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Abstract

We investigate the weakly-supervised scene graph gener-
ation, which is a challenging task since no correspondence
of label and object is provided. The previous work regards
such correspondence as a latent variable which is itera-
tively updated via nested optimization of the scene graph
generation objective. However, we further reduce the com-
plexity by decoupling it into an efficient first-order graph
matching module optimized via contrastive learning to ob-
tain such correspondence, which is used to train a standard
scene graph generation model. The extensive experiments
show that such a simple pipeline can significantly surpass
the previous state-of-the-art by more than 30% on the Visual
Genome dataset, both in terms of graph matching accuracy
and scene graph quality. We believe this work serves as a
strong baseline for future research. Code is available at
https://github.com/jshi31/WS-SGG.

1. Introduction
Given an image, scene graph generation (SGG) is to

generate a scene graph [17, 44], consisting of the de-
tected objects and the possible relationships between the
objects. Such abstraction mimics the structured representa-
tions of language [33, 42], facilitating various downstream
visual reasoning tasks, e.g. VQA [38, 12, 13], image cap-
tion [46, 59], image generation [15]. However, most of
the current SGG models are supervised trained with scene
graph annotations, which suffered from two limitations.
First, they rely on the expensive annotations of object lo-
cations and relations. Second, they are hard to generalize
to out-of-domain objects or relations that are required by
downstream tasks, e.g., the VQA dataset, where the ques-
tions query novel objects and relations that are out of the
scene graph dataset domain.

To overcome the above limitations, we investigate
the weakly-supervised scene graph generation (WS-SGG)
problem, demonstrated in Fig. 1. We relax the annota-
tion requirements of SGG only to consider the ungrounded
scene graph, composed of solely image-level object and re-
lation labels without knowing the exact object locations,
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Figure 1. Demonstration the task of WS-SGG. During training,
only the pair of image and the ungrounded scene graph are pro-
vided. For test stage, given an image, the model should output the
full scene graph.

i.e., bounding boxes. Such a weakly-supervised learning
setting effectively assuages the difficulties associated with
data annotation. For the generalization issue, one can obtain
the ungrounded scene graph label from the caption of the
image through a language parser [42], and the ungrounded
scene graph can be paired with the image that is described
by the caption. As the community has collected extremely
large image caption datasets [34], it provides WS-SGG task
with a considerable amount of training data and alleviates
the generalization problem. Hence, WS-SGG is of great
significance.

We are not the first one to deal with this task. Typically
one can deem the region proposals extracted from an image
as the nodes of a visual graph, and the ungrounded scene
graph as the label graph. The node alignment between these
two graphs has to be discerned during the optimization pro-
cess of SGG. Therefore, one major challenge for WS-SGG
is graph matching, as we should consider the similarity of
both the nodes and their relationships. One previous work
VSPNet [52] converts the standard scene graph, where ob-
jects are nodes and relations are edges, to a bipartite graph
with one part object nodes and another part relations nodes,
where the role (subject, object) becomes the edge. It iter-
atively match each part of nodes, which fails to apply to
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standard scene graph structure, which has already been ex-
tensively researched [21, 53, 14, 45, 11, 29, 56, 3, 22, 37,
41, 50, 36] Therefore directly addressing WS-SGG on the
standard scene graph structure can easily leverage the pre-
vious research outcomes.

Therefore, we tackle the WS-SGG task on the standard
scene graph structure and propose a simple baseline that de-
couples the problem into two parts: a weakly-supervised
graph matching (WSGM) module that learns to align the vi-
sual and label graph; and a standard supervised SGG model
to generate the scene graph. We select the efficient first-
order graph matching (FOGM) algorithm (only match by
node similarity) and employ the Multi-Instance Learning
(MIL) mechanism with the contrastive learning objective
to train the graph matching module, and use the matched
scene graph as pseudo ground truth to train the standard
SGG model. The decoupling allows the baseline to adapt
to any standard SGG model, resulting in a versatile model.
To our surprise, we find the simple baseline can already
achieve much higher performance than VSPNet, the current
state-of-the-art, in terms of both graph matching and SGG.

