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Abstract

We present a simple yet highly generalizable method for
explaining interacting parts within a neural network’s rea-
soning process. First, we design an algorithm based on
cross derivatives for computing statistical interaction ef-
fects between individual features, which is generalized to
both 2-way and higher-order (3-way or more) interactions.
We present results side by side with a weight-based attri-
bution technique, corroborating that cross derivatives are a
superior metric for both 2-way and higher-order interaction
detection. Moreover, we extend the use of cross derivatives
as an explanatory device in neural networks to the computer
vision setting by expanding Grad-CAM, a popular gradient-
based explanatory tool for CNNs, to the higher order. While
Grad-CAM can only explain the importance of individual
objects in images, our method, which we call Taylor-CAM,
can explain a neural network’s relational reasoning across
multiple objects. We show the success of our explanations
both qualitatively and quantitatively, including with a user
study. We will release all code as a tool package to facilitate
explainable deep learning.

1. Introduction
The universe is made up of myriad interacting parts. To

truly understand complex systems and processes, it is not
enough to view their functions as an amalgamation of in-
dependent contributors. Rather, they are a complex web of
inter-operating influences. For much of the past, explain-
able deep learning has concerned itself with identifying
important features, feature vectors, and isolated concepts.
However, in the real world, humans intuitively understand
that decisions are consequences of complex relations, not
merely extrapolated from rankings of singular phenomena.

For example, upon seeing a yield sign, it is natural to
look to see if there are also passing cars. If not, the yield
sign may be safely dismissed and one could keep driving
without stopping. If there is a passing car, the law is to
yield to the other car. If an intelligent agent made the de-
cision to stop upon approaching a yield sign and a passing

Figure 1: An automated driver decides whether to “stop”
or “go.” Here, the decision cannot be explained by individ-
ual factors alone, but by the interaction between the yield
sign and the passing car. Taylor-CAM identifies interac-
tions by considering how changing one object affects the
significance of another, such as how changing a passing car
into an empty road would change the meaning of the yield
sign from “stop” to “go.”

car, explaining their actions with precision would require an
explanation of this interaction. As far as individual factors
go, perhaps a nearby pedestrian is also present, but with-
out an interactional interpretation, one would not be able to
distinguish the independence of the yield sign and passing
car from the pedestrian, and one would not be privy to the
knowledge of the salient interaction. Furthermore, a naive
observer might think that yield signs always indicate “stop”
without realizing that the agent’s response to the yield sign
would depend on the presence of a passing car.

Similarly, explaining an agent’s strategies in any task
— be it computer vision, natural language processing,
biomedicine, reinforcement learning, or future forecasting
— is imprecise without an interactional approach. How-
ever, interactional strategies are not always summarizable
by heatmaps [6, 24, 25, 39, 40] or ordered rankings [10,
21, 29]; and they often require an understanding of many
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dependencies — complex dependencies, such as those be-
tween higher-level concepts (e.g. vector representations in
deep neural networks [3, 22, 23, 38]) — not just single-
dimensional features as typically explored in the statistical
interaction effects literature [9, 13, 31, 32]. In light of all
of this, we propose a number of contributions towards ex-
plaining interactions in deep learning:

T-NID, an algorithm for statistical interaction effects
that outperforms recent state-of-the-art baselines with both
pairwise and higher-order interactions. Interaction effects
are a fundamental notion in statistics [36]. We make this
computation tractable by translating local interaction ef-
fects into global interaction effects via representative sam-
ples and employing a simple subsampling heuristic.

Taylor-CAM, an explanatory tool that extends Grad-
CAM [24], which assigns importances to feature vectors
based on input gradients, by generalizing it to the 2-way
and higher-order setting using the same formalism of inter-
action effects as for T-NID. This method is demonstrated
on multi-object detection and relational reasoning in visual
question-answering (VQA).

Visualizations of Taylor-CAM’s explanations that en-
able a human cohort to reverse engineer questions in rela-
tional VQA without knowing the answers and interpret rela-
tional reasoning better than with existing explanatory tools
like Grad-CAM and GLIDER [31] from just a convolutional
neural network’s (CNN) feature maps.

