
The Logical Options Framework

Anonymous Authors¹

Abstract

Learning composable policies for environments with complex rules and tasks is a challenging problem. We introduce a hierarchical reinforcement learning framework called the *Logical Options Framework* (LOF) that learns policies that are *satisfying*, *optimal*, and *composable*. LOF efficiently learns policies that satisfy tasks by representing the task as an automaton and integrating it into learning and planning. We provide and prove conditions under which LOF will learn satisfying, optimal policies. And lastly, we show how LOF’s learned policies can be composed to satisfy unseen tasks with only 10-50 retraining steps. We evaluate LOF on four tasks in discrete and continuous domains.

1. Introduction

To operate in the real world, intelligent agents must be able to make long-term plans by reasoning over symbolic abstractions while also maintaining the ability to react to low-level stimuli in their environment (Zhang & Sridharan, 2020). Many environments obey rules that can be represented as logical formulae; e.g., the rules a driver follows while driving, or a recipe a chef follows to cook a dish. Traditional motion and path planning techniques struggle to formulate plans over these kinds of long-horizon tasks, but hierarchical approaches such as hierarchical reinforcement learning (HRL) can solve lengthy tasks by planning over both the high-level rules and the low-level environment. However, solving these problems involves trade-offs among multiple desirable properties, which we identify as *satisfaction*, *optimality*, and *composability* (described below). Today’s hierarchical planning algorithms sacrifice at least one of these objectives. For example, Reward Machines from Icarte et al. (2018) is satisfying and optimal, but not composable; the options framework (Sutton et al., 1999) is composable and

hierarchically optimal, but cannot satisfy specifications. An algorithm that can achieve all three of these properties would be very powerful because it would enable a model learned on one set of rules to generalize to arbitrary sets of rules. We introduce a new approach called the *Logical Options Framework*, which builds upon the options framework and aims to combine symbolic reasoning and low-level control to achieve satisfaction, optimality, and composability with as few compromises as possible. Furthermore, we show that a model learned with our framework can indeed generalize to arbitrary sets of rules without any further learning, and we also show that our framework is compatible with a large variety of domains and planning algorithms, from discrete domains and value iteration to continuous domains and proximal policy optimization (PPO).

Satisfaction: An agent operating in an environment governed by rules must be able to satisfy the specified rules. Satisfaction is a concept from formal logic, in which the input to a logical formula causes the formula to evaluate to True. Logical formulae can encapsulate rules and tasks like the ones described in Fig. 1, such as “pick up the groceries” and “do not drive into a lake”. In this paper, we state conditions under which our method is guaranteed to learn satisfying policies.

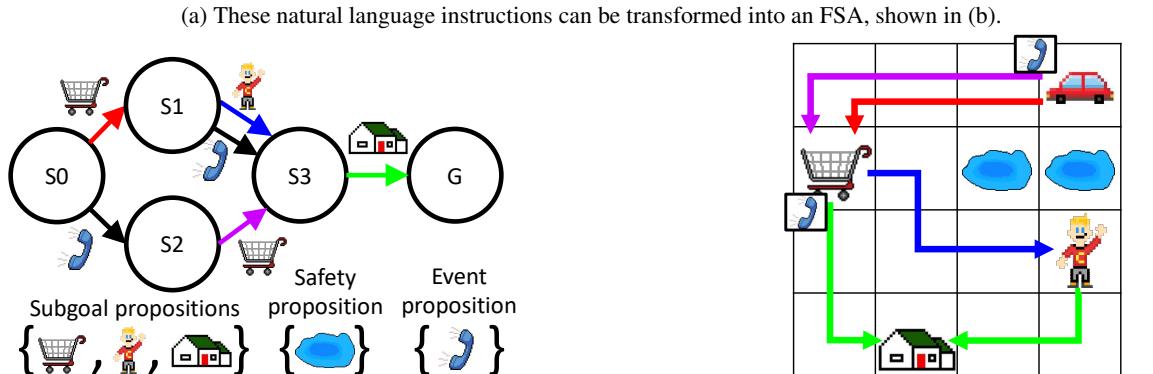
Optimality: Optimality requires that the agent maximize its expected cumulative reward for each episode. In general, satisfaction can be achieved by rewarding the agent for satisfying the rules of the environment. In hierarchical planning there are several types of optimality, including hierarchical optimality (optimal with respect to the hierarchy) and optimality (optimal with respect to everything). We prove in this paper that our method is hierarchically optimal and, under certain conditions, optimal.

Composability: Our method also has the property of compositability – once it has learned the low-level components of a task, the learned model can be rearranged to satisfy arbitrary tasks. More specifically, the rules of an environment can be factored into liveness and safety properties, which we discuss in Sec. 3. The learned model can be adapted to satisfy any appropriate new liveness property. A shortcoming of many RL models is that they are not composable – trained to solve one specific task, they are incapable of handling even small variations in the task structure. However,

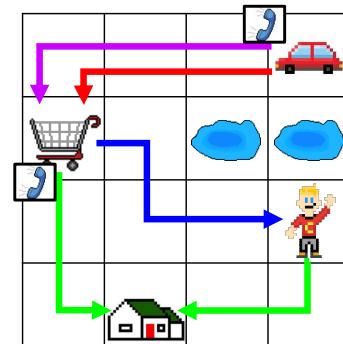
¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

“Go **grocery shopping**, pick up the **kid**, and go **home**, unless your partner **calls** telling you that they will pick up the kid, in which case just go **grocery shopping** and then go **home**. And don’t drive into the **lake**.”



(b) The FSA representing the natural language instructions. The propositions are divided into “subgoal”, “safety”, and “event.”



(c) The low-level MDP and corresponding policy that satisfies the instructions.