Furthermore, we try to answer the following core ques-
tions related to our model. (1) Is the graph matching idea
better than a grounding model [16]? (2) What is the good
practice of selecting the negative sample and loss to enable
such contrastive learning for WSGM? (3) Is higher-order
graph matching (considering relation similarity) better?

In a word, our contribution is that we propose a very sim-
ple baseline that versatilely works for standard scene graphs
but can significantly outperform the complex state-of-the-
art method.

The rest of this paper is organized as follows. We review
the related works about SGG, WS-SGG, and graph match-
ing in Sec. 2. We formulate the problem and introduce our
model pipeline in Sec. 3. Experimental settings and result
analysis are presented in Sec. 4. Finally, we conclude the
paper in Sec. 5.

2. Related Work
Scene Graph Generation. A scene graph is a structured
abstraction of the scene [17, 44] that can serve various
downstream visual reasoning tasks, e.g. VQA [13], im-
age caption [59], image generation [15], action recogni-
tion [30]. One major stream is Recurrent Neural Network
(RNN) based SGG [53], including the SGG in tree struc-
ture [37, 41]. Another stream is Graph Convolutional Net-
work (GCN) based SGG [21, 14, 45, 11, 29, 56, 3, 22]. The
above methods only consider the image as a fully connected
visual graph with objects as nodes. However, our graph en-
coder requires the ability to encode label graph, where the
relation types are specified, making the label graph partially
connected. [7] regards the relation as a function that trans-
forms the node feature across the graph, allowing the ex-

plicit encoding of relation feature. But it is computationally
expensive since it needs to keep all the relation functions
and feed the node feature to all of the relation functions for
each message passing, while our proposed edge attention
message passing is able to encode the relation feature both
for visual and label graph in a cheaper manner.
Weakly-supervised Scene Graph Generation. Therefore,
the WS-SGG task only needs the image-level label that
describes the object and relation type without box loca-
tion assigned. The difficulty lies in the assignment of re-
lation triplet to the image. [55] addresses the task us-
ing the weakly-supervised object detection framework WS-
DDN [2], but it is trained with each relation triplet individ-
ually. [28] considers the triplet supervision globally with
only a simple linear regression model. [1] tackles SGG
with only relation label without subject and object label,
but relies on a pretrained object detector. VSPNet [52]
uses a complex iterative graph matching process to match
the label graph to the node, which can handle higher-order
relations. However, our paper proposes a much simpler
graph matching process and decouples the graph matching
with the scene graph generation process. Our method also
achieves much better results than all previous methods. Re-
cently, [47, 58] try to tackle SGG via language supervision,
our method can serve as an important block for them.
Graph Matching. Graph matching builds the correspon-
dence between two graphs in terms of unary node struc-
ture (first-order), pair-wise relationships (second-order), or
even high-order relationships. The first-order graph match-
ing can be efficiently solved via Hungarian algorithm [18]
in cubic time complexity. More works focus on second-
order graph matching, which is formulated as a quadratic
integer program [23]. This is known as NP-hard so the ap-
proximated solution is derived [9, 20, 6, 60, 49]. Recently
researchers also integrate deep learning with graph match-
ing algorithms through differentiable solvers, leading to an
end-to-end training fashion [51, 39, 48, 8, 57]. However,
the above deep graph matching methods only work in su-
pervised graph matching, while in this paper, we are faced
with the unsupervised situation. [40] presents the unsuper-
vised graph matching based on graduated assignment [9].
Alternatively, we try to reduce the second-order or high-
order relation into first-order representation and address the
unsupervised problem in the efficient Hungarian algorithm.