2. Related Work
In Deep Learning Recently, there have been several

attempts to compute statistical interactions with deep learn-
ing. Neural Interaction Detection (NID) [32] used neural
network weights to interpret interactions, observing that in-
teractions occur at nonlinear activations in the first hidden
layer of an MLP. Like our approach T-NID, [8] used gra-
dient information to compute statistical interaction effects.
However, they relied on Bayesian neural networks, required
averaging a high number of Hessians, and only computed
global interaction effects, not focusing on local or higher-
order interactions. [9] used cross derivatives between single
features to explain interactions in deep similarity models,
whereas we use an adaptation of Grad-CAM to demonstrate
explainability in a more general computer vision setting.
[27] relied on self attention [34] to compute a measure anal-
ogous to non-emergent interaction effects and apply this to
an analysis in the biomedical domain. Higher-order interac-
tions have been considered throughout biomedicine, partic-
ularly for understanding gene interactions [2, 5, 7, 16, 37].

Cui et al. [8] applied their approach to a toy MNIST
dataset consisting of a fixed set of feature vectors such
that they could compute global interaction effects, but they
mapped those feature vectors to single neurons and com-
puted standard interaction effects between those mapped

neurons. The limitation of this approach is that it cannot
be used to explain local phenomena, which is traditionally
what is of interest in computer vision, NLP, and other areas
where multidimensional feature vectors are used.

[13] and [31], like our substitution of ReLU with GELU,
substitute ReLU with Softplus in order to induce differen-
tiability. The latter, like our work, translate local interaction
effects to global interaction effects by aggregating across
representative samples. While they use a random batch,
we use a small subset of common aggregates. While our
Taylor-CAM formulation is expressly adapted from Grad-
CAM for intuitively explaining feature vectors in CNNs,
[13] derive their formulation from integrated gradients and
[31, 33] directly use cross partials.

Individual Importances [10, 21, 29] used input gra-
dients to explain the reasoning of a neural network. [40] did
so with class activation maps. Grad-CAM [24] and Grad-
CAM++ [6] combined both approaches to localize impor-
tant feature vectors in computer vision with class activation
maps and gradients, visualized by heatmaps. Similar to us,
[18] used Taylor decomposition to explain neural network
decisions, but only for main effects, not interactions.

Relational Reasoning We also connect interaction
effects with relational reasoning, which has received in-
creased attention in deep learning [3, 22, 23, 38], and use
Taylor-CAM to interpret the reasoning process of Relation
Networks [23]. While most past works have mainly fo-
cused on explaining individual factors of a neural network’s
predictions, the weights in multi-head dot product attention
[34] could be interpreted as relational explanations for neu-
ral networks that include MHDPA in their architecture [27].
In contrast, Taylor-CAM is architecture agnostic and can
explain decisions unique to each output dimension directly
from gradient information.

Unlike other works, we expressly derived Taylor-CAM
for the purpose of explaining interactions between higher
level representations, such as feature maps from a CNN,
which standardly represent objects in computer vision
(rather than using raw RGB pixels). As Grad-CAM is built
on projected feature vectors in addition to gradients, so is
our higher-order extension w.r.t. cross derivatives to explain
interactions rather than isolated phenomena.

3. Statistical Interaction Effects
We define statistical interaction effect analogous to [1]:

Definition 3.1. Interaction Effect An interaction effect
IE1,...,` between variables x1, ...,x` 2 x on a function
F (x) with inputs x is measured as:

IE1,...,` =
@`F (x)

@x1 · · · @x`
. (1)

In plain English, an interaction effect is how much the
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meaning of one variable changes for a unit change in an-
other variable. This change is reflected by the cross par-
tial derivative. “Change” is an intuitive measure for inter-
action. From the earlier example, given a representation
of a yield sign and an oncoming car, changing the rep-
resentation of the oncoming car into a representation of
an empty road also changes the meaning of the yield sign
from “stop” to “go.” For a more formal example, consider
F (x) = x1sin(x2)+cos(x3). F consists of an interaction
between x1 and x2 for some x since @2F (x)/(@x1@x2)
is nonzero. However, x3 does not belong to an interaction
since any cross derivative w.r.t. x3 is zero.

