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Figure 1: Example webpages with embedded volume rendering. From left to right: NASA’s education outreach page on supernovae,
a National Weather Service page on hurricane preparedness, the Wikipedia page on supernovae (viewed on a mobile device),
and the Wikipedia page on tornadoes. Each embedded volume render appears as a static image but also allows traditional 3D
interactions such as rotating and zooming, as well transfer function modulation. Additional interactions, such as scripted animation
and linking and unlinking multiple views are also supported.

ABSTRACT

In this paper, we develop a method to encapsulate and embed inter-
active 3D volume rendering into the standard web Document Object
Model (DOM). The package we implemented for this work is called
Tapestry. Using Tapestry, data-intensive and interactive volume
rendering can be easily incorporated into web pages. For example,
we can enhance a Wikipedia page on supernova to contain several
interactive 3D volume renderings of supernova volume data. There
is no noticeable slowdown during the page load by the web browser.
A user can choose to interact with any of the volume renderings of
supernova at will. We refer to each embedded 3D visualization as a
hyperimage. Hyperimages depend on scalable server-side support
where volume rendering jobs are performed and managed elastically.
We show the minimal code change required to embed hyperimages
into previously static web pages. We also demonstrate the support-
ing Tapestry server’s scalability along several dimensions: web page
complexity, rendering complexity, frequency of rendering requests,
and number of concurrent sessions. Using solely standard open-
source components, this work proves that it is now feasible to make
volume rendering a scalable web service that supports a diverse
audience with varying use cases.
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1 INTRODUCTION

Web browsers have gradually become a popular front-end for sci-
entific visualization applications. Many systems exist, such as Par-
aViewWeb [16], ViSUS [24], and XML3D [30]. There are many
reasons driving the trend of merging web technologies into scien-
tific visualization delivery. Namely, the web browser is one of the
most familiar interfaces for users today. It is also readily the most
platform-agnostic client software in modern personal computing.

In traditional systems, the back-end visualization and the front-
end interaction are typically synchronized and centered around one
particular dataset or user at a time. We believe there is potential in
going beyond traditional system designs, by enabling multiple users,
multiple datasets, and simplified platform-agnostic adoption.

In this work, we present a system called “Tapestry”, which ex-
plores the potential of embedding 3D visualizations in web pages
as self-contained DOM elements and focuses on the “scale of audi-
ence.”

Our driving use case stems from publicly accessible websites
utilizing volume visualizations and scientific imagery. Consider the
many knowledge-oriented websites, such as Wikipedia pages about
supernovae and tornadoes, and science-oriented websites, such as
NASA National Snow and Ice Data Center and the NOAA Storm
Prediction Center. Volume visualizations on these websites are static
images. Compared to static images or curated videos, interactive 3D
visualizations can be more engaging for visitors as dissemination
media. They can be educational and help build a stronger bridge
between scientific teams and the public. In addition, our system can
concurrently handle multiple users and datasets. Therefore, it can
also be used for scientific teams to document, share, and discuss
interactive simulation results on the web.



This need is novel, because the set of performance metrics to
consider are not typical of traditional remote visualization research.
Our primary goals are therefore to (i) significantly increase the front-
end simplicity of embedding an interactive visualization into a web
document, and (ii) ensure that the server-side support of the front-
end 3D visualizations can be available on-demand. In our work,
we define front-end simplicity as both minimal code change for
developers and minimal load time and runtime overhead for users,
which is crucial in the web ecosystem. We believe the simplicity
encourages adoption by web developers. This simplicity, along with
the support of an unknown and highly varying volume of users,
requires on-demand availability of the supporting back-end. This
means that the server must be able to transparently scale based on
the number of users and datasets.

Our contribution is twofold. First, we provide the mechanism to
maximize front-end simplicity. Second, we develop a scalable server-
side architecture that ensures on-demand availability for multiple
simultaneous datasets and users. In results, we demonstrate the
efficacy of our method by showing various embedded visualizations
and their capabilities in different web pages. We also show the
performance and scaling of our system under a stress test.

We will discuss the overall background in Section 2, Tapestry’s
web enabled architecture of scientific visualization application in
Section 3, example ways to use Tapestry in existing web pages and
new web applications in Section 4, and results in Section 5. We
conclude and discuss future work in Section 6.

2 BACKGROUND

The advent of D3 [7] has made JavaScript and the Document Object
Model (DOM) the new standard environment for information visual-
ization. Since D3, some previous works in scientific visualization
have also looked at the possibility of web-based visualizations. Most
notably, Visualizer and LightViz use the ParaViewWeb API [16]
and enable exploratory visualization by sending requests to a remote
ParaView process. ParaViewWeb was also successfully integrated
with data management systems, such as MIDAS, to allow for a faster
and more efficient analysis of massive datasets [15]. ViSUS also
enables web-based renderings using a browser plugin backed by a
heavy server, such as the IBM BlueGene [24]. Tamm and Slusallek
used XML3D backed by a cluster to enable realtime ray-tracing in
the browser without a need for a plugin [29, 30]. We have observed
two main points regarding these systems.

First, most systems in the past have relied on browser plugins or
WebGL on the client side. Such solutions come with a long delay
for data transfer during load time, and heavy CPU and memory
footprints during runtime. In addition, for user interactivity, they
have to rely on the user’s own client-side resources. These resources
can range from a workstation to a laptop or even a tablet. Some of
these devices will not have enough resources for rendering.

Second, most traditional visualization systems see the browser
as an OS-independent platform, but still adhere to a one-to-one
mapping between a browser and a dedicated server instance. In
the past, this has been somewhat inevitable due to slower rendering
speeds. With the advent of faster ray-tracers, such as OSPRay [32],
volume rendering can now focus on the “scale of audience” and
benefit from a web ecosystem similar to D3.

With Tapestry, we aim to test and validate that a system can
be engineered such that performance is not limited by client-side
resources. Instead, all constraints are compartmentalized on an
external server, which can be more easily scaled up in terms of hard-
ware and high performance algorithms. The topic of how to best
decompose a visualization pipeline in a remote visualization setting
has been well studied [27, 34]. We contribute a new approach that
allows for an m-to-n relationship, where multiple users can concur-
rently view any number of datasets using the same server instance,
in contrast to traditional 1-to-1 user to server correspondence.