3. Method
3.1. Problem Formulation

Given an image I , the goal is to generate a visual graph
G = (N , E), where each node is a bounding box bi paired
with an entity class ci 2 Ce and each edge is a predicate
class pij 2 Cp connecting subject node i and object node
j, i.e., Nv = {(bi, ci)}

ne
i=1, Ev = {pij}

ne
i,j=1. In the train-
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Figure 2. Demonstration of our pipeline. The whole model is composed of a weakly-supervised graph matching module and a supervised
SGG model. In the graph matching module, first-order graph matching is applied and the parameter in F is learned via the contrastive
learning.

ing stage of WS-SGG, the visual graph has unknown en-
tity and predicate classes. And we define a label graph
G0 = (N 0, E 0) to denote the ungrounded scene graph la-
bel, where N

0 = {ci}
n0
e

i=1 and E
0 = {pij}

n0
e

i,j=1. The label
graph does not contain the location information for each en-
tity node. Therefore, one has to align the visual graph and
label graph to enable the training of SGG. To tackle this
challenging task, we propose a simple baseline that decou-
ples the problem into two steps. The first step is formulated
as a weakly-supervised graph matching (WSGM) between
the visual and label graphs to obtain the class labels for the
nodes and edges in the visual graph. The second step is to
learn a standard SGG model from the pseudo scene graph
label obtained from the first step. The advantage of such a
decoupling design is that it can work for any standard SGG
model with just a simple plugin of the graph matching mod-
ule. The overall pipeline is shown in Fig. 2.

3.2. Weakly-Supervised Graph Matching

The graph matching process is weakly-supervised be-
cause we only know that G and G0 is a matched pair of
graphs but do not know the exact node correspondence. To
begin with, the input visual node feature e is an RoIPool-
ing [31] feature concatenating an Multiple Layer percep-
tron (MLP) processed spatial feature b, where b 2 R9

consists of normalized coordinate (x1, y1, x2, y2), center
(x1+x2

2 , y1+y2

2 ), size (x2 � x1, y2 � y1), and area (x2 �

x1)(y2 � y1). The input label node feature e0 is the
GloVe [27] embedding of the object class.

We use two embedding functions F , F 0 to respectively
encode the node feature e, e0, leading to the embedding
of node i in G as hi and node j in G0 as h0

j . Our so-
lution is to do graph matching firstly, and then follow the
idea of MIL and learn parameters in F and F 0 through con-
trastive learning, which is illustrated in the brown box in
Fig 2. For graph matching, the second-order graph match-
ing (match both nodes and edges) algorithm usually re-
sorts to Gradually Assignment [9, 40] technique, which is
time-consuming. Hence, we alternatively choose first-order
graph matching (FOGM) that only match the nodes. Pre-
cisely, we first compute the cosine similarity between the
two nodes as

sij = cos(hi,h
0
j); (1)

then we expect to find a one-to-one alignment I between
the two graphs

I =
�
(i, j)|i 2 {1 . . . ne}, j 2 {1 . . . n0

e}
 
, (2)

such that
I
⇤=argmax

I

X

(i,j)2I

sij . (3)

The optimal alignment I⇤ is solved using Hungarian algo-
rithm [18], whose complexity is only O(n3). Note that al-
though the FOGM algorithm focuses only on the similari-
ties of nodes instead of edges, our intuition is that if we can
let the node embedding function F encode the edge context,
the FOGM algorithm can still work for higher-order graph
matching. The selection of F is later discussed in Sec. 3.4.
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Next, to learn the embedding function F , following the
idea of MIL [16], we adopt the triplet loss to enhance such
alignment by forcing the similarity of the matched nodes
and distancing the unmatched nodes. Therefore the graph
matching loss Lgm is represented as

Lgm =
X

(i,j)2I⇤,i 6=i0

max(0, si0j � sij +�), (4)

where � is a positive margin. The negative objects are
drawn from the current label’s unmatched objects, both
from the current frame and other frames. In Sec. 4.4 we
observe the negative samples from other frames can signif-
icantly boost the performance.

3.3. SGG Generation
Having obtained the pseudo scene graph label via the

graph matching, we further train a standard fully-supervised
SGG model to output the scene graph from the input image
(blue dashed box in Fig. 2). Any standard SGG model can
be applied into this pipeline. The final object and predicate
category are trained with cross-entropy loss Lsgg , follow-
ing [53]. Hence, the final loss L is the combination of graph
matching loss and SGG loss L = Lgm + Lsgg .

