OpenSSLNTRU: Faster post-quantum TLS key exchange

Daniel J. Bernstein!-2, Billy Bob Brumley3, Ming-Shing Chen?, and Nicola Tuveri>
authorcontact-opensslntru@box.cr.yp.to
! Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA
2Ruhr University Bochum, Bochum, Germany
3Tampere University, Tampere, Finland

Abstract

Google’s CECPQ1 experiment in 2016 integrated a
post-quantum key-exchange algorithm, newhope1024, into
TLS 1.2. The Google-Cloudflare CECPQ2 experiment in
2019 integrated a more efficient key-exchange algorithm,
ntruhrss701, into TLS 1.3.

This paper revisits the choices made in CECPQ2, and
shows how to achieve higher performance for post-quantum
key exchange in TLS 1.3 using a higher-security algorithm,
sntrup761. Previous work had indicated that nt ruhrss701
key generation was much faster than sntrup761 key genera-
tion, but this paper makes sntrup761 key generation much
faster by generating a batch of keys at once.

Batch key generation is invisible at the TLS protocol layer,
but raises software-engineering questions regarding the diffi-
culty of integrating batch key exchange into existing TLS li-
braries and applications. This paper shows that careful choices
of software layers make it easy to integrate fast post-quantum
software, including batch key exchange, into TLS with minor
changes to TLS libraries and no changes to applications.

As a demonstration of feasibility, this paper reports suc-
cessful integration of its fast sntrup761 library, via a lightly
patched OpenSSL, into an unmodified web browser and an
unmodified TLS terminator. This paper also reports TLS 1.3
handshake benchmarks, achieving more TLS 1.3 handshakes
per second than any software included in OpenSSL.

1 Introduction

The urgency of upgrading TLS to post-quantum encryption
has prompted a tremendous amount of work. There were al-
ready 69 proposals for post-quantum cryptography (PQC) sub-
mitted to NIST’s Post-Quantum Cryptography Standardiza-
tion Project in 2017, including 49 proposals for post-quantum
encryption. Each proposal included complete software imple-
mentations of the algorithms for key generation, encryption,
and decryption. Given the cryptographic agility of TLS, one
might imagine that TLS software can simply pick a post-

quantum algorithm and use it. Constraints that make this
more difficult than it sounds include the following:

* Performance: Post-quantum algorithms can send much
more data than elliptic-curve cryptography (ECC), and
can take many more CPU cycles. Performance plays a
“large role” [27] in the NIST standardization project.
Integration: Many assumptions about how cryptogra-
phy works are built into the TLS protocol and existing
TLS software. These range from superficial assumptions
about the sizes of objects to more fundamental structural
assumptions such as the reliance of TLS 1.3 upon “Diffie—
Hellman”—a key-exchange data flow not provided by
any of the proposals for NIST standardization.

Security: 30 of the 69 proposals were broken by the end
of 2019 [9]. New attacks continue to appear: e.g., [6]
uses under a single second of CPU time to break any
ciphertext sent by the “Round2” lattice-based proposal.

In July 2020, the NIST project began its third round [1],
selecting 4 “finalist” and 5 “alternate” encryption proposals
to consider for standardization at the end of the round and
after a subsequent round. Meanwhile, there have been various
experiments successfully integrating post-quantum encryp-
tion systems into TLS. The proposals that have attracted the
most attention, and that are also the focus of this paper, are
“small” lattice proposals. These include

* three of the finalist proposals (Kyber [4], NTRU [17],
and SABER [5]), although NIST says it will standardize
at most one of these three;

* one of the alternate proposals (NTRU Prime);

* the newhopel024 algorithm [2] used inside Google’s
CECPQ1 experiment in 2016; and

* the ntruhrss701 algorithm (a variant of one of the al-
gorithms in the NTRU proposal) used inside the Google-
Cloudflare CECPQ2 experiment in 2019.

These are called “small” because they use just a few kilobytes
for each key exchange—much more traffic than ECC, but
much less than many other post-quantum proposals.



Table 1: Cryptographic features of the post-quantum com-
ponents of CECPQ?2 (previous work) and OpenSSLNTRU
(this paper). Core-SVP in the table is pre-quantum
Core-SVP (see [12, Section 6]); post-quantum Core-SVP
has 10% smaller exponents. See [13] regarding cyclo-
tomic concerns. The ntruhrss701 cycle counts are from
supercop-20210423 [10] on hiphop (Intel Xeon E3-1220
V3). The sntrup761 cycle counts are old—new, where “old”
shows the best sntrup761 results before our work and “new”
shows results from this paper’s freely available software; Ap-
pendix A presents the slight enc and dec speedups, and Sec-
tion 3 presents the large keygen speedup.

CECPQ2 | OpenSSLNTRU
cryptosystem ntruhrss701 sntrup761
key+-ciphertext bytes 2276 2197
keygen cycles 269191 | 814608—156317
enc cycles 26510 48892—46914
dec cycles 63375 59404—56241
Core-SVP security 2136 2153
cyclotomic concerns yes no

1.1 Contributions of this paper

This paper introduces OpenSSLNTRU, an improved in-
tegration of post-quantum key exchange into TLS 1.3.
OpenSSLNTRU improves upon the post-quantum portion
of CECPQ?2 in two ways: key-exchange performance and
TLS software engineering. These are linked, as explained
below. OpenSSLNTRU offers multiple choices of key sizes;
for concreteness we emphasize one option, sntrup761 [12],
to compare to CECPQ2’s ntruhrss701.

Each of ntruhrss701/sntrup761 is a “key-encapsulation
mechanism” (KEM) consisting of three algorithms: a key-
generation algorithm generates a public key and a correspond-
ing secret key; an “encapsulation” algorithm, given a public
key, generates a ciphertext and a corresponding session key; a
“decapsulation” algorithm, given a secret key and a ciphertext,
generates the corresponding session key. The key exchange
at the beginning of a TLS session involves one keygen, one
enc, and one dec. Before our work, both KEMs already had
software optimized for Intel Haswell using AVX2 vector in-
structions; keygen was 3.03 x slower for sntrup761 than for
ntruhrss701, making total keygen+enc+dec 2.57 x slower.

One can remove keygen cost by reusing a key for many
TLS sessions (see Section 2.5.2). This paper instead directly
addresses the speed problem with sntrup761 key genera-
tion, by making sntrup761 key generation much faster. Our
sntrup761 software outperforms the latest ntruhrss701
software, and at the same time sntrup761 has a higher secu-
rity level than ntruhrss701. See Table 1.

The main bottleneck in sntrup761 key generation is com-
putation of certain types of inverses. This paper speeds up
those inversions using “Montgomery’s trick”, the simple idea

of computing two independent inverses 1/a and 1/b as br and
ar respectively, where r = 1/ab. Repeating this trick converts,
e.g., 32 inversions into 1 inversion plus 93 multiplications.

This paper generates a batch of 32 independent keys, com-
bining independent reciprocals across the batch. This batch
size is large enough for inversion time to mostly disappear,
and yet small enough to avoid creating problems with latency,
cache misses, etc. We designed new algorithms and software
to optimize sntrup761 multiplications, since the multipli-
cations used previously were “bigxsmall” multiplications
while Montgomery’s trick needs “bigxbig” multiplications;
see Section 3.

A new key sent through TLS could have been generated
a millisecond earlier, a second earlier, or a minute earlier;
this does not matter for the TLS protocol. However, for TLS
software, batching keys is a more interesting challenge, for
two reasons. First, key generation is no longer a pure stateless
subroutine inside one TLS session, but rather a mechanism
sharing state across TLS sessions. Second, the TLS software
ecosystem is complicated (and somewhat ossified), with many
different applications using many different libraries, so the
same state change needs to be repeated in many different
pieces of TLS software.

To address the underlying problem, this paper introduces
a new choice of software layers designed to decouple the
fast-moving post-quantum software ecosystem from the TLS
software ecosystem. The point of these layers is that optimiza-
tion of post-quantum software does not have to worry about
any of the complications of TLS software, and vice versa. As a
case study demonstrating the applicability of these layers, this
paper describes successful integration of its new sntrup761
library, including batch key generation, into an existing web
browser communicating with an existing TLS terminator, us-
ing OpenSSL on both ends. This demo involves no changes
to the web browser, no changes to the TLS terminator, and
very few changes to OpenSSL.

The integration of OpenSSLNTRU into TLS means that,
beyond microbenchmarks, we can and do measure full
TLS handshake performance. The bottom line is that, in
a controlled and reproducible end-to-end lab experiment,
sntrup761 completes more sessions per second than com-
monly deployed pre-quantum NIST P-256, and even com-
pletes more sessions per second than commonly deployed
pre-quantum X25519 (see Section 4.4). This remains true
even when we replace sntrup761 with higher-security
sntrup857.

2 Background

2.1 Polynomial rings in NTRU Prime

Streamlined NTRU Prime [12], abbreviated sntrup, uses
arithmetic in finite rings R /3 = (Z/3)[x]/(x? —x—1) and
R /g = (Z/q)x)/(x” — x— 1), where ®, = Z[x]/(x? —x—1).



The parameters p, g are chosen so that & /¢ is a field.

Short means the set of polynomials in & that are small,
meaning all coefficients in {—1,0, 1}, and weight w, meaning
that exactly w coefficients are nonzero, where w is another
parameter. The parameters (p,q,w) are (653,4621,288),
(761,4591,286), (857,5167,322) for the KEMs sntrup653,
sntrup761, sntrup857 respectively.

2.2 Montgomery’s trick for batch inversion

In this section, we review Montgomery’s trick for batch inver-
sion [24] as applied to many inputs. The algorithm batchInv
takes n elements (aj,as,...,a,) in a ring, and outputs their
multiplicative inverses (al_1 ,ay L ...,a;'). Montgomery’s
trick for batch inversion proceeds as follows:

1. Let by = a; and compute b; = ;- b;_| foriin (2,...,n).
After n — 1 multiplications, we obtain

(b1,bay...,by) = (a1,a1-az,a1-az-as,.... 11 a;) .
2. Compute the single multiplicative inverse
~1 ~1
tn=b, = (lia)”" .

