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Abstract

Learning new skills by observing humans’ behaviors is
an essential capability of AI. In this work, we leverage in-
structional videos to study humans’ decision-making pro-
cesses, focusing on learning a model to plan goal-directed
actions in real-life videos. In contrast to conventional ac-
tion recognition, goal-directed actions are based on expec-
tations of their outcomes requiring causal knowledge of po-
tential consequences of actions. Thus, integrating the en-
vironment structure with goals is critical for solving this
task. Previous works learn a single world model will fail
to distinguish various tasks, resulting in an ambiguous la-
tent space; planning through it will gradually neglect the
desired outcomes since the global information of the future
goal degrades quickly as the procedure evolves. We address
these limitations with a new formulation of procedure plan-
ning and propose novel algorithms to model human behav-
iors through Bayesian Inference and model-based Imitation
Learning. Experiments conducted on real-world instruc-
tional videos show that our method can achieve state-of-
the-art performance in reaching the indicated goals. Fur-
thermore, the learned contextual information presents in-
teresting features for planning in a latent space.

1. Introduction

Humans can learn new skills by watching demo videos.
Although this seems natural to human, it is challenging for
AI. We have seen rich works on modeling human behaviors
from videos with the majority focusing on recognizing ac-
tions [21, 18, 26]. However, solely perceiving what actions
are performed without modeling the underlying decision-
making process is insufficient for AI to learn new skills. The
next-generation AI needs to figure out what actions are nec-
essary to achieve the desired goals [5] with the considera-
tion of actions’ potential consequences. In this paper, we fo-
cus on learning the goal-directed actions from instructional
videos. Recently, Chang et al. [6] proposed a new prob-
lem known as procedure planning in instructional videos.
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Figure 1: Overview of our proposed method. Given a
starting observation (top-left image) and a desired visual
goal (bottom-left image), we extract the contextual infor-
mation of the planning trajectory upon which the Genera-
tion Model outputs a sequence of actions. The model is re-
sponsible for learning plannable latent representations with
a focus on procedures and action consequences. Thus, we
can retrieve images of intermediate steps (top-right images).

It requires a model to 1) plan a sequence of verb-argument
actions and 2) retrieve the intermediate steps for achieving
a given visual goal in real-life tasks such as making a straw-
berry cake (see Fig. 1). This task is different from the typi-
cal image-language translation problem in the way that cer-
tain actions can be exchanged to achieve the same goal (e.g.,
the order of adding salt and sugar usually does not matter),
making it difficult to predict the same action sequence as
ground-truth using sequence mapping.

Moreover, sequence-to-sequence based structure, suit-
able for modeling events that tend to occur in sequence with
high probability, is thought to involve no consideration of
the likely outcome [9]. Therefore, we formalize this task as
a planning problem with focus on two different sequential
patterns that can be easily observed in Fig. 4: In the context
of making a cake, mixing ingredients and washing cherries
are interchangeable, i.e., short-term action separation, but
both should be ahead of the action putting cherries on the
top, i.e., long-term action association.

Inspired by Raab et al. [9], we think that when perform-
ing goal-directed tasks, it is beneficial to consider both the
task contextual information and the potential action conse-
quences. Contextual information here refers to the time-
invariant knowledge (not changed during planning) that dis-
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Figure 2: Procedure planning example. Given a starting observation (picture of food ingredients) and a visual goal (picture
of a made cake), the model needs to learn how to complete real-world tasks such as making a cake by planning a sequence
of actions a1:T (blue circles) and retrieving the intermediate observations o2:T�1 (yellow circles).

tinguishes a particular task from the others. For example, if
we know the goal is to make a cake as shown in Fig. 1, it is
less likely to plan an action like putting it on the grill.

Therefore, we model the dependency between the ac-
tions and different goals as the long-term action association
in a Bayesian framework. As we show later in the exper-
iments, this serves a few purposes: a) it provides a more
structured representation for the subsequent policy learning;
b) we can sample from the posterior distribution for more
diverse trajectories to facilitate the action exploration; and
c) compared with the noisy pixel space, feature distances in
the learned latent space are more meaningful. To achieve
short-term action separation, we model the action sequence
as a Markov Decision Process (MDP) as shown in Fig. 2,
where the future action depends only upon the present state.
Besides, because goal-directed actions are often selected
based on expectations of their consequent outcomes [7], we
propose to incorporate a transition model into the Imitation
Learning (IL) framework [16, 19] so that we can explicitly
model the environment jointly with policy learning.