3.4. Selection of Node Embedding F

The most straightforward choice of F is an MLP, which
is used as our default setting. In this case, no edge infor-
mation is encoded to the node representation. Therefore,
it is natural to ask whether we can use graph neural net-
work (GNN) to encode the edge context into the node. To
answer this question, we need a GNN that can encode the la-
bel graph’s categorical edge information into the node rep-
resentation. However, standard SGG model [44, 53] fails
to do so because they only take in the object feature with-
out knowing their relation type. Therefore we propose a
message passing scheme for GNN named Edge Attention
Massage Passing (EAMP), allowing edge type feature to be
explicitly encoded into node representation. For the EAMP,
the initial node state is the input node embedding h(0)

i = ei.
At the kth iteration, we define an score to measure the con-
fidence if there is an edge pointing from node i to j:

�(k)
ij = Sigmoid(f�([h

(k)
i ;h(k)

j ])), (5)

where the [·; ·] denotes concatenation of two vectors, and
f denotes MLP. Then Dp 2 R|Cp|⇥d is an embedding
dictionary of all predicates in Cp where the first predi-
cate is background class. And a valid predicate dictionary
D̂p 2 R(|Cp|�1)⇥d is Dp without the background embed-
ding. To enforce the message-passing process to be aware
of the edge type, we compute the attention score from the
pair-wise node feature to the valid dictionary as

↵̂(k)
ij = Softmax(f↵([h

(k)
i ;h(k)

j ])D̂|
p/

p

d). (6)

However, there may be no valid relation type between two
nodes, so we augmented the predicate attention with edge
confidence such that it can attend to the background class,
and the attended predicate representation is obtained from
the augmented attention as

↵(k)
ij = [1� �(k)

ij ;�(k)
ij ↵̂(k)

ij ], p(k)
ij = ↵(k)

ij Dp. (7)

Then each node aggregate neighbors’ information through
both subject and object FC layers as

m(k)
i =

X

j,j 6=i

�
�̄(k)
ij fs([h

(k)
j ;p(k)

ij ]) + �̄(k)
ji fo([h

(k)
j ;p(k)

ji ])
�
,

(8)
where �̄(k)

ij = �(k)
ij /

P
j,j 6=i �

(k)
ij . Note the above aggrega-

tion also considered the predicate type, enabling the mes-
sage passing process aware of the relation categories. Fi-
nally, GRU [5] is adopted to update the node feature as

h(k+1)
i = GRU(h(k)

i ,m(k)
i ). (9)

After K iterations, the refined node feature with edge type
context is obtained as hK

i .
The aforementioned message passing is formulated with

soft attention to the predicate type, suitable for the visual
graph, as its predicate category is not determined. Since
the label graph has determined relation type, we adopt hard
attention instead of the soft one. Therefore, �ij in Eq. (5)
will be changed as

�(k)
ij =

(
0 if pij = background,
1 otherwise,

(10)

and ↵(k)
ij 2 R|Cp| in Eq. (7) changed as a one-hot vector

indicating the predicate category of pij . So far, we can in-
crease the number of message passing to encode the edge
context into the node and are ready for higher-order graph
matching using Hungarian algorithm.

4. Experiment
4.1. Dataset and Metric
Dataset. We evaluate our method on Visual Genome (VG)
dataset [17], consisting of 108,077 images with scene graph
annotations. Following VSPNet [52], we evaluate our
method on two common splits [44, 55] with different la-
bel preprocessing strategies. [44] keeps most-frequent 150
object categories and 50 predicate types, with train/test
set 75,651/32,422 images. While [55] select 200 ob-
ject categories and 100 predicate types, with train/test set
73,801/25,857 images.
Metric. We firstly introduce the metric to measure the
graph matching performance. Note that in the label graph,
even if two nodes belong to the same object category, they
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Method
SGGen SGCls PredCls

Rinst Robj Rprd Rinst Robj Rprd Rinst Rprd

Upper bound 39.65 39.65 27.32 100.00 100.00 100.00 100.00 100.00

VSPNet 2.75 4.50 0.78 59.89 71.86 50.31 70.94 63.54
WSGM (Ours) 9.07 13.15 1.87 67.61 77.93 58.99 74.22 68.83

Table 1. Comparison of graph matching accuracy on the training set of the VG split [44].

