, and we treat a

polynomial in one ymm register as a row of a 16 × 16

matrix. Transposing this matrix rearranges the data to

(a
(0)
0 , · · · ,a

(15)
0 ), · · · ,(a

(15)
15 , · · · ,a

(15)
15 ). Thus, we can fetch a

specific coefficient by accessing its corresponding ymm regis-

ter, while parallelizing 16 polynomial multiplications for the

transposed data.

We use the method in [37] for matrix transposition. The



technique transposes a 2×2 matrix by swapping its two off-

diagonal components. For transposing matrices with larger

dimensions, e.g. 4×4, it first swaps data between two 2×2

off-diagonal sub-matrices, and then performs matrix transpose

for all its four sub-matrices.

3.4 Microbenchmarks: arithmetic

We benchmark our implementation on an Intel Xeon E3-1275

v3 (Haswell), running at 3.5 GHz, with Turbo Boost disabled.

The numbers reported in this section are medians of 3 to 63

measurements, depending on the latency of the operation un-

der measurement. We omit benchmarks here for sntrup653

because it actually uses the same multiplier as sntrup761.

Benchmarks for R /3. We compare cycle counts for R /3

multiplication between our implementation and the best previ-

ous sntrup implementation, round2 in [10], in the following

table.

Parameter Implementation Cycles

sntrup761

this work (Section 3.2) 8183

this work (NTT, Appendix A) 8827

NTRUP round2 (NTT, [10]) 9290

sntrup857

this work (Section 3.2) 12840

this work (NTT, Appendix A) 12533

NTRUP round2 (NTT, [10]) 12887

The best results are from our our Karatsuba-based polyno-

mial multiplication for smaller parameters, and from our NTT

improvements for larger parameters.

Another question is the efficiency of Montgomery’s trick

for inversion in R /3. Recall that, roughly, the trick replaces

one multiplicative inversion by three ring multiplications, one

amortized ring inversion, and one check for zero divisors. We

show benchmarks of these operations in the following table.

Parameter Operation Cycles

sntrup653

Ring inversion 95025

Invertibility check 22553

Ring multiplication 8063

sntrup761

Ring inversion 114011

Invertibility check 9668

Ring multiplication 8183

sntrup857

Ring inversion 160071

Invertibility check 12496

Ring multiplication 12533

We can see the cost of three multiplications and one invertibil-

ity check is less than half of a single inversion in R /3. It is

clear that batch inversion costs less than pure ring inversion,

even for the smallest possible batch size of two.

Benchmarks for R /q. The following table shows the cycle

counts of big×big multiplication and big×small multiplica-

tion in R /q, comparing with the previous best software [10].

Parameter Implementation Cycles

sntrup761

this work (Section 3.3), big×big 25113

this work (Appendix A), big×small 16992

NTRUP round2 [10], big×small 18080

sntrup857

this work (Section 3.3), big×big 32265

this work (Appendix A), big×small 24667

NTRUP round2 [10], big×small 25846

The results show the absolute cycle count of big×big is larger

than big×small multiplication. To evaluate the efficiency of

big×big multiplication, consider if we extend the big×small

multiplication to big×big multiplication, by applying more

internal NTT multiplications. It will result in multiplications

of roughly 3/2 times the current cycle counts, i.e., slower than

big×big multiplication presented in this work.

Since big×small multiplication is faster than big×big, we

use the former as much as possible in batchInv for R /q. Re-

call that Montgomery’s trick for batch inversion replaces one

inversion in R /q by roughly three ring multiplications and

one amortized ring inversion. From the batchInv algorithm

in Section 2.2, we can see the three ring multiplications are

ai · bi−1, ai · ti, and ti · bi−1. Since the input ai is a small ele-

ment, it turns out that only the last is big×big multiplication.

Since the costs for inverting one element in R /q are 576989,

785909, and 973318 cycles for sntrup653, sntrup761, and

sntrup857, respectively, the cost of two big×small and one

big×big multiplication is clearly much less than one inversion

operation.

Benchmarks for batch key generation. We show the bench-

mark results for batch key generation (BatchKeyGen) in Fig-

ure 2. See also Table 3.