Figure 1. Many parents face this task after school ends – who picks up the kid, and who gets groceries? The pictorial symbols represent propositions, which are true or false depending on the state of the environment. The arrows in (c) represent subpolicies, and the colors of the arrows match the corresponding transition in the FSA. The boxed phone at the beginning of some of the arrows represents how these subpolicies can occur only after the agent receives a phone call.

the real world is a dynamic and unpredictable place, so the ability to use a learned model to automatically reason over as-yet-unseen tasks is a crucial element of intelligence.

The illustrations in Fig. 1 give an example of how LOF works. The environment is a world with a grocery store, your (hypothetical) kid, your house, and some lakes, and in which you, the agent, are driving a car. The propositions are divided into “subgoals”, representing events that can be achieved, such as going grocery shopping, “safety” propositions, representing events that you must avoid (driving into a lake), and “event” propositions, corresponding to events that you have no control over (receiving a phone call) (Fig. 1b). In this environment, you have to follow rules (Fig. 1a). These rules can be converted into a logical formula, and from there into a finite state automaton (FSA) (Fig. 1b). LOF learns an option for each subgoal (illustrated by the arrows in Fig. 1c), and a meta-policy for choosing amongst the options to reach the goal state of the FSA. After learning, the options can be recombined to fulfill arbitrary tasks.

1.1. Contributions

We introduce the Logical Options Framework (LOF), which makes four contributions to the hierarchical reinforcement learning literature:

1. The definition of a hierarchical semi-Markov Decision

Process (SMDP) that is the product of a logical FSA and a low-level environment MDP.

2. A planning algorithm for learning options and metapolicies for the SMDP that allows for the options to be composed to solve new tasks with only 10-50 retraining steps and no additional samples from the environment.
3. Conditions and proofs for achieving satisfaction and optimality.
4. Experiments on a discrete domain and a continuous domain on four tasks demonstrating satisfaction, optimality, and compositability.

2. Background

Linear Temporal Logic: We use linear temporal logic (LTL) to formally specify rules (Clarke et al., 2001). LTL can express tasks and rules using temporal operators such as “eventually” and “always.” LTL formulae are used only indirectly in LOF, as they are converted into automata that the algorithm uses directly. We chose to use LTL to represent rules because LTL corresponds closely to natural language and has proven to be a more natural way of expressing tasks and rules for engineers than designing FSAs by hand (Kansou, 2019). Formulae ϕ have the syntax grammar

$$\phi := p \mid \neg\phi \mid \phi_1 \vee \phi_2 \mid \bigcirc \phi \mid \phi_1 \mathcal{U} \phi_2$$

110 where p is a *proposition* (a boolean-valued truth statement
 111 that can correspond to objects or events in the world), \neg
 112 is negation, \vee is disjunction, \bigcirc is “next”, and \mathcal{U} is “until”.
 113 The derived rules are conjunction (\wedge), implication (\implies),
 114 equivalence (\leftrightarrow), “eventually” ($\Diamond\phi \equiv \text{True} \mathcal{U} \phi$) and
 115 “always” ($\Box\phi \equiv \neg\Diamond\neg\phi$) (Baier & Katoen, 2008). $\phi_1 \mathcal{U} \phi_2$
 116 means that ϕ_1 is true until ϕ_2 is true, $\Diamond\phi$ means that there is
 117 a time where ϕ is true and $\Box\phi$ means that ϕ is always true.

118 **The Options Framework:** The options framework is a
 119 framework for defining and solving semi-Markov Decision
 120 Processes (SMDPs) with a type of macro-action or subpolicy
 121 called an option (Sutton et al., 1999). The inclusion of
 122 options in an MDP problem turns it into an SMDP problem,
 123 because actions are dependent not just on the previous state
 124 but also on the identity of the currently active option, which
 125 could have been initiated many time steps before the current
 126 time.

127 An option o is a variable-length sequence of actions defined
 128 as $o = (\mathcal{I}, \pi, \beta, R_o(s), T_o(s'|s))$. $\mathcal{I} \subseteq \mathcal{S}$ is the initiation
 129 set of the option. $\pi : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ is the policy the option
 130 follows while the option is active. $\beta : \mathcal{S} \rightarrow [0, 1]$ is the
 131 termination condition. $R_o(s)$ is the reward model of the
 132 option. $T_o(s'|s)$ is the transition model. A major challenge
 133 in option learning is that, in general, the number of time
 134 steps before the option terminates, k , is a random variable.
 135 With this in mind, $R_o(s)$ is defined as the expected cumulative
 136 reward of option o given that the option is initiated
 137 in state s at time t and ends after k time steps. Letting r_t
 138 be the reward received by the agent at t time steps from the
 139 beginning of the option,

$$R_o(s) = \mathbb{E}[r_1 + \gamma r_2 + \dots + \gamma^{k-1} r_k] \quad (1)$$

140 $T_o(s'|s)$ is the combined probability $p(s', k)$ that option o
 141 will terminate at state s' after k time steps:

$$T_o(s'|s) = \sum_{k=1}^{\infty} p(s', k) \gamma^k \quad (2)$$

152 In the next section, we describe how Eqs. 1 and 2 can be
 153 simplified in the context of LOF.

3. Logical Options Framework

154 Here is a brief overview of how we will present our formulation
 155 of LOF:

160 1. The LTL formula is decomposed into liveness and
 161 safety properties. The liveness property defines the
 162 task specification and the safety property defines the
 163 costs for violating rules.

164 2. The propositions of the formula are divided into three
 165 types: subgoals, safety propositions, and event propositions.
 166 Subgoals are used to define tasks, and each subgoal is associated
 167 with its own option, whose goal is to achieve that subgoal. Safety
 168 propositions are used to define rules. Event propositions serve as control
 169 flow variables that affect the task.

