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Abstract. The stable marriage problem (SMP) is a mathematical ab-
straction of two-sided matching markets with many practical applica-
tions including matching resident doctors to hospitals and students to
schools. Several preference models have been considered in the context
of SMPs including orders with ties, incomplete orders, and orders with
uncertainty, but none have yet captured behavioral aspects of human
decision making, e.g., contextual effects of choice. We introduce Behav-
ioral Stable Marriage Problems (BSMPs), bringing together the formal-
ism of matching with cognitive models of decision making to account
for multi-attribute, non-deterministic preferences and to study the im-
pact of well known behavioral deviations from rationality on two core
notions of SMPs: stability and fairness. We analyze the computational
complexity of BSMPs and show that proposal-based approaches are af-
fected by contextual effects. We then propose and evaluate novel ILP
and local-search-based methods to efficiently find optimally stable and
fair matchings for BSMPs.
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1 Introduction

The stable marriage problem (SMP) has a variety of applications in the con-
text of two-sided markets, including matching doctors to hospitals and students
to schools [24]. Typically, n men and n women express their preferences, via a
strict total order, over the members of the other sex. Solving an SMP typically
means finding a matching between men and women satisfying certain properties
including stability, where no man and woman who are not married to each other
would both prefer each other to their partners or to being single. Another desir-
able property is fairness, aiming at a balance between the satisfaction of the two
groups [14]. A rich literature has been developed for SMPs [14], and many vari-
ants have been studied, including when there is uncertainty in the preferences
[2] or where preferences are expressed according to multiple attributes [8].

We explore the connection between how people make choices, the process of
matching, and the notions of stability and fairness. We assume that the pref-
erences of each agent are encapsulated via a Multi-alternative Decision Field
Theory (MDFT) model [23], that is, by a dynamic cognitive model of choice,
capable of capturing behavioral aspects of human decision making. We choose
this model as it has been shown to capture choice behavior accurately in human
studies [6], it is designed to handle multiple options and attributes [23], and
since it strikes a balance between the expressiveness of the underlying preference
structure and its psychological underpinnings. One of the core characteristics of



MDFT is that choices may change based on the particular subset presented at
any given point. This raises questions for classical matching algorithms, such as
Gale-Shapley [10], a proposal based method where an agent is selecting alterna-
tives to propose to from an increasingly smaller subset.

From an AI point of view, we extend the state of the art on SMPs by intro-
ducing the first framework that incorporates simultaneously multi-attribute pref-
erences with uncertainty and cognitive modeling of bounded-rationality. From
a cognitive science perspective, our work provides a psychologically grounded
computational model of how humans may respond to matching procedures.

Our work is related to that in Aziz et al. [1] where the authors consider
SMPs with uncertain pair-wise preferences, equivalent to considering the choice
probabilities induced on subsets of size two by MDFT. While the considered
notions of stability are closely related, MDFTs also induce choice probability
distributions over subsets of any size, which play an important role for proposal-
based methods. The different models of uncertainty in preferences considered in
[2] are less closely related as they do not consider choice probability distributions
over all subsets of members of the opposite group, as in MDFTs. Preferences
expressed via multiple attributes have also been considered in the literature and,
more recently, in [22] and [8]. However, in both cases preferences are qualitative,
rather than quantitative as in our case. Fairness in matchings has received new
attention recently and new algorithms for different definitions of fairness [9],
procedural approaches to enforce sex equal stable matchings [27, 26, 11] and new
preference models including bounded lists [20] have been proposed. However,
none of these works focus on behavioral models of choice, as in this paper.

Contribution. We define Behavioral Stable Matching Problems (BSMP),
where agents express preferences via MDFTs and analyze the computational
complexity of several problems related to stability and fairness. We study the
impact of behavioral effects on proposal based matching algorithms. We pro-
pose novel algorithms for finding maximally stable and fair stable matchings in
BSMPs, which we analyse experimentally in terms of the efficiency, stability, and
fairness of the returned matchings.

2 Multialternative Decision Field Theory (MDFT)

MDFT [4] models preferential choice as an accumulative process in which the
decision maker attends to a specific attribute at each time point in order to
derive comparisons among options, and update his preferences accordingly. Ulti-
mately the accumulation of those preferences forms the decision maker’s choice.
In MDFT an agent is confronted with multiple options and equipped with an ini-
tial personal evaluation for them according to different criteria, called attributes.
For example, a student who needs to choose a main course among those offered
by the cafeteria will have in mind an initial evaluation of the options in terms of
how tasty and healthy they look. More formally, MDFT, in its basic formulation
[23], is composed of the following elements.

Personal Evaluation: Given a set of options O = {o1, . . . , ok} and set of
attributes A = {a1, . . . , al}, the subjective value of option oi on attribute aj
is denoted by mij and stored in matrix M. In our example, let us assume that
the cafeteria options are Salad (S), Burrito (B) and Vegetable pasta (V). Matrix
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M, containing the student’s preferences, could be defined as shown in Figure 1
(left), where rows correspond to the options (S,B, V ) and the columns to the
attributes Taste and Health.

Fig. 1. Evaluation (M), Contrast (C) and Feedback (S) matrix.

Attention Weights: Attention weights express the attention allocated to
each attribute at a particular time t during deliberation. We denote them by
vector W(t), where Wj(t) represents the attention to attribute aj at time t.
We adopt the common simplifying assumption that, at each point in time, the
decision maker attends to only one attribute [23]. Thus, Wj(t) ∈ {0, 1} and∑
jWj(t) = 1, ∀t, j. In our example, where we have two attributes, at any point

in time t, we will have W(t) = [1, 0], or W(t) = [0, 1], representing that the
student is attending to, respectively, Taste or Health. The attention weights
change across time according to a stationary stochastic process with probability
distribution p, where pj is the probability of attending to attribute aj . In our
example, defining p1 = 0.55 and p2 = 0.45 means that at each point in time, the
student will be attending Taste with probability 0.55 and Health with proba-
bility 0.45; i.e., Taste matters slightly more than Health to this student.

Contrast Matrix: Contrast matrix C is used to compute the advantage
(or disadvantage) of an option with respect to the other options. In the MDFT
literature [5, 23, 6], C is defined by contrasting the initial evaluation of one al-
ternative against the average of the evaluations of the others, as shown for the
case with three options in Figure 1 (center).