The figure shows how increasing n, the key generation

batch size, amortizes the ring inversion cost. Generating a few

dozen keys at once already produces most of the throughput

benefit: for example, generating n = 32 keys takes a total

of 1.4 milliseconds for sntrup761 at 3.5GHz. Generating

n = 128 keys takes a total of 5.2 milliseconds for sntrup761

at 3.5GHz, about 10% better throughput than n = 32.

We adopt BatchKeyGen with batch size n = 32 in our li-

brary, resulting in 156317 Haswell cycles per key.

4 New TLS software layering

At the application level, the goals of our end-to-end experi-

ment are to demonstrate how the new results can be deployed

in real-world conditions, transparently for the end users, and

meet the performance constraints of ubiquitous systems. For

this reason, we developed patches for OpenSSL 1.1.1 to

support post-quantum key exchange for TLS 1.3 connections.

We designed our patches so that any existing application built

on top of OpenSSL 1.1.1 can transparently benefit from the

PQC enhancements with no changes, as the patched version

of OpenSSL retains API/ABI compatibility with the origi-

nal version and acts as a drop-in replacement. This works







implementation for the cryptographic primitive if it is absent.

Otherwise, it overrides the default reference implementation

if it is already included in libcrypto.

4.2 The engNTRU ENGINE

As mentioned in Section 2.5.2 and depicted in Figure 3 and

Figure 4, as part of our end-to-end experiment, we introduce

a new ENGINE, dubbed engNTRU.

We followed the methodology suggested in [36], and we

defer to it for a detailed description of the ENGINE frame-

work, how it integrates with the OpenSSL architecture (par-

tially illustrated in Figure 4), security considerations, and

general motivations to use the ENGINE framework for applied

research. In this section, we highlight how this choice has

two main benefits: it decouples OpenSSL from fast-paced

development in the ecosystem of optimized implementations

for post-quantum primitives, and at the same time it decouples

external libraries implementing novel primitives from the data

types and patterns required for OpenSSL compatibility.

engNTRU builds upon libbecc [15], which is itself de-

rived from libsuola [36]. Similar to both previous works,

engNTRU is also a shallow ENGINE, i.e., it does not con-

tain actual cryptographic implementations for the supported

primitives. Instead, it delegates actual computations to

libsntrup761 and libsntrup857. The functionality pro-

vided by engNTRU includes:

• building as a dynamically loadable module, injecting

support for novel cryptographic primitives transparently

for existing applications;

• supporting generic KEM primitives under the

PKE+NIKE workaround;

• dynamically injecting/replacing support for sntrup761

at run-time, delegating to libsntrup761 for optimized

computation;

• dynamically injecting support for sntrup857 at run-

time, delegating to libsntrup857 for optimized com-

putation;

• mapping the PKE+NIKE workaround back to the stan-

dard KEM API adopted by the implementations of NIST

PQC KEM candidates, including libsntrup*.

Furthermore, similar to libbecc and libsuola, and using

the same terminology, engNTRU supports the notion of multi-

ple providers to interface with the OpenSSL API. Under the

serial_lib provider, each Keygen() operation is mapped

to crypto_kem_keypair(), generating a new key pair on de-

mand as defined by the NIST PQC KEM API. Alternatively,

under the batch_lib provider (which is the default in our ex-

periment), engNTRU supports batch key generation, similar to

libbecc. In the case of libsntrup761 and libsntrup857,

this allows OpenSSL and applications to transparently take

advantage of the performance gains described in Section 3.

Under the batch_lib model, while a process is run-

ning, each sntrup* parameter set is associated with

a thread-safe heap-allocated pool of key pairs. Every

time an application thread requests a new sntrup* key

pair, engNTRU attempts to retrieve a fresh one from the

corresponding pool. For each supported parameter set, it

dynamically allocates a pool, initialized the first time a

key pair is requested. This includes filling the pool, by

calling crypto_kem_sntrup761_keypair_batch() or

crypto_kem_sntrup857_keypair_batch(). Otherwise,

after the first request, engNTRU serves each request by

copying (and then securely erasing from the pool buffer)

the next fresh entry in the pool. After this, if consuming the

key pair emptied the pool, engNTRU fills it again, by calling

the corresponding libsntrup* batch generation function.