The tight coupling of client and server in existing remote visual-
ization systems is in part due to not distinguishing the differing roles
in state management between client and server. Typical implemen-
tations in past and current remote visualization systems essentially
replicate the application states on both the client and server. Instead,
we use loose coupling by separating the application space from the
system space. The application space maintains the application states.
The system space answers requests from the application space, and
remains stateless. This “separation of concerns” applies well to
creating data visualization as a shared web service. We can hence
provide a simplified front-end that does not depend on plugins.

One work that comes closer to meeting our goal is VTK.js [19].
VTK.js is the browser-based version of the Visualization Toolkit [26]
and only requires WebGL for volume rendering. Although the
problem of “scale of audience” does not apply to VTK.js, it is
impractical for large datasets with high quality renderings, because
the full dataset must be downloaded to the client’s computer before
rendering. The problem is exacerbated when there are many linked
datasets or interactive time series volumes on a page.

Our server-side leverages the following components and design
principles from existing literature.

Volume rendering is well understood from an algorithm perspec-
tive [22]. Highly efficient implementations using many-core proces-
sors, either GPU or CPU, are available as community-maintained
open-source renderers [2,4,8,32]. In this work, we use OSPRay [32]
because of its rendering performance. Additionally, its software-
only nature makes it easier to manage in a typical cloud-managed
container. A GPU-based renderer that exhibits similar throughput to
OSPRay can also be used. We chose to encode all OSPRay-rendered
framebuffers as PNG images, typically just a few kilobytes per im-
age in size at good compression quality. Of course, other image
formats like JPG can also be used.

Level-of-detail is a proven approach to manage the trade-off
between speed and quality for time-critical visualization [5, 20, 37].
Tapestry uses a similar approach. When a user interacts with the
3D visualization in the web document, rendering requests are made
at a lower resolution. After a user pauses, rendering requests are
made at a higher resolution. As our own results show, a 4323 volume
of supernova can be requested, rendered, encoded, and received in
0.34 seconds at 512× 512 resolution and 0.05 seconds at 64× 64
resolution. 3D interaction with embedded volume visualizations can
sustain fully interactive frame rates.

Parallel visualization generally takes three approaches: data-
parallel, task-parallel, and a hybrid of the two [12, 36]. Our primary
concern is how many rendering requests our system can handle (i.e.
requests/sec). Given the efficient rendering performance, we chose
the task-parallel approach to process rendering requests in parallel.
As is commonly done [11], we group worker processes into a two-
level hierarchy: the top level is the computing cluster as a whole, the
second level is on each computing node. All worker processes within
the same node share volume datasets via memory-mapped regions
of disk. Following known practices to resolve I/O bottlenecks of
volume visualization [18], our implementation includes a dedicated
I/O layer as the data manager on each node to manage prefetching.

3 SYSTEM ARCHITECTURE

As described above, Tapestry avoids the traditional tight coupling
between client and server. Instead, we chose to decouple the appli-
cation space from the system space (system diagram in Figure 2).

The application space maintains all of the dynamic states related
to rendering and 3D interaction. The system space is dedicated to
answering rendering requests and stays stateless without maintain-
ing any application state information. This design facilitates the
transition to m-to-n mapping from the standard 1-to-1 mapping in
typical client-server remote visualization. In essence, the stateless
server provides visualization as a web service that answers rendering



Figure 2: The Tapestry system architecture, which separates the
application space and system space. The application space can have
many instances, one per active browser. The system space has one
instance comprised of many computing nodes. The system space
has a unified interface towards all of the application instances.

requests coming from multiple users concurrently. From the server’s
perspective, there is no dependency between the rendering requests,
even for sequential rendering requests from the same user.

The application and system spaces have different life cycles. The
system space stays up as long as the web service is up. The appli-
cation space exists as individual instances, with one instance per
each session when a user accesses a web page with embedded 3D
visualizations.The application space can have many instances, e.g. a
browser tab on a laptop. The system space is a single entity shared
by all instances of the application space.

In the application space, an interactive 3D visualization appears
as a hyperimage element. Multiple users may independently view
a web page with one or more interactive hyperimage elements.
Each hyperimage is controlled by an attached Tapestry object in
JavaScript, which presents the 3D interaction expected in current
scientific visualization. Scripted interactions for the 3D visualization
can be included as well. Details are in Section 3.1.

The system space is hosted on a cluster of nodes. These nodes
comprise a Docker Swarm, which abstracts the system into a unified
web endpoint for all users. The rendering and image encoding func-
tionalities are managed by containers, which the swarm manages
altogether as a collection. The system also includes other function-
alities such as elastic task handling and automatic resource scaling.
More details of the system space are in Section 3.2.

3.1 Application Space

3.1.1 Design Choices

Tapestry’s application space resides in the web browser, both for
desktop and mobile devices. To embed a visualization in the browser,
we could consider using SVG, HTML5 canvas or the 3D-enhanced
WebGL canvas [10]. However, we instead chose to use the image
tag (<img>) for the following reasons.

First, as a result of separating rendering service from interaction,
the responses from the rendering service are images. Using an
<img> tag to display the results is natural, especially when users

Figure 3: In the application space, each hyperimage element is paired
with a Tapestry object. Hyperimages are DOM elements. Tapestry
objects handle user interaction and communicate with Tapestry server.

will likely use the web document for browsing first, and as a web
application second, at their discretion. SVG is inappropriate because
it is primarily for vector graphics, and better suited for plots and
information visualization.

Second, the <img> tag is in ubiquitous use by web pages. If it
can be made interactive, adopting embeddable 3D volume rendering
for presentation visualization would become considerably easier.