3. Compute ¢; =1;-b;—1 and t;_; =t;-a; for i in (n,...,2).
After 2n — 2 multiplications, we have two lists

(a,',...,a;") and

(Cnye--y02)

(taets.t2ot) = (Ml a) ™" (@ a0) arh)

4. Output (al_l,az_l,...,a,jl).
In summary, the algorithm uses 3n — 3 multiplications and
one inversion to compute n inverses.

2.3 NTT-based multiplication

This section reviews techniques for polynomial multiplica-
tion commonly used in lattice-based cryptography. We adopt
terminology from [7].

The number theoretic transform (NTT) algorithm maps an
element in a polynomial ring into values by lifting the ring
element to a polynomial and evaluating the polynomial on a
particular set. An NTT-based multiplication algorithm applies
NTTs to two input elements in the polynomial ring, performs
component-wise multiplication for the transformed values,
and applies an inverse NTT, converting the multiplied values
back to the product in the same form of inputs.

Computing a size-n NTT, where n is a power of 2, com-
prises log, n stages of the radix-2 FFT trick. Given a poly-
nomial ring (Z/q)[x]/(x" — b*) where b € Z/q, the FFT trick
maps elements in (Z/q)[x]/(x" — b?) to ((Z/q)[x]/(x*? —
b)) x ((Z/q)[x]/(x"* +b)). Due to the Chinese remainder

theorem (CRT), the mapping is invertible when 2b is in-
vertible. Specifically, let f = fo+ fix+ -+ f_1xX""! €
(Z/q)[x]/ (" — b?). The trick maps f to

(f mod (¥ +b) , f mod (¥/% —b))
:((fO _bfn/Z) +--t (fn/2—1 - bfn—l)xnﬂil;
(fO +bﬁ1/2) + (fn/Zfl +bfu1 )xn/271)

with n multiplications by b, n/2 additions, and n/2 subtrac-
tions. Setting b = 1, by recursively applying the FFT trick,
an NTT transforms f into a list f = (fo,...,fj,...,fn,l) €
(Z/q)" where f; = f mod (x —y/) = Y=} fiy'/, and y €
Z./q is a primitive n-th root of unity, i.e., y*/? = —1.

When Z/q lacks appropriate roots of unity, Schonhage’s
trick [31] manufactures them by introducing an interme-
diate polynomial ring. Given f € (Z/q)[x]/(x*"" — 1), the
trick first introduces a new variable y = x” and maps f
from (Z/q)[x]/ (™ — 1) to (Z/g)[xy]/ (¥ — 1))/ (" -
y). Then, it lifts f to (Z/q)[x][y]/(y** — 1), which is a poly-
nomial in variable y with coefficients in (Z/q)[x]. Since the
coefficients of f are polynomials with degree less than m,
it is safe to map them to (Z/q)[x]/(x*" + 1) such that co-
efficient multiplication needs no reduction by x> 4 1. Now
x € (Z/q)[x]/(x*"+1) is a primitive 4m-th root of unity, since
x2m - 1.

Nussbaumer’s trick [28] is another method to manu-
facture roots of unity. Given f € (Z/q)[x]/(x*™ — 1),
the trick maps f to ((Z/q)[y]/(y*" + 1))[x]/(x™ — y), lifts

to ((Z/q)ly]/(y*" + 1))[x]. and maps to ((Z/q)[y]/(y" +
1)[x]/(x** — 1) for n > m. As noted in [7], Nussbaumer’s

trick sometimes uses slightly smaller ring extensions than
Schonhage’s trick, but Schonhage’s trick is more cache-
friendly, since it uses contiguous data in x.

2.4 The AVX2 instruction set

Since NIST specified Intel Haswell CPU as its highest pri-
ority platform for performance evaluation [26], we optimize
sntrup for the Haswell architecture in this work.

Specifically, we target the Advanced Vector Extensions 2
(AVX2) instruction set. AVX is a single-instruction-multiple-
data (SIMD) instruction set in modern (decade or less) x86
CPUs. It provides sixteen 256-bit ymm registers; each ymm
register splits into two 128-bit xmm lanes. The instruction set
treats data in ymm registers as lanes (independent partitions)
of 32x8-bit, 16x 16-bit, 8 x32-bit, etc.; every instruction op-
erates simultaneously on the partitioned data in the ymm reg-
isters. In 2013, the Haswell architecture extended AVX to
AVX2 for enhanced integer operations.

2.5 Related works



2.5.1 NTT-based multiplication in other PQC finalists

Among the lattice based KEM of NIST’s finalists, Kyber [4]
operates in a radix-2 NTT friendly polynomial ring and imple-
ments NTT-based multiplication in the proposal. SABER [5]
and NTRU [17] operate in polynomial rings with a power-
of-two modulus which are considered NTT-unfriendly. The
earlier implementations of two schemes used a combination
of Toom-4 and Karatsuba based polynomial multiplication.
Recently, [18] showed that NTT-based multiplication out-
performs previous Toom-Cook multiplication for implement-
ing NTT-unfriendly SABER and most parameters of NTRU.
To use NTT-based multiplication in an NTT-unfriendly ring,
they raise the coefficients to a combination of several NTT-
friendly polynomial rings, perform several NTT-based multi-
plications, and map back to original ring with CRT. For NTRU
on the AVX2 platform, they reported significant improvement
for parameters with polynomials of degree greater then 700.
For Saber, they also reported a pronounced performance gain
although the degree of polynomials are only 255. It is because
the matrix-vector multiplication allows them to save the input
NTT transforms for the elements in the common vector which
performs inner products with different rows in the matrix.

2.5.2 Integrating cryptographic primitives

Related to OpenSSLNTRU, several previous works studied
integrations between post-quantum implementation and real
world applications and protocols.

The Open Quantum Safe (OQS) project [34] includes a
library of quantum-resistant cryptographic algorithms, and
prototype integrations into protocols and applications. It also
includes (and requires) a fork of the OpenSSL project. Con-
versely, in our contribution we apply a minimal patchset, striv-
ing to maintain API and ABI compatibility with the OpenSSL
version available to the end-users. This avoids the need of re-
compiling existing applications to benefit from the new library
capabilities. While [34] focused primarily on key agreement,
the OQS OpenSSL fork does also support signatures and cer-
tificates using post-quantum algorithms, and their negotiation
in TLS. See [29] for a study, conducted using OQS, bench-
marking post-quantum TLS authentication. We also note that
the end-to-end experiment we present in this paper is limited
to one candidate and two sets of parameters (sntrup761 and
sntrup857), while the OQS project provides implementa-
tions for all finalists.

Similarly, the PQClean project [22] collects a number of
implementations for the candidates. However, it does not
aim to include integration into higher-level applications or
protocols.

CECPQ?2 actually included two experiments: CECPQ2a
used ntruhrss701, while CECPQ2b used an isogeny-based
proposal. Compared to ntruhrss701, the isogeny-based pro-
posal had smaller keys and smaller ciphertexts, but used much

more CPU time, so it outperformed CECPQ2a only on the
slowest network connections.

In general, the importance of a few kilobytes depends on
the network speed and on how often the application creates
new TLS sessions. A typical multi-megabyte web page is un-
likely to notice a few kilobytes, even if it retrieves resources
from several TLS servers. A session that encrypts a single
DNS query is handling far less data, making the performance
of session establishment much more important. Similar com-
ments apply to CPU time.

Schwabe, Stebila, and Wiggers [32] present an alter-
native to the TLS 1.3 handshake to solve both key ex-
change and authentication using post-quantum KEM. In
contrast, for our experiment we aimed at full compatibil-
ity with the TLS 1.3 ecosystem, focusing exclusively on
the key exchange. This ensures post-quantum confiden-
tiality, but does not address the post-quantum authentica-
tion concerns. Therefore, showcasing how at the protocol
level our experiment does not alter the TLS 1.3 message
flow, in Figure | we only highlight the cryptographic op-
erations and material involved in the key exchange—carried
in the ClientHello and ServerHello messages—while
keys and signatures used for authentication—as part of the
Certificate and CertificateVerify messages—do not
address post-quantum concerns.

Our approach to OpenSSL integration via an ENGINE mod-
ule is based on the methodology suggested in [36], where
the authors instantiated 1ibsuola. In this context, an ENGINE
module is a a dynamically loadable module. Using a dedicated
API, such a module is capable of injecting new algorithms or
overriding existing ones. The implementations it provides can
be backed by a hardware device, or be entirely software based.
Our new ENGINE, engNTRU, builds upon libbecc [15], which
is itself derived from 1ibsuola. Both previous works applied
the ENGINE framework to integrate alternative ECC imple-
mentations. The latter is particularly close to engNTRU, as it
also featured a transparent mechanism to handle batch key
generation. Section 4.2 details how engNTRU evolved from
these works and the unique features it introduces.

Shacham and Boneh [33] integrated RSA batching to im-
prove SSL handshake performance already in 2001. However,
their methodology required integrating changes directly in the
server application. In contrast, OpenSSLNTRU acts on the
middleware level, transparent to client and server applications.

Comparison table. Based on the previous discussions in this
section, Table 2 compares select TLS integration experiments
regarding post-quantum algorithms.

The “Hybrid” criterion tracks approaches that simultane-
ously protect the key agreement with “traditional” (usually
ECC) and post-quantum encryption (see, e.g., [14, 35]). This
paper does not make recommendations for or against hybrids;
our performance and software-engineering contributions are
equally applicable to hybrid and non-hybrid scenarios. Fig-
ure 1 illustrates how any NIKE system can be transformed



Table 2: Comparison of select TLS integration experiments.

OQS | CECPQ2 | KEMTLS | OpenSSLNTRU
Hybrid! opt.” yes no no
PFS? yes yes yes yes
PQ-sec. key agmt.3| yes yes yes yes
PQ-sec. auth.* opt. no yes no
TLS 1.3 compat.’ yes yes no yes
Binary compat.® no no no yes

! Key-agreement uses ECC and post-quantum encryption.