This happens synchronously, before returning control to

the application. Storing keys for deferred use adds security

concerns: engNTRU addresses them relying on standard OS

guarantees for the protection of memory contents across

processes and users. On the other hand, the batch strategy

decouples the generation of a key pair from its use in the

application (e.g., an attacker’s connection request), which

complicates many implementation attacks, and results in an

overall positive security impact.

In terms of performance, it is easy to see the advan-

tage of batch_lib over serial_lib from our microbench-

marks in Section 3. With serial_lib, each sntrup761 key

costs 0.4ms on a 2GHz Haswell core. With batch_lib,

within each batch of 32 sntrup761 keys, the first key costs

2.5ms, and the remaining 31 keys each cost 0ms. Note that,

according to video-game designers [16], latencies below

20ms are imperceptible. A series of K sntrup761 keys

costs 0.4Kms from serial_lib and just (0.08K + 2.5)ms

from batch_lib. Similar comments apply to the separate

sntrup857 pool.

As long as API/ABI compatibility is maintained in the

engNTRU/libsntrup* interfaces, further refinements in the

libsntrup* implementations do not require recompiling

and reinstalling engNTRU, nor OpenSSL, nor other com-

ponents of the software ecosystem above. At the same

time, libsntrup761 and libsntrup857 are isolated from

OpenSSL-specific APIs, so they can easily be reused by alter-

native stacks supporting the NIST PQC KEM API. Moreover,

they can retain a lean and portable API, while details like the

handling of pools of batch results, or the sharing model to

adopt, are delegated to the middleware layer.

4.3 Reaching applications transparently

Consulting Figure 4, the purpose of this section is to describe

the extent of the application layer we explored in our study.

In these experiments, we investigated two paths to reach

libssl and libcrypto (and subsequently engNTRU then

libsntrup*). Namely, a networking application dynamically



linking directly, and a separate shared library against which

even higher level applications dynamically link against. More

generally, this approach works for any application which sup-

ports TLS 1.3 by dynamically linking against libssl 1.1.1,

but not for statically linked applications.5

stunnel. For networking applications that do not natively

support TLS, stunnel is an application that provides TLS

tunneling. The two most common deployment scenarios for

stunnel are client mode and server mode.

In client mode, stunnel listens for cleartext TCP connec-

tions, then initiates a TLS session to a fixed server address.

A common use case for client mode would be connecting to

a fixed TLS service from a client application that does not

support TLS. For example, a user could execute the telnet

application (with no TLS support) to connect to a client mode

instance of stunnel, which would then TLS-wrap the con-

nection to a static SMTPS server to securely transfer email.

In server mode, stunnel listens for TLS connections, then

initiates cleartext TCP connections to a fixed server address.

A common use case for server mode would be providing a

TLS service from a server application that does not support

TLS. For example, a user could serve a single static web page

over HTTP with the netcat utility, which stunnel would

then TLS-wrap to serve the content via HTTPS to incoming

connections from e.g. browsers. In this light, stunnel server

mode is one form of TLS termination.

stunnel links directly to OpenSSL for TLS function-

ality, hence the intersection with engNTRU and underlying

libsntrup* is immediate. For example, in stunnel server

mode, this requires no changes to the server application, which

in fact is oblivious to the TLS tunneling altogether.

glib-networking. Similar to how the Standard Template Li-

brary (STL) and Boost provide expanded functionality for

C++ (e.g. data structures, multithreading), Glib is a core C

library for GNOME and GTK applications. Bundled as part

of Glib, one feature of the Gnome Input/Output (GIO) C

library provides an API for networking functionality, includ-

ing low-level BSD-style sockets. For TLS connections, GIO

loads the glib-networking C library, which abstracts away

the backend TLS provider, and presents a unified interface

to callers. Currently, glib-networking supports two such

backends: GnuTLS and OpenSSL. The latter is newer, main-

lined in v2.59.90 (Feb 2019) while the current version as

of this writing is v2.68.1. This is precisely the place where

glib-networking intersects OpenSSL. To summarize, the

modularity of glib-networking regarding TLS backends,

coupled with the layered approach of GIO, allows any ap-

plication utilizing glib-networking for TLS functional-

ity to transparently benefit from ENGINE features, including

engNTRU.