170 3. We define an SMDP that is the product of a low-level
 171 MDP and a high-level logical FSA.

172 4. We describe how the logical options can be defined
 173 and learned.

174 5. We present an algorithm for finding the hierarchically
 175 optimal policy on the SMDP.

176 6. We state conditions under which satisfaction of the
 177 LTL specification is guaranteed, and we prove that the
 178 planning algorithm converges to an optimal policy by
 179 showing that the hierarchically optimal SMDP policy
 180 is the same as the optimal MDP policy.

The Logic Formula: LTL formulae can be translated into Büchi automata using automatic translation tools such as SPOT (Duret-Lutz et al., 2016). All Büchi automata can be decomposed into liveness and safety properties (Alpren & Schneider, 1987). To simplify the formulation, we assume that the LTL formula itself can be divided into liveness and safety formulae, $\phi = \phi_{\text{liveness}} \wedge \phi_{\text{safety}}$. For the case where the LTL formula cannot be factored into independent formulae, please see Appendix A. The liveness property describes “things that must happen” to satisfy the LTL formula. It is a task specification, and it is used in planning to determine which subgoals the agent must achieve. The safety property describes “things that can never happen” and is used to define costs for violating the rules. In LOF, the liveness property must be written using a finite-trace subset of LTL called syntactically co-safe LTL (Bhatia et al., 2010), in which the \Box (“always”) operator is not allowed and \bigcirc , \mathcal{U} , and \Diamond are only used in positive normal form. This way, the liveness property can be satisfied by finite-length sequences of propositions, and the property can be represented as an FSA.

Propositions: Propositions are boolean-valued truth statements corresponding to goals, objects, and events in the environment. We distinguish between three types of propositions: subgoals \mathcal{P}_G , safety propositions \mathcal{P}_S , and event propositions \mathcal{P}_E . Subgoal propositions are propositions that must be achieved in order to satisfy the liveness property. They are associated with goals such as “the agent is at the grocery store”. They only appear in ϕ_{liveness} . Each subgoal may only be associated with one state. Note that in general, it may be impossible to avoid having subgoals appear in ϕ_{safety} . Appendix A describes how to deal with

165 this scenario. Safety propositions are propositions that the
 166 agent must avoid – for example, driving into a lake. They
 167 only appear in ϕ_{safety} . Event propositions have a set value
 168 that affects the task specification – for example, whether or
 169 not a phone call is received. They may occur in $\phi_{liveness}$,
 170 and, with some extensions that are described in Appendix A,
 171 in ϕ_{safety} . Although in the fully observable setting, event
 172 propositions are somewhat trivial, in the partially observable
 173 setting, where the value of the event proposition is revealed
 174 to the agent at a random point in time, they are very useful.
 175 Our optimality guarantees only apply in the fully observable
 176 setting; however, LOF’s properties of satisfaction and
 177 compositability still apply in the partially observable setting.
 178 The goal state of the liveness property must be reachable
 179 from every other state using only subgoals. This means that
 180 no matter what the values of the event propositions are, it
 181 is always possible for the agent to satisfy the liveness prop-
 182 erty. Proposition labeling functions relate states to the set
 183 of propositions that are true at that state: $T_{P_G} : \mathcal{S} \rightarrow 2^{\mathcal{P}_G}$,
 184 $T_{P_S} : \mathcal{S} \rightarrow 2^{\mathcal{P}_S}$; for event propositions, a function identifies
 185 the set of true propositions, $T_{P_E} : 2^{\mathcal{P}_E} \rightarrow \{0, 1\}$.

186 **Hierarchical SMDP:** LOF works by defining a hierar-
 187 chical semi-Markov Decision Process (SMDP), learning the
 188 options, and then planning over the options. The high-level
 189 part of the hierarchy is defined by an FSA specified using
 190 LTL. The low level is an environment MDP.
 191

192 We assume that the high-level LTL specification ϕ can be
 193 decomposed into a liveness property $\phi_{liveness}$ and a safety
 194 property ϕ_{safety} . The set of propositions \mathcal{P} is the union of
 195 the sets of subgoals \mathcal{P}_G , safety propositions \mathcal{P}_S , and event
 196 propositions \mathcal{P}_E . We assume that the liveness property can
 197 be translated into an FSA $\mathcal{T} = (\mathcal{F}, \mathcal{P}, T_F, R_F, f_0, f_g)$. \mathcal{F}
 198 is the set of automaton states; \mathcal{P} is the set of propositions;
 199 T_F is the transition function relating the current state and
 200 proposition to the next state, $T_F : \mathcal{F} \times \mathcal{P} \times \mathcal{F} \rightarrow [0, 1]$. In
 201 practice, T_F is deterministic despite our use of probabilistic
 202 notation. We assume that there is a single initial state f_0
 203 and final state f_g , and that the goal state f_g is reachable
 204 from every state $f \in \mathcal{F}$ using only subgoals. There is
 205 also a reward function that assigns a reward to every state,
 206 $R_F : \mathcal{F} \rightarrow \mathbb{R}$. In our experiments, we assume that the
 207 safety property takes the form $\bigwedge_{p_s \in \mathcal{P}_S} \square \neg p_s$. This simple
 208 safety property implies that every safety proposition is not
 209 allowed, and that the safety propositions have associated
 210 costs, $R_S : 2^{\mathcal{P}_S} \rightarrow \mathbb{R}$. ϕ_{safety} is not limited to this simple
 211 case; the general case is covered in Appendix A.