Lastly, HTML5 and WebGL canvases are heavyweight elements.
The initialization cost can cause performance issues when a web
page uses multiple 3D visualizations. The loading time for a hy-
perimage, however, is equal to the time it takes to load a single
image, as on any other website. The runtime cost of WebGL solu-
tions depends on the user’s hardware, and may slow down viewing
the web document, especially on mobile devices. In contrast, the
runtime cost of a hyperimage element is the same as making a web
request in a typical AJAX call. AJAX calls are widely-used, standard
asynchronous calls for data, for example used for auto-complete in
Google’s search bar.

3.1.2 Embedding Interactive Renders in the DOM
Figure 3 shows a closeup of the application space architecture. In
this example, we show a single hyperimage in the DOM, but multiple
may be present. A hyperimage is a simple <img> tag with extended
capabilities. As the user interacts with a hyperimage, rendering
requests are sent to the system space, and the image content is
continuously updated with new renders. Hyperimages provide a
simple way to embed interactive volume renders in web pages.

Each hyperimage is controlled by an attached Tapestry object in
the tapestry.js JavaScript code. The Tapestry object contains
a simple graphics context: camera management through arcball,
an image buffer for received images, event handlers and a list of
other hyperimages that may be linked to the object. Tapestry objects
provide interaction logic for hyperimages and are explained in more
detail in Section 3.1.3.

Interaction with hyperimages can be through mouse or touch
gestures. We also allow additional interaction through hyperac-
tions. Any DOM element (e.g. hyperlinks) can become hyperaction-
enabled. When clicked on, these elements then perform an action on
one or more hyperimages. Hyperactions provide a simple connection
between textual content and volume renderings.

Listing 1: Sample code for adding a hyperimage into a webpage

<script> $(".hyperimage").tapestry({}); </script>
<img class="hyperimage" data-dataset="supernova"/>

Listing 1 shows the full HTML code needed to include a 3D
visualization on a page. The second line of Listing 1 shows a simple
example of a hyperimage. The class attribute identifies the tag
as a hyperimage, and the dataset being rendered is added in the
data-dataset attribute. Note, data-* is the standard prefix for
custom attributes in HTML5 [31]. Hyperimages become interactive
by replacing the source attribute of the tag. When the user is not
interacting, a hyperimage is effectively a simple image.

For time series data, a hyperimage can take an optional
data-timerange attribute. The value of this attribute represents



the time step range through which the volume can animate. This
range is formatted as <integer>..<integer>. For example, a
value of 5..15 would mean that the hyperimage cycles through time
steps 5 to 15 when animated.

Hyperimages can also have an optional id attribute. The id is
used to connect hyperimages to hyperactions. JavaScript developers
commonly use this attribute to find elements in the DOM.

3.1.3 Interaction Management

All interactions with hyperimages are managed through their cor-
responding Tapestry objects. A sample initialization of Tapestry
objects is shown in the first line of Listing 1. Aside from includ-
ing our Javascript library and its dependencies, Listing 1 shows the
minimal code needed to setup hyperimage support in a web page.
Optional settings such as initial camera position can be sent to the
Tapestry constructor if needed. Examples with extra settings are
shown in Section 4.2.

When a web page loads, Tapestry objects create event handlers to
handle mouse and touch gestures on hyperimages. The initialization
also creates an arcball object. The arcball is used to translate user
gestures to a transformation matrix. Typically in 3D applications, the
transformation matrix is used to alter the model-view matrix in the
graphics pipeline. However in our case, the 3D scene does not exist
in the application space. Therefore, when the user moves the mouse
for rotation, we multiply a virtual camera position by the inverse
of the transformation matrix and send the updated position to the
server in order to obtain a new render. This way, the volume stays in
the center of the world space while the camera moves around.

All Tapestry objects communicate with a common host address.
When the user interacts with a hyperimage, the attached Tapestry
object continuously sends new requests to the server-side and asks
for updated renders. During interaction (e.g. when rotating), the
object requests low resolution images (64x64 by default) to allow
for smoother transitions. When interaction stops, the object requests
a high resolution image.

Tapestry objects use the HTTP GET method for requests. As
a result, renderings can be saved or shared after interaction just
like any image with a valid address. A rendering request takes the
form shown in Listing 2. The DATASET parameter denotes which
configured dataset should be rendered. The camera position is given
by <POS X, POS Y, POS Z>, and the up vector is given by <UP X,
UP Y, UP Z>. The QUALITY denotes whether or not to do a high-
resolution render. Finally, additional optional parameters can be
added as a comma separated string of key-value pairs. For example,
to specify which time step in a time-varying series.

Listing 2: Two example rendering requests sent from the application
space. The supernova dataset is requested in both. The following six
values represent the camera position and up vector and the last value
represents image size. The second request also contains an optional
time step parameter.

http://host.com/supernova/128.0/-256.0/500.0/0.707/0.0/0.707/256

http://host.com/supernova/128.0/-256.0/500.0/0.707/0.0/0.707/256/

timestep=5

A rendering request can become obsolete if its response arrives
after the next rendering request. Network latency, rendering speed,
and the user’s interaction speed are typical causes of this. Such re-
quests are typically detected and automatically canceled by browsers.
The cancellation means that the TCP connection for the request is
dropped and the HTTP server would not be able to send a response
when the rendering is done. In such cases, HTTP servers wait for a
specific timeout period before dropping the connection from their
end. If too many of these timeouts accumulate, the server becomes
unresponsive. This is due to the fixed size of the response queue
that it holds for each client. One way to overcome this issue is to

Table 1: Supported hyperactions

Action Description

position(x, y, z) Sets the position of the camera
rotate(angle, axis) Rotates the camera angle degrees about the given axis
zoom(z) Sets the relative camera Z position
link(id1, ...) Links the viewpoint of other hyperimages to the current

hyperimage’s camera
unlink(id1, ...) Unlinks the viewpoint of other hyperimages
play() Animates the time steps of a time series dataset
stop() Stops the time series animation
switch config(name) Switches to a new hyperimage configuration

reduce the timeout period on the server-side. Picking an appropri-
ate and universal timeout period, however, can be a challenge. An
alternative is to buffer image requests on the client-side to avoid
cancellation by the browser. In our system, each Tapestry object
buffers the last 512 image requests and their responses in an image
object array, oblivious to the user. Note that this buffer resides on
the client-side for each user.