5Although not part of our end-to-end demo described here, we further

validated this by successfully enabling sntrup connections in popular web

servers, such as nginx and Apache httpd, and other applications, without

changes to their sources or their binary distributions.
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Figure 5: Cumulative distributions of handshake performance

under different cryptosystems in a local network. Each curve

represents a key-exchange group, for which we collected 100

samples, in terms of average number of connections per sec-

ond. This metric is extrapolated from measuring the elapsed

wall-clock time over 8192 sequentially established connec-

tions per sample.

One such application, and one highlight of our experiment,

is GNOME Web. Neither Google Chrome nor Mozilla Fire-

fox are capable of this level of modularity. Both browsers

link directly to TLS backends at build time (BoringSSL,

NSS). These do not support dynamically injecting this level

of cryptosystem functionality, necessarily extending to the

TLS layer as well. In general, all other popular browser im-

plementations (we are aware of) require source-code changes

to add any new TLS cipher suite. In our experiments, we

are able to make GNOME Web sntrup761- and sntrup857-

aware with absolutely no changes to its source code, nor

that of glib-networking. Performance-wise, GNOME Web

then transparently benefits from the batch key generation in

libsntrup* through engNTRU, loaded dynamically by the

OpenSSL TLS backend of glib-networking.

4.4 Macrobenchmarks: TLS handshakes

To conclude our end-to-end experiment, we investigated the

impact of enabling post-quantum key exchanges for TLS 1.3

handshakes, as perceived by end users. We considered an

experiment on large-scale deployments like CECPQ1 or

CECPQ2 out of scope for this work, as it would be better

served by a dedicated study. As an alternative, we decided to

evaluate the performance on a smaller and more controlled

environment: namely, a client and a server connected over a

low-traffic Gigabit Ethernet network. We chose to focus on

number of connections per second as the more relevant metric

from the point of view of end users, and used easily accessible



consumer hardware as the platform, to simulate a small office

setup.6

To exercise full control over the sampling process, we de-

veloped a small (about 300 LOC) TLS client built directly

on top of libssl (see Appendix D for a discussion about

in-browser benchmarks). Referring to the diagram in Fig-

ure 3, the end-to-end benchmark replaces epiphany with

this new program, that we dubbed tls_timer. In its main

loop, tls_timer records a timestamp, sequentially performs

a predetermined number of TLS connections, then records a

second timestamp, returning the elapsed wall-clock time. In

the above loop, for each connection, it performs a full TLS 1.3

handshake. Then, the client properly shuts down the connec-

tion, without sending any application data. Hence, the total

elapsed time measured by the client covers the computation

time required by client and server to generate and parse the

content of the exchanged messages. It also includes the time

spent due to transit of packets over the network, and through

userland/kernelspace transitions. In particular, with respect to

cryptographic computations, during the benchmark the client

repeatedly performs Keygen() and Decapsulate() for

the ephemeral key exchange, and RSA-2048 signature ver-

ifications to validate the identity of the server against its

certificate. During the client-measured interval, the server

respectively performs Encapsulate() for the ephemeral

key exchange, and RSA-2048 signature generation for authen-

tication.

As a baseline for comparisons, we used tls_timer to anal-

ogously measure the performance of TLS handshakes using

the most popular TLS 1.3 groups for key exchange: namely,

X25519 and P-256, in their respective ASM-optimized imple-

mentations. These are the fastest software implementations of

TLS 1.3 key-exchange groups shipped in OpenSSL 1.1.1k,

and are widely deployed in production. For these groups,

computation on the client and server differs from the descrip-

tion above exclusively on the ephemeral key exchange, as

both sides perform their respective NIKE Keygen() and

Derive() operations instead of the listed post-quantum

KEM operations, as summarized in Figure 1.

On the server side tls_timer connects to an instance

of stunnel, configured as described above. Technically

stunnel is itself connected to an apache2 HTTP daemon

serving static content on the same host, but as tls_server

does not send any application data, the connection between

stunnel and apache2 is short-lived and does not carry data.