212 There is a low-level environment MDP $\mathcal{E} =$
 213 $(\mathcal{S}, \mathcal{A}, R_E, T_E, \gamma)$. \mathcal{S} is the state space and \mathcal{A} is the
 214 action space. They can be discrete or continuous.
 215 $R_E : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is a low-level reward function that
 216 characterizes, for example, distance or actuation costs. R_E
 217 is a combination of the safety reward function R_S and R_E ,
 218

Algorithm 1 Learning and Planning with Logical Options

1: **Given:**

Propositions \mathcal{P} partitioned into subgoals \mathcal{P}_G , safety props \mathcal{P}_S , and event props \mathcal{P}_E
 Logical FSA $\mathcal{T} = (\mathcal{F}, \mathcal{P}_G \times \mathcal{P}_E, T_F, R_F, f_0, f_g)$ de-
 rived from $\phi_{liveness}$
 Low-level MDP $\mathcal{E} = (\mathcal{S}, \mathcal{A}, R_E, T_E, \gamma)$, where
 $R_E(s, a) = R_E(s, a) + R_S(T_{P_S}(s))$ combines the en-
 vironment and safety rewards
 Proposition labeling functions $T_{P_G} : \mathcal{S} \rightarrow 2^{\mathcal{P}_G}$, $T_{P_S} : \mathcal{S} \rightarrow 2^{\mathcal{P}_S}$, and $T_{P_E} : 2^{\mathcal{P}_E} \rightarrow \{0, 1\}$

2: **To learn:**

3: Set of options \mathcal{O} , one for each subgoal $p \in \mathcal{P}_G$
 4: Metapolicy $\mu(f, s, o)$ along with $Q(f, s, o)$ and $V(f, s)$

5: **Learn logical options:**

6: **for** $p \in \mathcal{P}_G$ **do**

7: Learn an option that achieves p ,
 $\mathcal{O}_p = (\mathcal{I}_{o_p}, \pi_{o_p}, \beta_{o_p}, R_{o_p}(s), T_{o_p}(s'|s))$

8: $\mathcal{I}_{o_p} = \mathcal{S}$

9: $\beta_{o_p} = \begin{cases} 1 & \text{if } p \in T_{P_G}(s) \\ 0 & \text{otherwise} \end{cases}$

10: π_{o_p} = optimal policy on \mathcal{E} with rollouts terminating
 when $p \in T_{P_G}(s)$

11: $T_{o_p}(s'|s) = \begin{cases} \mathbb{E}\gamma^k & \text{if } p \in T_{P_G}(s'); k \text{ is number} \\ 0 & \text{of time steps to reach } p \end{cases}$

12: $R_{o_p}(s) = \mathbb{E}[R_E(s, a_1) + \gamma R_E(s_1, a_2) + \dots + \gamma^{k-1} R_E(s_{k-1}, a_k)]$

13: **end for**

14: **Find a metapolicy μ over the options:**

15: Initialize $Q : \mathcal{F} \times \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R}$ and $V : \mathcal{F} \times \mathcal{S} \rightarrow \mathbb{R}$ to
 0

16: **for** $(k, f, s) \in [1, \dots, n] \times \mathcal{F} \times \mathcal{S}$ **do**

17: **for** $o \in \mathcal{O}$ **do**

18: $Q_k(f, s, o) \leftarrow R_F(f)R_o(s) +$
 $\sum_{f' \in \mathcal{F}} \sum_{\bar{p}_e \in 2^{\mathcal{P}_E}} \sum_{s' \in \mathcal{S}} T_F(f'|f, T_P(s'), \bar{p}_e)T_{P_E}(\bar{p}_e)$
 $T_o(s'|s)V_{k-1}(f', s')$

19: **end for**

20: $V_k(f, s) \leftarrow \max_{o \in \mathcal{O}} Q_k(f, s, o)$

21: **end for**

22: $\mu(f, s, o) = \arg \max_{o \in \mathcal{O}} Q(f, s, o)$

23: **Return:** Options \mathcal{O} , meta-policy $\mu(f, s, o)$ and Q- and
 value functions $Q(f, s, o), V(f, s)$

e.g. $R_E(s, a) = R_E(s, a) + R_S(T_{P_S}(s))$. The transition
 function of the environment is $T_E : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$.

From these parts we define a hierarchical SMDP $\mathcal{M} =$
 $(\mathcal{S} \times \mathcal{F}, \mathcal{A}, \mathcal{P}, \mathcal{O}, T_E \times T_P \times T_F, R_{SMDP}, \gamma)$. The hierar-
 chical state space contains two elements: low-level states
 \mathcal{S} and FSA states \mathcal{F} . The action space is \mathcal{A} . The set of

220 propositions is \mathcal{P} . The set of options (one option associated
 221 with each subgoal in \mathcal{P}_G) is \mathcal{O} . The transition function con-
 222 sists of the low-level environment transitions T_E and the
 223 FSA transitions T_F . $T_P = T_{P_G} \times T_{P_S} \times T_{P_E}$. We classify
 224 T_P , relating states to propositions, as a transition function
 225 because it helps to determine when FSA transitions occur.
 226 The transitions are applied in the order T_E, T_P, T_F . The re-
 227 ward function $R_{SMDP}(f, s, o) = R_F(f)R_o(s)$, so $R_F(f)$
 228 is a weighting on the option rewards. Lastly, the SMDP has
 229 the same discount factor γ as \mathcal{E} . Planning is done on the
 230 SMDP in two steps: first, the options \mathcal{O} are learned over
 231 \mathcal{E} using an appropriate policy-learning algorithm such as
 232 PPO or Reward Machines. Next, a metapolicy over the task
 233 specification \mathcal{T} is found using the learned options and the
 234 reward function R_{SMDP} .