At any moment in time, each alternative in the choice set is associated with
a valence value. The valence for option oi at time t, denoted vi(t), represents its
momentary advantage (or disadvantage) when compared with other options on
some attribute under consideration. The valence vector for k options o1, . . . , ok
at time t, denoted by column vector V(t) = [v1(t), . . . , vk(t)]T , is formed by
V(t) = C×M×W(t). In our example, the valence vector at any time point in
which W(t) = [1, 0], is V(t) = [1− 7/2, 5− 3/2, 2− 6/2]T .

In MDFT, preferences for each option are accumulated across iterations of
the deliberation process until a decision is made. This is done by using Feedback
Matrix S, which defines how the accumulated preferences affect the preferences
computed at the next iteration. This interaction depends on how similar the
options are in terms of their initial evaluation expressed in M. Intuitively, the
new preference of an option is affected positively and strongly by the preference
it had accumulated so far, while it is inhibited by the preference of other options
which are similar. This lateral inhibition decreases as the dissimilarity between
options increases. Figure 1 (right) shows S computed for our running example
following the MDFT standard method described in [16].

At any moment in time, the preference of each alternative is calculated by
P(t+ 1) = S×P(t) + V(t+ 1), where S×P(t) is the contribution of the past
preferences and V(t + 1) is the valence computed at that iteration. Starting
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with P(0) = 0, preferences are then accumulated for either a fixed number
of iterations, and the option with the highest preference is selected, or until
the preference of an option reaches a given threshold. In the first case, MDFT
models decision making with a specified deliberation time, while, in the latter,
it models cases where deliberation time is unspecified and choice is dictated by
the accumulated preference magnitude.

Definition 1 (Multi-Alternative Decision Theory (MDFT) Model).
Given set of options O = {o1, . . . , ok} and set of attributes A = {a1, . . . , al},
an MDFT Model is defined by the n-tuple Q = 〈M,C,p,S〉, where: M is the
k× l personal evaluation matrix; C is the k×k contrast matrix; p is a probability
distribution over attention weights vectors; and S is the k × k feedback matrix.

Moreover, we will denote with s-MDFT, resp. u-MDFT, models with specified,
resp. unspecified, deliberation time. We will, however, omit such prefixes when-
ever the discussion applies to both types of models.

Different runs of the same MDFT model may return different choices due
to the uncertainty on the attention weights distribution. The model can be run
on a subset of options Z ⊆ O of size k′ ≤ k, by eliminating from M all of the
rows corresponding to options not in Z and resizing the contrast matrix and the
feedback matrix to size k′. An MDFT induces a choice probability distribution
over the options in a set. More formally:

Definition 2 (Choice probability distributions induced by an MDFT
model). Given an MDFT model Q = 〈M,C,p,S〉, defined over options set O
and with attributes in A, we define the set of choice probability distributions

{pQZ |∀Z,Z ⊆ O}, containing a probability distribution, denoted pQZ , for each sub-

set Z of O, where pQZ (zi) is the probability that option zi ∈ Z is chosen when Q
is run on subset of options Z.

If we run the model a sufficient number of times on the same set, we ob-
tain a proxy of its choice probability distribution. We note that these choice
distributions may violate the regularity principle, which states that, when ex-
tra options are added to a set, the choice probability of each option can only
decrease. This allows MDFT to effectively replicate bounded-rational behaviors
observed in humans [5] such as the similarity effect, by which adding a new
similar candidate decreases the probability of an option to be chosen, and the
compromise effect where including a diametrically opposed option may increase
the choice probability of a compromising one [23].

There is an interesting relation between the type of MDFT models and the
stochastic transitivity of the induced probabilistic preference relation.

Definition 3 (Stochastic Transitivity). Given MDFT model Q, defined

over option set O, and induced choice probability distributions pQZ , consider
every A,B,C ∈ O such that pQ{A,B}(A) ≥ 0.5 and pQ{B,C}(B) ≥ 0.5. If

pQ{A,C}(A) ≥ 0.5, then Weak Stochastic Transitivity (WST) holds. If pQ{A,C}(A) ≥
min{pQ{A,B}(A), pQ{B,C}(B)}, then Moderate Stochastic Transitivity (MST) holds.

If pQ{A,C}(A) ≥ max{pQ{A,B}(A), pQ{B,C}(B)}, then Strong Stochastic Transitivity

(SST) holds.
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Clearly SST implies MST and MST implies WST. In [7] it is shown that pairwise
choice probabilities induced by s-MDFT models satisfy MST (and thus also
WST), while only WST holds for those induced by u-MDFT models [4]. SST is
not satisfied by MDFT models in general and, indeed, a systematic violation of
SST by humans as been demonstrated by several behavioral experiments [21].

3 Stable Marriage Problems (SMPs)

In a stable marriage problem (SMP), we are given a set of n men M =
{m1, . . . ,mn}, and a set of n women W = {w1, . . . , wn}, where each strictly
orders all members of the opposite gender. We wish to find a one-to-one match-
ing s, of size n such that every man mi and woman wj is matched to some
partner, and no two people of opposite sex who would both rather be married to
each other than to their current partners; also called a blocking pair. A matching
with no blocking pairs always exists and is said to be stable [19].

The Gale-Shapley Algorithm [10] is a well-known algorithm to solve an
SMP. It involves a number of rounds where each un-engaged man “proposes” to
his most-preferred woman to whom he has not yet proposed. Each woman must
accept, if single, or choose between her current partner and the proposing man.
GS returns a stable marriage in O(n2). Finding stable matching in variants of
SMPs, such as with ties and incomplete lists, is, instead, NP-complete [19].

The pairing generated by GS with men proposing is male optimal, i.e., every
man is paired with his highest ranked feasible partner, and female-pessimal [14].
Thus, it is desirable to require stable matchings to also be fair, for example,
by minimizing the sex equality cost (SEC): SEC(s) =|

∑
(m,w)∈s(prm(w)) −∑

(m,w)∈s(prw(m)) |, where prx(y) denotes the position of y in x’s preference.

For example, if we consider the SMP of size 3 with men preferences defined
as m1 : w1 > w2 > w3, m2 : w2 > w1 > w3, and m3 : w3 > w2 > w1 and women
preferences w1 : m1 > m2 > m3, w2 : m3 > m1 > m2 and w3 : m2 > m1 > m3,
we have two stable matchings, sm = {(m1, w1), (m2, w2), (m3, w3)} and sw =
{(w1,m1), (w2,m3), (w3, m2)}, that are, respectively, male and female optimal
and have a SEC of, respectively, 4 and 3.