Finally, to minimize noise in the measurements, we disabled

frequency scaling and Turbo Boost on both platforms, termi-

nated most concurrent services and processes on the client and

the server, and isolated one physical core exclusively to each

6The client side is hosted on an Intel Core i7-6700 workstation, running

Ubuntu 20.04.2 with Linux 5.4.0, while the server side is hosted on an AMD

Ryzen 7 2700X workstation, running Ubuntu 18.04.5 with Linux 5.4.0. Both

peers directly connect to the same Gigabit Ethernet L2 switch via their

embedded Gigabit Ethernet NICs.

benchmark process (i.e., tls_timer, stunnel and apache2)

to avoid biases due to CPU contention.

Figure 5 visualizes our experimental results as cumulative

distributions for each tested group. The results show that, in

our implementation, both the recommended sntrup761 pa-

rameter set and the higher security sntrup857 consistently

achieve more connections per second than the optimized im-

plementations of pre-quantum alternatives currently deployed

at large.

One should not conclude that sntrup761 and sntrup857

cost less than ECC overall. The unloaded high-bandwidth net-

work of our experimental environment masks the higher com-

munication costs of the lattice cryptosystems, whereas rea-

sonable estimates of communication costs (see generally Ap-

pendix B) say that every lattice system costs more than ECC.

Nevertheless, our results show that, in terms of computational

costs, we achieve new records when compared with the fastest

implementations of TLS 1.3 key-exchange groups included

in OpenSSL 1.1.1k, while providing higher pre-quantum

security levels and much higher post-quantum security levels

against all known attacks. This significantly reduces the total

sntrup* costs, in effect assigning higher decision-making

weight to size and, most importantly, security.

5 Conclusion

NIST’s ongoing Post-Quantum Cryptography Standardiza-

tion Project poses significant challenges to the cryptology,

applied cryptography, and system security research commu-

nities, to name a few. These challenges span both the aca-

demic and industry arenas. Our work contributes to solving

these challenges in two main directions. (1) In Section 3, we

propose software optimizations for sntrup, from fast SIMD

arithmetic at the lowest level to efficient amortized batch

key generation at the highest level. These are an essential

part of our new libsntrup761 and libsntrup857 libraries.

(2) In Section 4, we demonstrate how to realize these gains

from libsntrup* by developing engNTRU, a dynamically-

loadable OpenSSL ENGINE. We transparently expose it to

the application layer through a light fork of OpenSSL, aug-

mented with sntrup support in TLS 1.3 cipher suites. Our

experiments reach the Gnome Web (epiphany) browser on

the client side and stunnel as a TLS terminator on the server

side—both with no source-code changes. Finally, our end-to-

end macrobenchmarks combine (1) and (2) to achieve more

TLS 1.3 handshakes per second than any software included

in OpenSSL.

CECPQ1 and CECPQ2 were important proof-of-concept

experiments regarding the integration of post-quantum algo-

rithms into selected browser and TLS implementations, but

those experiments suffered from poor reproducibility: the

capabilities and telemetry are only available to major indus-

try players like Google and Cloudflare, so the cryptographic

primitive choice and optimization techniques were dictated



by them as well. Our work demonstrates that establishing a re-

search environment to provide reproducible results is not only

feasible, but achievable with a reasonable workload distribu-

tion, using new TLS software-layering techniques to minimize

complexity at the architecture and system levels.

Availability. In support of Open Science, we provide

several free and open-source software (FOSS) contribu-

tions and research artifacts.7 We released libsntrup761,

libsntrup857, engNTRU, and tls_timer as FOSS. We also

contributed our FOSS implementations of enc and dec to SU-

PERCOP; its API does not support batch keygen at this time.

Lastly, we published our OpenSSL patches and a detailed,

step-by-step tutorial to reproduce our full experiment stack.
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A Further improvements in NTRU Prime soft-

ware

This paper emphasizes a big speedup in sntrup key gen-

eration, and new software layers integrating this speedup

into TLS software. The speedup relies on changing the key-

generation API to generate many keys at once, and providing

one key at a time on top of this requires maintaining state,

which is enabled by the new software layers.