2 Key-agreement provides Perfect Forward Secrecy.

3 Post-quantum security over TLS key agreement.

4 Post-quantum security over TLS authentication, inherently limited by
access to PQ PKI.

5 Requires no breaking changes to the TLS 1.3 message flow.

6 ABI compatible, to easily integrate into the existing software ecosystem.

7 [34] presents experimental results for both post-quantum and hybrid
KEMs. Using the OQS fork of OpenSSL, the choice of supported KEMs
and order of preference is left to developers and system administrators.

into an equivalent KEM construction; a protocol that supports
key exchange via KEM can support hybrid handshakes by
simply composing two or more underlying KEMs to obtain a
hybrid KEM.

The “PFS” criterion tracks approaches that provide the
traditional notion of Perfect Forward Secrecy w.r.t. the key
agreement phase of the handshake. Different experiments
take post-quantum security into consideration at different
cryptosystem components, tracked by the “key agreement”
and “authentication” criteria. The latter comes with the caveat
that the extent to which PQ authentication is achieved is in-
herently limited by access to a fully post-quantum Public Key
Infrastructure (PKI). In the specific case of the Internet Web
PKI, client and server need to share a chain of certificates up
to a common root of trust, entirely signed with PQ algorithms.
Some experiments require breaking changes to the TLS 1.3
message flow, depicted in Figure 1; “compatibility” tracks
this criterion. Lastly, our work is the only experiment we are
aware of that achieves ABI compatibility (“Binary”) to easily
integrate into the existing software ecosystem.

3 Batch key generation for sntrup

This section presents batch key generation for sntrup and
its optimization. Section 3.1 shows the batch key generation
algorithm with Montgomery’s inversion-batching trick. Sec-
tion 3.2 and Section 3.3 present our polynomial multiplication
and its optimization in (Z/3)[x] and (Z/q)[x], respectively.
Section 3.4 shows the benchmark results.

3.1 Batch key generation

The sntrup key generation algorithm KeyGen outputs an
sntrup key pair. It proceeds as follows:

1. Generate a uniform random small element g € R . Repeat
this step until g is invertible in R /3.

Server

Client

Keygen()~(Cok, Csk);

Cryptographic properties

Only the key exchange
adopts post-quantum
algorithms: OpenSSLNTRU
provides post-quantum
confidentiality and perfect
forward secrecy, but does
not address post-quantum
authentication concerns.

Encapsulate(Cpk)-(ct, ss)

Legend

(Cpk, Csk): Client's public

and secret ephemeral keys
(Spk, Ssk): Server's public
and secret ephemeral keys

{Finishaqs === » AL

[AppIicaiiieds, ct: ciphertext
cation Datay | ss: shared secret

-------- = oatal

[Application b 7 KEM operations

Figure 1: Overview of a full TLS 1.3 handshake. In
OpenSSLNTRU, the traditional NIKE operations are replaced
with KEM operations. Besides dedicated NamedGroup code-
points, this is transparent to TLS 1.3 messages as key_share
payloads are opaque. As OpenSSL 1.1.1 does not offer
an API for KEM operations, our patch uses the described
PKE+NIKE workaround when one of the supported KEM
groups is negotiated.

Compute 1/gin R /3.

Generate a uniform random f € Short.

Compute 1 =g/(3f) in R /q.

Output (h,(f,1/g)) where h is the public key and
(f,1/g) € Short x R /3 is the secret key.

A

Algorithm 1 (BatchKeyGen) batches sntrup key gener-
ation. We use two lists for storing n batches of g € R and
f € Short, then process the n batches of computation in one
subroutine. The key idea is to replace the 2n inversions by
two batchInv for R /3 and R /g, respectively. As seen in
Section 2.2, batchInv turns » inversions into 3n — 3 multi-
plications and one inversion. Considering performance, ring
multiplication then becomes the critical part. Hence, Sec-
tion 3.2 and Section 3.3 present optimized ring multiplication
implementations, used in batchInv.

Another difference is the invertibility check in & /3 for
the element g. Previous NTRU Prime software checks invert-
ibility as a side effect of computing 1/g with a constant-time
algorithm [11] for extended GCD. Calling bat chInv removes
this side effect and requires a preliminary check for invertibil-



ity of each g. In Section 3.1.1 we optimize an isInvertible
subroutine for this test.

Algorithm 1 BatchKeyGen

Input : an integer n

Output: n key pairs of sntrup

G+ []

F+[]

while len(G) <ndo
g & R/3 > $: uniform random
if not isInvertible( g ) : continue

& short

G .append(g)

F .append(f)
end while

G + batchInv(G)

F + batchInv([3-f for f € F])

H<+ [g-feR/qforge G, feF]

: return [(h,(f,3))forh€ H,f € F,g € G

> an empty list

R AT A -~ A

— =
W N = O

3.1.1 Invertibility check for elements in & /3

At a high level, we check the invertibility of an element g €
R /3 by computing its remainder of division by the irreducible
factors of x” —x— 1 modulo 3, as suggested in [12, p. 8]. This
section optimizes this computation.

For convenience, we always lift the ring element g to its
polynomial form g € (Z/3)[x] in this section. In a nutshell,
if g mod f; = 0 for any factor f; of x” —x — 1, then g is not
invertible in R /3.

We calculate the remainder of g mod f; with Barrett reduc-
tion [23]. Suppose the polynomial x” —x — 1 € (Z/3)[x] has
m irreducible factors (fi,..., fi), e, ¥’ —x—1=TI", f;.
Given a polynomial g € (Z/3)[x] and p > deg(g) > deg(f;),
we calculate the reminder r = g mod f; as follows. In the
pre-computation step, choose Dy > deg(g) and Dy, > deg(f;),
and calculate g, as the quotient of the division xDs /fi, ie.,
gx = |xP¢/f;|, where the floor function |-] removes the
negative-degree terms from a series. In the online step, com-
pute i = | g- g« /x| = |g/f;]. i.e., the quotient of the divi-
sion g-g./xPs. Finally, return the remainder r = g — h- f;. We
show this gives the correct r in Appendix C.

Some observations about the degree of polynomials
help to accelerate the computation. While computing 7 =
|g- qx/xP¢ |, we compute only terms with degree in the inter-
val [0,Dy), since r = g — h- f; uses terms exclusively from
this interval for deg(r) < deg(f;).

In the case of sntrup761, the polynomial f = x’6! —
x—1 € (Z/3)[x] has three factors, with degrees deg(fi) =
19, deg(f>) = 60, and deg(f3) = 682, respectively. We
choose Dy, = 32, Dy, = 64, and D, = 768 for computing
g mod fy and g mod f;. For computing g mod f3, we note

the pre-computed quotient g, = |x"%8 /(x%82 4+ ... ) | satisfies
deg(q.) = 88. Hence, the multiplication & = |g- ¢ /x"%®] in-
volves deg(g) = 768 and deg(q,) = 88 polynomials. By par-
titioning the longer polynomial into several shorter segments,
we perform the multiplication by several polynomial multi-
plications of length equal to the shorter polynomial (less than
128). Therefore, to check invertibility, we use polynomial
multiplications in (Z/3)[x] with lengths in {32,64,128}.

3.2 Polynomial multiplication in (Z/3)|x]

In this section, we describe our multiplication in (Z/3)[x] for
sntrup, and its optimization in the AVX2 instruction set.

Based on the polynomial lengths, we implement polyno-
mial multiplication with different algorithms. We build a
16 x 16 polynomial multiplier as a building block for school-
book multiplication. We then use Karatsuba to build longer
multipliers, such as 32 x 32, 64 x 64, and further 2i % 2! For
3.256 x 3-256 multiplications, we start from Bernstein’s 5-
way recursive algorithm [8] for (Z/2)[x] and optimize the
same idea for (Z/3)[x].

3.2.1 Base polynomial multiplier

For representing (7 /3)[x] polynomials, we adjust the values
of coefficients to unsigned form and store polynomials as byte
arrays, with one coefficient per byte. For example, we store
the polynomial ag + - -- +as5x'> € (Z/3)[x] as a byte array
(ap,ai,...,ars) in a 16-byte xmm register.

Besides a byte array, we can view a polynomial as an in-
teger by translating the monomial x = 256. For example, a
degree-3 polynomial ag + ajx + axx* + azx> maps to the 32-
bit integer ag +ay - 28 +as - 21 + a3 - 2%,

In this 32-bit format, we can perform a 4 x 4 — 8 poly-
nomial multiplication using a 32 x 32 — 64 integer multipli-
cation, taking care to control the coefficient values. While
calculating the polynomial product (ag + a1x + ax* +azx>) -
(b +b1x+byx* +b3x®) with a 32 x 32 — 64 integer multipli-
cation, if all coefficients a;,b; € {0,1,2}, a term’s maximum
possible value is };, i3 a;b jx3 < 16, fitting in a byte. Hence,
we use 4 x 4 polynomial multiplication (i.e., 32 x 32 — 64
integer multiplication), as our building block to implement
16 x 16 polynomial multiplication with the schoolbook algo-
rithm.

3.2.2 Multiplying polynomials of length 3n

This section reduces a multiplication of 3n-coefficient poly-
nomials in (Z/3)[x] to 5 multiplications of ~n-coefficient
polynomials, while optimizing the number of additions us-
ing techniques analogous to Bernstein’s optimizations [8] for
(Z/2)[x]. This section also streamlines the computation for
<(3n — 1)-coefficient polynomials, as in sntrup.



Take two polynomials Fy + Fit 4 F>t? and Gy + Gt + Gat?
in (Z/3)[x], where deg(F;) < n, deg(G;) < n, and r = x". Their
product H = Hy + Hit + Hot? + H3t3 + Hyt* can be recon-
structed by the projective Lagrange interpolation formula

H =H(0) (t— 1)(H; 1)(t—x) +H(1)t(t +xlz(i—x)

tt—1)(t—x) tt—1)(+1)
x+1 x(x—1)(x+1)

+H(eo)t(t—1)(t+1)(t—x) .