This approach brings following advantages: a) it helps
policy to flexibly pursue a goal by leveraging causal knowl-
edge of the actions’ potential consequences; b) when mod-
el-based simulations produce states with alternative actions,
the discrimination and selection between actions allow an
agent to find the currently most desired outcome [24, 34];
and c) it bypasses the need of an interactive environment
that is required by classic planning algorithms [31, 30],
making it suitable for modelling the web videos.

We demonstrate the effectiveness of our approach by
evaluating it on a real-world instructional video dataset [43]
(an example is shown in Fig. 2). The results on the proce-
dure planning task show that our learned model can uncover
the underlying human decision-making processes. Further-
more, the results on the challenging walk-through planning
task [22] confirm that our model learns meaningful repre-
sentations of the environment dynamics, which is crucial
for efficient plannings in the latent space. Finally, the vi-

sualization of contextual information indicates that our pro-
posed encoder structure can learn a concise representation
to capture distinct knowledge of different real-world tasks.
The main contributions of our work are summarized as fol-
lows: a) we propose a novel method to address the pro-
cedure planning problem, which combines Bayesian Infer-
ence with Model-based Imitation Learning; b) we propose
a neural network structure based on variational inference
that learns to embed sufficient information to convey the
desired task, incorporating the visual observations’ uncer-
tainty; and c) we propose two model-based IL algorithms
that explicitly learn the environment dynamics (in either a
stochastic or deterministic way) and integrate with the tran-
sition model to simultaneously learn a plannable latent rep-
resentation for accurate planning.

2. Related Work
Vision-based Human Behavior Understanding. Our
planning tasks are highly related to a popular AI research
area: building a machine that can accurately understand hu-
mans’ actions and intentions. The intention can be seen
as the sequence of actions needed to be taken to achieve
an objective [5]. To understand human attention, Zhang et
al. [41] proposed the Deep Future Gaze model to predict
the gaze location in multiple future frames conditioned on
the current frame. Forthermore, Wei et al. [38] utilized a
hierarchical graph that jointly models attention of the gaze
and intention of the performing task from a RGB-D video.
Rhinehart et al. [30] proposed an online inverse reinforce-
ment learning method to discover rewards for modeling and
forecasting first-person camera wearer’s long-term goals,
together with locations and transitions from streaming data.
Merel et al. [27] extended the Generative Adversarial Imita-
tion Learning (GAIL) [16] framework to learn human-like
movement patterns from demonstrations consisting of only
partial observations. Unlike these previous works that pre-
dict the future, we try to understand human behaviors by
learning their goal-direction actions.
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Deep Reinforcement Learning. Reinforcement learning
(RL) is often employed to learn and infer the MDP model
simultaneously, which is a natural way to understand how
humans learn to optimize their behaviors in an environ-
ment [35]. Recently, combined with deep learning, DRL is
leveraged to solve several vision problems such as Visual
Tracking [33], Video Summarization [42], Stroke-based
rendering [18], and Vision-based Navigation [28]. For
semantic-level video understanding, DRL can also play an
important role. For instance, it is utilized for Activity Local-
ization [36], Natural Language Grounding [13], and Video
Description [37]. However, these works often require expert
knowledge to design a useful reward function, whose goal
is to learn a behavior that maximizes the expected reward.
In contrast, we work on the IL problem without explicit us-
age of a hand-craft reward. Our work is most closely related
to inverse RL [30, 1] and contextual RL[39]. However, the
major difference is that we focus on learning from collected
dataset which is crucial for applications when online inter-
action is not permitted, e.g., safety-critical situation.
Planning in Latent Space. Planning is a natural and pow-
erful approach to decision-making with known dynamics,
such as game playing and simulated robot control. To
plan in unknown environments, the agent needs to learn
the environment dynamics from previous experiences. Re-
cent model-based RL schemes have shown promise that
deep networks can learn a transition model directly from
low-dimensional observations and plan with the learned
model [40, 6, 11]. A closely related method is Universal
Planning Networks (UPN) [32] that learns a plannable la-
tent space with gradient descent by minimizing an imita-
tion loss, i.e., learned from an expert planner. Plannable
means the learned representations are structured to perform
a classic planning algorithm [22]. Our method further in-
corporate the contextual knowledge of assigned task to the
latent space and remove the assumption of differentiable ac-
tion space. Another line of work is causal InfoGAN [22],
which tries to capture the relations between two sequential
images and models the causality of the simulation environ-
ment in an unsupervised learning manner. Similarly, our
Ext-MGAIL model also focus on the stochastic transition
model. However, making predictions in raw sensory space
is unnecessarily hard [10], we predict low dimensional la-
tent representations for future state and plan upon it.