Finding a stable matching with minimum SEC is strongly NP-hard and ap-
proximation techniques have been proposed for example in [17]. Local search
approaches have been used extensively in SMPs to tackle variants for which
there are no polynomial stability and/or fairness algorithms [12, 19, 11].

4 Behavioral Stable Marriage Problems (BSMPs)

Given a set of n men and n women where each women wi (resp. man mi)
expresses her (resp. his) preferences over the men (resp. women) via an MDFT
model Qwi

= 〈Mwi
,Cwi

,pwi
,Swi

〉 (resp. Qmi
= 〈Mmi

,Cmi
,pmi

,Smi
〉). Since,

as described in Section 2, we adopt the standard definitions for contrast and
feedback matrices C and S, we will omit them for clarity, in what follows.

Definition 4 (Behavioral Profile). A Behavioral Profile is a collection of n
men and n women, where the preferences of each man and woman, xi, on the
members of the opposite group are given by an MDFT model Qxi = 〈Mxi

,pxi
〉.
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While each individual can, in principle, use different attributes to express
their preferences, similarly to the MDFT literature, we will assume two at-
tributes for all MDFTs. Thus, for each group member xi, his/her model ex-
presses a (numerical) personal evaluation of each member of the opposite group
with respect to two attributes in Mxi

, and the importance of each attribute,
pxi

(see an example in Figure 2). By running the MDFT models many times we
can approximate the induced choice probabilities (Def. 2). For the profile in Fig.

2 we have p
Qm1
{w1,w2}(w1) = 0.485, p

Qm2
{w1,w2}(w1) = 0.556, p

Qw1
{m1,m2}(m1) = 0.495, and

p
Qw2
{m1,m2}(m1) = 0.562.

Mw1
=

A1 A2

8 2
2 8

Mw2
=

A1 A2

2 8
8 2

Mm1
=

A1 A2

8 2
2 8

Mm2
=

A1 A2

2 8
8 2



Fig. 2. A behavioral profile. Attention probability fixed to p(A1) = 0.55.

As for SMPs, a matching is a one-to-one correspondence between men and
women. However, the notion of blocking pair becomes probabilistic.

Definition 5 (β-blocking). Let B be a behavioral profile, and s one of its
matchings. Consider pair (m,w) 6∈ s and let Qm, Qw, be the MDFT models of,
respectively, m and w, and s(m) and s(w) be their respective partners in s. We

say pair (m,w) is β-blocking if β = pQm

{w,s(m)}(w)× pQw

{m,s(w)}(m).

In other words, we say that pair (m,w), unmatched in s, is β-blocking if β is
the joint probability of m choosing w instead of s(m) according to Qm and of
w choosing m instead of s(w) according to Qw. The higher the β, the higher
the probability that m and w will break the current matching. For example,
(m1, w2) is 0.29-blocking for matching s = {(m1, w1), (m2, w2)} given the be-
havioral profile in Figure 2.

Definition 6 (α-B-stable matching). Let B be a behavioral profile, and s one
of its matchings. We say that s is α-behaviorally-stable (α-B-stable), if ((1−β1)×
. . .× (1− βh)) ≤ α, and α is the minimum value for which this holds, where βi
is the blocking probability of pair πi, i ∈ {1, . . . , h}, un-matched in s, and h is
the number of blocking pairs, that is, h = n× (n− 1), if s has n pairs.

Intuitively, a matching is α-B-stable if the probability that none of the un-
matched pairs is blocking is smaller than or equal to α. We note that 1-B-stability
corresponds to stability in the classical sense. Given the pair-wise probabilities
described earlier, we see that matching s = {(m1, w1), (m2, w2)} is 0.514-B-
stable for the profile in Figure 2.

Definition 7 (Behavioral Stable Marriage Problem (BSMP)). Given
behavioral profile B, the corresponding Behavioral Stable Marriage Problem
(BSMP) is that of finding an α-B-Stable matching with maximum α.

With abuse of notation, we will use BSMP and behavioral profile, as well
as marriage and matching, interchangeably in what follows. Moreover, we will
write s-BSMP, resp. u-BSMP, to denote a BSMP where all agents express their
preferences via s-MDFTs, resp. u-MDFTs.
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Given model Qm of man m, we define the probability that m’s choices will
follow a particular linear order as follows.

Definition 8 (Induced probability on linear orders). Consider MDFT
model Q defined on option set O. Let us consider linear order ω = ω1 >
· · · > ωk, ωi ∈ O, defined over O. Then, the probability of ω given Q is:
pQ(ω) = pQO(ω1)× pQ{O−{ω1}}(ω2)× · · · × pQ{ωk−1,ωk}

(ωk−1).

While one of several ways to obtain a linearization, the one in Def. 8 is
particularly intuitive as the probability of a linear order is defined as the joint
probability that the first element in the order will be chosen by the MDFT model
among all of the options, the second element will be chosen among the remaining
options, and so forth. We now define the expected position as follows.

Definition 9 (Expected position). Consider BSMP B, man m and model
Qm. The expected position of w in m′s preferences is defined as: E[prm(w)] =∑
ω∈L(W ) p

Qm(ω)× prω(w), where L(W ) is the set of linear orders over the set

of women W , and prω(w) is the position of woman w in linear order ω.

We can now define the sex equality cost for BSMPs.

Definition 10 (Sex equality cost (SEC)). Given BSMP B and match-
ing s, the sex equality cost of s is: SEC(s) =|

∑
(m,w)∈sE[(prm(w))] −∑

(m,w)∈sE[(prw(m))] |

Clearly, the lower SEC the more fair the matching. Figure 3 provides two
examples of BSMPs and SECs for matchings.

5 Complexity Results

In this section we study the complexity of several problems in the context of
behavioral profiles. In particular, we reconsider some of the results presented in
[1] in light of our setting. For all our results, we assume that we begin with the
probabilities induced on all sets of size two by the agents’ MDFTs. As noted in
Section 2, s-MDFTs induce MST pairwise preferences, u-MDFTs induce WST
pairwise preferences and, if we relax both the constraint on the specified deliber-
ation time and neutral starting point, the induced probabilistic preferences may
violate WST. While it is known that MDFTs are very successful in capturing
choice distributions exhibited in humans, a theoretical analysis of their exact
expressive power is still an open problem.