FH(-1) +H(x)

Here

H(0) = Fo - Go,
H(1) (F0+F1+F2) (Go+G1+Gy),
H(-1)=(Fh—F+F) (Go— G +G,),
H(x) = (Fo+ Fix+ Fx?) - (Go 4+ Gi1x + G2x?), and
H(w)=F-G,

are the only five polynomial multiplications in the algorithm.
These polynomials expand from n to 2n terms, except H (x).
H simplifies to

H=H(0)—[U+(H(1)—H(-1))]-1
—[HO)+ (H(1)+H(=1))+H(e)]- 1> (1)

1
+U -3+ H (o) 1*
where U =V + H(0)/x — H(e) - x and

(H)+H(-1))-x+H()—H(-1))+H(x)/x

vV —
x2—1

There are two tricky issues while computing V. First,
deg(H(x)) < 2n+ 2, introducing extra complexity since all
other polynomials have degree less than 2n. By requiring
deg(F>) <n—2anddeg(Gy) <n—2, we force deg(H(x)) <
2n. Since H(x) is only used as H(x)/x in V, we can always
process polynomials with degree less than 2.

The other issue concerns computing divisions by x> — 1
in (Z/3)[x]. Since long division is a sequential process and
not efficient in SIMD settings, we now present a divide-and-
conquer method for it.

3.2.3 Division by x> — 1 on (Z/3)[]

Dividing a polynomial f by x> — 1 means producing a repre-
sentation of f = g- (x> — 1)+ r, where g and r = ryx + rg are
the quotient and remainder, respectively. Assume that we have
recursively divided two 2m-coefficient polynomials f and g
by x> — 1, obtaining f =¢- (x> —1)+randg=s- (x> — 1) +1.
Then

2m __ (rx2m72_~_rx2m74+rx2m76+.___"_r)(xZ_1)+r ,

r-Xx

so the result of dividing f - x*" +g by (x*> — 1) is

f'X2m+g: [q‘x2m+r'x2m—2} (x271)

+ s+ ) (=D (7). @
We carry out these divisions in place as follows: recursively
overwrite the array of f coefficients with g and r, recursively
overwrite the array of g coefficients with s and ¢, and then
simply add the lowest two coefficients from the f array into
every coefficient pair in the g array.

Because the recursive computations for f and g are inde-
pendent, this computation parallelizes. The overall parallel
computation for dividing a length-n polynomial by x> — 1,
assuming n = 2/, proceeds as follows. The computation com-
prises [ — 1 steps. The first step splits the polynomial into n/4
separate sub-polynomials; each sub-polynomial has degree
less than four. We divide a length-four sub-polynomial by
x*> — 1 by adding two coefficients of higher degrees to the
lower two coefficients. We perform these divisions in parallel.
In each subsequent step, we double the sub-polynomial sizes,
and divide sub-polynomials by x> — 1 by adding two coef-
ficients of lower degree from the higher degree parts to the
lower parts of the polynomials as in Equation 2. Since each
step performs n/2 additions, the whole computation costs
n(log,(n) — 1)/2 additions.

3.24 AVX2 optimization for the % /3 multiplier

Since we use integer arithmetic for Z /3 and integers grow, we
must control the values to prevent overflow. From the AVX2
instruction set, we use the vpshufb instruction to reduce the
values. The instruction reads the lower nibbles as indexes
from single-byte lanes of a register, then replaces the lane
values with those from a 16-entry table, using the four-bit
indexes. Thus, we use vpshufb to reduce integers in [0, 16) to
integers in [0, 3). We also reduce adjacent nibbles by moving
them to lower positions using bit-shift instructions.

Our software for 16 x 16 polynomial multiplication actu-
ally performs two independent 16 x 16 multiplications in the
two xmm lanes of ymm registers, respectively. The approach
avoids the high latency for moving data between different xmm
lanes in Haswell CPUs (see [21, p. 237] for the vperm2i128,
vextractil128, and vinsertil28 instructions). Specifically,
our AVX2 multiplier takes two ymm registers as input and out-
puts products in two ymm registers. A ymm register comprises
two polynomials (a,c) where a,c € (Z/3)[x] are stored in
different xmm lanes. Given two ymm inputs (a,c) and (b,d),
the multiplier outputs (ab;,cd;) and (aby, cdy) in two ymm reg-
isters, where a-b = ab; + aby, - x'® and ¢ - d = cd; + cdj, - x'°.
Thus, we avoid the data exchange between xmm lanes.

3.3 Polynomial multiplication in (Z/q) x|



Problem description and related multiplication. While ap-
plying NTT-based multiplication, NTRU Prime faces two
issues. First, recalling Section 2.1, NTRU Prime works on
the polynomial ring R /q = (Z/q)[x]/(x? —x — 1) where
xP —x — 1 is irreducible in (Z/q)[x]; hence, there is no way
to apply FFT tricks on the ring. The standard workaround
is to lift ring elements in R /g to (Z/q)[x], and multiply
the lifted polynomials with an NTT-based multiplication in
(Z/q)[x]/(x" — 1) where N > 2p. Since two input polynomi-
als have degree less than p, their product will not overflow the
degree N. After the polynomial multiplication, the product is
reduced with a division by x? —x — 1 for the result in & /g.

Secondly, g from the NTRU Prime parameter set is not
a radix-2 NTT friendly prime. For example, g = 4591 in
sntrup761, and since 4591 — 1 = 2-33.5.17,no simple root
of unity is available for recursive radix-2 FFT tricks. Alkim,
Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih,
Wiilde, and Yang [3] presented a non-radix-2 NTT imple-
mentation on (Z/4591)[x]/(x'33° — 1) for embedded systems.
They performed radix-3, radix-5, and radix-17 NTT stages in
their NTT. We instead use a radix-2 algorithm that efficiently
utilizes the full ymm registers in the Haswell architecture.

The fastest Haswell snt rup software before our work dealt
with the radix-2-NTT-unfriendly g by lifting the coefficients
to Z and then multiplying in (Z/7681)[x] and (Z/10753)]x].
Both 7681 and 10753 are NTT-friendly. This suffices for
“bigx small” multiplications for all specified NTRU Prime pa-
rameters: one input is a small element of & /g, coefficients in
{-1,0,1}; the maximum coefficient of a “bigx small” prod-
uct is below 7681 - 10753 /2 in absolute value.

However, Montgomery’s trick involves general “bigxbig
multiplications in R /q. Even if each coefficient for, e.g., g =
4591 is fully reduced to the range [—2295,2295], the prod-
uct here can have coefficients as large as 2295 -2295-761 >
7681 - 10753. One way to handle these multiplications would
be to use more NTT-based multiplications over small moduli,
for example multiplying in (Z/7681)[x] and (Z/10753)|x]
and (Z/12289)[x], but this means 50% more NTTs, plus ex-
tra reductions since 12289 is larger than 10753. We take a
different approach described below.

LL)

Our polynomial multiplication. In this section, we present
a multiplication for polynomials in (Z/q)|[x] with degree less
than 1024. We first map polynomials to (Z/q)[x]/(x**8 — 1).
Rather than switching from ¢ to an NTT-friendly prime, we
use Schonhage’s trick (Section 2.3) to manufacture roots of
unity for radix-2 NTTs.

Specifically, define K as the ring (Z/q)[x]/(x** +1). We
map (Z/q)[x]/ (2% — 1) to (Z/q)D]/(6* — 1)x)/ (2 -
y)s lift to (Z/q)[x][y]/ (v** — 1), and then map to K[y]/(y** —
1). Each 32 consecutive terms of a polynomial in (Z/q)|x]
are thus viewed as an element of K. We segment the original
polynomial of 1024 terms in x into 32 elements in K, associat-
ing each element in K to a new indeterminate y with different
degrees. The remaining problem is to multiply elements of

the ring K[y]/(y** —1).

We use NTTs to multiply in K[y]/(y** — 1), using x as a
primitive 128-th root of unity in K. NTT-based multiplica-
tion applies two NTTs for the input polynomials, performs
component-wise multiplication for the transformed values,
and applies one inverse NTT for the final product. Each NTT
converts one input element in K[y]/(y%* — 1) into 64 elements
in K, using additions, subtractions, and multiplications by
powers of x. Multiplication by a power of x simply raises the
degree of the polynomial in (Z/q)[x], and then replaces x5+
by —x/, using negations without any multiplications in Z/q.

After transforming the input polynomials into a list of ele-
ments in K, we perform the component-wise multiplication
for the transformed vectors. The problem now is to multiply
two elements of K = (Z/q)[x]/(x%* +1).

We use Nussbaumer’s trick (Section 2.3) to manufacture
further roots of unity: map K to ((Z/q)[y]/(y® +1))[x]/(x® —

¥). lift to ((Z/q)[y}/(* +1))[x], and map to ((Z/q) ]/ +
1))[x]/(x'® — 1). The polynomial ring (Z/q)[y]/(y® + 1) sup-
ports a radix-2 NTT of size 16 with a primitive root of unity y.
Since the polynomials are short, we choose Karatsuba’s algo-
rithm for component-wise multiplication in (Z/q)[y]/(y® +1).
We use Montgomery multiplication [25] to calculate modular
products in Z/q.

For sntrup761 and sntrup653, the input polynomials
have degree less than 768, so we truncate some computations
in the NTT algorithm: we apply NTT on the ring K[y]/((y** +
1)(y'% — 1)) instead of the original K[y]/(y** — 1). We map
the input polynomials to degree-24 polynomials in K[y], and
calculate the product with a truncated inverse NTT of 48 val-
ues. Our NTT sizes are within 18%, 1%, and 20% of optimal
for 653, 761, and 857 respectively; further truncation is pos-
sible at the expense of some complication in the calculations.