235 **Logical Options:** The first step of Alg. 1 is to learn the
 236 logical options. We associate every subgoal p with an option
 237 $o_p = (\mathcal{I}_{o_p}, \pi_{o_p}, \beta_{o_p}, R_{o_p}, T_{o_p})$. These terms are defined
 238 starting at Alg. 1 line 1. Every o_p has a policy π_{o_p} whose
 239 goal is to reach the state s_p where p is true. Options are
 240 learned by training on the environment MDP \mathcal{E} and termi-
 241 nating only when s_p is reached. As we discuss in Sec. 3.1,
 242 under certain conditions the optimal option policy is guar-
 243 anteed to always terminate at the subgoal. This allows us
 244 to simplify the transition model of Eq. 2 to the form in
 245 Alg. 1 line 1. In the experiments, we further simplify this
 246 expression by setting $\gamma = 1$.
 247

248 **Logical Value Iteration:** After finding the logical options,
 249 the next step is to find a policy for FSA \mathcal{T} over the options,
 250 as described in Alg. 1 line 1. A value function and Q-
 251 function are found for the SMDP using the Bellman update
 252 equations:

$$Q_k(f, s, o) \leftarrow R_F(f)R_o(s) + \sum_{f' \in \mathcal{F}} \sum_{\bar{p}_e \in 2^{\mathcal{P}_E}} \sum_{s' \in \mathcal{S}} T_F(f'|f, T_{P_G}(s'), \bar{p}_e) T_{P_E}(\bar{p}_e) T_o(s'|s) V_{k-1}(f', s') \quad (3)$$

$$V_k(f, s) \leftarrow \max_{o \in \mathcal{O}} Q_k(f, s, o) \quad (4)$$

264 Eq. 3 differs from the generic equations for SMDP value
 265 iteration in that the transition function has two extra compo-
 266 nents, $\sum_{f' \in \mathcal{F}} T_F(f'|f, T_P(s'), \bar{p}_e)$ and $\sum_{\bar{p}_e \in 2^{\mathcal{P}_E}} T_{P_E}(\bar{p}_e)$.
 267 The equations are derived from Araki et al. (2019) and the
 268 fact that, on every step in the environment, three transitions
 269 are applied: the option transition T_o , the event proposi-
 270 tion “transition” T_{P_E} , and the FSA transition T_F . Note that
 271 $R_o(s)$ and $T_o(s'|s)$ compress the consequences of choosing
 272 an option o at a state s from a multi-step trajectory into two
 273 real-valued numbers, allowing for more efficient planning.
 274

3.1. Conditions for Satisfaction and Optimality

Here we give an overview of the proofs and necessary conditions for satisfaction and optimality. The full proofs and definitions are in Appendix B using the more general formulation of Appendix A.

First, we describe the condition necessary for an optimal option to always reach its subgoal. Let $\pi'(s|s')$ be the optimal goal-conditioned policy for reaching a goal s' . If the optimal option policy equals the goal-conditioned policy for reaching the subgoal s_g , i.e. $\pi^*(s) = \pi_g(s|s_g)$, then the option will always reach the subgoal. This can also be stated in terms of value functions: let $V^{\pi'}(s|s')$ be the expected return of $\pi'(s|s')$. If $V^{\pi_g}(s|s_g) > V^{\pi'}(s|s') \forall s, s' \neq s_g$, then $\pi^*(s) = \pi_g(s|s_g)$. This occurs for example if $-\infty < R_{\mathcal{E}}(s, a) < 0$ and if the episode terminates only when the agent reaches s_g . Then V^{π_g} is a bounded negative number, and $V^{\pi'}$ for all other states is $-\infty$. We show that if every option is guaranteed to achieve its subgoal, then there must exist at least one sequence of options that satisfies the specification.

We then give the condition for the hierarchically optimal metapolicy $\mu^*(s)$ to always achieve the FSA goal state f_g . In our context, hierarchical optimality means that the metapolicy is optimal over the available options. Let $\mu'(f, s|f')$ be the hierarchically optimal goal-conditioned metapolicy for reaching FSA state f' . If the hierarchically optimal metapolicy equals the goal-conditioned metapolicy for reaching the FSA goal state f_g , i.e. $\mu^*(f, s) = \mu_g(f, s|f_g)$, then $\mu^*(f, s)$ will always reach f_g . In terms of value functions: let $V^{\mu'}(f, s|f')$ be the expected return for μ' . If $V^{\mu_g}(f, s|f_g) > V^{\mu'}(f, s|f') \forall f, s, f' \neq f_g$, then $\mu^* = \mu_g$. This occurs if all FSA rewards $R_F(f) > 0$, all environment rewards $-\infty < R_{\mathcal{E}}(s, a) < 0$, and the episode only terminates when the agent reaches f_g . Then V^{μ_g} is a bounded negative number, and $V^{\mu'}$ for all other states is $-\infty$. Because LOF uses the Bellman update equations to learn the metapolicy, the LOF metapolicy will converge to the hierarchically optimal metapolicy.

Consider the SMDP where planning is allowed over low-level actions, and let us call it the “hierarchical MDP” (HMDP) with optimal policy π_{HMDP}^* . We can then state the final theorem:

Theorem 3.1. *Given that the conditions for satisfaction and hierarchical optimality are met, the LOF hierarchically optimal metapolicy μ_g with optimal option subpolicies π_g has the same expected returns as the optimal policy π_{HMDP}^* and satisfies the task specification.*