3. Methods
We consider a set-up similar to Chang et al. [6]: we have

access to K trajectories {(oj1:T , a
j
1:T )}K

j=0⇠⇡E collected by
an expert trying to achieve different tasks. Given a start-
ing visual observation o1 and a visual goal oT that indicates
for a particular task, we want to learn a plannable repre-
sentation upon which goal-directed actions are planned to
perform two complex planning tasks (Fig. 2): a) proce-

dure planning: generate a valid sequence of actions a1:T

to achieve the indicated goal; and b) walk-through plan-
ning: retrieve the intermediate observations o2:T�1 between
the starting o1 and the goal. Our key insight is that by de-
composing the procedure planning problem in Eq. 1 into
two sub-problems, we can decouple representation learning
into two parts: a) inferring the time-invariant contextual in-
formation that conveys the task to achieve; and b) learning
the time-varying plannable representations related to the de-
cision-making process and environment dynamics. In this
way, both representations can be further used to retrieve
o2:T�1 for solving the walk-through planning.

As shown in the overall architecture Fig. 3, we assume
that the contextual information contains all the details an
agent need for achieving the desired goal. Hence, we for-
mulate the procedure planning problem p(a1:T |o1, oT ) as:

p(a1:T |o1, oT ) =

ZZ
p(a1:T , s1:T |zc)p(zc|o1, oT )ds1:Tdzc,

(1)
where we donate zc as the context variable that conveys the
desired task, p(zc|o1, oT ) as the inference model for model-
ing posterior distribution over the context variable and given
observations and p(a1:T , s1:T |zc) as the generation model
that plans a sequence of actions and hidden states that trans-
fer the initial state to the desired outcome. In the following
sections, we will first discuss how to infer the contextual
information. We will then solve the second sub-problem
by imitating human behaviors with consideration of offline
policy evaluation [23], and utilize Hindsight Experience Re-
play (HER) [3] to better leverage the expert demonstrations.
Lastly, we will discuss how to solve the walk-through plan-
ning problem with learned model.

3.1. Inference Model
As visualized in Fig. 3 the action at at time-step t is

solely governed by the current state st that contains the
information of current observation and the information re-
garding the desired goal. We want zc to represent the con-
textual information for achieving the goal, which should
be time-invariant, and the hidden state st to contain the
time-varying information for the decision-making process.
To achieve this separation, the hidden states are only al-
lowed to condition on zc; thus, all the information about
the goal must pass through zc to avoid a shortcut from
the observations to actions. In this way, st will be the
only time-dependent hidden variable used to recover the ac-
tions, and we reserve zc for compressing everything else.
However, the true posterior distribution p�(zc|o1, oT ) from
video frames is analytically intractable; thus, we use varia-
tional inference to approximate posterior distribution from
given observations. Note here we use the raw pixel ob-
servations o1 and oT for planning, which is different from
compared methods which use pre-computed visual features.
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Figure 3: The overall architecture: given the initial and the goal observations, two parallel encoders will parameterize the
mean and log-variance of the Gaussian distribution. The context variable will then be sampled from this distribution and fed
into the generation model to roll out a trajectory. We use a discriminator that tries to distinguish the state-action pairs from
the expert or the learned policy, which serves as the local reward function.

The model involves an encoder (shown in Fig. 3) that mod-
els the approximation distribution q'(zc|o1, ot) and a de-
coder (omitted from Fig. 3 for simplicity) that models the
prior p�(o1, ot|zc). It can be seen as a two-head Variational
Auto-Encoder (VAE) [20] with one head encoding o1 and
the other for oT , and we call it a predictive VAE. We jointly
optimize � and ' by maximizing the evidence lower bound:

l(�,') = Eq' [log p�(o1, oT |zc)]�KL(q'(zc|o1, oT )||p(zc)) , (2)

where we assume p(zc) is a Gaussian prior parameterized
by the context variable. By training in this way, the encoder
q'(zc|o1, ot) is enforced to learn a compact representation
from the given observations, o1 and oT , to convey the de-
sired task, which serves as the contextual information.