The problems we consider are the following: StabilityProbability: Given
a BSMP B and a matching s, find α ∈ [0, 1] such that s is α-B-stable; ExistPos-
siblyStableMatching: Does there exist an α-B-Stable matching with α > 0?;
MatchingwithHighestProbability: Compute an α-B-stable matching with
maximum α; MaximallyFairMatching: Find a matching s with minimum
sex equality cost; MaximallyFairStableMatching: Find a matching with
minimum SEC among those that are α-B-stable with maximum α.

We note that the complexity of obtaining induced probability distributions
has been shown to be polynomial for s-MDFTs [7], where an analytical derivation
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from the parameters of the model is described. For u-MDFTs we leverage the
fact that we can approximate such pairwise probabilities by running the model
a sufficient number of times. When the size of the options set is fixed at two, the
amount of time necessary to obtain these approximations for all of the agents
in a u-BSMP grows linearly with the number of agents. Following [1], we define
the certainly preferred relation where for agent w, b �certw c if and only if she
chooses b over c with probability 1. All proofs are omitted due to lack of space.

Theorem 1. For BSMPs, StabilityProbability is polynomially solvable.

This result derives directly from Theorem 1 in [1]. We note that the fact that
pairwise probabilities in the context of MDFTs are defined in terms of choice
distributions over subsets of size two, implies that they are independent. From
this we derive the fact that the probabilities of each member of a blocking pair
preferring the alternative options to their current match are also independent,
this is also observed by [1].

Theorem 2. ExistPossiblyStableMatching is NP-complete even if one
side of the market has linear preferences and the other side has weakly stochastic
transitive (WST) pairwise probabilities.

This result strengthens the statement of Theorem 2 in [1] by further restrict-
ing the preferences of one side of the market.

Lemma 1. For s-BSMPs, an α-B-stable matching with α > 0 always exists and
can be found in polynomial time.

This results is derived by linearizing the probabilistic preferences induced by the
s-MDFTs in a specific way so to obtain and SMP the stable matchings of which
are α-B-stable with a > 0 in the s-BSMP. An immediate consequence is:

Theorem 3. For s-BSMPs, ExistPossiblyStableMatching is polynomially
solvable. (See proof in Appendix)

We now consider the complexity of MatchingwithHighestProbability.

Theorem 4. MatchingWithHighestStabilityProbability
is NP-hard, even if the certainly preferred relation is transitive for one side of
the market and the other side has WST preferences.

In [1] it is shown that this problem is NP-hard even if the certainly preferred
relation is transitive for one side of the market and the other side has determin-
istic linear orders. Our result for WST preferences is orthogonal, as WST does
not imply transitive certainly preferred relation and vice-versa.

The complexity of this problem when one side has MST preferences re-
mains an open problem. We conjecture NP-hardness remains as MST prefer-
ences are a subset of those where the certainly stable relation is transitive. We
note that from Theorem 4 we can also immediately derive that Maximally-
FairStableMatching is also NP-hard.

We conclude elaborating on MaximallyFairMatching. Let us denote with
F (n) the time required to run the MDFT model on a set of options of size n.
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4 The complexity of computing a linearization as described in Definition 8 is
O(nF (n)). If we repeat this process a sufficiently large number of times, K, we
can approximate the expected positions in O(Kn2F (n)). Finding a maximally
sex-equal, i.e., fair, stable matching is a well known NP-hard problem [17, 20].
The question of finding such a matching not subject to stability constraints
remains an important open problem in the literature. As we will see in Section 6,
we formulated an ILP to solve this problem to judge our algorithms effectiveness.
Our results are summarized in Table 1.

Table 1. Complexity results. Problem names are abbreviated.

StabProb ExistPossStabMatch MatchHighProb MaxFairMatch MaxFairStabMatch

WST P NP-complete NP-hard ? NP-hard
MST P P ? ? ?

6 Algorithms for BSMPs

In this section we outline several algorithms that find matchings with different
properties. In particular we introduce two variants of Gale Shapley (B-GS and
EB-GS), two integer linear program (ILP) formulations and two local search ap-
proaches. The details of the first three algorithms can be found in the Appendix.

Gale Shapley for BSMPs: B-GS and EB-GS. The Gale Shapley pro-
cedure can be extended in a straightforward way to BSMPs by invoking the
relevant MDFT models when a proposal or an acceptance has to be made. We
call this variant of GS, Behavioral Gale Shapley, denoted with B-GS. B-GS
still converges, since the sets of available candidates shrink by one every time
a proposal is made, but it is no longer deterministic and may return different
matchings as a consequence of the non-determinism of the underlying MDFT
models. We also define another variant of GS, that we call Expected Behavioral
Gale Shapley (EB-GS), which runs GS on the SMP obtained considering the
linear orders corresponding to expected positions (see Definition 9).

Algorithm FB-ILP. We developed an integer linear program (ILP) to find
the most fair solution according to the SEC with no guarantees on stability.
For each combination of man mi ∈ M and woman wj ∈ W , |M | = |W | = n,
we introduce a binary variable miwj that takes value 1 if mi is matched with
wj and 0 otherwise. The FB-ILP formulation also includes two n × n matrices
(posM and posW ) modeling expected positions of respectively women and men
in each others preferences. The solution with the lowest SEC is then obtained
by minimizing SEC = |

∑
i,j∈n posM [i, j] · miwj −

∑
i,j∈n posW [j, i] · miwj |,

leveraging an indicator variables approach [3] to bypass the non-linearity.
Algorithm B-ILP. To find the optimal α-B-Stable solution with B-ILP, we

begin with the same setup of FB-ILP. In addition, the B-ILP formulation uses
an n× n matrix Prmi

where entry Prmi
[j, k] gives the probability that man mi

prefers wj to wk. This matrix can be computed by running the BSMP of man mi

a sufficiently large number of times. Then, to address the fact that the product of
the probabilities is a convex not linear function, and stability is a pairwise notion

over a given matching, we introduce ∀((i, j), (k, l)) ∈
((n

2)
2

)
possible combinations

4 As in the MDFT literature, we can assume constant number of attributes and assume
F (n) polynomial in n for both halting modes.
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of pairs of pairs, an indicator variable miwj +mkwl to indicate that both miwj
is matched and mkwl is also matched. This allows us to compute the blocking
probability of mi and wl as well as of mk and wj . Hence for every pair of
possible marriages miwj +mkwl we can compute the probability that these four
individuals are not involved in blocking pairs by taking the likelihood that they
swap partners, formally let block[(ij), (kl)] = (1 − Prmi

[l, j] ∗ Prwl
[i, k]) ∗ (1 −

Prmk
[j, l] ∗ Prwj

[k, i]). To handle the convex constraint we simply take the log
of this quantity and maximize using an indicator variable which we implement
using the Gurobi And constraint.