AVX2 optimization for the X /¢ multiplier. Since the
component-wise multiplication step comprises 48 or 64 mul-
tiplications on K, we perform the multiplications simultane-
ously in different 16-bit lanes of ymm registers. Our software
stores the first Z/q coefficient of 16 elements in K in a ymm
register, stores their second coefficients in a second register,
and so on. In this way, we avoid data movement between the
16-bit lanes inside a ymm register.

To apply this optimization, we first rearrange the coeffi-
cients of a polynomial to different registers with a 16 x 16
matrix transposition. Given sixteen degree-15 polynomi-
als (a(()o) + ago)x+ R ag?xls), “e ,(aéls) + +a§155) 15),
data in (...) represents one ymm register, and we treat a
polynomial in one ymm register as a row of a 16 x 16
matrix. Transposing this matrix rearranges the data to
(a(()o), e ,aéw)),m ,(aglss),w 7a<1155)). Thus, we can fetch a
specific coefficient by accessing its corresponding ymm regis-
ter, while parallelizing 16 polynomial multiplications for the
transposed data.

We use the method in [37] for matrix transposition. The



technique transposes a 2 x 2 matrix by swapping its two off-
diagonal components. For transposing matrices with larger
dimensions, e.g. 4 x 4, it first swaps data between two 2 x 2
off-diagonal sub-matrices, and then performs matrix transpose
for all its four sub-matrices.

3.4 Microbenchmarks: arithmetic

We benchmark our implementation on an Intel Xeon E3-1275
v3 (Haswell), running at 3.5 GHz, with Turbo Boost disabled.
The numbers reported in this section are medians of 3 to 63
measurements, depending on the latency of the operation un-
der measurement. We omit benchmarks here for sntrup653
because it actually uses the same multiplier as sntrup761.

Benchmarks for R /3. We compare cycle counts for K /3
multiplication between our implementation and the best previ-
ous sntrup implementation, round?2 in [10], in the following
table.

Parameter Implementation Cycles
this work (Section 3.2) 8183

sntrup761 | this work (NTT, Appendix A) 8827
NTRUP round2 (NTT, [10]) 9290

this work (Section 3.2) 12840

sntrup857 | this work (NTT, Appendix A) | 12533
NTRUP round2 (NTT, [10]) 12887

The best results are from our our Karatsuba-based polyno-
mial multiplication for smaller parameters, and from our NTT
improvements for larger parameters.

Another question is the efficiency of Montgomery’s trick
for inversion in & /3. Recall that, roughly, the trick replaces
one multiplicative inversion by three ring multiplications, one
amortized ring inversion, and one check for zero divisors. We
show benchmarks of these operations in the following table.

Parameter Operation Cycles
Ring inversion 95025

sntrup653 Invertibility check 22553
Ring multiplication 8063

Ring inversion 114011

sntrup761 Invertibility check 9668
Ring multiplication 8183

Ring inversion 160071

sntrup857 Invertibility check 12496
Ring multiplication 12533

We can see the cost of three multiplications and one invertibil-
ity check is less than half of a single inversion in & /3. It is
clear that batch inversion costs less than pure ring inversion,
even for the smallest possible batch size of two.

Benchmarks for % /g. The following table shows the cycle
counts of bigxbig multiplication and big x small multiplica-
tion in R /¢, comparing with the previous best software [10].

Parameter Implementation Cycles
this work (Section 3.3), bigxbig 25113
sntrup761 | this work (Appendix A), bigxsmall | 16992
NTRUP round2 [10], bigx small 18080
this work (Section 3.3), bigxbig 32265
sntrup857 | this work (Appendix A), bigxsmall | 24667
NTRUP round2 [10], bigxsmall 25846

The results show the absolute cycle count of big xbig is larger
than big x small multiplication. To evaluate the efficiency of
big x big multiplication, consider if we extend the bigxsmall
multiplication to bigxbig multiplication, by applying more
internal NTT multiplications. It will result in multiplications
of roughly 3/2 times the current cycle counts, i.e., slower than
big xbig multiplication presented in this work.

Since big x small multiplication is faster than bigxbig, we
use the former as much as possible in batchInv for & /¢. Re-
call that Montgomery’s trick for batch inversion replaces one
inversion in K /¢ by roughly three ring multiplications and
one amortized ring inversion. From the batchInv algorithm
in Section 2.2, we can see the three ring multiplications are
ai-bi_1,a;-t;, and t; - b;_1. Since the input g; is a small ele-
ment, it turns out that only the last is big xbig multiplication.
Since the costs for inverting one element in R /g are 576989,
785909, and 973318 cycles for sntrup653, sntrup761, and
sntrup857, respectively, the cost of two bigxsmall and one
big xbig multiplication is clearly much less than one inversion
operation.

Benchmarks for batch key generation. We show the bench-
mark results for batch key generation (Bat chKeyGen) in Fig-
ure 2. See also Table 3.

The figure shows how increasing n, the key generation
batch size, amortizes the ring inversion cost. Generating a few
dozen keys at once already produces most of the throughput
benefit: for example, generating n = 32 keys takes a total
of 1.4 milliseconds for sntrup761 at 3.5GHz. Generating
n = 128 keys takes a total of 5.2 milliseconds for sntrup761
at 3.5GHz, about 10% better throughput than n = 32.

We adopt BatchKeyGen with batch size n = 32 in our li-
brary, resulting in 156317 Haswell cycles per key.

4 New TLS software layering

At the application level, the goals of our end-to-end experi-
ment are to demonstrate how the new results can be deployed
in real-world conditions, transparently for the end users, and
meet the performance constraints of ubiquitous systems. For
this reason, we developed patches for OpenSSL 1.1.1 to
support post-quantum key exchange for TLS 1.3 connections.
We designed our patches so that any existing application built
on top of OpenSSL 1.1.1 can transparently benefit from the
PQC enhancements with no changes, as the patched version
of OpenSSL retains API/ABI compatibility with the origi-
nal version and acts as a drop-in replacement. This works
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Figure 2: BatchKeyGen metrics regarding various batch sizes
(n). Top: full batch cost in CPU cycles. Middle: amortized
cost in CPU cycles, dividing by n. Bottom: memory footprint,
i.e., heap+stack usage, in kilobytes.

for any application dynamically linking against 1ibssl as
the backend to establish TLS 1.3 connections. Among them,
for our demonstration, we picked a web browser', a custom
application (t 1s_t imer, described later), and a TLS proxy.”
After installing our patched version of OpenSSL, users can
establish secure and fast post-quantum TLS connections.

Appendix E provides relevant technical background re-
garding the OpenSSL software architecture. The rest of this
section describes, with more detail, our work to achieve the
goals of our experiment, and provides rationale for the most
relevant design decisions.

Figure 3 depicts a high-level overview of our end-to-end
experiment, highlighting the boundary between the unmod-
ified software ecosystem and our novel contributions. This
section details, in particular, our OpenSSL patches and our
new ENGINE component. libsntrup761 and libsntrup857
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Figure 3: Overview of our end-to-end experiment.

provide the new optimized implementations of sntrup761
and sntrup857 operations (Section 3), through a simple stan-
dardized API that is independent from OpenSSL, and reusable
by other cryptographic software components.

4.1 OpenSSL patches

Figure 4 depicts an architecture diagram of our end-to-end
experiment, highlighting with red boxes inside the 1ibcrypto
and 1ibssl modules, the patched OpenSSL components.

libssl changes. Within 1ibssl, conceptually three ele-
ments need to be changed:

* Modify the server-side handling of the key_share exten-
sion in an outgoing ServerHello to conditionally use a
KEM Encapsulate () operation for KEM groups;

* Modify the client-side handling of the key_share exten-
sion in an incoming ServerHello to conditionally use
a KEM Decapsulate () operation for KEM groups;

* Hardcode private NamedGroup TLS 1.3 codepoints to
negotiate sntrup761 or sntrup857 groups for key ex-
change.

As OpenSSL 1.1.1 does not provide an abstrac-
tion for KEM primitives, we implemented the first
two changes as a workaround, to which we refer
as PKE+NIKE. It maps the KEM operations as a
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Figure 4: Architecture diagram of the end-to-end experiment,
derived from [36, Figure 2]. The red boxes within 1ibssl and
libcrypto represent patches applied to OpenSSL 1.1.1 to
enable our post-quantum KEM experiment over TLS 1.3. The
striped sntrup761 ref box represents the optional patch
to also include a reference implementation for sntrup761
inside libcrypto. When loaded, engNTRU overrides it with
the optimized implementation from 1ibsntrup761.

combination of public-key encryption (PKE) and non-
interactive key exchange (NIKE).” We combine the use
of EVP_PKEY_encrypt () with NULL input, followed by
EVP_PKEY_derive() to mimic Encapsulate (), and
EVP_PKEY_decrypt () with NULL output, followed by
EVP_PKEY_derive () for Decapsulate (). Due to the
structure of the PKE+NIKE workaround, on both sides of
the handshake, handling the key_share extension for KEM
groups finishes with the call for EVP_PKEY_derive (), before
updating the protocol key schedule. This is also the case in the
original code that supports traditional NIKE. Therefore, the
new code only affects the handling of the opaque key_share
content transmitted over the wire.

As depicted in Figure 1, on the server side, traditional NIKE
groups generate an ephemeral key pair, sending the encoded
public key as the payload of the extension. With our patch,

3Generally speaking, the EVP API supports any NIKE algorithm. But
historically, DH and ECDH have been the only implementations included in
OpenSSL for this API. Hence, code and documentation tend to refer to such
primitives as DH key exchange or just key exchange rather than NIKE.

if the group is flagged as a KEM group, instead of key gen-
eration we execute EVP_PKEY_encrypt () under the client’s
public key with NULL input. We then send the resulting cipher-
text as the payload of the key_share extension. As a side ef-
fect, per our PKE+NIKE workaround, EVP_PKEY_encrypt ()
also stores the shared secret plaintext within the internal state
of the server-side object representing the client’s public key.
This plaintext is what is ultimately retrieved upon calling
EVP_PKEY_ derive ().