are two distinctive instances due to different neighbor con-
texts, as the “man” in Fig. 1. Hence we devise the following
metrics: (1) Instance-level recall (Rinst): A box is correctly
matched if the box is matched with the correct node in the
label graph and is correctly located (has more than 50%
intersection-over-union (IoU) with the ground truth (GT)
box). The recall is computed as the ratio of the correctly
matched boxes to all the GT boxes for each image, fol-
lowed by an averaged across all images. (2) Object-level
recall (Robj): A box is correctly matched if the box is as-
signed with the correct object category and is correctly lo-
cated. Then the recall is computed the same way as Rinst.
Note that Robj is looser than Rinst, because although a box
is assigned with the correct category, it can be matched to
a wrong node instance with the correct object category in
the label graph. (3) Predicate-level recall (Rprd): A predi-
cate is correctly matched if its subject and object boxes are
correctly matched in the instance-level.

Next we describe the common evaluation metric scene
graph generation. (1) Predicate classification (PredCls):
given GT boxes and object labels, predict relationship types
of object pairs. (2) Scene graph classification (SGCls):
given GT object boxes, predict object categories and rela-
tionship types. (3) Scene graph detection (SGGen): given
an image, predict boxes, categories of region proposals and
relation types of object pairs. Only when the labels of the
subject-relation-object triplet are correctly clas-
sified, and the boxes of subject and object have more than
50% IoU with the GT, it is counted as a correctly detected
entity. (4) Phrase detection (PhrDet) [55]: given an image,
predict the relationship triplet with a union bounding box
enclosing both the object and subject. It is correct if the
labels of the triplet are correct and the union box match
with GT union box with IoU greater than 0.5. Recall of
the above metric is computed for each image and then av-
eraged over the dataset, leading to Recall@K metrics (K =
[20, 50, 100]). Moreover, in the triplet ranking process, we
have the graph constraint that the same object pair cannot
predict multiple predicates in our default setting. If such
constraint is disabled, No Graph Constraint Recall@K will
be indicated, following [53].

4.2. Implementation Details
We follow the same way of VSPNet [52] to extract vi-

sual features. 20 top region proposals for each image are ex-
tracted from the RoIPooling [31] feature pretrained on Open
Image dataset [19]. We use 200-dimensional GloVe embed-
dings [27] to represent the object and predicate features in
the label graph. The EAMP’s message passing iteration is
set as 1 when used as a SGG model. The WSGM and SGG
model are trained together, while the SGG learning loss is
subject to a linear warmup for 12k iterations to ensure the
FOGM has been well trained. We set � = 0.1 according to
grid search and assign a discount weight 0.1 for background
object and 0.01 for background relation for the Lsgg due to
data balance. We optimize the model via SGD with learning
rate 0.002 and momentum 0.9. The batch size is 32.

4.3. Main Results
Comparison Methods. We compare our system with the
following methods for WS-SGG:

• PPR-FCN [55]: it extends the structure of WSDDN [2]
to detect relation triplets.

• VTransE-MIL [55]: it follows the same pipeline as
VTransE [54] but using the NoisyOR MIL [24] as the
loss function for object and relation detections.

• VSPNet [52]: it converts the scene graph to a bipartite
graph of entity nodes and predicate nodes, where each
part of nodes iteratively conduct first-order match to
approximate the second-order graph matching.

Due to the space limitation, we move the result on VG
split [55] to Appx. A, where PPR-FCN and VTransE-MIL
are compared.
Graph Matching Performance. We firstly compare our
method with VSPNet, and the result is shown in Tab. 1,
indicating our simple FOGM framework out-perform VSP-
Net, which does the second-order graph matching (SOGM).
Although intuitively SOGM is better than FOGM, it may
not be true considering the WSGM, where the inaccurate
matching will exaggerate the noisy for the node embedding
learning. Multiple factors might contribute the matching
accuracy, including the loss function, the network message
passing complexity, etc. We suspect that our simple FOGM
has less error propagation than the nested optimization used
in VSPNet. And our contrastive loss could be an more ef-
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Method Supervision
SGGen SGCls PredCls

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

MOTIFS [53] Full 25.48 32.78 37.16 35.63 38.92 39.77 58.46 65.18 67.01

VSPNet* [52]