Tapestry objects also manage the speed of interaction. The user’s
mouse movements can cause greater than 30 requests per second.
We limit this by only allowing every fifth request to be sent to the
server. By measuring the mouse speed of users, we found that this
limit results in at most 25 requests per second, suggesting that their
maximum speed originally caused 125 requests per second. This is a
good trade-off between seamless interaction and low server demand.

In addition to mouse and hand gestures, Tapestry allows another
type of interaction: hyperactions. Hyperactions provide a way for
the DOM to manipulate a hyperimage without user intervention. A
simple use case of a hyperaction is a hyperlink in a text that rotates
a hyperimage to a specific viewpoint. Any standard DOM element
can be converted to a hyperaction by adding three attributes: the
class hyperaction, a for attribute that denotes which hyperimage
should be associated with the action, and a data-action attribute
describing the action itself. For example, a hyperlink that sets the
camera position of a hyperimage is shown in Listing 3. When clicked
on, this hyperaction sets the camera position of the hyperimage with
the id of teapot1 to (10,15,100). A full list of supported actions
and their syntax is shown in Table 1.

Listing 3: An example hyperaction that sets the camera position to the
given position for the teapot dataset.

<a class="hyperaction" for="teapot1" data-action="position
=10,15,100">a new viewpoint </a>

3.2 System Space
Figure 4 shows a close-up of the system space architecture within
a physical node. In this section, we make a distinction between
a physical node, a Docker container, and a hyperimage server in-
stance. A physical node refers to the real machine on which multiple
containers may be launched. There may be multiple physical nodes.
A Docker container is an in-memory virtual operating system. A
single Docker container is shown in Figure 4. Multiple containers
may coexist within a single physical node. These virtual systems
run a single hyperimage server instance.

A hyperimage server instance runs a web server that manages
attributes of given datasets, and handles any rendering requests
it receives in sequence. The server instances are elastic, and any
available server can handle a request from any user. Due to the
containerized nature of the hyperimage servers, the system can
automatically scale resource allocation.

3.2.1 Container-Based Rendering Services
Virtualization and containerization are classic concepts in software
architecture [23]. Open-source software container platforms have
become very powerful lately, as exemplified by the growing popu-
larity of Docker [1] among cloud hosting services. In fact, in the



Figure 4: A container is the basic processing unit in Tapestrys system
space. Each container runs an instance of the hyperimage server,
which contains a web server to receive rendering requests, a render-
er/encoder unit to process and answer rendering requests, a reference
to the datasets in the shared memory of the computing node, and
metadata (data attributes). Containers on the same node are man-
aged by a Docker daemon. Rendering request and response routing
is handled by Docker.

scientific computing community, developers of scientific gateways
have started to adopt Docker as well [28].

We also chose Docker for its power and simple interface. It pro-
vides the ability to create, execute and manage lightweight software
containers which are similar to virtual machines. Each container in-
cludes a small, stripped-down version of an operating system as well
as all the dependencies needed to run an application independently.
Multiple Docker containers can run in parallel on the same node.

In a cluster setting, each physical node runs a local Docker dae-
mon, which manages all running containers on that node. Across
nodes, we use Docker Swarm as another layer of abstraction on
top of a collection of physical nodes, allowing a pool of Docker
containers to appear as a unified system with a single entry point,
which makes it simple for clients to access.

The Docker Swarm Manager is responsible for monitoring and
managing the underlying containers. The Swarm also routes incom-
ing requests to available containers and load balances them. Load
balancing is done using an internal Ingress load balancer [17].

In Tapestry, each Docker container runs a Ubuntu instance (488
MB in memory). Inside the virtual systems, we run a hyperimage
server instance that handles incoming rendering requests.

3.2.2 Hyperimage Server and Data Attributes
A hyperimage server is initialized once and lives for the lifetime
of the web service. A hyperimage server takes a configuration
directory during initialization. All valid configuration files – properly
formatted JSON files – within this directory are used to provide data
attributes for the server instance. These configuration files are easy
to set up, and provide basic information about a dataset. An example
configuration file is shown in Listing 4.

Listing 4: Example JSON configuration file providing data attributes

{

"filename" : "/path/to/data/magnetic.bin",

"dimensions" : [512, 512, 512],

"colorMap" : "cool to warm",

"opacityAttenuation" : 0.5,

"backgroundColor" : [38, 34, 56],

"capImageSize" : [1024, 1024],

}

The configuration files consist of a list of key-value pairs. Valid
keys and possible values for configuration files are shown in Table 2.
These parameters are standard visualization data attributes. The de-
veloper is expected to know basic information about the dataset, such
as filename and dimensions, but most others are optional and
can revert to default values. capImageSize sets the hyperimage’s
high-resolution size, when interaction is not occurring.

Table 2: Table of key-value pair data attributes available to developers
when configuring a hyperimage server. The first three parameters
are required, while the rest are optional. Bold indicates default values
when an optional parameter is not provided.

Key Possible values

filename Any valid path to a single file, or a path with wildcards
for multiple volumes

dimensions 3-element array describing the dataset’s extent
maxImageSize 2-element array for the rendered image’s maximum size

dataVariable A valid variable name for the dataset (for NetCDF files)
colorMap grayscale, or any provided map
opacityMap ramp, any provided map, or a custom array of floats
opacityAttenuation Single value ∈ [0,1] for opacity map dampening, or 1.0
backgroundColor 3-element array describing a color, or [0, 0, 0]
samplesPerPixel Single value describing the rendering sample rate, or 1
cameraPosition 3-element array describing 3D coordinates, or [0, 0, 0]
cameraUpVector 3-element array describing a 3D vector, or [0, 1, 0]

Currently the server is able to manage binary and NetCDF files,
both very common formats for scientific data. The filename provided
may be a path to a single file, i.e. a steady volume, or a path with
wildcard characters to describe multiple volumes, i.e. an unsteady
time-varying series. Examples filenames for a time-varying series
could be: "∼/supernova/*.bin" for all available time steps or
"∼/supernova/time [5-10].bin" for 5 specific time steps.