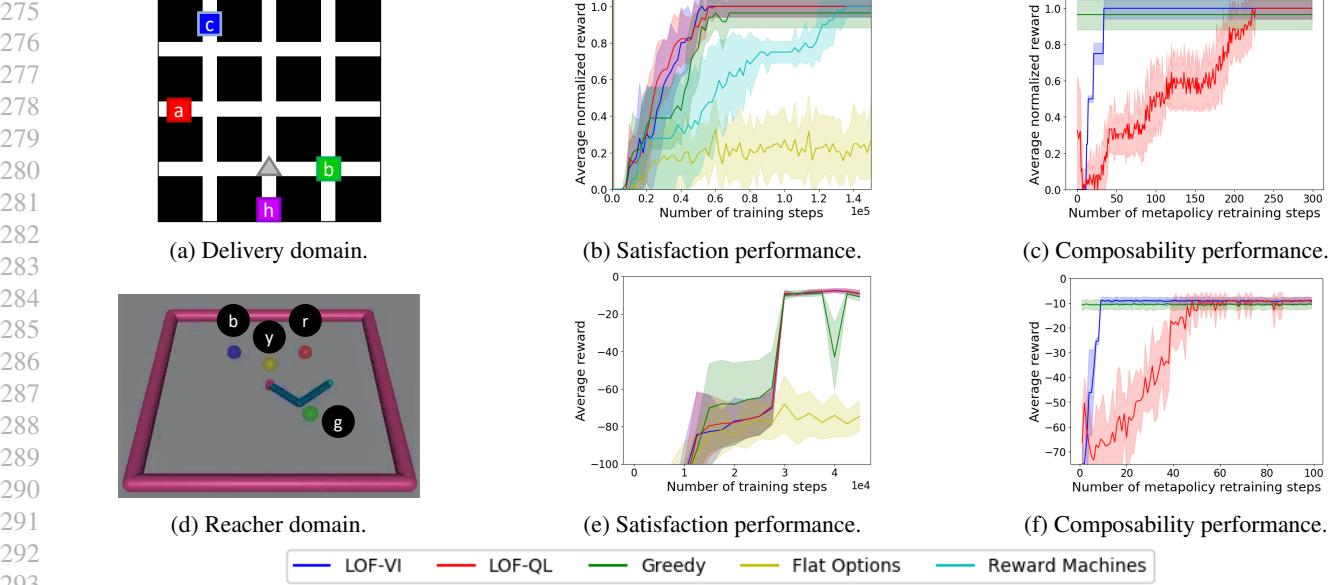


Figure 2. Performance on the satisfaction and composability experiments, averaged over all tasks. Note that LOF-VI composes new metapolicies in just 10-50 retraining steps. Results for the delivery domain are in the first row, for the reacher domain in the second row. All results, including RM satisfaction performance on the reacher domain, are in Appendix C.6.

4. Experiments & Results

Experiments: We performed experiments to demonstrate satisfaction and composability. For the satisfaction experiments, we measure cumulative reward over training steps. Cumulative reward is a proxy for satisfaction, as the environments can only achieve the maximum reward when they satisfy their tasks. For the composability experiments, we take the trained options and record how many metapolicy retraining steps it takes to learn an optimal metapolicy for a new task.

Environments: We measure the performance of LOF on two environments. The first environment is a discrete grid-world (Fig. 2a) called the “delivery domain,” as it can represent a delivery truck delivering packages to three locations (a, b, c) and having a home base h . There are also obstacles o (the black squares). The second environment is called the reacher domain, from OpenAI Gym (Fig. 2d). It is a two-link arm that has continuous state and action spaces. There are four subgoals represented by colored balls: red r , green g , blue b , and yellow y . Both environments also have an event proposition called can , which represents when the need to fulfill part of a task is cancelled.

Tasks: We test satisfaction and composability on four tasks. The first task is a “sequential” task. For the delivery domain, the LTL formula is $\Diamond(a \wedge \Diamond(b \wedge \Diamond(c \wedge \Diamond h))) \wedge \Box \neg o$ – “deliver package a , then b , then c , and then return home h . And always avoid obstacles.” The next task is the “IF” task (equivalent to the task shown in Fig. 1b): $(\Diamond(c \wedge \Diamond a) \wedge \Box \neg can) \vee (\Diamond a \wedge \Diamond can) \wedge \Box \neg o$ – “deliver package c , and then a , unless a gets cancelled. And always avoid obstacles”.

We call the third task the “OR” task, $\Diamond((a \vee b) \wedge \Diamond c) \wedge \Box \neg o$ – “deliver package a or b , then c , and always avoid obstacles”. The “composite” task has elements of all three of the previous tasks: $(\Diamond((a \vee b) \wedge \Diamond(c \wedge \Diamond h)) \wedge \Box \neg can) \vee (\Diamond((a \vee b) \wedge \Diamond h) \wedge \Diamond can) \wedge \Box \neg o$. “Deliver package a or b , and then c , unless c gets cancelled, and then return to home h . And always avoid obstacles”. The tasks for the reacher environment are equivalent, except that there are no obstacles for the reacher to avoid.

The sequential task is meant to show that planning is efficient and effective even for long-time horizon tasks. The “IF” task shows that the agent’s policy can respond to event propositions, such as being alerted that a delivery is cancelled. The “OR” task is meant to demonstrate the optimality of our algorithm versus a greedy algorithm, as discussed in Fig. 3. Lastly, the composite task shows that learning and planning are efficient and effective even for complex tasks.