On the client side, for traditional NIKE groups, the pay-
load of the key_share extensions is parsed as the encod-
ing of the peer’s public key, to be used in the subsequent
EVP_PKEY_derive (). With our patch, if the group is flagged
as a KEM group, instead we treat the key_share payload
as the ciphertext to be used in EVP_PKEY_decrypt () under
the client’s secret key, and with NULL output. The resulting
plaintext is stored in the internal state of the client-side object
representing the client’s key pair. The plaintext shared secret
is ultimately retrieved via EVP_PKEY_derive ().

The last patch alters the 1ibss1 static table of supported
TLS 1.3 groups. It assigns private NamedGroup codepoints to
negotiate sntrup761 or sntrup857 key exchanges, flagged
as KEM groups, and links it to static numeric identifiers (NIDs)
defined within libcrypto headers. These identify implemen-
tations of sntrup761 and sntrup857, as described in the
next paragraph.

liberypto changes. libcrypto 1.1.1 has the ability to
generate NIDs dynamically for custom algorithms unknown
at OpenSSL build time. In contrast, 1ibssl 1.1.1 defines
supported groups in a static table generated during compi-
lation. It is technically possible to inject KEM functionality
(using the PKE+NIKE workaround described above) via a
custom ENGINE without any change to 1ibcrypto. Yet, the
limited support for dynamic customization in 1ibssl adds
the requirement for a libcrypto patch to issue static NIDs
for sntrup761 and sntrup857. This is so they can be in-
cluded in the 1ibss] static table at compile time. For each
parameter set, this patch uses the internal OpenSSL tooling to
issue a novel static NID and associate it with the correspond-
ing sntrup* algorithm and a custom object identifier (0ID),"*
required for serializing and deserializing key objects. With
this data, the tooling updates the public Libcrypto headers,
adding the relevant sntrup* definitions.

Additionally, we include an optional patch for 1ibcrypto
that adds a reference implementation of sntrup761 as a new
libcrypto submodule. Including this patch allows us to test
the implementation provided by engNTRU against the refer-
ence implementation, and also to test the software stack on
the server and the client in absence of the ENGINE. This eases
the debug process during the development of engNTRU. For
the final users of our end-to-end scenario, this patch is en-
tirely optional, as the dynamic ENGINE injects the optimized

“https://www.itu.int/en/ITU-T/asnl/Pages/OID-project.
aspx



implementation for the cryptographic primitive if it is absent.
Otherwise, it overrides the default reference implementation
if it is already included in 1ibcrypto.

4.2 The engNTRU ENGINE

As mentioned in Section 2.5.2 and depicted in Figure 3 and
Figure 4, as part of our end-to-end experiment, we introduce
a new ENGINE, dubbed engNTRU.

We followed the methodology suggested in [36], and we
defer to it for a detailed description of the ENGINE frame-
work, how it integrates with the OpenSSL architecture (par-
tially illustrated in Figure 4), security considerations, and
general motivations to use the ENGINE framework for applied
research. In this section, we highlight how this choice has
two main benefits: it decouples OpenSSL from fast-paced
development in the ecosystem of optimized implementations
for post-quantum primitives, and at the same time it decouples
external libraries implementing novel primitives from the data
types and patterns required for OpenSSL compatibility.

engNTRU builds upon libbecc [15], which is itself de-
rived from libsuola [36]. Similar to both previous works,
engNTRU is also a shallow ENGINE, i.e., it does not con-
tain actual cryptographic implementations for the supported
primitives. Instead, it delegates actual computations to
libsntrup761 and libsntrup857. The functionality pro-
vided by engNTRU includes:

¢ building as a dynamically loadable module, injecting
support for novel cryptographic primitives transparently
for existing applications;

e supporting generic KEM primitives under the
PKE+NIKE workaround;

 dynamically injecting/replacing support for sntrup761
at run-time, delegating to 1ibsntrup761 for optimized
computation;

e dynamically injecting support for sntrup857 at run-
time, delegating to 1ibsntrup857 for optimized com-
putation;

» mapping the PKE+NIKE workaround back to the stan-
dard KEM API adopted by the implementations of NIST
PQC KEM candidates, including 1ibsntrup*.

Furthermore, similar to 1ibbecc and 1ibsuola, and using
the same terminology, engNTRU supports the notion of multi-
ple providers to interface with the OpenSSL API. Under the
serial_lib provider, each Keygen () operation is mapped
to crypto_kem_keypair (), generating a new key pair on de-
mand as defined by the NIST PQC KEM API. Alternatively,
under the batch_1lib provider (which is the default in our ex-
periment), engNTRU supports batch key generation, similar to
libbecc. In the case of 1ibsntrup761 and libsntrup857,
this allows OpenSSL and applications to transparently take
advantage of the performance gains described in Section 3.

Under the batch_lib model, while a process is run-
ning, each sntrup* parameter set is associated with
a thread-safe heap-allocated pool of key pairs. Every
time an application thread requests a new sntrup* key
pair, engNTRU attempts to retrieve a fresh one from the
corresponding pool. For each supported parameter set, it
dynamically allocates a pool, initialized the first time a
key pair is requested. This includes filling the pool, by
calling crypto_kem_sntrup761_keypair_batch() or
crypto_kem_sntrup857_keypair_batch(). Otherwise,
after the first request, engNTRU serves each request by
copying (and then securely erasing from the pool buffer)
the next fresh entry in the pool. After this, if consuming the
key pair emptied the pool, engNTRU fills it again, by calling
the corresponding libsntrup* batch generation function.
This happens synchronously, before returning control to
the application. Storing keys for deferred use adds security
concerns: engNTRU addresses them relying on standard OS
guarantees for the protection of memory contents across
processes and users. On the other hand, the batch strategy
decouples the generation of a key pair from its use in the
application (e.g., an attacker’s connection request), which
complicates many implementation attacks, and results in an
overall positive security impact.

In terms of performance, it is easy to see the advan-
tage of batch_lib over serial_lib from our microbench-
marks in Section 3. With serial_1lib, each sntrup761 key
costs 0.4ms on a 2GHz Haswell core. With batch_lib,
within each batch of 32 sntrup761 keys, the first key costs
2.5ms, and the remaining 31 keys each cost Oms. Note that,
according to video-game designers [16], latencies below
20ms are imperceptible. A series of K sntrup761 keys
costs 0.4Kms from serial_lib and just (0.08K 4 2.5)ms
from batch_lib. Similar comments apply to the separate
sntrup857 pool.

As long as API/ABI compatibility is maintained in the
engNTRU/libsntrup* interfaces, further refinements in the
libsntrup* implementations do not require recompiling
and reinstalling engNTRU, nor OpenSSL, nor other com-
ponents of the software ecosystem above. At the same
time, libsntrup761 and libsntrup857 are isolated from
OpenSSL-specific APIs, so they can easily be reused by alter-
native stacks supporting the NIST PQC KEM API. Moreover,
they can retain a lean and portable API, while details like the
handling of pools of batch results, or the sharing model to
adopt, are delegated to the middleware layer.

4.3 Reaching applications transparently

Consulting Figure 4, the purpose of this section is to describe
the extent of the application layer we explored in our study.
In these experiments, we investigated two paths to reach
libssl and libcrypto (and subsequently engNTRU then
libsntrup*). Namely, a networking application dynamically



linking directly, and a separate shared library against which
even higher level applications dynamically link against. More
generally, this approach works for any application which sup-
ports TLS 1.3 by dynamically linking against 1ibssl 1.1.1,
but not for statically linked applications.’

stunnel. For networking applications that do not natively
support TLS, stunnel is an application that provides TLS
tunneling. The two most common deployment scenarios for
stunnel are client mode and server mode.

In client mode, stunnel listens for cleartext TCP connec-
tions, then initiates a TLS session to a fixed server address.
A common use case for client mode would be connecting to
a fixed TLS service from a client application that does not
support TLS. For example, a user could execute the telnet
application (with no TLS support) to connect to a client mode
instance of stunnel, which would then TLS-wrap the con-
nection to a static SMTPS server to securely transfer email.

In server mode, stunnel listens for TLS connections, then
initiates cleartext TCP connections to a fixed server address.
A common use case for server mode would be providing a
TLS service from a server application that does not support
TLS. For example, a user could serve a single static web page
over HTTP with the netcat utility, which stunnel would
then TLS-wrap to serve the content via HTTPS to incoming
connections from e.g. browsers. In this light, stunnel server
mode is one form of TLS termination.

stunnel links directly to OpenSSL for TLS function-
ality, hence the intersection with engNTRU and underlying
libsntrup* is immediate. For example, in stunnel server
mode, this requires no changes to the server application, which
in fact is oblivious to the TLS tunneling altogether.

glib-networking. Similar to how the Standard Template Li-
brary (STL) and Boost provide expanded functionality for
C++ (e.g. data structures, multithreading), Glib is a core C
library for GNOME and GTK applications. Bundled as part
of Glib, one feature of the Gnome Input/Output (GIO) C
library provides an API for networking functionality, includ-
ing low-level BSD-style sockets. For TLS connections, GIO
loads the glib-networking C library, which abstracts away
the backend TLS provider, and presents a unified interface
to callers. Currently, glib-networking supports two such
backends: GnuTLS and OpenSSL. The latter is newer, main-
lined in v2.59.90 (Feb 2019) while the current version as
of this writing is v2.68.1. This is precisely the place where
glib-networking intersects OpenSSL. To summarize, the
modularity of glib-networking regarding TLS backends,
coupled with the layered approach of GIO, allows any ap-
plication utilizing glib-networking for TLS functional-
ity to transparently benefit from ENGINE features, including
engNTRU.

5 Although not part of our end-to-end demo described here, we further
validated this by successfully enabling sntrup connections in popular web
servers, such as nginx and Apache httpd, and other applications, without
changes to their sources or their binary distributions.
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Figure 5: Cumulative distributions of handshake performance
under different cryptosystems in a local network. Each curve
represents a key-exchange group, for which we collected 100
samples, in terms of average number of connections per sec-
ond. This metric is extrapolated from measuring the elapsed
wall-clock time over 8192 sequentially established connec-
tions per sample.