Weak

- 4.01 4.17 - 23.43 23.50 - 44.59 44.77
WSGM+IMP 3.87 5.06 5.73 25.09 30.04 31.85 48.22 61.37 65.83
WSGM+Motif 4.12 5.59 6.45 23.54 29.16 31.39 44.10 59.07 64.60
WSGM+EAMP 4.19 5.43 6.02 25.32 30.38 32.10 46.57 59.19 64.22

Best Improve - 39% 54% - 30% 37% - 38% 47%
Table 2. Comparison with other methods on VG split [44]. Best improve is the best relative improvement over VSPNet among the WSGM
based methods. * denotes the re-evaluated number.

Rate R@20 R@50 R@100 Rinst

Lvis
gm 4.19 5.43 6.02 10.12

Llbl
gm 3.61 4.79 5.43 9.71

Lcomb
gm 3.77 4.84 5.39 9.33

Table 3. Ablation study of different construction of the contrast in
the setting of SGGen.

Loss R@20 R@50 R@100 Rinst

Logistic 1.23 1.73 2.01 2.33
NCE 1.21 1.80 2.17 2.46

Triplet 2.84 3.95 4.56 8.77
Table 4. Ablation study of different graph matching loss in the
setting of SGGen.

fective loss function then the loss of VSPNet, as the way to
formulate the contrastive loss and negative sample selection
will boost the performance significantly (Sec. 4.4). Finally,
the upper bound is computed by assuming all the matching
are correct, unless the region proposals cannot cover all the
GT boxes. We can see the upper bound graph matching re-
call for SGGen setting is quite low (39.65% for the instance
recall and 27.32% for predicate recall), severely limiting the
matching performance, indicating that the OpenImage [19]
pretrained RPN still has a large semantic gap to the VG
dataset. And the SGCls and PredCls upper bound are 100%
as they use the ground truth box as region proposals.
SGG Performance. To show the effect of the WSGM on
the SGG task, we use the pseudo label computed from the
WSGM to train the existing standard SGG models, namely
Iterative Message Passing (IMP) [44], Neural Motif (MO-
TIF) [53], and the proposed EAMP as our SGG models. As
the IMP and MOTIF both require the input feature of the
union of box pair, which is not available in our proposal set-
ting, we replace it with the concatenation of the subject and
object feature followed by an FC layer. Also, we disable
the object label feature in the input for MOTIF as no object

detector is available now. The frequency prior is applied
by default for all the SGG models, following MOTIF [53].
The performance of SGG with and without scene graph con-
straint is shown in Tab. 2 and Tab. 5, respectively. Note that
the number of original VSPNet [52] paper does not strictly
satisfy the scene graph constraint, so for a fair compari-
son, we re-evaluate the VSPNet by keeping the top predi-
cate from a unique object-subject pair. Moreover, we com-
pare the original number of VSPNet in non-constraint graph
(Tab. 5). We observe that the FOGM based SGG models all
outperform the VSPNet by a large margin (SGGen R@100:
54% relative improvement, SGCls R@100 37%), demon-
strating the effectiveness of our algorithm. We can see that
different SGG models share comparable performance. The
MOTIF is not always better than IMP because the object la-
bel feature is disabled, which is different from a supervised
setting. The qualitative visualization is shown in Appx. C.
Also, the weakly-supervised performance is still far behind
the fully-supervised setting for SGGen, while for SGCls
and PredCls the gap is smaller, indicating good object pro-
posal is critical for WS-SGG.

4.4. Ablation Study
Due to the space limit, we move the study of the iteration

number of EAMP as a SGG model in Appx. B.1, and the
study on the margin of the triplet loss to Appx. B.2. All the
ablation study are done in VG split [44].
Different ways to learn the contrast. We observe that the
way to construct the positive and negative contrast is impor-
tant. We studied three different construction of the contrast.
The first case is Eq. (4), where the anchor is the label node
and the positive and negative samples are the visual nodes,
so we let Lvis

gm to denote Eq. (4). Reversely, if the visual
node is the anchor and the label nodes are used to construct
the contrast, the loss becomes