During initialization, the datasets referred to by the configura-
tions are loaded. Since each physical node may run multiple server
instances, we allow datasets to be memory-mapped when loaded.
This allows the physical node’s host operating system to maintain
an in-memory map of a file that can be given to each server instance.
With memory-mapping enabled, all server instances within the same
physical node effectively share the data in memory. This reduces
data loading costs and allows using multiple configuration files to
reference the same dataset without additional overhead.

Attributes about the dataset from the configuration, such as trans-
fer function or data variable, are kept alongside the reference to the
data. Multiple configuration files may reference the same dataset,
for example, to have different transfer functions applied to the same
dataset. This allows for transfer function selection via hyperactions.

3.2.3 Rendering Request Handling

After routing from a common endpoint to a specific Docker container,
a rendering request is handled by a hyperimage server. Rendering
requests from the client actually ask for an image URL in which
various options are embedded. Image requests are processed by the
C++ web server, built with the Pistache library [21], by first parsing
the options and then rendering the requested image.

Each incoming rendering request contains the dataset, camera
position, up vector, and a flag indicating low or high resolution. Low-
resolution renders are performed while a user is interacting with
a hyperimage, as is done with time-critical visualization. Camera
and renderer settings are updated accordingly. The request may also
contain parameters like which time step in a time-varying series.

We then render an image of the corresponding volume from
the given camera position using the OSPRay renderer. The life-
cycle of the OSPRay rendering objects in each server are equal
to that of the program itself. Data and rendering attributes are
pre-configured per volume during hyperimage server initialization.
When the render is complete, we composite the OSPRay framebuffer
onto the appropriate background color and encode the image to PNG
format using the LodePNG library. We use PNG encoding for its
good compression rate and quality.

There is no need to store the image to disk on the server, so
the encoding is done to a byte stream in memory. At this point,
all information about the camera position and other dynamic state
parameters are no longer needed nor held.

The web server receives the PNG byte stream from the render-
ing module. The byte stream itself is sent as a response with the



image/pngMIME type denoting it as a PNG image. The response
takes the reverse path of the incoming request. The Docker Swarm
Manager, which routed the request to this container, handles respond-
ing to the appropriate user. The hyperimage server itself remains
oblivious to whom it has communicated with.

3.2.4 Job Assignment
All Tapestry objects from the application space send rendering re-
quests to a common endpoint, where it can be relayed to any avail-
able Docker container. The container then passes the request into
its hyperimage server instance. In the case of a single container and
single hyperimage server, any requests from n users will be queued
up by the web server. Each request will block until rendering and
network transfer of the image is complete. The low render and en-
code time makes serialization acceptable for low resolution images.
However, larger resolution images may cause noticeable delays.

With multiple containers, any container available across the physi-
cal nodes may be selected for any given request. Sequential requests
from a single user may also be routed to different containers on
different physical nodes. This has several benefits. First, new render
requests can be processed while other requests are blocked for I/O,
network transfer, or rendering. Second, this is also more efficient for
context-switching the CPU resources on the physical nodes. Finally,
the elastic routing provides fault tolerance in case of a hyperimage
server or physical node going down. Such elasticity is possible due
to the back end remaining independent of dynamic states.

3.2.5 Automatic Resource Scaling for Variable Demand
The number of users making requests will vary over time and is hard
to predict. To meet the variable demand, we monitor the current
load on all containers and scale the number of containers up or down
accordingly, through the runtime manager (RM) shown in Figure 2.

On cloud platforms such Amazon EC2 and Google Cloud [3, 13],
the RM checks CPU usage across all containers at regular time
intervals (e.g. ti = 5 seconds). If the average CPU usage stays above
a threshold CPUmax for consecutive intervals (e.g. ni = 10), the RM
launches a new container. CPUmax threshold is often set to 80%.
If CPU usage stays below a threshold (CPUmin) for consecutive
intervals, the RM will close a container. CPUmin is typically 10%.
After starting or closing a container, the RM will take no more
actions for a period of time. These parameters are configurable.

For Tapestry, however, we found that we have to use uncon-
ventional settings. Instead of using 80% for CPUmax and 10% for
CPUmin, we should use 10% as CPUmax and 5% as CPUmin. This is
very counter intuitive. The reason in the end was due to how new
high performance software, such as OSPRay, use many-core CPUs.
OSPRay uses all cores available, even running through Docker con-
tainers. When we start with just one container on a physical node,
seeing CPU usage go from 5% to 10% means a doubling of work-
load, which in turn is a more reliable metric to trigger adding a new
container. Lastly, we must note, as the throughput test shows (Sec-
tion 5.2.2), small image size rendering tasks cannot fully saturate
hyperimage servers. For larger rendering tasks (e.g. larger image
size, larger volume), automatic resource scaling is still beneficial.

4 APPLICATION DEVELOPMENT

4.1 Integration into Static Web Pages
Hyperimages can be easily added to a web page using HTML tags
and a short Javascript function call. To integrate hyperimages into
a page, the developer must include the tapestry.js file as well as its
dependencies, namely arcball.js, sylvester.js, math.js and jQuery.js.
Then, one line of JavaScript needs to be called to initialize all hyper-
images, shown in Listing 5. This call creates a Tapestry object per
hyperimage tag. Default parameters such as the size of the hyperim-
age and the initial position of the camera can be sent to the object
through the constructor.

Figure 5: Left: embedded volume render of a tornado simulation
(dataset details in Table 3) in a Wikipedia page on tornadoes. The
user can start and stop an animated temporal sequence. Right col-
umn: example of three time steps. Previously, the page held a static
image showcasing the shape of a stovepipe tornado. Now users can
interactively see the temporal progression of the natural phenomenon.

Listing 5: The one-line call to create a Tapestry object for every
hyperimage on the page.

$(".hyperimage").tapestry({});

The size of our JavaScript libraries and their dependencies is
148KB, of which 96KB are for jQuery (standard in many websites).