3.2. Generation Model
After inferring the context variable, the remaining ques-

tion is: how to model p(a1:T , s1:T |zc) to solve the plan-
ning problem? We assume the underlying process in
Fig. 2 is a fully observable Goal-conditioned Markov De-
cision Process (S,A, T ,R, C), where S,A is the state
and action space. We denote p(at|st) as policy ⇡✓ and
p(st|zc, st�1, at�1) as transition model Tµ. In this way, the
generative model p(a1:T , s1:T |zc) can be factorized as:

p(a1:T , s1:T |zc) =
TY

t=1

⇡✓(at|st)Tµ(st|zc, st�1, at�1) , (3)

where we use the convention that s0, a0 = 0.
A popular way to solve the MDP problem is using RL

algorithms. However, we only have access to expert tra-
jectories {(oj1:T , a

j
1:T )}Kj=0⇠⇡E without a well-defined re-

ward function, making it infeasible to directly apply RL al-
gorithms. Therefore, we adopt an IL approach and use the
expert trajectories as demonstrations. However, there are
still several key difficulties: a) typical IL algorithm is mod-
el-free algorithm that is ideal for learning habitual behavior
without thought for actions’ consequences [24], making it
imperfect to learn goal-directed actions. b) the static dataset

cannot provide feedback signals or the transferred states as
the learning agent interacts with it; and c) each demonstra-
tion trajectory is performed by the expert to reach a specific
goal and thus might not be sufficiently explored under dif-
ferent situations. Below, we address these difficulties.
Effective Imitating with Transition Model. Instead of
short-term environment learning as in [6], we optimize
model with the whole trajectory. Inspired by GAIL [16], we
formulate the IL problem as an occupancy measure match-
ing problem [17], where the goal is to minimize the Jenson-
Shanon divergence of trajectory distributions induced by the
learned policy ⇡✓ and the expert policy ⇡E respectively. In
order to learn goal-directed actions, and bypass the need
of an interactive environment which is required the original
GAIL, we employ a transition model to roll out and jointly
optimize it with policy learning. There are two important
reasons for the joint optimization: a) during the training, the
action policy is not stationary, which means a pre-trained
transition model will not help the action policy explore bet-
ter decisions; and b) the transition model can interact with
action policy so that the learned latent space is optimized on
the entire state-action pairs induced by the expert policy ⇡E ,
which helps it incorporate information over multiple time
steps. The model can be either deterministic or stochastic;
thus, we introduce two versions of the transition model.
Int-MGAIL: In Interior-Model GAIL, the transition model
is built inside the LSTM cell, which can be seen as a fully
deterministic model. We modify the LSTM cell and treat
the long-term cell state as the state st in Eq. 3 and the short-
term hidden state as our action at, so that we can enforce the
action a) to interact with the hidden state to roll out the next
state b) only depends on the current state. At each time-
step, the input to the cell is the previous cell’s long-term
and short-term state st�1 and at�1, as shown in Eq. 4.

ft = �(Wf ⇤ at + Uf ⇤ st + bf ) ,

it = �(Wi ⇤ at + Ui ⇤ st + bi) ,

at = Tanh(Wa ⇤ st + ba) ,

st+1 = ft ⇤ [st, zc] + it ⇤ at .

(4)
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Ext-MGAIL: Int-MGAIL provided a deterministic solu-
tion for modeling the unknown environment, but it will un-
derestimate the uncertainty of the environment. Therefore,
we further take the transition model as an external module
to explicitly model the environment transition in a stochas-
tic way, meaning different observations can follow the same
state. To model the uncertainty, we designed the action pol-
icy as a stochastic model with Bernoulli probability vector
of at because of the discrete action space. The stochastic
modeling is crucial for successful planning when we have
the same start and goal states but different procedures.
Hindsight Relabeling. The problem with the static dataset
is that each episode only shows one possible way to reach
the specified goal, which limits the agent’s ability to explore
what would happen had the circumstance been different. In-
spired by HER [3], we utilized the relabeling method that
tries to alleviate this problem by augmenting the demon-
strations with “fake” goals that were attained in the episode,
allowing the agent to sufficiently explore the state-action
space and make better decisions for the future. Formally, we
have one valid trajectory {(oj1:T , a