Llbl
gm =

X

(i,j)2I⇤,j 6=j0

max(0, sij0 � sij +�); (11)

and the combination of both direction is Lcomb
gm = Lvis

gm +
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Method Supervision
SGGen SGCls PredCls

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

MOTIFS [53] Full 27.04 36.58 43.43 40.58 48.48 51.98 66.39 81.02 88.24

VSPNet [52]

Weak

- 4.70 5.40 - 30.50 32.70 - 57.70 62.40
WSGM+IMP 3.91 5.26 6.31 27.03 34.57 38.89 51.13 69.57 80.19
WSGM+Motif 4.16 5.74 6.94 25.17 33.12 37.85 46.76 66.86 78.46
WSGM+EAMP 4.25 5.70 6.70 27.40 35.09 39.43 49.60 67.12 77.74

Best Improve - 22% 28% - 15% 21% - 21% 29%
Table 5. Comparison with other methods in non-constraint graph.

R@20 R@50 R@100 Rinst

grounding 3.26 4.07 4.48 6.57
FOMP 4.19 5.43 6.02 10.12

sub-graph 10% 3.51 4.40 4.79 9.13
sub-graph 50% 4.20 5.29 5.81 9.18

Table 6. Compare with grounding and different sub-graph rate in
the setting of SGDet.

Llbl
gm. The comparison of the three cases is shown in Tab. 3.

We observed that the contrast in visual nodes is more favor-
able than contrast for the label nodes.
Comparison with alternative contrastive loss. We com-
pare the triplet loss against the other two commonly used
contrastive losses: logistic loss [26] and NCE loss [35, 43],
which have been widely applied in unsupervised learning
literature [4, 25]. To make the comparison fair, for all
losses, the anchor is the label node, and negative samples
are drawn from the unmatched visual nodes in the same im-
age with the positive samples. In the triplet loss and logistic
loss, the same number of negative proposals are randomly
sampled as the matched proposals. With the same notation
as Eq. (4), the logistic loss is written as:

�

X

(i,j)2I⇤,i 6=i0,j 6=j0

�
log(�(sij)) + log(�(�si0j))

�
(12)

where �(·) is the sigmoid function. The contrastive loss will
take all the negative proposals in the images on the denom-
inator, which is given as

X

(i,j)2I⇤

� log
exp(sij)P
i0 exp(si0j)

(13)

The performance of them are presented in Tab. 4. We find
that the triplet loss in the graph matching problem is sig-
nificantly better than the other two alternatives. Not that
such finding is different from the common observation that
the NCE loss outperforms the triplet loss [4]. The differ-
ent feature extraction setting might cause this discrepancy.

In our case, the proposal feature is extracted by the off-the-
shelf RPN [32], and the learnable embedding on top of it
is shallower compared with the learnable embedding as a
ResNet50 [10] used in SimCRL [4]. Therefore, our em-
bedding has to maintain the original semantics of RPN fea-
ture and may not be able to shape a large similarity gain
of the positive pair over the negative pair. From this view,
the triplet loss is the most suitable one as the margin of the
similarity can be tuned to be smaller, while NCE loss and
logistic loss will steadily enlarge the similarity gain, leading
to the difficulty of reconciling the original RPN feature.
Is higher-order graph matching better? In our standard-
setting, the graph matching process adopts the MLP to en-
code only the object feature without considering the predi-
cate feature. Therefore, we pay a tentative effort to study if
a message passing model, e.g. EAMP, can encode the pred-
icate information into the node feature such that a simple
first-order graph matching can still be applied to achieve
higher-order matching. Since EAMP can encode the rela-
tion feature into node feature for both visual graph and label
graph, we replace the MLP to EAMP and adjust the number
of message passing iterations. The result is shown in Tab. 7,
and 0 iteration makes the EAMP reduced to MLP. We can
see that for SGGen, MLP yields the best result, and in-
creasing the iteration number will reversely deteriorate the
matching accuracy. We guess that as the instance recall is
low (only around 10%), the model will force the similarity
of the rest 90% of the unmatched nodes, already introducing
much noise in the matching process. Further involving the
embedding of relation context into the node might trigger
more noise since the relation is also error-prone. Another
reason is that we do not have the topology structure of the
visual graph, and thus it is assumed initially as a fully con-
nected graph, leading to higher graph matching difficulties
than those graph match where all graphs have their topolo-
gies. However, as we can see that for SGCls and PredCls
where the instance noise is smaller than SGGen, more iter-
ations of message passing will bring certain benefits.
Is the graph matching better than a grounding model?
We firstly highlight the difference of our WSGM with
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Method
SGGen SGCls PredCls