This appendix describes other ways that we have improved

the NTRU Prime software without changing the API. The soft-

ware was already heavily tuned before our work, but some

further streamlining turned out to be possible, for example

reducing sntrup761 enc from 48892 cycles to 46914 cycles

and reducing dec from 59404 cycles to 56241 cycles. More

important than these quantitative speedups is the software

engineering: we considerably simplified the preexisting op-

timized code base for NTRU Prime, especially with the new

NTT compiler described below.

Review of NTRU Prime options. The NTRU Prime pro-

posal specifies various lattice dimensions. Round-1 NTRU

Prime specified only dimension 761. Round-2 NTRU Prime

specified dimensions 653, 761, and 857. Round-3 NTRU

Prime—which appeared after our first announcement of the

OpenSSLNTRU results—also specified 953, 1013, and 1277.

NTRU Prime specifies two cryptosystems: Streamlined

NTRU Prime (sntrup), an example of Quotient NTRU,

and NTRU LPRime (ntrulpr), an example of Product

NTRU. For example, dimension 761 has both sntrup761

and ntrulpr761. The two cryptosystems are almost identical

in key sizes, ciphertext sizes, and Core-SVP security. The

ntrulpr cryptosystems avoid the Quotient NTRU inversions

and have much faster keygen than sntrup, but they have

slower enc and slower dec than sntrup.

Preexisting AVX2-optimized software. The official NTRU

Prime “optimized C software” uses Intel AVX2 instructions

and supports dimensions 653, 761, 857. Some of the code

is shared across sizes except for compile-time selection of q

etc. There is less sharing of the multiplier code across sizes:

dimensions 653 and 761 use mult768.c, which uses size-512

NTTs to multiply 768-coefficient polynomials; dimension

857 uses mult1024.c, which uses size-512 NTTs to multiply

1024-coefficient polynomials. An underlying ntt.c is shared

for computing size-512 NTTs, and the same NTT code is

used for each of the NTT-friendly primes r ∈ {7681,10753},
but multiplication algorithms vary between mult768.c and

mult1024.c: for example, mult768.c uses “Good’s trick” to

reduce a size-1536 NTT to 3 size-512 NTTs, taking advantage

of 3 being odd, while mult1024.c uses a more complicated

method to reduce a size-2048 NTT to 4 size-512 NTTs. The

NTT API allows these 3 or 4 independent size-512 NTTs to be

computed with one function call, reducing per-call overheads

and also reducing the store-to-load-forwarding overheads in

crossing NTT layers.



Improvements. We first built a tool to regenerate 653, 761,

and 857 in the optimized C implementation from a merged

code base. We then added support for 953, 1013, and 1277,

which in previous work had only reference code. This meant,

among other things, building a new mult1280.c to reduce

a size-2560 NTT to 5 size-512 NTTs. Good’s trick is ap-

plicable here since 5 is odd, but we were faced with a new

mini-optimization problem regarding the number of AVX2 in-

structions needed for 5-coefficient polynomial multiplications

modulo r. The best solution we found uses 15 modular multi-

plications, 2 extra reductions, and 34 additions/subtractions.

We then built a new tool to compile concise descriptions of

NTT strategies into optimized NTT software. This tool is anal-

ogous to SPIRAL [30], but handles the extra complications of

NTTs compared to floating-point FFTs, notably the require-

ment of tracking ranges of intermediate quantities so as to

avoid overflows. Note that one should not confuse automated

generation of NTTs with automated generation of multipliers;

it remains challenging to automate code generation for the

type of multipliers that we consider in Section 3.

Armed with this tool, we searched for efficient size-512

NTT strategies to replace the previous ntt.c. We found a

fully vectorizable strategy that avoids all overflows for both

r = 7681 and r = 10753; uses just 6656 16-bit multiplications;

uses just 6976 16-bit additions (counting subtractions as addi-

tions); stores data only every 3 NTT layers; and has only 4

layers of permutation instructions. To put this in perspective,

if each of the 9 NTT layers had 256 modular multiplications,

512 additions, and zero extra modular reductions, then in total

there would be 6912 16-bit multiplications and 6912 16-bit

additions, since each modular multiplication costs 3 16-bit

multiplications and 1 16-bit addition.