The B-LS algorithm. B-LS, is a local search approach [15] that explores
the space of matchings to find one with maximum α-B-stability starting from a
randomly generated one. Each matching s is evaluated by its level α of behavioral
stability. When we find a matching, we compute for each non-matched pair its
β-blocking level. The neighborhood of a matching s consists of all the matchings
that can be obtained from s by rotating a blocking pair (i.e, swapping partners)
and is explored in decreasing order of β until a matching with a higher α-B-
stability is found or the neighborhood is exhausted and search restarts from a
randomly generated matching. The search ends after a max number of iterations,
returning the matching with maximum α found so far.

Algorithm FB-LS Algorithm FB-LS is another local search approach de-
signed to take in input a value α and return a matching with the lowest SEC
that is also α-B-stable. Intuitively, FB-LS runs B-LS on the space of matchings
meeting a certain level of fairness. We first run B-LS to compute the maximum
level of α-B-stability achievable, denoted αmax. We also compute the SEC for
the matching returned by this run of B-LS, called seαmax

. We then fix the low-
est level of behavioral stability that we consider reasonable, denoted αmin, with
αmin ≤ αmax. Then FB-LS performs an incremental search where for each SEC
value, se, it launches B-LS to find the matching with maximum α-B-stability
value, say αse and with SEC cost se. FB-LS starts with se = seαmax and de-
creases se until it no longer finds a matching with stability αse ≥ αmin.

7 Experimental Results

We first exemplify how contextual effects impact the α-B-stability of a matching
returned by a proposal-based approach. The key point is that MDFT captures
and replicates preference reversals that humans exhibit when options are added
or deleted to a choice set. Thus, what may have emerged like a good choice among
several options at proposal time, may not be dominating when only choice sets
of size two are considered for stability. As seen in Figure 3 (a), on an instance of
the compromise effect both B-GS and EB-GS return a matching which is sub-
optimal w.r.t. α-B-stability with high probability. An analogous situation can
be observed for the instance of the similarity effect shown in Figure 3(b). These
examples show that, in general, there is no guarantee that a matching returned
by B-GS or EB-GS will be optimal w.r.t. α-B stability. In the second column
of the tables in Figures 3 we show the SEC of the matchings. Not surprisingly,
there is no guarantee on the fairness nor, most importantly, on the ”unfairness”
(as instead is the case for GS for SMPs) of the returned matching, the latter
being an effect of the non-deterministic behavioral models.
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Fig. 3. Compromise (a) and Similarity effect (b), impact on GS. Profile (left) and
results (right), for α-B stability value (α), Sex Equality Cost (SEC) and % of times
returned by B-GS (%B-GS) out of 100 runs. EB-GS result in blue.

To test our algorithms in terms of efficiency and quality of the solutions we
first generate 100 random BSMPs for each size n between 10 and 16 where the
M matrices are of size n× 2 and contain random preferences between 0 and 9.
Attention weights probabilities are fixed to p([0, 1]) = 0.45 and p([1, 0]) = 0.55.

Fig. 4. Average α-B-Stability (y-axis) and SEC (x-axis) varying the number of agents.

Figure 4 shows α-B-Stability and SEC values of matchings returned by the
algorithms averaged over the 100 instances. Each point on the lines represents the
size of the problems from n = 10 to n = 15 moving from left to right. For n = 16
the ILP formulations timed-out at 6 hours while B-LS converges at around 340s
(see Table 4). Not surprisingly, the quality of the solutions deteriorates as we
move to larger problem sizes. The average results for B-ILP (dark blue-line)
represent the optimal values for α-B-stability but exhibit average high SEC. In
contrast, we can see how FB-LS (green line) allows to find matchings which
have low SEC and are at most 30% less stable than optimal. As predicted, B-GS
on average performs very poorly. At the bottom left corner we see the FB-ILP
(red line) collapsed to a single point, as it always returns extremely unstable
matchings of almost zero SEC. Our results showed very small variance in terms
of α-B-stability, except for B-GS and EB-GS (see Table 3). Table 2 shows instead
the SEC results with their standard deviations. All algorithms (except FB-ILP
not shown since µ ∼= 0 and σ2 ∼= 0) have significant variance in terms of SEC,
likely explained by the difference in preferences across instances. As expected,
FB-LS exhibits the lowest SEC variance.
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Table 2. Sex Equality Cost

B-ILP FB-LS B-GS max(α) EB-GS

# Agents µ σ2 µ σ2 µ σ2 µ σ2

10 7.1 32.7 5.3 25.3 7.7 35.9 8.4 37.0
11 7.8 29.6 5.5 22.5 8.6 34.2 9.5 53.4
12 8.1 46.2 5.7 31.2 9.3 57.9 9.4 53.5
13 12.3 76.1 7.9 59.0 12.2 81.5 10.8 80.5
14 13.3 73.1 9.3 58.9 13.0 79.2 12.5 77.6
15 14.2 116.80 9.4 84.0 13.4 107.8 14.6 115.6

Table 3. α-B-Stability

B-ILP FB-LS B-GS EB-GS

# Agents µ σ2 µ σ2 µ σ2 µ σ2

10 0.0208 5∗10−4 0.0149 3∗10−4 0.0175 5∗10−4 2∗10−14 6∗10−26
11 0.0099 2∗10−4 0.0081 2∗10−4 0.0083 2∗10−4 1∗10−15 1∗10−28
12 0.0041 3∗10−5 0.0034 3∗10−5 0.0023 2∗10−5 2∗10−17 5∗10−32
13 0.0020 5∗10−6 0.0016 4∗10−6 0.0009 2∗10−6 5∗10−29 2∗10−55
14 0.0009 3∗10−6 0.0008 2∗10−6 0.0005 2∗10−6 8∗10−50 4∗10−97
15 0.0004 3∗10−7 0.0002 2∗10−7 0.0001 5∗10−8 3∗10−50 5∗10−98

Table 4. Average execution time for B-ILP, B-LS and B-GS varying n.