Rinst Robj Rprd Rinst Robj Rprd Rinst Rprd

EAMP iter 0 9.07 13.15 1.87 67.61 77.93 58.99 74.22 68.83
EAMP iter 1 8.39 12.18 1.63 64.39 80.00 53.64 74.36 69.05
EAMP iter 2 7.19 10.75 1.00 63.31 78.97 53.00 74.51 69.50

Table 7. Ablation study of the iteration number of EAMP as the embedding function for graph matching on the training set.

Loss R@20 R@50 R@100 Rinst

Full 4.19 5.43 6.02 10.12
w/o CrossMatch 2.84 3.95 4.56 8.14

w/o HardNeg 3.63 4.74 5.31 8.48
Table 8. Ablation study of different negative example mining
strategies in the setting of SGDet.

Curriculum R@20 R@50 R@100 Rinst

simple!hard 4.21 5.44 6.08 9.52
hard!simple 4.30 5.50 6.14 9.88
No curriculum 4.19 5.43 6.02 10.12

Table 9. Train with curriculum learning in the setting of SGDet.

grounding model, e.g., DVSA [16]. Each noun will query
its most similar object independently in standard grounding
model. Nevertheless, we use graph supervision where the
label graph is a holistic structure, and we do not regard the
label nodes as independent queries but apply the one-to-one
mapping constraint such that two queries will not match the
same object. Tab. 6 shows that the WSGM outperforms the
grounding setting, indicating that the one-to-one mapping
constraint is essential to our model and the purely ground-
ing model is inadequate.
The importance of graph supervision. The one-to-one
mapping might also cause the error since one mismatch
will trigger other mismatched nodes. Thus we further cut
the original scene graph into a sub-graph which might re-
duce such mismatch propagation. Note that such a random
cut happens at each training iteration to ensure all the la-
bel nodes have the chance to be trained. Tab. 6 presents the
sub-graph with 50% and 10% of nodes remained, indicating
that fewer nodes will decrease the performance and further
advocating that one-to-one mapping constraint is more im-
portant than the concern of its mismatch propagation.
Different negative sample mining. Here we study the
importance of selecting negative samples. By default, for
an anchor label node, its negative samples come from the
matched visual node of other label nodes in both the cur-
rent image and the other image. CrossMatch: indicating the
negative objects can come from other images. HardNeg:

indicating the negative objects must be matched by other
nodes. Without HardNeg, the negative sample can be any
unmatched objects of current label nodes. The Tab. 8 shows
that the CrossMatch can bring significant improvement be-
cause the model can see more negative samples and thus
lead to better contrast for learning. Also, the HardNeg is
essential as the visual nodes matched by other label nodes
have better semantic meaning than the background object;
therefore, such semantic difference of other objects from
current label nodes will assist contrastive learning.
What may not help.
Handcrafted curriculum learning. Motivated by the intu-
ition that the label graph with fewer nodes may be easier to
learn than the ones with more nodes, we split the training
set into four splits according to the number of nodes in the
label graphs from easy to hard. From Tab. 9, simple!hard
means training from easy split to hard, and hard!simple
means the reverse. We observe that no matter which direc-
tion we use, the performance has slight change; therefore,
ranking the complexity of the label graph will not affect the
model performance.

5. Conclusion

In summary, we decouple the WS-SGG task into a
WSGM module and a standard SGG model, where a con-
trastive learning framework based on efficient first-order
graph matching is introduced. Our method is much sim-
pler than the previous method while achieves significant
improvement on both graph matching accuracy and SGG
performance. We further empirically illustrate the graph
matching is better than a grounding model, provide good
practice of selecting negative samples and the loss. We be-
lieve this work serves as a simple yet strong baseline for the
future development of WS-SGG problem.
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