j
1:T )} of an expert attempt-

ing to reach the goal oT at jth episode from the start. Then,
the portion of this trajectory between any two non-adjacent
observations, om and on, can also be seen as a valid tra-
jectory as the expert attempts to reach on starting from om.
Therefore, for every trajectory in the original dataset, we se-
lect two non-adjacent observations and augment the dataset
with D  D[ (om:n, am:n). The intuition behind this pro-
cess is that we can replay each episode with a different goal
than the one the expert was initially trying to achieve.

3.3. Learning

We have three main components to be optimized:
a) the transition model Tµ(st+1|st, at, zc) that uses previ-
ous state-action pair and context variable to predict the next
state; b) the policy model ⇡✓(at|st) that models the distri-
bution over the set of action under current state; and c) the
discriminator D! , parameterized by !, tries to distinguish
the {(st, at)} from the expert or the learned policy ⇡✓.

We refer the expert trajectory as ⌧E = {(sE
t , a

E
t )} and

trajectory ⌧ = {(st, at)} as state-action pairs visited by the
current learned policy. We first randomly sample ⌧E from
the dataset and roll out ⌧E accordingly, then we optimize
the discriminator by ascending the gradient in Eq. 5:

E⇡✓ [r! log(1�D!(st, at))]+E⇡E [r! log(D!(s
E
t , a

E
t ))] .

(5)
We further let the discriminator gradient back-propagate
into the previous time-step, helping the transition model
to learn the further consequences related to current action.
However, we observe a high variance problem during the
training. Therefore, we employ an additional loss to help
the generated states st quickly move to regions close to the

Algorithm 1 Walk-through Planning
Input: All observations {oi}Ni=1, set of action {ai}Mi=1,

models Tµ,⇡✓ planning length T

1: Initialize observation list �  ;
2: for i = 1, 2, · · · , N do
3: si = �(oi)

4: for i = 1, 2, · · · , N do
5: snext = Tµ(si,⇡✓(si))
6: . Find the index of the nearest state
7: k = argmin

k
ksk � snextk22

8: . Increment the transition probability over all action

9: Si,k +=
MP

m=0
⇡✓(am|si)

10: �  argmax
⇢2Perm(T )

TP
i=1

Si,⇢(i)

expert-visited states. Hence, the transition model is opti-
mized by descending the gradient in Eq. 6:

Eat⇠⇡✓ [rµ log(1�D!(Tµ(st�1, at�1, zc), a
E
t ))]

+ EsEt ⇠⇡E [rµL(Tµ(st�1, at�1, zc), s
E
t )] ,

(6)

where L measures the distance between two latent vectors.
The last component is the action policy ⇡✓. After op-

timizing the discriminator, we can interpreted it as a local
reward function and we optimize policy to maximum the
reward r(st, at) = log(D!(sj , aj)). In order to imitate the
expert rather than mimicking, the action policy needs the
ability to intentionally explore actions that the expert did not
perform. We adopted the offline policy evaluation in offline-
RL and follow the classical evaluation method [12, 8], re-
weighting the rewards by the importance sampling ratio
(Eq. 7) to select a better policy during training. Concretely,
we first learn a classification network as the behavior policy
�(at|st) from demonstrations via behavioral cloning. Then
optimize ⇡✓ with policy gradient which tries to maximize
the accumulated reward along the whole trajectory:

E� [
⇡✓(at|st)

�(at|st)
r✓ log ⇡✓(at|st)Q(st, at)]� �H(⇡✓) , (7)

where H(⇡✓) = E⇡✓ [� log ⇡✓(a|s)] is the policy entropy.

3.4. Walk-through Planning with Transition Model
Given the start and goal observations, we first infer the

contextual information by sampling from q'(zc|o1, oT ).
Based on the sampled zc, the generation model will roll
out subsequent actions and hidden states as the sampled
trajectory. Given the pool of visual observations {oi}, we
first construct the score matrix Si,j to capture the transition
probability between oi and oj with the sampled trajectory,

15615



as shown in Alg. 1. After constructing the rank score ta-
ble, we can then perform walk-through planning to retrieve
the intermediate observations that lead to the goal. As sug-
gested in [6], this problem can be seen as finding a permu-
tation function b : {1, 2, · · · , T}! {1, 2, ..., T} that maxi-
mizes the transition probability along the permutation path,
subject to the constraints that b(1) = 1, b(T ) = T .