Adapt to Neural Networks Substituting F with a
trained neural network, we can compute the local interac-
tion effects for a datapoint up to order ` as long as the neural
network F is `-times differentiable. In classification, soft-
max ensures this to be the case. In regression, we substitute
ReLUs with Gaussian-error rectified linear units (GELUs),
which have been shown comparable in performance [11].
Otherwise, Definition 3.1 affords the computation of inter-
action effects for arbitrary neural network architectures.

Translate Local Effects to Global Effects Often in
statistics, there is greater interest in computing global in-
teraction effects, statistics that generalize across all data-
points. Similarly, this need may be found in analyzing
scene graphs, object co-currency, and contextual informa-
tion [20, 26, 35]. In tandem with our work, [8] converted
local pairwise interaction effects to global pairwise inter-
action effects by averaging a set of representative sam-
ples retrieved via k-means clustering, in effect dividing the
dataset by Euclidean distance and computing the global av-
erage from the centroids. We will similarly average rep-
resentative local interaction effects in order to compute a
global summary, but we will use a simpler and more ef-
ficient technique. In our case, efficiency is of more con-
cern because computing higher-order interaction effects re-
quires the computation of higher-order derivatives, which
for many samples can become intractable.

To translate local interaction effects into global ones at
any order, we sample representative samples that have a
wide range over the dataset and that are potentially mean-
ingful. We choose the samples that are closest to a subset
of common aggregates, including mean, median, min, max,
and mode. As well as a random sample for good measure.
Likewise, we used L2 distance to measure closeness. In
addition, we considered different ways to aggregate the in-
teraction effects of these samples. Again, namely mean,
median, min, max, or mode. We ran a wide sweep of the
complete power set of these potential samples and aggre-
gates to find which combination performed best on a wide
array of synthetic datasets distinct from those we trained on
selected from prior works [12, 17, 28, 32], chosen to test for
various types of interactions. Results of this power sweep

are reported in the Appendix. We ended up using the mean
interaction effect of the samples closest to the mean, mini-
mum, and mode of all samples, as well as a random sample.

Improve Efficiency Another heuristic for efficiency
that we employed was subsampling the interactions that
would be computed. Naturally, testing for every combina-
tion up to order ` would be very expensive. Every double,
every triple, every quadruple, etc. — the problem grows
combinatorially. We were able to mitigate this to a degree
by taking advantage of the property of statistical interac-
tion effects that an `-way interaction can only exist if all
its corresponding (` - 1)-interactions exist [28]. In turn, we
were able to reduce the search space by only selecting non-
redundant combinations of the k interactions from the pre-
vious order whose interaction effects were highest, begin-
ning with using every combination up to order o and then
subsampling the top k for every order thereafter.

Our complete algorithm, which we call Taylor-Neural
Interaction Detection (T-NID) due to the higher-order
derivatives, is described in pseudocode in the Appendix.

Finally, we need to make a point about the sign of the re-
sulting cross partial derivatives. A positive value indicates
change in the positive direction; negative, negative. Since
in regression we are interested in the overall effect of an
interaction and are agnostic to the direction, we take the
squared value of the cross-partial as our measure of interac-
tion effect. In contrast, for classification, we use the sign —
positive or negative — corresponding to the class of inter-
est. And for multi-class classification, we take F to be the
network corresponding to the class output of interest, and
use its squared cross partial derivatives.

4. Taylor-CAM
To this point, we have generalized our computation of

interaction effects to the local, global, and higher-order set-
ting, but we have not yet considered the case where features
are multidimensional, as is the case in higher-level deep
neural network representations.

Explaining the influence of feature vectors is common in
computer vision and interpreting CNNs. However, we have
illustrated with multiple examples why a precise explana-
tion of a model’s decisions requires an explanation of its
interacting components, not just singular entities.