B Comparing ntruhrss

CECPQ2’s ntruhrss701 keygen, like OpenSSLNTRU’s

sntrup761/sntrup857 keygen, is bottlenecked by inversion.

Conceptually, everything this paper does for sntrup can also

be done for ntruhrss, starting with converting a batch of 32

ntruhrss inversions into 1 inversion plus 93 multiplications.

This appendix explains two factors making this strategy less

attractive for ntruhrss compared to sntrup.

First, a reasonable estimate, based on a close look at the

underlying algorithms, is that there would be only about a

2× speedup from ntruhrss keygen to batched ntruhrss

keygen, much less than the speedup we achieve for sntrup.

The reason is as follows. Unbatched keygen is bottle-

necked by inversion, and ntruhrss exploits one of its de-

sign decisions—a power-of-2 modulus, which sntrup avoids

because of security concerns—for a specialized type of in-

version algorithm, a “Hensel lift”. Batched keygen is instead

bottlenecked by multiplication, and benefits much less from

a power-of-2 modulus. The Hensel speedup would still be

measurable inside the occasional inversion, but batch size 32

compresses this speedup by a factor 32. One can see some

speedup from sntrup761 to ntruhrss701 in multiplications

(because of the modulus and the lower ntruhrss701 security

level), but the ultimate difference in keygen speeds will be

an order of magnitude smaller than the difference in keygen

speeds before this paper.

Second, the network-traffic-vs.-security-level trade-off is

worse for ntruhrss than for sntrup. For example, Ta-

ble 1 shows that ntruhrss701 sends 3.6% more traffic than

sntrup761, despite having only 89% of the security level

(Core-SVP 2136 vs. 2153).

An existing cost model estimates that 1000 CPU cycles

have the same cost as communicating a byte of data: e.g.,

a quad-core 3GHz server has the same cost as a 100Mbps

Internet connection. An easy calculation from Table 1 con-

cludes that higher-security sntrup761 would still cost 1.8%

below ntruhrss701 in this model even after a 2× speedup in

ntruhrss701 keygen. Making ntruhrss competitive with

sntrup, accounting for the security level, would require not

just this speedup but also focusing on environments where

communication is more than 10× cheaper.

C Barrett reduction correctness

Recalling Section 3.1.1, Barrett reduction estimates g/ fi as

h = ⌊g/ fi⌋. Then it calculates the remainder as r = g− g ·
⌊g/ fi⌋ · fi. We compute the difference between (g/ fi) · fi and

⌊g/ fi⌋ · fi. It is the remainder r if the difference has degree

less than deg( fi).
Using the pre-computation xDg = qx · fi + rx, we have

g/ fi = g · (xDg/ fi) ·1/xDg = g · (qx− rx/ fi) ·1/xDg .

We compute the difference

(g/ fi) · fi−⌊g/ fi⌋ · fi

= (g ·qx/xDg −
⌊

g ·qx/xDg
⌋

) · fi−g(rx/ fi) fi/xDg .
(3)

Define h =
⌊

g ·qx/xDg
⌋

= ⌊g/ fi⌋ and l = g ·qx/xDg − h.

The term (g ·qx/xDg −
⌊

g ·qx/xDg
⌋

) · fi = l · fi in Equation 3

has degree less than deg( fi). The other term g(rx/ fi) fi/xDg

also has degree less than deg( fi), since deg(g) < Dg and

deg(rx)< deg( fi).

D More on benchmarks

Batch key-generation microbenchmarks. Table 3 shows the

performance and key pair storage of BatchKeyGen regarding

various batch sizes n.

In-browser handshake macrobenchmarks. Section 4.4 de-

scribed how we developed tls_timer, a dedicated handshake

benchmarking client, to measure the end-to-end performance

of OpenSSLNTRU. The need to fully control the sampling



Table 3: Performance of BatchKeyGen regarding various batch sizes n.
n 1 2 4 8 16 32 64 128