4. Experiments
We choose CrossTask [43] to conduct our experiments,

which consists of 2,750 video (212 hours in total). Each
video depicts one of the 18 primary long-horizon tasks such
as Grill Steak or Make French Strawberry Cake. For the
videos in each task, we randomly select 70% for training
and 30% for testing. Different tasks have various procedure
steps: less complex tasks include jack up a car (3 steps);
more complex ones include pickle cucumbers or change tire
(11 steps), and the steps do not necessarily appear in the
same order as the task description as shown in Fig. 4.

Each video has densely annotated boundaries with cap-
tion labels that describe the person’s actions in the video.
We treat each video as a sequence of images I1:N hav-
ing annotated description v1:M with temporal boundaries
(s1:M , e1:M ). For i-th video clip, we choose frames around
the beginning of the captions Isi��:si+� as oi, caption de-
scription vi as the semantic meaning of action, and im-
ages nearby the end Iei��:ei+� as the next observation oi+1.
Here, � controls the duration of each observation, and we
set � = 1 for all experiments. We further use the relabel-
ing technique introduced in Section 3.2 to augment the data
with randomly selected 30% of the expert trajectories.

To construct our state-space S , we use pre-computed fea-
tures provided in CrossTask as our state estimation: One
second of the video is encoded into a 3,200-dimensional
feature vector which is a concatenation of the I3D, Resnet-
152, and audio VGG features [15, 14, 4]. Note here we
do not use the state estimations for testing; we only use
them for training the Generation model. Lastly, we con-
struct the action space A by enumerating all combinations
of the caption description’s predicates and objects, which
provides 105 action labels and are shared across all 18 tasks.
Implementation Details. For computing context variables,
we use the DCGAN architecture [29] as the image encoder
and decoder in our model. The behavior policy is a classifi-
cation network that takes state estimation as input and gen-
erates the probability over the action space. The policy net-
work for both Int-MGAIL and Ext-MGAIL share a similar
structure as the off-policy Actor-Critic network [8], which
is two-headed: one for computing an action based on a state
and another one producing the expected return values of the
action. In the Ext-MGAIL, we assume our hidden state st
to be Gaussian; thus, the transition model is Gaussian with
mean and variance parameterized by a feed-forward neu-

Figure 4: Expert trajectories of Grill Steak task. Heavier
color indicates more frequently visited path

ral network. The discriminator networks for both models
share the same architecture, which is a similar network in
the original GAIL [16]. Further implementation details can
be found in the supplementary material.

4.1. Evaluating Procedure Planning
We compared with the following methods:

- Uniform Policy. At each step, the algorithm will uni-
formly sample one action from all actions. This method
serves as the empirical lower bound of performance.
- Universal Planning Networks (UPN) [32]. Like our
method, UPN learned a plannable latent representation
where gradient descent can be used to compute a plan that
minimizes a supervised imitation loss. We expand the orig-
inal UPN to discrete action space by using a softmax layer
to output probability over discrete actions.
- Dual Dynamics Networks (DDN) [6]. DDN is the first
work proposing procedure planning in instructional video
problem. Similar to UPN, it learns the dual dynamic of the
state-action transition and perform sample-based planning
upon the learned latent representation.

When evaluating with the pre-collected dataset, a com-
mon way is the re-weighted rewards [23]. But there is no
defined rewards here. To keep consistent with state-of-the-
art methods, we use three different matrices to evaluate the
performance and limit the experiment to length 3-5 even our
method is applicable for longer trajectory modeling.
- Success Rate is designed to evaluate the long-term action
association, i.e., the correctness of action sequence. Only if
every action matches, this plan is considered as a success.
The result is the percentage of the successes in test dataset.
- Accuracy is used to evaluate the correctness of individual
time step action, which serves as a constraint relaxation of
the success rate metric. The individual action is considered
as a success only if it matches the ground truth at the same
time step, which is written in terms of percentages.
- mIoU is used to capture the cases where the model can
output the right actions but fail to preserve the actions’
order. We adopt this metric from [6] that computes IoU
|{at}\{ât}|
|{at}[{ât}| between the set of ground-truth {at} and the
planned actions {ât}.
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Table 1: Results of Procedure Planning. Our models sig-
nificantly outperform the baselines by⇠ 10% improvement
in terms of the success rate. Our Ext-MGAIL has a marginal
improvement compared with Int-MGAIL; this shows that
introducing a stochastic process in the policy can help the
policy explore and thus improve the performance.