Baselines: We test four baselines against our algorithm. We call our algorithm LOF-VI, short for “Logical Options Framework with Value Iteration,” because it uses value iteration for its high-level planning. Our first baseline, LOF-QL, uses Q-learning instead (details can be found in Appendix C.3). Unlike LOF-VI, LOF-QL does not need explicit knowledge of T_F , the transition function of the FSA. Greedy is a naive implementation of task satisfaction; it uses its knowledge of the FSA to select the next subgoal with the lowest cost to attain. This leaves it vulnerable to

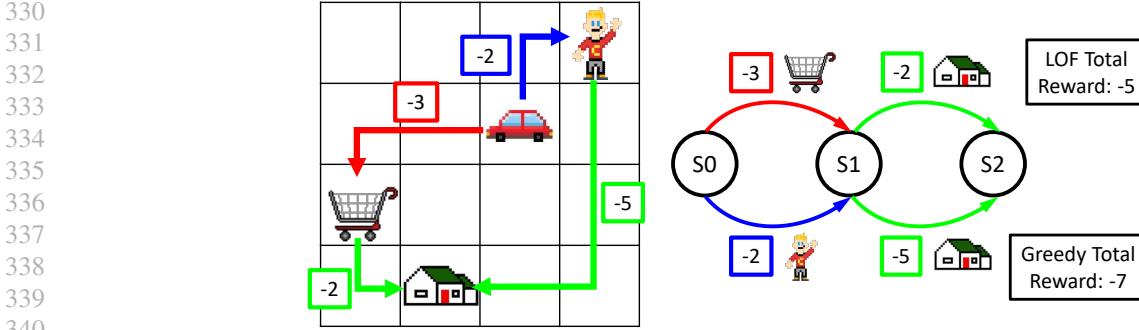


Figure 3. In this environment, the agent must either pick up the kid or go grocery shopping, and then go home. This is equivalent to the OR task. Starting at S_0 , the greedy algorithm picks the next step through the FSA with the lowest cost (in this case, picking up the kid), which leads to a higher overall cost. The LOF algorithm finds the optimal path through the FSA.

choosing suboptimal paths through the FSA, as shown in Fig. 3. Flat Options uses the regular options framework with no knowledge of the FSA. In other words, its SMDP formulation is not hierarchical – the state space and transition function do not contain high-level states \mathcal{F} or transition function T_F . The last baseline is RM, short for Reward Machines (Icarte et al., 2018). Whereas LOF learn options to accomplish subgoals, RM learns subpolicies for every FSA state. Appendix C.4 discusses the differences between RM and LOF in detail.

Implementation: For the delivery domain, options were learned using Q-learning with an ϵ -greedy exploration policy. Options were learned simultaneously while switching the option used for exploration at every episode. RM was learned using the Q-learning for Reward Machines (QRM) algorithm described in (Icarte et al., 2018). For the reacher domain, options were learned by using proximal policy optimization (PPO) (Schulman et al., 2017) to train goal-oriented policy and value functions, which were represented using a 128×128 fully connected neural network. Deep-QRM was used to train RM. The implementation details are discussed more fully in Appendix C.

4.1. Results

Satisfaction: Results for the satisfaction experiments, averaged over all four tasks, are shown in Figs. 2b and 2e. (Results on all tasks are in Appendix C.6). As expected, Flat Options shows no ability to satisfy tasks, as it has no knowledge of the FSAs. Greedy trains as quickly as LOF-VI and LOF-QL, but its returns plateau before the others because it chooses suboptimal paths in the composite and OR tasks. The difference is small in the reacher domain but still present. LOF-QL achieves as high a return as LOF-VI, but it is less composable (discussed below). RM learns much more slowly than the other methods. This is because for RM, a reward is only given for reaching the goal state, whereas in the LOF-based methods, options are

rewarded for reaching their subgoals, so during training LOF-based methods have a richer reward function than RM. For the reacher domain, RM takes an order of magnitude more steps to train, so we left it out of the figure for clarity (see Appendix Fig. 14). However, in the reacher domain, RM eventually achieves a higher return than the LOF-based methods. This is because for the reacher domain, we define the subgoals to be spherical regions rather than single states, violating one of the conditions for optimality. Therefore, for example, it is possible that the metapolicy does not take advantage of the dynamics of the arm to swing through the subgoals more efficiently. RM does not have this condition and learns a single policy that can take advantage of inter-subgoal dynamics to learn a more optimal policy.

Composability: The composability experiments were done on the three composable baselines, LOF-VI, LOF-QL, and Greedy. Appendix C.4 discusses why RM is not composable. Flat Options is not composable because its formulation does not include the FSA \mathcal{T} . Therefore it is completely incapable of recognizing and adjusting to changes in the FSA. The composability results are shown in Figs. 2c and 2f. Greedy requires no retraining steps to “learn” a metapolicy on a new FSA – given its current FSA state, it simply chooses the next available FSA state that has the lowest cost to achieve. However, its metapolicy may be arbitrarily suboptimal. LOF-QL learns optimal (or in the continuous case, close-to-optimal) policies, but it takes $\sim 50\text{-}250$ retraining steps, versus $\sim 10\text{-}50$ for LOF-VI. Therefore LOF-VI strikes a balance between Greedy and LOF-QL, requiring far fewer steps than LOF-QL to retrain, and achieving better performance than Greedy.

5. Related Work

We distinguish our work from related work in HRL by its possession of three desirable properties – composability, satisfaction, and optimality. Most other works possess two

385 of these properties at the cost of the other, as we discuss
 386 below.