Algorithm 10 11 12 13 14 15 16

B-ILP 1.03s 2.74s 3.90s 6.61s 12.6s2 27.05s N/A
B-LS 0.66s 2.01s 4.40s 15.17s 20.93s 24.94s 342s
FB-ILP 0.13s 0.15s 0.18s 0.22s 0.12s 0.12s 0.24s
FB-LS 2.83s 8.81s 35.16s 72.0s 90.223s 120.76s 941s
B-GS 1.93s 2.81s 3.18s 4.04s 4.55s 5.87s 7.2s
EB-GS 0.01s 0.015s 0.017s 0.02s 0.022 0.26 0.028s

The B-GS time is the average over 100 runs on the same instance. While
B-GS and EB-GS are significantly faster, for each n they returned a maximally
behaviorally stable matching only around 30% of the time. B-ILP and B-LS
have comparable running times up to n = 16, where B-ILP doesn’t terminate. It
should also be noted that B-ILP, when terminating, always returns a maximally
B-stable matching while B-LS does so around 88% of the time.

We also performed a convergence analysis on B-LS for n = 16 which showed
B-LS plateaus at 300 iterations, corresponding to approximately 340s. We then
tested B-LS on larger instances, generated under similar conditions, for n ∈
{20, 30, 40, 50}. Convergence was observed at, respectively, 500, 800, 1200 and
1900 iterations and average running times over 10 instance ranged from 896s
for instances of size 20 to 146433s for size 50. We also note that, on average,
the pre-processing times to compute the pairwise choice probabilities and the
expected positions ranged between 16s for size n = 10 to 1592.5s for n = 50.

Our experimental results show that when the goal is to find a maximally
stable matching, B-ILP is a viable and complete option for smaller problems. If
fairness is also considered, then, FB-LS produces high quality solutions compro-
mising between the two criteria while scaling reasonably well. This experimental
study has also confirmed the negative impact of the underlying behavioral mod-
els on the quality of solutions returned by proposal based approaches.

8 Future work

We plan to consider the impact of behavioral models in one-to-many and many-
to-many matching problems and their integration with other algorithms such
as the Boston Mechanism [18]. We also plan to study methods proposed to
achieve fairness over time which ties particularly well with the concept of re-
peated choices underlying the MDFT models [25].
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Appendix

A Proofs of Theorems

Theorem 1. For BSMPs, StabilityProbability is polynomially solvable.

Proof. This result derives directly from Theorem 1 in [1]. Given the pairwise
probabilities induced by the BSMPs, we can compute the probability that a un-
matched pair is not blocking in constant time. We then take the product over
such pairs which are quadratic in number.

Theorem 2. ExistPossiblyStableMatching is NP-complete even if one
side of the market has linear preferences and the other side has weakly stochastic
transitive (WST) pairwise probabilities.

Proof. This results strengthens the statement of Theorem 2 in [1] by further re-
stricting the preferences of one side of the market. There the authors reduce from
ExistCompleteStableMatching in Stable Matching with Ties and Incom-
pleteness (SMTIs) [19] to ExistPossiblyStableMatching when men have
linear preferences and by leveraging the ability to define a cycle of length three
of certainly preferred relations in the women’s preferences. WST pairwise prob-
abilities do not allow for cycles of length three comprised of certainly preferred
relations. However, they do allow for cycles of length four as the one shown in
Figure 5. This observation allows the proof to proceed in a very similar way as
that of Theorem 2 in [1].

For the reader’s convenience, we provide the complete proof below incorpo-
rating the extended cycle and associated modifications.

Given Theorem 1, we know that computing StabilityProbability for BSMPs
is polynomially solvable. This implies that checking if a matching has a non-zero
probability of being stable can be done in polynomial time, and thus the problem
is in NP.

To prove NP-hardness, we follow the proof of Theorem 2 in [1] and we reduce
from the problem of deciding whether an instance of SMTI admits a complete
stable matching. This problem was shown to be NP-complete even if the ties
appear only on the women’s side, and each woman’s preference list is either
strictly ordered or consists entirely of a tie of size two [19].

Let M = {m1,m2, . . . ,mn} and W = {w1, w2, . . . , wn} be the set of men
and women in SMTI I. We create an instance of the pairwise probability model
I ′ where women’s preferences are WST as follows. We add 4 men and women:
mn+1,mn+2,mn+3 and mn+4 and wn+1, wn+2, wn+3 and wn+4. As in [1] we call
acceptable partners in I proper partners in I ′. For each man mi, i ∈ {1, ..., n},
in the original instance I, we extend his strict preference ordering on his proper
partners arbitrarily, by appending the four new women and his unacceptable
partners in I in some arbitrary order. For every woman wi, i ∈ {1, ...n}, in I,
we create the pairwise preferences as follows. Firstly, wi prefers every proper
partner of hers to every new or unacceptable man. Secondly, wi prefers each of
the 4 new men to unacceptable men in I.
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The pairwise preferences of wi over her proper partners are defined in the
same way as in [1]: wi certainly prefers mk to ml if wi strictly prefers mk to ml

in I, and if wi is indifferent between mk and ml in I then the corresponding
pairwise probability is 0.5 in I ′.

We then define the pairwise preferences of wi over the 4 new men as in Figure
5. More in detail, wi certianly prefers mn+1 to mn+2, mn+2 to mn+3, and mn+3

to mn+4 and mn+4 to mn+1, while she is indifferent between mn+1 and mn+3,
and mn+2 and mn+4. We note that these preferences form a cycle of length 4
and respect WST.