4.2 Example Web Applications
We now go over several application scenarios. In each scenario, we
have added hyperimages to an existing web page.

4.2.1 Time-Varying Data Animation (Wikipedia Example)
Many Wikipedia pages can benefit from real interactive volume ren-
derings to help with scientific explanations and engage users. Listing
6 shows the changes needed to include a timeseries hyperimage into
a Wikipedia page.

Listing 6: Relevant code for adding an animated timeseries hyperim-
age to the Wikipedia tornado page.

$(".hyperimage").tapestry({
"host": "http://host.com:port/",

"width": 256,

"height": 256,

"zoom": 300,

"n_timesteps": 20

});

<img id="timeseries" class="hyperimage" data-volume="tornado" data
-timerange="0..20"/>

<a class="hyperaction" for="timeseries" data-action="play()"></a>
<a class="hyperaction" for="timeseries" data-action="stop()"></a>

Figure 5 shows the Wikipedia page on tornadoes after the modifi-
cation. The page includes a hyperimage linked to a series of time
steps from a tornado simulation dataset. Users can click a hyperac-
tion to play or stop the animation, while still having the ability for
3D interaction with the volume rendering.

4.2.2 Multiple Linked Views (NASA Example)
Here we show a NASA educational outreach page explaining super-
novae. The relevant code changes are in Listing 7.

The modified page is shown in Figure 6. The page now contains
four hyperimages showing consecutive time steps of a supernova
simulation dataset. The views can be linked and unlinked with the
hyperaction in the caption. When linked, all four hyperimages rotate
or zoom together when a user interacts with any one of them.

Listing 7: Relevant code needed to insert the four linkable hyperim-
ages and hyperaction into NASA’s supernova web page

<script>

$(".hyperimage").tapestry({



Figure 6: Embedding four consecutive time steps of a supernova
simulation into a NASA educational web page (dataset details in Table
3). The four hyperimages (bottom right) can be linked or unlinked
using the hyperaction in the caption below it. Previously, the page had
only a static figure (top right) showing an artist’s rendition. Now users
can also interactively explore how a supernova evolves over time.

"host": "http://host.com:port/",

"width": 128,

"height": 128,

"zoom": 300

});

</script>

<img id="s1" class="hyperimage" data-dataset="nova1" />
<img id="s2" class="hyperimage" data-dataset="nova2" />
<img id="s3" class="hyperimage" data-dataset="nova3" />
<img id="s4" class="hyperimage" data-dataset="nova4" />
<a class="hyperaction" for="s1" data-action="link(s2,s3,s4)"></a>

4.2.3 Changing Transfer Functions (NOAA/NWS Example)

NOAA and NWS provide vital information regarding climate and
weather. Herein, we enhance their storm preparedness web page to
show actual WRF modeled storm data using code in Listing 8.

Listing 8: Code needed to insert a hyperimage and hyperaction into
the NWS hurrican preparedness page. The hyperaction performs a
configuration switch to change transfer function

<script>

$(".hyperimage").tapestry({
"host": "http://host.com:port/",

"width": 256,

"height": 256,

"zoom": 300,

});

</script>

<img id="storm" class="hyperimage" data-volume="superstorm"/>
<a class="hyperaction" for="storm" data-action="switch_config(

storm_front)"></a>

This informational page, enhanced with a hyperimage showing
storm features, is shown in Figure 7. In this example, users can
interact with a superstorm dataset. Upon clicking a hyperaction, the
configuration file is switched. This changes the transfer function to
highlight the storm front.

5 RESULTS AND DISCUSSION

Here we show the performance of the runtime components of a
hyperimage server: the C++ HTTP web server handling requests
and responses, and the renderer and encoder. Each instance of
the hyperimage server runs in a container on a node with 48 cores
(dual-socket Xeon E5-2650 v4, 2.9 GHz) and 128 GB memory.

5.1 Automated Script-Driven Test Setup
To test our system from the client-side in a repeatable way, we
simulated user interaction. We used “monkey testing”, a standard
approach to stress-test web pages. Monkey testing involves simulat-
ing clicks, touches, and drags across elements of the page. We used
this on hyperimages to simulate user interaction.

Figure 7: This National Weather Service page provides vital infor-
mation to those living in hurricane-afflicted regions. Here, users can
interact with a model from a WRF ensemble simulation (dataset de-
tails in Table 3). A hyperaction switches configurations to guide a
viewer to see certain features, using a different transfer function to
highlight the storm front. This embedded hyperimage replaced a
recorded video on this web page.

Figure 8: We use monkey testing for repeatable and realistic system
performance testing. Shown is a screenshot during monkey test-
ing. Using spline paths, we emulate typical user interaction. Each
emulated mouse event appears as a red circle.

We used the gremlins.js JavaScript library to control the mon-
key testing. The test web page contained five hyperimages (for
isotropic turbulence, supernova, magnetic reconnection, jet flames,
and the Boston teapot). A single hyperimage was randomly chosen
to interact with.

To simulate realistic user interaction, we generated splines cen-
tered on the hyperimage with anchor points at random positions
within the bounds of the hyperimage. We used the smooth.js
JavaScript library for spline creation.

The monkey testing simulated mouse-down, mouse-move, and
mouse-up events. Mouse-down events were followed by repeated
mouse-move events. A mouse-up event could only occur after a
mouse-move with a 1% probability.

Each event occurred along the spline. The delay between events
was 8 milliseconds, or a total of 125 events per second. Because
only every fifth event is processed as a request, this resulted in
125/5 = 25 requests per second. This request rate is on par with the
target expected user interaction speed.

This process simulated a smooth, curved click-and-drag interac-
tion typical with 3D interaction. Figure 8 shows an example of the
monkey testing on the magnetic reconnection dataset. Note that the
render is low-resolution because the test is mid-interaction.

All testing in this work used monkey testing to perform repeatable
tests, while still mimicking realistic user interaction scenarios.

Table 3: The datasets used for our tests. For time-varying data,
varying time steps were used during testing.