One such application, and one highlight of our experiment,
is GNOME Web. Neither Google Chrome nor Mozilla Fire-
fox are capable of this level of modularity. Both browsers
link directly to TLS backends at build time (BoringSSL,
NSS). These do not support dynamically injecting this level
of cryptosystem functionality, necessarily extending to the
TLS layer as well. In general, all other popular browser im-
plementations (we are aware of) require source-code changes
to add any new TLS cipher suite. In our experiments, we
are able to make GNOME Web sntrup761- and sntrup857-
aware with absolutely no changes to its source code, nor
that of glib-networking. Performance-wise, GNOME Web
then transparently benefits from the batch key generation in
libsntrup* through engNTRU, loaded dynamically by the
OpenSSL TLS backend of glib-networking.

4.4 Macrobenchmarks: TLS handshakes

To conclude our end-to-end experiment, we investigated the
impact of enabling post-quantum key exchanges for TLS 1.3
handshakes, as perceived by end users. We considered an
experiment on large-scale deployments like CECPQ1 or
CECPQ?2 out of scope for this work, as it would be better
served by a dedicated study. As an alternative, we decided to
evaluate the performance on a smaller and more controlled
environment: namely, a client and a server connected over a
low-traffic Gigabit Ethernet network. We chose to focus on
number of connections per second as the more relevant metric
from the point of view of end users, and used easily accessible



consumer hardware as the platform, to simulate a small office
setup.”

To exercise full control over the sampling process, we de-
veloped a small (about 300 LOC) TLS client built directly
on top of libssl (see Appendix D for a discussion about
in-browser benchmarks). Referring to the diagram in Fig-
ure 3, the end-to-end benchmark replaces epiphany with
this new program, that we dubbed t1s_timer. In its main
loop, t1s_timer records a timestamp, sequentially performs
a predetermined number of TLS connections, then records a
second timestamp, returning the elapsed wall-clock time. In
the above loop, for each connection, it performs a full TLS 1.3
handshake. Then, the client properly shuts down the connec-
tion, without sending any application data. Hence, the total
elapsed time measured by the client covers the computation
time required by client and server to generate and parse the
content of the exchanged messages. It also includes the time
spent due to transit of packets over the network, and through
userland/kernelspace transitions. In particular, with respect to
cryptographic computations, during the benchmark the client
repeatedly performs Keygen () and Decapsulate () for
the ephemeral key exchange, and RSA-2048 signature ver-
ifications to validate the identity of the server against its
certificate. During the client-measured interval, the server
respectively performs Encapsulate () for the ephemeral
key exchange, and RSA-2048 signature generation for authen-
tication.

As a baseline for comparisons, we used t1s_timer to anal-
ogously measure the performance of TLS handshakes using
the most popular TLS 1.3 groups for key exchange: namely,
X25519 and P-256, in their respective ASM-optimized imple-
mentations. These are the fastest software implementations of
TLS 1.3 key-exchange groups shipped in OpenSSL 1.1.1k,
and are widely deployed in production. For these groups,
computation on the client and server differs from the descrip-
tion above exclusively on the ephemeral key exchange, as
both sides perform their respective NIKE Keygen () and
Derive () operations instead of the listed post-quantum
KEM operations, as summarized in Figure 1.

On the server side t1ls_timer connects to an instance
of stunnel, configured as described above. Technically
stunnel is itself connected to an apache2 HTTP daemon
serving static content on the same host, but as t1s_server
does not send any application data, the connection between
stunnel and apache? is short-lived and does not carry data.
Finally, to minimize noise in the measurements, we disabled
frequency scaling and Turbo Boost on both platforms, termi-
nated most concurrent services and processes on the client and
the server, and isolated one physical core exclusively to each

%The client side is hosted on an Intel Core i7-6700 workstation, running
Ubuntu 20.04.2 with Linux 5.4.0, while the server side is hosted on an AMD
Ryzen 7 2700X workstation, running Ubuntu 18.04.5 with Linux 5.4.0. Both
peers directly connect to the same Gigabit Ethernet L2 switch via their
embedded Gigabit Ethernet NICs.

benchmark process (i.e., t 1s_timer, stunnel and apache?2)
to avoid biases due to CPU contention.

Figure 5 visualizes our experimental results as cumulative
distributions for each tested group. The results show that, in
our implementation, both the recommended sntrup761 pa-
rameter set and the higher security sntrup857 consistently
achieve more connections per second than the optimized im-
plementations of pre-quantum alternatives currently deployed
at large.

One should not conclude that sntrup761 and sntrup857
cost less than ECC overall. The unloaded high-bandwidth net-
work of our experimental environment masks the higher com-
munication costs of the lattice cryptosystems, whereas rea-
sonable estimates of communication costs (see generally Ap-
pendix B) say that every lattice system costs more than ECC.
Nevertheless, our results show that, in terms of computational
costs, we achieve new records when compared with the fastest
implementations of TLS 1.3 key-exchange groups included
in OpenSSL 1.1.1k, while providing higher pre-quantum
security levels and much higher post-quantum security levels
against all known attacks. This significantly reduces the total
sntrup* costs, in effect assigning higher decision-making
weight to size and, most importantly, security.

5 Conclusion

NIST’s ongoing Post-Quantum Cryptography Standardiza-
tion Project poses significant challenges to the cryptology,
applied cryptography, and system security research commu-
nities, to name a few. These challenges span both the aca-
demic and industry arenas. Our work contributes to solving
these challenges in two main directions. (1) In Section 3, we
propose software optimizations for sntrup, from fast SIMD
arithmetic at the lowest level to efficient amortized batch
key generation at the highest level. These are an essential
part of our new libsntrup761 and libsntrup857 libraries.
(2) In Section 4, we demonstrate how to realize these gains
from libsntrup* by developing engNTRU, a dynamically-
loadable OpenSSL ENGINE. We transparently expose it to
the application layer through a light fork of OpenSSL, aug-
mented with sntrup support in TLS 1.3 cipher suites. Our
experiments reach the Gnome Web (epiphany) browser on
the client side and stunnel as a TLS terminator on the server
side—both with no source-code changes. Finally, our end-to-
end macrobenchmarks combine (1) and (2) to achieve more
TLS 1.3 handshakes per second than any software included
in OpenSSL.

CECPQ1 and CECPQ2 were important proof-of-concept
experiments regarding the integration of post-quantum algo-
rithms into selected browser and TLS implementations, but
those experiments suffered from poor reproducibility: the
capabilities and telemetry are only available to major indus-
try players like Google and Cloudflare, so the cryptographic
primitive choice and optimization techniques were dictated



by them as well. Our work demonstrates that establishing a re-
search environment to provide reproducible results is not only
feasible, but achievable with a reasonable workload distribu-
tion, using new TLS software-layering techniques to minimize
complexity at the architecture and system levels.

Availability. In support of Open Science, we provide
several free and open-source software (FOSS) contribu-
tions and research artifacts.” We released libsntrup761,
libsntrup857, engNTRU, and t1s_timer as FOSS. We also
contributed our FOSS implementations of enc and dec to SU-
PERCOP; its API does not support batch keygen at this time.
Lastly, we published our OpenSSL patches and a detailed,
step-by-step tutorial to reproduce our full experiment stack.
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A Further improvements in NTRU Prime soft-
ware

This paper emphasizes a big speedup in sntrup key gen-
eration, and new software layers integrating this speedup
into TLS software. The speedup relies on changing the key-
generation API to generate many keys at once, and providing
one key at a time on top of this requires maintaining state,
which is enabled by the new software layers.

This appendix describes other ways that we have improved
the NTRU Prime software without changing the API. The soft-
ware was already heavily tuned before our work, but some
further streamlining turned out to be possible, for example
reducing sntrup761 enc from 48892 cycles to 46914 cycles
and reducing dec from 59404 cycles to 56241 cycles. More
important than these quantitative speedups is the software
engineering: we considerably simplified the preexisting op-
timized code base for NTRU Prime, especially with the new
NTT compiler described below.

Review of NTRU Prime options. The NTRU Prime pro-
posal specifies various lattice dimensions. Round-1 NTRU
Prime specified only dimension 761. Round-2 NTRU Prime
specified dimensions 653, 761, and 857. Round-3 NTRU
Prime—which appeared after our first announcement of the
OpenSSLNTRU results—also specified 953, 1013, and 1277.
NTRU Prime specifies two cryptosystems: Streamlined
NTRU Prime (sntrup), an example of Quotient NTRU,
and NTRU LPRime (ntrulpr), an example of Product
NTRU. For example, dimension 761 has both sntrup761
and ntrulpr761. The two cryptosystems are almost identical
in key sizes, ciphertext sizes, and Core-SVP security. The
ntrulpr cryptosystems avoid the Quotient NTRU inversions
and have much faster keygen than sntrup, but they have
slower enc and slower dec than sntrup.
Preexisting AVX2-optimized software. The official NTRU
Prime “optimized C software” uses Intel AVX?2 instructions
and supports dimensions 653, 761, 857. Some of the code
is shared across sizes except for compile-time selection of ¢
etc. There is less sharing of the multiplier code across sizes:
dimensions 653 and 761 use mult768.c, which uses size-512
NTTs to multiply 768-coefficient polynomials; dimension
857 uses mult1024.c, which uses size-512 NTTs to multiply
1024-coefficient polynomials. An underlying ntt.c is shared
for computing size-512 NTTs, and the same NTT code is
used for each of the NTT-friendly primes r € {7681,10753},
but multiplication algorithms vary between mult768.c and
mult1024.c: for example, mult768.c uses “Good’s trick” to
reduce a size-1536 NTT to 3 size-512 NTTs, taking advantage
of 3 being odd, while mult1024.c uses a more complicated
method to reduce a size-2048 NTT to 4 size-512 NTTs. The
NTT API allows these 3 or 4 independent size-512 NTTs to be
computed with one function call, reducing per-call overheads
and also reducing the store-to-load-forwarding overheads in
crossing NTT layers.