4.1. Intuition
For arbitrary objects in the computer vision setting, a

cross derivative alone is not sufficient. Besides the obvi-
ous reason that such objects are not represented by singu-
lar features but by multidimensional feature vectors learned
by a CNN, it is also because fundamentally a cross deriva-
tive measures changes of changes. More formally, a cross
derivative @2F

@x@y measures the effect of a unit change of x on
the effect on F of a unit change of y. When reasoning about
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visual relations, it is convenient to think of dependencies
between objects that inform a decision, such as the depen-
dency between a yield sign and a passing car in informing
an automated driver’s decision to “stop” or “go.” Changing
the passing car into another object, such as merely an empty
road, would on its own change the neural network’s inter-
pretation of the yield sign from meaning “stop” to mean-
ing “go,” even while keeping the yield sign fixed and un-
changed — yet a cross derivative only measures the effect
of changing both. To account for this, instead of naively us-
ing cross derivatives, we measure how much changing one
object would change the importance of another object to
a neural network’s decision, e.g., how changing the yield
sign into a speed limit sign would change the passing car’s
importance or how changing the passing car into a gush of
leaves would change the yield sign’s importance with re-
gards to the decision of whether to “stop” or “go” — even
when not necessarily both are changed.

Given car C, yield sign Y , and binary decision “go” G,
this intuition may be summarized mathematically as:

SY,C = @IMP(Y,G)
�
@C, (2)

where SY ,C represents the interaction salience between the
yield sign and passing car, and IMP(Y ,G) represents the
importance of the yield sign to the neural network’s deci-
sion to go or stop. Fortunately, the importance of individual
objects in computer vision is the characteristic problem of
the explanatory tool Grad-CAM [6, 24, 40], which we use
to derive our method. We use the term interaction salience
due to deviation from interaction effects in Definition 3.1.

4.2. Methodology
Suppose we have an `-times differentiable function F :

Rn,d ! R, which will stand for our neural network, where
` � 2. F takes in matrix x consisting of n feature vec-
tors x1, ...,xn 2 Rd of dimension d. So x1, ...,xn are just
feature vectors produced by a CNN and each one is associ-
ated with an image region. F is the portion of the network
downstream of these feature vectors.

Quantify Importance To fill IMP in Equation 2, we
turn to class activation maps (CAMs) [40]. However, as
observed by the solution of [24], to find out how a class
activation map increases the class’s likelihood, we would
like to know how its features contribute to the output, which
we can do with their gradients. We can estimate the global
effect by summing the gradient of each feature vector xk

and weighing the sum to each CAM. This amounts exactly
to Grad-CAM [24]:

IMP(xi, F (x)) = GradCAM (xi, F (x))

=
X

p

xip

X

k

@F (x)

@xkp

. (3)

Generalize Grad-CAM to Compute Interactions Now
that we have the importance of a feature vector (via essen-
tially Grad-CAM), we can formulate Sij , the interaction
salience between feature vectors xi and xj , by substituting
Equation 3 into 2 and summing the dimensions as follows:

Sij =
X

m

@

"
X

p

xip

X

k

@F (x)

@xkp

#�
@xjm. (4)

Merge with Statistical Interaction Effects Finally, we
bring this to an easy-to-compute form by realizing that the
partial derivative in the denominator @xj can be computed
together with the partial derivative in the numerator. We
also square the salience because a change of importance in
either direction would be significant. We note that the fol-
lowing is a generalization of Grad-CAM that reduces ele-
gantly to a modified interaction effects Definition 3.1:

S2
ij =

 
X

m

X

p

xip

X

k

@2F (x)

@xkp@xjm

!2

=

 
X

m,p,k

xipIEkp,jm

!2
. (5)

In tests, we found setting k = i in Equations 3 - 5 with-
out the global sum over k to perform just as well and often
better, perhaps because the local gradients in Equation 3
more precisely correspond to features. We call Equation 5
Hessian-CAM. Hessian-CAM may be further differentiated
with respect to a cross partial @xq to get a 3-way interac-
tion salience, and that can be further differentiated up to
any order `. Thus, we name this Taylor-CAM, a higher-
order generalization of Grad-CAM, where Grad-CAM (or a
close variant) is the special case ` = 1 and Hessian-CAM is
the special case ` = 2.