Dataset Size per Volume Spatial Resolution Time Steps

Boston teapot with lobster 45 MB 356×256×178 1
Isotropic turbulence [9] 64 MB 256×256×256 1
Jet flames [35] 159 MB 480×720×120 122
Superstorm [25] (1 run) 201 MB 254×254×37 49
Tornado [33] (wind velocity) 257 MB 480×480×290 600
Supernova [6] 308 MB 432×432×432 60
Magnetic reconnection [14] 512 MB 512×512×512 1



Table 4: Benchmarking results for rendering requests. The round-trip
time for each request includes render, encoding and transfer time to
and from the server. Based on these results, we render a 64× 64
image during interaction. The system renders idle images at the
size provided in the configuration, but capped at 1024×1024 to avoid
bottlenecks the Docker swarm.

Dataset Image size Rendering Encoding Round-trip
time (s) time (s) time (s)

Turbulence

64×64 0.009 0.010 0.042
128×128 0.017 0.019 0.058
256×256 0.037 0.048 0.108
512×512 0.110 0.140 0.260

1024×1024 0.300 0.540 0.807
2048×2048 0.939 1.813 2.517

Supernova

64×64 0.012 0.013 0.048
128×128 0.023 0.023 0.066
256×256 0.049 0.054 0.196
512×512 0.133 0.163 0.338

1024×1024 0.373 0.592 1.228
2048×2048 1.412 2.142 3.108

Magnetic

64×64 0.018 0.018 0.064
128×128 0.036 0.031 0.106
256×256 0.073 0.081 0.250
512×512 0.186 0.210 0.596

1024×1024 0.649 0.798 1.870
2048×2048 2.170 2.885 6.928

5.2 Hyperimage Server Response Time

We benchmarked the rendering and encoding process using three
variables that affect render time: image size, level of attenuation
of a ramp opacity map, and number of samples per pixel. We
tested 6 image sizes (642, 1282, 2562, 5122, 10242, and 20482), 4
attenuation values (1.0, 0.5, 0.1, and 0.01), and 4 sampling rates
(1, 2, 4, and 8). We tested each combination of these parameters,
resulting in 96 test cases. We repeated each of the 96 cases 10 times
with the camera at a randomized position to simulate the effects of
the volume being at different distances and angles. We took the
average time taken for 10 renders as the result for a given test case.
To see the effect of image sizes, we then averaged the times for each
image size. This simulates possible variation in image quality within
same-sized images.

We tested using three datasets: supernova, isotropic turbulence,
and magnetic reconnection. The datasets are described in Table 3.
All three datasets are structured grids of floating point values. These
datasets were chosen because they have different extents and sizes,
but also because they each contain layers of fine detail that may
be challenging to render. To test rendering time, each image was
rendered to OSPRay’s internal framebuffer and was then discarded
to avoid buffer copy or encoding time. We then tested the encoding
time (without saving to disk) separate from render time. Results are
shown in Table 4.

The fastest rendering case was unsurprisingly 64×64 image size
with the turbulence dataset, the smallest dataset chosen. Within the
test cases that used a 64×64 image, attenuation of 0.1 and sample
rate of 1 resulted in the fastest renders at 0.003 seconds, over 300
frames per second. At such a small size, the render time has very
little deviation from the mean. On the other hand, the slowest renders
occurred with 2048× 2048 images with the magnetic dataset, the
largest chosen dataset. The slowest recorded average render time
was 6.394 seconds, with 0.1 attenuation and 8 samples per pixel.
Combining rendering and PNG encoding, total computing time
approaches 5 seconds on average.

Based on these results, we recommend using 64× 64 images
during interactions. For the idle image, the system renders the image
at the size as described in the DOM of the webpage, but cap the
size at 1024×1024 (i.e. specified as the capImageSize in the data
attribute configurations) to avoid tying up containers in the swarm.
Note that 1024×1024 is quite large, even on modern screens. We
also found very little difference between renders with more than 2
samples per pixel, and suggest using 1 or 2 samples during use.

Figure 9: System throughput results showing request rate vs. re-
sponse time for four different image sizes: 64×64 (green), 128×128
(orange), 256×256 (blue), and 512×512 (purple). For low resolutions,
there is no degradation in response time even at high request rates.
This led us to choose 64×64 as the default interaction resolution.

5.3 Hyperimage Server Throughput
We also tested the scalability of our system space design in regard
to the system’s overall throughput. The experiment is set up like a
stress test, as commonly done in web environments.

We used curl to programmatically generate rendering requests
and control how many requests are made per second. The test
target is the full 3-node cluster: 20 containers per physical node, 60
containers in total. We used the same datasets as the previous test in
Section 5.2. For each dataset, we generated rendering requests for
four image sizes: 642, 1282, 2562, and 5122.

The test started issuing one rendering request per second for 5
seconds, then doubled the request rate every 5 seconds. In total,
we tested for request rates of: 1, 2, 4, 8, 16, 32, 64, 128, 256, and
512 requests/second. Our goal was to understand the relationship
between request rate (throughput) and round-trip response time
(performance).

For each test setting (i.e. image size and request rate), we average
the response time collected from all three datasets together, in order
to show an overall system throughput under a mixture of different
sizes of rendering jobs. Figure 9 shows the scaling curves for the
four image sizes: 64× 64 (green), 128× 128 (orange), 256× 256
(blue), and 512×512.

As shown, when the image sizes are small (i.e. 64×64 (green),
128× 128 (orange)), there is no degradation in response time as
request rate increases. This solidifies our design choice of using 64×
64 size for interactive image delivery, and only opt to a large size
for idling images. For 256×256 image size, response time starts to
degrade when the request rate reaches 64 requests/second. For 512×
512, the degradation takes place sooner, around 16 requests/second.

5.4 Hyperimage server scaling
We also tested the scalability of the Tapestry architecture to show
how the system space reacts to growing and shrinking audience size.
The scalability curves are shown in Figure 10 over the course of 24
minutes and 15 seconds.