Improvements. We first built a tool to regenerate 653, 761,
and 857 in the optimized C implementation from a merged
code base. We then added support for 953, 1013, and 1277,
which in previous work had only reference code. This meant,
among other things, building a new mult1280.c to reduce
a size-2560 NTT to 5 size-512 NTTs. Good’s trick is ap-
plicable here since 5 is odd, but we were faced with a new
mini-optimization problem regarding the number of AVX2 in-
structions needed for 5-coefficient polynomial multiplications
modulo r. The best solution we found uses 15 modular multi-
plications, 2 extra reductions, and 34 additions/subtractions.

We then built a new tool to compile concise descriptions of
NTT strategies into optimized NTT software. This tool is anal-
ogous to SPIRAL [30], but handles the extra complications of
NTTs compared to floating-point FFTs, notably the require-
ment of tracking ranges of intermediate quantities so as to
avoid overflows. Note that one should not confuse automated
generation of NTTs with automated generation of multipliers;
it remains challenging to automate code generation for the
type of multipliers that we consider in Section 3.

Armed with this tool, we searched for efficient size-512
NTT strategies to replace the previous ntt.c. We found a
fully vectorizable strategy that avoids all overflows for both
r="7681 and r = 10753; uses just 6656 16-bit multiplications;
uses just 6976 16-bit additions (counting subtractions as addi-
tions); stores data only every 3 NTT layers; and has only 4
layers of permutation instructions. To put this in perspective,
if each of the 9 NTT layers had 256 modular multiplications,
512 additions, and zero extra modular reductions, then in total
there would be 6912 16-bit multiplications and 6912 16-bit
additions, since each modular multiplication costs 3 16-bit
multiplications and 1 16-bit addition.

B Comparing ntruhrss

CECPQ2’s ntruhrss701 keygen, like OpenSSLNTRU’s
sntrup761/sntrup857 keygen, is bottlenecked by inversion.
Conceptually, everything this paper does for sntrup can also
be done for ntruhrss, starting with converting a batch of 32
ntruhrss inversions into 1 inversion plus 93 multiplications.
This appendix explains two factors making this strategy less
attractive for ntruhrss compared to sntrup.

First, a reasonable estimate, based on a close look at the
underlying algorithms, is that there would be only about a
2x speedup from ntruhrss keygen to batched ntruhrss
keygen, much less than the speedup we achieve for sntrup.

The reason is as follows. Unbatched keygen is bottle-
necked by inversion, and ntruhrss exploits one of its de-
sign decisions—a power-of-2 modulus, which snt rup avoids
because of security concerns—for a specialized type of in-
version algorithm, a “Hensel lift”. Batched keygen is instead
bottlenecked by multiplication, and benefits much less from
a power-of-2 modulus. The Hensel speedup would still be
measurable inside the occasional inversion, but batch size 32

compresses this speedup by a factor 32. One can see some
speedup from sntrup761 to ntruhrss701 in multiplications
(because of the modulus and the lower nt ruhrss701 security
level), but the ultimate difference in keygen speeds will be
an order of magnitude smaller than the difference in keygen
speeds before this paper.

Second, the network-traffic-vs.-security-level trade-off is
worse for ntruhrss than for sntrup. For example, Ta-
ble 1 shows that ntruhrss701 sends 3.6% more traffic than
sntrup761, despite having only 89% of the security level
(Core-SVP 2136 ys, 2153,

An existing cost model estimates that 1000 CPU cycles
have the same cost as communicating a byte of data: e.g.,
a quad-core 3GHz server has the same cost as a 100Mbps
Internet connection. An easy calculation from Table 1 con-
cludes that higher-security sntrup761 would still cost 1.8%
below ntruhrss701 in this model even after a 2 x speedup in
ntruhrss701 keygen. Making ntruhrss competitive with
sntrup, accounting for the security level, would require not
just this speedup but also focusing on environments where
communication is more than 10x cheaper.

C Barrett reduction correctness

Recalling Section 3.1.1, Barrett reduction estimates g/ f; as
h = |g/f:]. Then it calculates the remainder as r = g—g-
lg/fi| - fi- We compute the difference between (g/f;) - fi and
lg/fi] - fi- It is the remainder r if the difference has degree
less than deg(f;).

Using the pre-computation x

g/fi=g (Ps/fi) 1/xPs = g-(qe—re/fi) - 1/xPs.

We compute the difference

(8/fi)- fi— 8/ fil - fi
= (g-qe/x" — g~ qx/x"¢]) - fi = 8(re/ fi) i/ P2

Define h = |g-qx/xP¢| = |g/fi] and | = g-qx/xPs — h.
The term (g - g /xs — |g-q./xP¢]) - fi = - f; in Equation 3
has degree less than deg(f;). The other term g(r/f;)fi/x"¢
also has degree less than deg(f;), since deg(g) < D, and

deg(ry) < deg(fi)

D¢ — g fi+r,, we have

3)

D More on benchmarks

Batch key-generation microbenchmarks. Table 3 shows the
performance and key pair storage of Bat chKeyGen regarding
various batch sizes n.

In-browser handshake macrobenchmarks. Section 4.4 de-
scribed how we developed t 1s_timer, a dedicated handshake
benchmarking client, to measure the end-to-end performance
of OpenSSLNTRU. The need to fully control the sampling



Table 3: Performance of Bat chKeyGen regarding various batch sizes n.

\ n I 1] 2] 4] 8 ] 16 | 32 ] 64 | 128

amortized cost’ 778218 438714 295150 229429 180863 164260 152737 147821

sntrup653 latency” _ 778218 877428 | 1180600 | 1835432 | 2893808 | 5256300 | 9775160 | 18921036
key pair storage* 2512 5024 10048 20096 40192 80384 160768 321536

memory footprint™ 30432 36184 54808 65432 85880 127672 211480 378424

amortized cost’ 819332 567996 351329 242043 181274 156317 147809 141411

sntrup761 latency” 819332 || 1135992 | 1405316 | 1936340 | 2900380 | 5002124 | 9459748 | 18100592
key pair storage* 2921 5842 11684 23368 46736 93472 186944 373888

memory footprint¥ 117200* 38608 58040 70456 94584 143288 240536 435512

amortized cost’ 1265056 708104 458562 322352 255815 216618 201173 193203

sntrup857 latency" 1265056 || 1416208 | 1834248 | 2578812 | 4093040 | 6931748 | 12875024 | 24729872
key pair storage* 3321 6642 13284 26568 53136 106272 212544 425088

memory footprint* 38648 45520 65176 78840 106392 161216 270912 490336

T (Haswell cycle). * (Byte). * Benchmark with ‘valgrind --tool=massif --stacks=yes’.
* The implementation uses the ‘jump-div-step’ optimization in [11], consuming more stack space.

process with t1s_timer, arose after an initial attempt to mea-
sure the end-to-end performance from within the GNOME
Web browser. Specifically, we originally designed the exper-
iment to let the browser first connect to a web server via
stunnel to retrieve a static HTML page. This in turn embed-
ded JavaScript code to open and time a number of connections
in parallel to further retrieve other resources from a web server.
We designed these resources to:

¢ have short URI to minimize application data in the client
request, which length-wise is dominated by HTTP head-
ers outside of our control;

¢ have randomized URI matching a “rewrite rule” on the
web server, mapping to the same file on disk. This al-
lows the server to cache the resource and skip repeated
file system accesses, while preventing browser optimiza-
tions to avoid downloading the same URI repeatedly or
concurrently;

* be short, comment-only, JavaScript files, to minimize
transferred application data from the server, and, on the
browser side, the potential costs associated with parsing
and rendering pipelines.

Unfortunately, this approach proved to be unfruitful, as the
recorded measures were too coarse and noisy. This is mostly
due to the impossibility of completely disabling caching on
the browser through the JavaScript API and developer options,
delayed multiplexing of several HTTP requests over a single
TLS connection, ignored session keep-alive settings, and, pos-
sibly, the effect of intentionally degraded clock measurements
when running JavaScript code fetched from a remote origin.

E OpenSSL: software architecture

Section 4.1 details the part of our contributions consist-
ing of a set of patches that applies to the source code
of OpenSSL 1.1.1. We designed our patches to provide

full API and ABI compatibility with binary distributions of
OpenSSL 1.1.1, while transparently enabling linking appli-
cations to perform post-quantum key exchanges in TLS 1.3
handshakes. The description of details of our contribution
relies on various technical concepts regarding OpenSSL; this
appendix reviews this background.

Mlustrated in Figure 4, as a library to build external applica-
tions, OpenSSL is divided into two software libraries, namely
libcrypto and libssl. The former provides cryptographic
primitives and a set of utilities to handle cryptographic objects.
The latter implements support for TLS 1.3 and other proto-
cols, deferring all cryptographic operations and manipulation
of cryptographic objects to 1ibcrypto.

Due to its legacy, 1ibcrypto exposes a wide programming
interface to users of the library, offering different levels of
abstraction. Currently, the recommended API for external
applications and libraries (including 1ibss1) to perform most
cryptographic operations is the EVP APIL. See https://www.
openssl.org/docs/manl.1.1/man7/evp.html.

The EVP API, especially for public key cryptography,
offers a high degree of crypto agility. It defines ab-
stract cryptographic key objects, and functions that op-
erates on them, in terms of generic operations (e.g.,
EVP_PKEY_encrypt () /EVP_PKEY_decrypt () ). This lets the
libcrypto framework pick the algorithm matching the key
type and the best implementation for the application platform.
Using the API appropriately, a developer can write code that
is oblivious to algorithm selection. That is, leaving algorithm
adoption choices to system policies in configuration files, or
in the creation of the serialized key objects fed to 1ibcrypto.

In this work, we patch 1ibssl to support the negotiation
of KEM groups over TLS 1.3, mapping KEM operations over
the existing EVP API. The API itself does not include ab-
stractions for the Encapsulate () and Decapsulate ()
KEM primitives.
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