Note that interaction saliences are conditional. The in-
teraction salience of feature xi on feature xj is not neces-
sarily the same as that of xj on xi. Interaction salience Sij

represents the influence of xi on the importance of xj . In-
teraction salience Sijk... represents the influence of xi on
the interaction salience of interaction xj ,xk, .... To address
this, we sum the mutual pairs, e.g., Sij + Sji, although we
note that we did so only to make the presentation clearer and
not because it is required. For many interpretation tasks,
understanding that the meaning of the yield sign depends
on the car, but the meaning of the car does not depend on
the yield sign is crucial to getting the most precise under-
standing. Computing the mutual pairs does not require re-
computation of any derivatives, and can be achieved easily
by permuting the resulting interaction saliences and sum-
ming them. Lastly, we zero out the diagonals and redundant
grid cells of the resulting interaction saliences to only con-
sider interactions between non-redundant feature vectors.
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4.3. Limitations
One limitation of Taylor-CAM, much like Grad-CAM,

is that “importance” is based on contribution to the output,
so if two different objects have the same contribution to the
output, then changing one into the other would be consid-
ered meaningless, and so the interactions might not be iden-
tified. Suppose we have the setup from Sort-Of-CLEVR
[14], a relational reasoning task. Here, we have an image
with an assortment of shapes of different colors and a re-
lational question related to that image. An example of this
limitation is when an agent is asked, “What is the color of
the circle furthest from the pink square?” If the furthest cir-
cle is blue, and the second furthest is also blue, then chang-
ing the furthest into a square does not meaningfully impact
the pink square’s contribution to the output, as determined
by Grad-CAM, since the answer to the question would be
unchanged (blue). Grad-CAM++ [6] may hold an insight as
to how to address this, via even-higher order derivatives.

Another limitation is that “change” is measured locally,
as derivatives do not account for non-local rates of change.
This means that Taylor-CAM, like other deep learning ex-
planatory tools, depends on local regions of representations.

Lastly, of course, is the time complexity of computing
higher-order derivatives. Higher-order differentiation has
become increasingly more accessible with Taylor-mode au-
tograd methods like JAX [4] and libraries like the new Py-
torch functional autograd API [19], yet remains a challenge
as the order grows. For Hessian-CAM, we had no trouble
computing 2nd-order derivatives of Relation Networks us-
ing Pytorch and CPU memory. None of our individual ex-
planations required more than a few minutes to compute on
a CPU, excluding neural network training.

5. Experiments
5.1. Statistical Interaction Effects

We evaluate T-NID’s ability to rank interactions on the
suite of synthetic functions proposed by [12, 17, 28, 32],
which were “designed to have a mixture of pairwise and
higher-order interactions, with varying order, strength, non-
linearity, and overlap” [32]. These are available to see in
the Appendix and in Table 1 of [32].

Pairwise Interactions For pairwise interaction effects
(see Table 1), we report or reproduce the experiments of
[32] verbatim, measuring AUC scores between predicted
interaction rankings and ground truths. A pair xi, xj is con-
sidered an interaction either by itself or when it is a sub-
set of a higher-order interaction, as in [17, 28]. Included
for comparison are benchmarks from various statistical and
machine learning methods [28, 30, 31, 32, 36]. NID [32]
uses an interpretation of the weights from a standard MLP
to detect interactions, whereas NID + MLP-M uses an MLP
with additional univariate networks summed at the output

to discourage modeling of main effects and false spurious
interactions. GLIDER [31] is a recent cross-partial method
that induces higher-order differentiability with Softplus.

In contrast, T-NID uses only a standard MLP and GELU
activations. GELU demonstrably performs better. Unlike
NID, we found no benefit from MLP-M or sparsity regular-
ization. Despite the simpler architecture, T-NID is immune
to some of the deficits of NID and NID + MLP-M. T-NID
is able to distinguish main effects and spurious interactions
in F2 and F4, and while NID + MLP-M modeled spurious
main effects in the {8, 9, 10} interaction of F6 and GLIDER
appears to struggle with this as well, T-NID recognizes it as
an interaction. All around, T-NID performs on par or bet-
ter than NID and GLIDER at computing pairwise statistical
interaction effects on these synthetic tasks.