We created a test page containing five hyperimages of different
sizes. Upon loading, one of the five hyperimages was chosen for
interaction using monkey testing. Groups of two clients connected
to the server separated by 30 seconds, as shown by the blue line in
Figure 10. There were a maximum of 24 simultaneous clients.

As clients joined, the runtime manager launched new containers to
handle the load, shown by the orange line. The number of containers
plateaued at 13. Average CPU usage across Docker containers is
shown by the green line. Usage stabilizes as containers are added.
When too few containers are present for the given number of users,
there is greater variability to the CPU usage.

A pattern noticed during the scalability test was that the number of
containers was roughly half of the number of concurrent users. The
plateau region shows this pattern well, as 13 containers were able to
stably serve 24 users. These 13 containers were distributed across



Table 5: Summary of the pros and cons between client-side rendering, stateless, and stateful server-side rendering.

Architecture Pros Cons

Client only Does not require external server, existing frameworks Requires data transfer initial overhead, relies on potentially inadequate local re-
sources, relies on approximated volume rendering techniques via WebGL

Client & Stateful
server

Does not rely on client resources, no transfer time, low interaction overhead,
dedicated server resources

Requires server-side setup, requires consistent connection to server, does not
scale well for many users

Client & Stateless
server

Does not rely on client resources, no transfer time, low interaction overhead,
multi-user m-to-n mapping

Requires server-side setup, requires consistent connection to server

Figure 10: Example results of automatic resource scaling. The X-
axis is wall clock time elapsed since the start of the test (seconds).
The test started with two application instances, with two more added
every 30 seconds. The first two instances have the longest life spans,
and subsequent ones have linearly decreasing life spans (details
in Section 5.4). (1) Green: average CPU usage of the swarm by
percentage (left Y-axis); (2) Orange: the number of active containers
according to varying demand (right Y-axis); (3) Blue: the number of
concurrent users over time (right Y-axis).

three physical nodes. They served approximately 600 requests per
second during the test.

5.5 Discussion
A visualization that allows real 3D interaction can achieve better user
engagement and provide more information than a still image or video
can provide. In this respect, Tapestry helps make 3D visualization
more accessible. The model used by Tapestry also simplifies how
a visualization can be hosted as a web service using open-source
industry standards, such as Docker, jQuery, and OSPRay.

Comparison to VTK.js. As previously mentioned, client-side
systems such as VTK.js have limitations on dataset size and render
quality. They also rely on potentially inadequate local resources.
Additionally, client-side solutions have significant load time and
runtime overheads. For example, a 308 MB supernova volume
would need to be pushed to each user. If the user is on a mobile
device, this is infeasible. Render performance would be slow on a
mobile device as well, leading to an unresponsive web page. Table 5
summarizes the pros and cons between client-side rendering versus
the stateless remote rendering in Tapestry.

Adoption. Tapestry’s server can be hosted on Amazon AWS,
Google Cloud, or other similar platforms. As is, hyperimage-enabled
web pages can be viewed on a desktop or mobile browser. However,
the application space is not restricted to residing inside a browser.
Because the web endpoint served by the Docker swarm follows
standard HTTP protocols, a mobile app or desktop application can
use the service as long as the application can communicate with the
remote rendering service (e.g. via Linux’s curl).

Data Sources. Hyperimage elements provide a concise abstrac-
tion that helps make data-intensive volume rendering transparent to
the application developer. However, it is debatable whether archival
data management should be made transparent to application design-
ers. If application developers need to be proactively aware of the
data archival services, we believe the model to integrate remote web
visualization with data archives is a fruitful direction, as piloted by
ParaViewWeb and MIDAS [15].

Scalability and Performance. Two potential factors affect
Tapestry’s performance. First, the number of containers is directly
related to how many concurrent requests can be answered. Sec-
ond, Tapestry uses OSPRay as the renderer. OSPRay is optimized
for many-core architectures by way of threading and vectorization.

Given the finite number of cores available on each computing node,
increasing the number of requests to be handled simultaneously (i.e.
increasing containers) and increasing the rendering performance (i.e.
increase the cores used by OSPRay) become competing objectives.
For the datasets used in this paper, 20 containers / node (48 cores
per node) seems to work well. To volume render larger datasets,
however, we may be required to reduce the number of containers.

Assuming medium sized datasets (such as the supernova dataset
we used for testing), a web page containing 5 hyperimage elements,
and that each active viewer’s browser emits 5 rendering request-
s/second (one from each of the 5 hyperimage elements), our 3-node
cluster can support roughly 100 concurrent viewers on that web page.
For today’s scientific computing, this system is small; scalability on
a bigger system requires further evaluation.

In larger scenarios with many users, the single endpoint that
clients talk to could become a bottleneck. However, in reality, given
that Docker uses an Ingress load balancer, any node can be the
endpoint. Moreover, multiple Docker swarm managers can be set
up for additional fault tolerance.

6 CONCLUSION AND FUTURE WORK

In this work, we have studied how to encapsulate volume rendering
into an easily-accessible service that can be non-invasively embed-
ded into existing popular websites about science topics. The chal-
lenge we focused on was the scalability of audience. The method-
ology that guided our architecture design is to separate application
space from system space, allowing for multiple concurrent users.

The application space presence of embedded volume renders is
about two lines of code per hyperimage. All other management is-
sues, such as user interaction, rendering requests, response retrieval,
etc. are abstracted away. The system space rendering service is state-
less and refactored into virtualized containers. These containers can
then leverage the same microservice management infrastructure on
today’s cloud hosting facilities with elastic and on-demand scaling.

In the future, we plan to add support for unstructured grid data.
We also plan to add full six degrees-of-freedom camera movement,
which requires sending new camera look-at attributes to the server.
We would also like to investigate the potential of caching renders.
On the client-side, the local buffer can be easily reused as a cache,
however more investigation needs to be done for the server end.
Additionally, we plan to expand the functionality of Tapestry to
deliver a larger variety of scientific visualization applications on the
web. Collaborative editors and interactive project management tools
are two examples of potential applications. Another area of potential
is web-based scientific storytelling for educational uses.
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