The preferences of wi over the unacceptable original candidates are arbitrary.
Similarly to [1], we let each of the four new men have all the original women
at the top of his preference list ordered according to their indices, followed with
new women wn+1, wn+2, wn+3 and wn+4 (in this order). Moreover, the four new
women have mn+1, mn+2, mn+3 and mn+4 at the top of their strict preference
lists, followed by the original men in an arbitrary order. (Note that every com-
plete linear order implies pairwise probability preferences and satisfies WST).
At this point we can show that there exists a complete weakly stable matching
in I if and only if there is a matching with positive stability probability in I ′

following the exact same reasoning as in [1]. To see the first direction, let µ be
a complete weakly stable matching in I. It is easy to see that if we extend µ
with pairs (mn+1, wn+1), (mn+2, wn+2), (mn+3, wn+3) and (mn+4, wn+4) then
the resulting matching µ′ has positive probability of being stable in I ′ . This is
because there is no pair which would be certainly blocking for µ′. Conversely,
suppose that µ′ is a complete matching in I ′ with positive probability of being
stable (i.e., it has no certainly blocking pair). It can be shown that every original
woman has to be matched with a proper partner. Suppose for a contradiction
that wi is the woman with the smallest index who is not matched to a proper
partner. If wi is matched to an original man who was unacceptable to her in I
then wi would form a certainly blocking pair with any of the four new men. In
fact, note that wi certainly prefers either of the four new men to her partner.
Moreover, as none of the new men are matched to a original woman with index
smaller than i, hence they all certainly prefer wi to their partners. Suppose now
that wi is matched to one of the four new men. Then wi would form a certainly
blocking pair with the subsequent new man according to her cyclical preference.
(For instance, if wi is matched to mn+1 in µ′ then she forms a certainly block-
ing pair with mn+4.) This is because the subsequent new man cannot have any
better partner, since all the women with smaller indices than i are matched to
a proper partner. So we arrive at the conclusion that every original woman is
matched with a proper partner. Since µ′ does not admit a certainly blocking
pair and all original women are matched with proper partners, the restriction of
µ′ to the original agents is a stable and complete matching in I.

Theorem 3. For s-BSMPs, ExistPossiblyStableMatching is polynomi-
ally solvable.

Proof. Consider BSMP B where all agents have s-MDFTs. For each man and
woman, we extract a linear order from the pairwise probabilities induced by
their s-MDFT thus obtaining an stable matching problem I. We then show that
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Fig. 5. Example of WST preferences with a cycle of length four. Directed edge repre-
sents dominance of source node on target node and the edges are annotated with the
probabilities.

a matching is stable in I if and only if it is α-B-stable with α > 0 in B. We
illustrate the linearization for man mi denoting with Qi his s-MDFT model.

1. For every pair such that PQi

{wk,wj}(wk) > 0.5 we set wk >mi
wj in I. Note

that, since the pairwise probabilities induced by an s-MDFt are MST, by
doing this we cannot create any cycles in >mi

in I.
2. We perform the transitive closure adding all induced order relations.
3. At this point the only pairs that may still be not ordered in mi’s preferences

in I must be such that PQi

{wk,wj}(wk) = 0.5. We order such remaining pairs

(for example lexicographically) and we proceed in this order to pick one pair,
order it in a random way, and then perform transitive closure.

It is easy to see that MST ensures that at the end of this process we obtain a
linear order. Moreover each linearization requires polynomial time since in the
worst case it performs a transitive closure O(n2) for each pair linearized in step
3, that is O(n2) times. Let µ be a complete stable matching in I. We know
one exists [19]. Let’s assume that µ is 0-B-stable in B. Then it must have a
certainly blocking pair (m,w), where m prefers w to µ(m) and w prefers m to
µ(w) with probability of 1 in B. If Pm{w,µ(m)}(w) = 1 in B then w >m µ(m) in I.

If Pw{m,µ(w)}(m) = 1 in B then m >w µ(w) in I. That is, (m,w) is also a blocking

pair in I, thus µ cannot be stable in I. This is a contradiction.

Theorem 5. MatchingWithHighestStabilityProbability
is NP-hard, even if the certainly preferred relation is transitive for one side of
the market and the other side has WST preferences.

Proof. In [1] it is shown that this problem is NP-hard even if the certainly
preferred relation is transitive for one side of the market and the other side
has linear orders. Our result for WST preferences is orthogonal, as WST does
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not imply transitive certainly preferred relation and vice-versa. The proof is
adaptation of the one of Theorem 3 in [1] and leverages the same cycle described
in Figure 5. Indeed, replacing the cycles of length three with cycles of length four,
as the one depicted in Figure 5, does not affect the reasoning described in the
proof. For the reader’s convenience we provide the full details below, clarifying
why the key steps still hold.

Following a similar reasoning as in [1], we derive the result by modifiyng
the proof of Theorem 2. Let SMTI I and pairwise probability model with WST
preferences I ′ be defined as in Theorem 2. We denote a new instance of a pairwise
probability model with WST preferences I ′′ as follows. Whenever some women
have cyclic certainly preferred relations in I ′, we modify the probabilities in these
pairwise comparisons by a small value ε. That is, whenever a woman wi certainly
prefers man mk to man ml within a cycle in I ′, we modify the probability
of the relation to 1 − ε in I ′′. For example, the probabilities of the perimeter
edges in Figure 5 would be set to 1 − ε. We note that, given how I ′ is defined,
this modification will not cause violations of WST. Thus, we have no certainly
preferred relations in any cycle in I ′′. However, as in [1] when considering the
matching with the highest stability probability in I ′′, we can still articulate our
reasoning along two cases with respect to the original NP-complete problem
for I. Let’s first assume that we have a complete stable matching for I. In
this case this matching, extended with the four new pairs in I ′, will have a
probability of being stable at least 1

2n in both I ′ and I ′′. This is because every
woman who is indifferent between some men has at most one tie of length two
in her preference list in I by definition, and so if this woman is matched to
one of the men in her tie then only the other man in this tie may block, which
happens with 0.5 probability. Note that this step is not affected by the fact
that we are using cycles of length four involving only the new men. On the
other hand, if there exists no complete stable matching for I then we know from
the proof of Theorem 2 that there always existed a certain blocking pair in I ′.
This certain blocking pair will now have a probability of 1 − ε to be blocking,
implying that any matching in this case has less than ε probability of being
stable. Therefore, if we choose ε to be 0 < ε < 1

2n we can use an algorithm
which solves MatchingWithHighestStabilityProbability to decide the existence
of a complete stable matching for SMTI efficiently.