Higher-Order Interactions For higher-order interac-
tions, we do not report AUC scores against the full ground
truth, as that would grow combinatorially more expensive
with higher orders. Since NID also extracts interactions
one order at a time, we compare the AUC scores of NID
and T-NID one order at a time and use ground truths from
the union of their discovered interactions. That way, they
can be assessed relative to one another, albeit not univer-
sally. In addition to the results reported in Table 2, we tested
many variants of architectures and report results with NID
+ MLP-M in the Appendix. In all cases, the relative results
were largely the same, with T-NID achieving the highest
scores, except less so at 4-way interactions when equipped
with its own main effects network (MLP-M). Since any-
order NID tends to find supersets much better than subsets,
at 3-way interactions, NID misses nearly all present inter-
actions, whereas T-NID fares relatively well. Along with
recent works [8], we have shown that cross derivatives are a
promising metric for interaction attribution in DNNs.

5.2. Object Detection

We ran two qualitative assessments of Taylor-CAM in
multi-object detection. In both, the task was to identify
whether a pair of objects were present in tandem. We tested
the objects “car” and “person” in the COCO annotated-
image dataset [15], and we designed our own toy dataset
consisting of cars (rectangles), signs (triangles), and a yield
sign (red triangle) with labels “go” or “stop.” The COCO
task suffered from model overfitting and lower test accu-
racy due to the limited pairwise data, but we still observed
sensible explanations. Figure 2a) shows such interactions
assigned the highest interaction salience by Taylor-CAM.

In the Yield-or-Go task, Taylor-CAM revealed two pre-
diction strategies. The first is expected: the model interacts
the yield sign (red triangle) with a car (rectangle), as seen in
Figure 2b), then predicts “stop” accordingly. In the second,
the model interacts one car with all of the other cars. One
would expect it to relate the car and the yield sign, but the
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Table 1: AUC scores for pairwise interaction effects. Top-1 scores are bolded.

ANOVA HierLasso RuleFit AG NID [32] NID MLP-M [32] GLIDER [31] T-NID
F1(x) 0.992 1.00 0.754 1 0.970 0.995± 4.4e� 3 0.973± 0.01 0.962± 0.022
F2(x) 0.468 0.636 0.698 0.88 0.79 0.85± 3.9e� 2 0.84± 0.097 0.885± 0.039
F3(x) 0.657 0.556 0.815 1 0.999 1± 0.0 0.919± 0.075 0.999± 0.001
F4(x) 0.563 0.634 0.689 0.999 0.85 0.996± 4.7e� 3 0.951± 0.073 0.998± 0.003
F5(x) 0.544 0.625 0.797 0.67 1 1± 0.0 0.997± 0.008 0.991± 0.016
F6(x) 0.780 0.730 0.811 0.64 0.98 0.70± 4.8e� 2 0.767± 0.033 0.954± 0.026
F7(x) 0.726 0.571 0.666 0.81 0.84 0.82± 2.2e� 2 0.751± 0.207 0.98± 0.021
F8(x) 0.929 0.958 0.946 0.937 0.989 0.989± 4.5e� 3 0.998± 0.005 1.0± 0.0
F9(x) 0.783 0.681 0.584 0.808 0.83 0.83± 3.7e� 2 0.754± 0.098 0.98± 0.023
F10(x) 0.765 0.583 0.876 1 0.995 0.99± 2.1e� 2 0.974± 0.027 1.0± 0.0
Average 0.721 0.698 0.764 0.87 0.92 0.92± 1.8e� 2 0.892± 0.063 0.975± 0.015

Table 2: AUC scores for higher-order n-way interaction effects

3-Way Interactions 4-Way Interactions 5-Way Interactions
NID [32] T-NID NID [32] T-NID NID [32] T-NID

Average 0.08± 0.013 0.76 ± 0.07 0.75± 0.13 0.78 ± 0.11 0.92± 0.06 0.97 ± 0.05

model discovered that the problem can be solved by check-
ing if (1) a car is present, and (2) a red car is not present.
Since each object has a different color, (2) implies that a
yield sign is present and thus to “stop.” Demystifying such
reasoning strategies is a unique benefit of Taylor-CAM.

However, when the correct label is “go,” i.e., a car and
yield sign are not present together, Taylor-CAM finds that
the model rarely interacts anything, but rather either all in-
teraction saliences are zero or objects interact with them-
selves (immediately adjacent regions) (Figure 2c)). This
self-interacting is an intuitive and convenient interpretation
that Taylor-CAM provides in the lack of salient interactions.