Uniform UPN DDN Int Ext

Succ. 0.01 2.89 12.18 17.03 21.27
T=3 Acc. 0.94 24.39 31.29 44.66 49.46

mIoU 1.66 31.56 47.48 58.08 61.70
Succ. 0.01 1.19 5.97 9.47 16.41

T=4 Acc 0.83 21.59 27.10 37.16 43.05
mIoU 1.66 28.85 48.46 57.24 60.93

As illustrated in Table 1, UPN can learn representations
that perform reasonably well compared to the uniform base-
line. However, as instructional videos’ action space is not
continuous, the gradient-based planner cannot work well.
The proposed Int-MGAIL outperforms baseline DDN at
two different time-scales. The reason is that we perform RL
training, which maximizes the accumulated reward alone
the whole trajectory. By introducing the stochastic process
into the action policy, our Ext-MGAIL has a better perfor-
mance. This is because, given the same beginning and goal
observation, there is more than one valid sequence of ac-
tions. By designing a model with both stochastic and deter-
ministic components, we show that our agent successfully
learns plannable representations from real-world videos to
outperform all the baseline approaches on all metrics.

Goal

Start

Ours

CIGAN

DDN

GT

Figure 5: Walk-through Planning qualitative results for
Grill Steak. Given the starting and goal observations, our
model can output the correct order for each step.

4.2. Evaluating Walk-through Planning
Different from procedure planning, given the the obser-

vations o1 oT , the model needs to generate the intermedi-
ate observations {o2, · · · , oT }. Directly predicting the raw
RGB image is unnecessarily hard [10]. Similar to the setup
in [6], instead of generating frames, we retrieve the inter-
mediate video clips from dataset in the correct order. To
find the path from o1 to oT , a rank table is constructed to
evaluate the transition probability between two clips.

Table 2: Results of Walk-through Planning. Our model
outperforms the baselines by explicitly modeling the transi-
tion dynamics between temporally adjacent observations.

Uniform UPN DDN Int Ext

T=3
Ham. 1.06 0.57 0.26 0.19 0.13
Pacc. 46.85 71.55 86.81 86.98 93.66

T=4
Ham. 1.36 1.36 0.88 0.70 0.57
Pacc. 52.23 68.41 81.21 86.42 89.74

In addition to the Uniform policy and DDN, we include
the Causal InfoGAN (CIGAN) into comparison. Like our
approach, they plan the trajectory in latent space but use the
generative model to transform the trajectory to observations
directly. The advantage of CIGAN is that it can be trained to
perform walk-through planning without action supervision.

The evaluations are conducted on the following metrics.
- Hamming. As described earlier, we are finding the best
permutation of the observation index. Then the distance is
defined as d(y, ŷ) =

PT
i=1 I(1|yi 6= ŷi), which is good for

evaluating the single step observation order.
- Pair Accuracy. To compare the distance between two per-
mutation sequence, we use pairwise accuracy to calculate
the distance along the planned and ground truth observation
orders. This is defined as 2

T (T�1)

PT
i<j,i 6=j I(1|yi < ŷj).

The results are shown in Table 2 and Fig. 5. CIGAN
can learn reasonable models beyond Uniform without us-
ing action supervision. However, the complexity of the in-
structional videos requires explicit modeling of the forward
dynamics conditioned on the semantic actions. Our two
methods outperform all baseline models, which means both
models are applicable to both planning and walk-through
planning. We also show that effective IL requires learning a
transition model and optimizing policy on multi-step transi-
tions instead of individual state-action pairs.

4.3. Visualization of Contextual Information
In this section, we aim to answer the following two ques-

tions: a) Can the proposed Inference model learn the useful
contextual information of different tasks from the demon-
strations? b) Why does the contextual information help the
subsequent action learning? To this end, we use t-SNE [25]
to reduce the dimension of the context variable zc to 2 and
visualize zc all 18 tasks as shown in Fig. 6. For every task,
we randomly sampled 100 pairs of start and goal clips (1800
pairs in total) and extracted their contextual information.