B Algorithms

Algorithms B-GS and EB-GS. As we mentioned in the paper, the Gale Shap-
ley procedure can be extended in a straightforward way to BSMPs by invoking
the relevant MDFT models when a proposal or an acceptance has to be made.
When man m is proposing, model Qm will be run to select the woman to propose
to among the set of women to whom m has not proposed yet. In fact, an MDFT
model can be run on any subset of options by simply removing irrelevant rows
from the personal evaluation matrix and resizing the other matrices (contrast
and feedback). Similarly, when woman w, currently matched with man σ(w)
receives a proposal from m, the choice will be picked by running Qw on the set
{m,σ(w)}. We call this variant of GS, Behavioral Gale Shapley, denoted with
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B-GS. While it is clear that B-GS still converges, since the sets of available can-
didates shrink by one every time a proposal is made, it is no longer deterministic
and may return different matchings when run on the same BSMP. This is, of
course, a consequence of the non-determinism of the underlying MDFT models.

We can also define another variant of GS that we call Expected Behavioral
Gale Shapley (EB-GS). We first note that, given a man, we can extract a linear
order from the expected positions of the women according to his MDFT model
(breaking ties if needed). EB-GS corresponds to running GS on the profile of
linear orders obtained in this fashion.

Algorithm FB-ILP. For each combination of mi ∈M and wj ∈W , |M | =
|W | = n, we introduce a binary variable miwj that takes value 1 if mi is matched
with wj and 0 otherwise. We assume that for FB-ILP we have access to an n×n
matrix posM [i, j] where entry i, j gives us the expected position of wj in the
ranking of mi, and the same matrix is available for the women, denoted posW .

Recall that finding the solution with lowest sex equality cost requires mini-
mizing SEC = |

∑
i,j∈n posM [i, j] ·miwj −

∑
i,j∈n posW [j, i] ·miwj |. We cannot

implement this absolute value directly as the optimization objective in Gurobi
[13] as it is non-linear due to the presence of the absolute value. Since the SECs
are always ≥ 0 we can overcome this using a standard trick in ILPs using in-
dicator variables [3]. The SEC objective can be viewed as adding up the total
man cost and the total woman cost, so we add indicator variables tmc ≥ 0 and
twc ≥ 0 and minimize the difference between these two quantities. Hence, our
full FB-ILP can be written as follows.

min ind, s.t.,
(1)

∑
j∈nmiwj = 1 ∀i ∈ n

(2)
∑
i∈nmiwj = 1 ∀j ∈ n

(3)
∑
i,j∈nmiwj = n

(4)
∑
i,j∈n posM [i, j] ·miwj = tmc

(5)
∑
i,j∈n prW [j, i] ·miwj = twc

(6) twc ≥ 0
(7) twc ≥ 0
(8) twc− tmc = ind

In the constraints above (1) and (2) ensures that every man mi has exactly one
match across all possible women and every woman wj has one match across
all possible men. The redundant constraint (3) ensures that we have exactly
n matches, i.e., everyone is matched. Constraint (4) captures the total cost to
the men by multiplying the expected position by the indicator variables for the
matches. Likewise constraint (5) captures the total woman cost. Constraint (8) is
necessary to ensure that Gurobi handles our absolute value constraint correctly.
We know that both tmc ≥ 0 and twc ≥ 0 from constraints (6) and (7), hence
when Gurobi uses the Simplex Algorithm to solve, it will set tmc = ind and
twc = 0 if ind > 0 and otherwise we will have tmc = 0 and tmc = −ind. In
either case we have a bounded objective function and we can find a solution if
one exists.

Algorithm B-ILP. To find the optimal α-B-Stable solution with B-ILP,
we begin with the same setup. For each mi ∈ M and wj ∈ W we introduce a
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binary variable miwj defined as above. In addition, for B-ILP we assume that
for each man and each woman we are given an n× n matrix Prmi where entry
Prmi

[j, k] gives the probability that man mi prefers wj to wk. This matrix can
be computed by running the BSMP of man mi a sufficiently large number of
times.

There are two interrelated complications with formulating this probabilistic
matching problem as an ILP: first we need the product of the probabilities which
is a convex not linear function, and, second, stability is a pairwise notion over a
given matching. To deal with both of these issues we introduce ∀((i, j), (k, l)) ∈((n

2)
2

)
possible combinations of pairs of pairs, an indicator variable miwj +mkwl

to indicate that both miwj is matched and mkwl is also matched. This allows us
to compute the blocking probability of mi and wl as well as of mk and wj . Given
the formulation in [2], we know that we want to maximize the probability that
no blocking pair exists. Hence for every pair of possible marriages miwj +mkwl
we can compute the probability that these four individuals are not involved
in blocking pairs by taking the likelihood that they swap partners, formally
let block[(ij), (kl)] = (1 − Prmi [l, j] ∗ Prwl

[i, k]) ∗ (1 − Prmk
[j, l] ∗ Prwj [k, i]).

To handle the convex constraint we simply take the log of this quantity and
maximize using an indicator variable we which we implement using the Gurobi
And constraint. We can write the full program as follows.

max
∑
∀((i,j),(k,l))∈((

n
2)
2

)
pairmiwj+mkwl

∗ log(block[(ij), (kl)]), s.t.,

(1)
∑
j∈nmiwj = 1 ∀i ∈ n

(2)
∑
i∈nmiwj = 1 ∀j ∈ n

(3)
∑
i,j∈nmiwj = n

(4) AND(miwj ,mkwl) = pairmiwj+mkwl
∀((i, j), (k, l)) ∈

((n
2)
2

)
In the constraints above (1) and (2) ensures that every man mi has exactly one
match across all possible women and every woman wj has one match across
all possible men. The redundant constraint (3) ensures that we have exactly n
matches, i.e., everyone is matched. Constraint (4) uses the Gurobi [13] AND
constraint to set the value of pair miwj +mkwl to be 1 if and only if both miwj
and mkwl are both 1. This allows us to capture all possible pairs of man/woman
pairs and maximize the probability that no blocking pair occurs.

C Convergence Analysis for B-LS

The convergence analysis performed for n = 16 is shown in Fig. 6. While we de-
pict the results of for seven runs we performed a total of 50 runs. The results in-
dicated that B-LS plateaus after 300 iterations, corresponding to approximately
340s. B-LS does so around 88% of the time and returns a matching 1.006 ∗ 10−6
far from optimal otherwise.
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Fig. 6. Convergence of B-LS algorithm implementation with respect to α-B-Stability
when n = 16.
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