5.3. Relational Reasoning
Sort-Of-CLEVR is a toy dataset for relational reasoning

proposed by [23]. It is a less-computationally expensive 2D
form of the CLEVR VQA dataset [14] with a focus on rela-
tional questions. In our setup, these questions include dis-
tance and compare-&-count tasks. To test Taylor-CAM’s
capacity to explain a neural network’s relational reasoning,
we train a Relation Network [23] on Sort-Of-CLEVR and
visualize its top interactions in Figure 3. Relation Networks
are simple modules augmented to CNNs that enable rela-
tional reasoning between image regions.

In Figure 3, interacting regions are indicated by two
bounding boxes, and the top 4 interactions discovered by
Taylor-CAM are shown per image. The input is an image
of objects and a question about a particular object of inter-
est and its relation to another object, and the output is the
answer to that question. Since these questions are relational
in nature, this problem requires relational reasoning, which
we hope Taylor-CAM can be suited to explain. We invite

Table 3: Quantitative analysis on Sort-Of-CLEVR (%)

Taylor-CAM Grad-CAM* [24] GLIDER [31]
Ques 1 90% 35% 60%
Ques 2 55% 50% 35%
Ques 3 60% 40% 45%

the reader to use the discovered interactions in Figure 3 (as
visualized by the bounding boxes) to try to deduce the ob-
jects of interest and questions for themselves before looking
at the captions. For example, if the top 4 interactions each
consist of objects that are close to each other and if each in-
teraction includes the pink square, one might guess that the
question is “Which shape is closest to the pink square?”

The 6 objects are “blue”, “purple”, “pink”, “yellow”,
“orange”, and “green” and the 3 questions are (1) “Which
shape is closest to the object of interest?”, (2) “Which shape
is furthest from the object of interest?”, and (3) “How many
objects have the same shape as the object of interest?”

While decisions are frequently relational [3], Grad-CAM
is only designed to explain the importance of individual ob-
jects in isolation. We observed that Taylor-CAM affords
much clearer explanations when decisions are relational.

Quantitative Performance To assess quantitatively,
20 images per question that were classified correctly by
the model were randomly selected and annotated with their
question’s object of interest and answer-relevant objects.
For example, for the question, “What is the shape of the ob-
ject closest to the green square?” the green square and the
object that is closest to it are annotated. If Taylor-CAM’s
top-1 interaction (a pair of bounding boxes) intersects with
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a) Objects “person” and “car” are interacted to produce the output
classification of whether both are present in the image in tandem.

b) Taylor-CAM interacts the yield sign (red triangle) with any
present car (rectangle).

c) When no interactions present, Taylor-CAM’s interactions intu-
itively are 0 or occur primarily between adjacent regions as above.

Figure 2: Top-1 bounding boxes generated by Taylor-CAM
representing simple interactions in multi-object detection.

the annotated pair, then it is counted as accurate for that im-
age. Same with GLIDER. If Grad-CAM’s top-2 saliences
include the annotated pair, then it is counted as accurate
for that image. Since Grad-CAM does not provide rela-
tional interpretations, we refer to this relational interpreta-
tion of Grad-CAM’s saliences as Grad-CAM*. The bound-
ing boxes in Figure 4 exemplify what a single salience looks
like for Taylor-CAM and Grad-CAM respectively. Results
of the quantitative analysis are reported in Table 3.

Qualitative Performance To measure Taylor-CAM’s
qualitative explainability, we selected a random batch of 15
samples and their ordered interaction saliences, and con-
ducted a small user study (n = 10), asking each individual
to guess (1) the object of interest and (2) the question being
asked, from just looking at the top-4 ranked interaction vi-
suals. Taylor-CAM achieves strong explainability with bet-
ter guess-accuracy than Grad-CAM and the recent GLIDER
[31]. With Taylor-CAM, participants were able to reverse

a) Q: “Which shape is closest to the green square?”

b) Q: “Which shape is furthest from the blue circle?”

c) Q: “How many objects have shape of green object?”

d) Q: “Which shape is closest to the purple square?”

e) Q: “Which shape is furthest from the pink circle?”

f) Q: “How many objects have shape of yellow object?”