As we can see, all the samples are grouped by the tasks’
labels, which suggests the Inference model has learned
roughly distinct regions in the hidden space to correspond
to each task in the dataset. Further task descriptions can
be found in the supplementary material. Considering we
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never used the task labels in the learning process, this re-
sult indicates an underlying relationship between the dif-
ferent tasks’ observations. This suggests that the Inference
model can encode sufficient information to convey the de-
sired task. Furthermore, the Generation model can benefit
from this concise embedding on modeling decision-making
because irrelevant deviations from the raw pixel space will
create exponentially diverging trajectories.

However, there still exist overlaps between different
clusters, and some samples drift from the majority. This re-
flects the fact that we cannot entirely rely on the contextual
information to recover the expert’s decision process, which
further validates the effectiveness of the Generation model.

4.4. Ablation Study
We conducted experiments with three variations: w/o

r: The model is trained with both sequence mapping loss
and discriminator loss but w/o maximizing accumulated re-
ward. In this way, the model tries to match the short-term
actions w/o considering the trajectory as whole. w/o dis:
We further drops the discriminator loss in Eq. 6, making
it a supervised seq2seq learning model. As shown in Ta-
ble 3, learning the model solely w/o dis will significantly
hurt the overall performance because the model simply op-
timized on expert trajectory will be over-fitted to the regions
that the expert traversed and thus make it hard to generalize
to other areas that might be helpful for action policy learn-
ing. We think the main reason for the low success rates
with sequence mapping is that pure supervised learning will
excessively focus on recovering the same action sequence
as ground-truth, ignoring the fact that actions can be ex-
changed to achieve the same goal. w/o HER: We observed
that combining HER always brings performance boosts.
Our stochastic Extw/o HER has a lower performance than Int-
MGAIL; we suspect that it is because, without HER, the
original dataset is insufficient for stochastic model optimiz-
ing the whole trajectory. This result is consistent with our
observation on the experiment with the additional dataset.

T=3
Int

w/o r
Int

w/o dis
Ext

w/o r
Ext

w/o dis
Int

w/o HER
Ext

w/o HER

Succ. 7.18 5.89 15.18 11.42 14.39 18.01
Acc. 18.74 11.66 27.29 23.46 37.43 43.86
mIoU 27.51 20.66 37.48 30.97 54.18 57.16

Table 3: Results of Ablation Study. The performance
decreases significantly when optimizing without sequence
modeling or only with a supervised learning loss, which
shows the importance of learning over the whole trajectory.

4.5. Addtional Experiment
We further compare our model with previous best per-

forming method DDN on a second dataset [2]. Both of
our models outperformed the DDN, but the increase of

Figure 6: Visualization of the contextual information of
the starting and goal observations of all 18 tasks in the
CrossTask dataset. The colorbar indicates the ground-truth
task labels, where different colors indicate different tasks.

the accuracy on procedure planning (Succ.⇠4%, T=3) is
smaller than one obtained on the CrossTask, and the per-
formance between Int-MGAIL and Ext-MGAIL are very
similar (Succ. 20.19/22.11%, T=3). We suspect that it is
because the new dataset does not provide sufficient samples
for optimizing long trajectories. More details can be found
in the supplementary material.

5. Conclusion, Application, and Future Work
In this paper, we present a new method to address the

procedure planning problem focusing on learning goal-
directed actions. Concretely, we propose a predictive VAE
structure that learns to embed the contextual information of
the desired task. Moreover, we propose two novel model-
based imitation-learning algorithms to solve the formulated
decision-making problem in unknown environments. Re-
sults on real-world instructional videos show that our ap-
proach can learn a meaningful representation for planning
and uncover the human decision-making process.

Being able to learn goal-directed actions from the pix-
els, the proposed method enables the AI system to extract
useful information from expert demonstrations. Moreover,
learning policy from the offline dataset avoids online inter-
action with the environment, making our method practical
in real-world applications, e.g., service robots.

A direction of future work is investigating different ways
to combine contextual information with environment dy-
namics, such as through self-supervision. Another impor-
tant future direction is to consider the collected data as pol-
icy constraints such that robots can act safely in the real
world and continuously improve themselves by accumulat-
ing data of the environment interactions, making robotic
agents more capable of solving challenging real-life tasks.
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