sntrup653

amortized cost† 778218 438714 295150 229429 180863 164260 152737 147821

latency† 778218 877428 1180600 1835432 2893808 5256300 9775160 18921036

key pair storage‡ 2512 5024 10048 20096 40192 80384 160768 321536

memory footprint‡⋆ 30432 36184 54808 65432 85880 127672 211480 378424

sntrup761

amortized cost† 819332 567996 351329 242043 181274 156317 147809 141411

latency† 819332 1135992 1405316 1936340 2900380 5002124 9459748 18100592

key pair storage‡ 2921 5842 11684 23368 46736 93472 186944 373888

memory footprint‡⋆ 117200∗ 38608 58040 70456 94584 143288 240536 435512

sntrup857

amortized cost† 1265056 708104 458562 322352 255815 216618 201173 193203

latency† 1265056 1416208 1834248 2578812 4093040 6931748 12875024 24729872

key pair storage‡ 3321 6642 13284 26568 53136 106272 212544 425088

memory footprint‡⋆ 38648 45520 65176 78840 106392 161216 270912 490336

† (Haswell cycle). ‡ (Byte). ⋆ Benchmark with ‘valgrind --tool=massif --stacks=yes’.
∗ The implementation uses the ‘jump-div-step’ optimization in [11], consuming more stack space.

process with tls_timer, arose after an initial attempt to mea-

sure the end-to-end performance from within the GNOME

Web browser. Specifically, we originally designed the exper-

iment to let the browser first connect to a web server via

stunnel to retrieve a static HTML page. This in turn embed-

ded JavaScript code to open and time a number of connections

in parallel to further retrieve other resources from a web server.

We designed these resources to:

• have short URI to minimize application data in the client

request, which length-wise is dominated by HTTP head-

ers outside of our control;

• have randomized URI matching a “rewrite rule” on the

web server, mapping to the same file on disk. This al-

lows the server to cache the resource and skip repeated

file system accesses, while preventing browser optimiza-

tions to avoid downloading the same URI repeatedly or

concurrently;

• be short, comment-only, JavaScript files, to minimize

transferred application data from the server, and, on the

browser side, the potential costs associated with parsing

and rendering pipelines.

Unfortunately, this approach proved to be unfruitful, as the

recorded measures were too coarse and noisy. This is mostly

due to the impossibility of completely disabling caching on

the browser through the JavaScript API and developer options,

delayed multiplexing of several HTTP requests over a single

TLS connection, ignored session keep-alive settings, and, pos-

sibly, the effect of intentionally degraded clock measurements

when running JavaScript code fetched from a remote origin.

E OpenSSL: software architecture

Section 4.1 details the part of our contributions consist-

ing of a set of patches that applies to the source code

of OpenSSL 1.1.1. We designed our patches to provide

full API and ABI compatibility with binary distributions of

OpenSSL 1.1.1, while transparently enabling linking appli-

cations to perform post-quantum key exchanges in TLS 1.3

handshakes. The description of details of our contribution

relies on various technical concepts regarding OpenSSL; this

appendix reviews this background.

Illustrated in Figure 4, as a library to build external applica-

tions, OpenSSL is divided into two software libraries, namely

libcrypto and libssl. The former provides cryptographic

primitives and a set of utilities to handle cryptographic objects.

The latter implements support for TLS 1.3 and other proto-

cols, deferring all cryptographic operations and manipulation

of cryptographic objects to libcrypto.

Due to its legacy, libcrypto exposes a wide programming

interface to users of the library, offering different levels of

abstraction. Currently, the recommended API for external

applications and libraries (including libssl) to perform most

cryptographic operations is the EVP API. See https://www.

openssl.org/docs/man1.1.1/man7/evp.html.

The EVP API, especially for public key cryptography,

offers a high degree of crypto agility. It defines ab-

stract cryptographic key objects, and functions that op-

erates on them, in terms of generic operations (e.g.,

EVP_PKEY_encrypt()/EVP_PKEY_decrypt()). This lets the

libcrypto framework pick the algorithm matching the key

type and the best implementation for the application platform.

Using the API appropriately, a developer can write code that

is oblivious to algorithm selection. That is, leaving algorithm

adoption choices to system policies in configuration files, or

in the creation of the serialized key objects fed to libcrypto.

In this work, we patch libssl to support the negotiation

of KEM groups over TLS 1.3, mapping KEM operations over

the existing EVP API. The API itself does not include ab-

stractions for the Encapsulate() and Decapsulate()

KEM primitives.
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