Figure 3: Shown are the top 4 interactions identified from
a Relation Network’s predictions on 6 visual question-
answering samples. The bounding boxes proposed by
Taylor-CAM may be interpreted as indicating a relation. We
recommend testing yourself to see if you can guess (1) the
object of interest and (2) the question being asked (closest,
furthest, or same shape), without looking at the caption.

engineer questions in relational VQA from just looking at
the visualized interactions. We report a wide range of ex-
plainability across different colors and questions in Tables
4 and 5. Due to random sampling, none of the 15 sampled
images for Grad-CAM included a purple object of interest,
so it is marked “N/A” in Table 4.
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a) Q: “Which shape is furthest
from the pink square?”

b) Q: “Which shape is closest to
the yellow square?”

Figure 4: The bounding boxes show what a top-1 salience
looks like for Taylor-CAM (on the left) and Grad-CAM (on
the right) respectively. Taylor-CAM offers interpretable re-
lational explanations from a single top-1 salience, whereas
Grad-CAM depends on all saliences to produce a non-
relational heatmap.

Table 4: User study object of interest accuracy (%)

Grad-CAM [24] GLIDER [31] Taylor-CAM
Green 13.3% 33.3% 40%
Pink 30% 10% 46.7%
Blue 10% 22.2% 40%
Purple N/A 15% 10%
Orange 3.3% 10% 15%
Yellow 25% 16.7% 33.3%

Table 5: User study question accuracy (%)

Grad-CAM [24] GLIDER [31] Taylor-CAM
Ques 1 44% 38.9% 76%
Ques 2 14% 38.9% 55%
Ques 3 30% 23.8% 48.3%

While some Grad-CAM colors strongly outperform ran-
dom guessing (pink and yellow), on average, people strug-
gled guessing the object of interest with Grad-CAM. This
is because Grad-CAM only explains which individual ob-
jects contribute to the output, which in relational VQA, is
all of them with an equal importance assigned to the object
of interest and any objects that are included in the question-
answer, such as the furthest or nearest object. This results
in uninterpretable and sometimes misleading visualizations,
making it very hard to guess an object of interest from the
visual only. Without knowing the object of interest, it is
consequently much harder to guess the question asked.

Grad-CAM, GLIDER, and Taylor-CAM all did rela-
tively well on question 1. Closeness is easier to interpret
with all three explanatory tools, since it is usually more vi-
sually apparent. However, we found question 2 (furthest
distance) to be harder to interpret for Grad-CAM, perhaps
because it is unclear what the object of interest is, with mul-
tiple “far away” objects of different relative proximity being
ranked highly. For example, two objects that are far away
from the object of interest might be close to each other, cre-

ating the false impression that the question is asking about
closeness. Thus, without confidence regarding the object of
interest and the interacting parts, we found ranked impor-
tances alone to be unintuitive and even misleading.

5.4. Biomedical Application
We also applied T-NID to determine interactions in the

PPMI study dataset (www.ppmi-info.org). Our anal-
ysis suggests that various measures previously thought to
be unrelated should be considered together when predicting
faster cognitive progression in Parkinson’s disease. Please
see Appendix for details in this domain.

6. Architecture Configurations
Please see Appendix.

7. Conclusion
With T-NID and Taylor-CAM, we have shown that in-

put cross derivatives, combined with a few simple heuris-
tics and intuitions, are a powerful tool for explaining inter-
actions in deep learning. T-NID, using GELU activations,
representative samples, and interaction subsampling, suc-
cessfully ranks statistical interactions, outperforming NID.
Meanwhile, Taylor-CAM generalizes Grad-CAM to the
higher order and effectively explains interactions in object
detection and relational reasoning, affording a user cohort
the insight to guess questions in VQA from only seeing the
top discovered visual interactions. Future work may explore
localizing multi-modal interactions such as in audio-visual
tasks, an agent’s interactions in RL and robotics, and inter-
actions between word embeddings in NLP. By making our
code publicly available, we hope that these simple explana-
tory tools can be used and built upon to better explain the
complex interoperating factors underlying neural network
reasoning and the world.
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