387 **Not Composable:** The previous work most similar to ours
 388 is [Icarte et al. \(2018; 2019\)](#), which introduces a method to
 389 solve tasks defined by automata called Reward Machines.
 390 Their method learns a subpolicy for every state of the
 391 automaton; by transferring rewards between automaton states,
 392 they achieve satisfaction and optimality. However, the
 393 learned policies have limited composability because they
 394 are specific to the automaton; by contrast, LOF learns a sub-
 395 policy for every subgoal, independent of the automaton, and
 396 therefore the subpolicies can be arranged to satisfy arbitrary
 397 tasks. Another similar work is Logical Value Iteration (LVI)
 398 ([Araki et al., 2019; 2020](#)). LVI defines a hierarchical MDP
 399 and value iteration equations that can find satisfying and
 400 optimal policies; however, the algorithm is limited to discrete
 401 domains and has limited composability. A number of HRL
 402 algorithms use reward shaping to guide the agent through
 403 the states of an automaton ([Li et al., 2017; 2019; Camacho](#)
 404 [et al., 2019; Hasanbeig et al., 2018; Jothimurugan et al.,](#)
 405 [2019; Shah et al., 2020; Yuan et al., 2019](#)). While these
 406 algorithms can guarantee satisfaction and, under certain
 407 conditions, optimality, they cannot be composed because
 408 their policies do not consist of composable sub-policies.
 409 Another approach is to use a symbolic planner to find a
 410 satisfying sequence of tasks and use an RL agent to learn
 411 and execute that sequence of tasks ([Gordon et al., 2019;](#)
 412 [Illanes et al., 2020; Lyu et al., 2019](#)). However, the meta-
 413 controllers of [Gordon et al. \(2019\)](#) and [Lyu et al. \(2019\)](#)
 414 are not composable as they are trained together with the
 415 low-level controllers. Although the work of [Illanes et al.](#)
 416 [\(2020\)](#) is amenable to transfer learning, it is not composable.
 417 [Paxton et al. \(2017\); Mason et al. \(2017\)](#) use logical
 418 constraints to guide exploration, and while these approaches are
 419 also satisfying and optimal, they are not composable as the
 420 agent is trained for a specific set of rules.

421 LOF is composable whereas the above methods are not
 422 because it has a hierarchical action space with low-level
 423 actions and high-level options. Once the options are learned,
 424 they can be composed arbitrarily.

425 **Not Satisfying:** Most hierarchical frameworks cannot sat-
 426 isfy tasks. Instead, they focus on using state and action
 427 abstractions to make learning more efficient ([Dietterich,](#)
 428 [2000; Dayan & Hinton, 1993; Parr & Russell, 1998; Diuk](#)
 429 [et al., 2008; Oh et al., 2019](#)). The options framework ([Sutton](#)
 430 [et al., 1999](#)) stands out because of its composability and its
 431 guarantee of hierarchical optimality, which is why we based
 432 our work off of it. There is also a class of HRL algorithms
 433 that builds on the idea of goal-oriented policies that can
 434 navigate to nearby subgoals ([Eysenbach et al., 2019; Ghosh](#)
 435 [et al., 2018; Faust et al., 2018](#)). By sampling sequences of
 436 subgoals and using a goal-oriented policy to navigate be-

437 tween them, these HRL algorithms can travel much longer
 438 distances than a goal-oriented policy can travel on its own.
 439 Although these algorithms are “composable” in that they
 440 can navigate to far-away goals without further training, they
 441 are not able to solve tasks. [Andreas et al. \(2017\)](#) presents
 442 an algorithm for solving simple policy “sketches” which is
 443 also composable; however, sketches are considerably less
 444 expressive than automata and linear temporal logic, which
 445 we use.

446 Unlike the above methods, LOF is satisfying because it has
 447 a hierarchical state space with low-level MDP states and
 448 high-level FSA states. Therefore LOF can satisfy tasks by
 449 learning policies that reach the FSA goal state.

450 **Not Optimal:** In HRL, there are at least three types of optimality – hierarchical, recursive, and overall. As defined in
 451 [Dietterich \(2000\)](#), the hierarchically optimal policy is the
 452 optimal policy given the constraints of the hierarchy, and
 453 recursive optimality is when a policy is optimal given the
 454 policies of its children. For example, the options frame-
 455 work is hierarchically optimal, while MAXQ and abstract
 456 MDPs ([Gopalan et al., 2017](#)) are recursively optimal. The
 457 method described in [Kuo et al. \(2020\)](#) is fully composable,
 458 but not optimal as it uses a recurrent neural network to gen-
 459 erate a sequence of high-level actions and is therefore not
 460 guaranteed to find optimal policies. LOF is hierarchically
 461 optimal because it finds an optimal meta-policy over the
 462 high-level options, and as we state in the paper, there are
 463 also conditions under which the overall policy is optimal.

6. Discussion and Conclusion

464 In this work we claim that the Logical Options Framework
 465 has a unique combination of three properties: satisfaction,
 466 optimality, and compositability. We state and prove the
 467 conditions for satisfaction and optimality in Sec. 3.1. The
 468 experimental results confirm our claims while also high-
 469 lighting some weaknesses. LOF-VI achieves optimal or
 470 near-optimal policies and trains an order of magnitude faster
 471 than the existing work most similar to it, RM. However, the
 472 optimality condition that each subgoal be associated with
 473 exactly one state cannot be met for continuous domains, and
 474 therefore RM eventually outperforms LOF-VI. But even
 475 when optimality is not guaranteed, LOF-VI is always hier-
 476 archically optimal, which is why it outperforms Greedy
 477 in the composite and OR tasks. Next, the compositability
 478 experiments show that LOF-VI can compose its learned op-
 479 tions to accomplish new tasks in very few iterations – about
 480 10-50. Although Greedy requires no retraining steps, it is
 481 a tiny fraction of the tens of thousands of steps required to
 482 learn the original policy. Lastly, we have shown that LOF
 483 can learn policies efficiently, and that it can be used with a
 484 variety of domains and policy-learning algorithms. In fact,
 485 any policy-learning algorithm where it is possible to extract

440 a value (expected cumulative reward) for the policy's execu-
 441 tion on the subgoals is fully compatible with LOF, including
 442 value iteration and PPO.

443 Thus, we have proven and demonstrated LOF's features
 444 of satisfaction, optimality, and composability, while also
 445 reviewing the compromises involved in achieving this goal.
 446 We hope that this framework can be useful in practical
 447 settings that are governed by complex and changeable rules.
 448

449 References

450 Abel, D. and Winder, J. The expected-length model of
 451 options. In *IJCAI*, 2019.

452 Alpern, B. and Schneider, F. B. Recognizing safety and
 453 liveness. *Distributed computing*, 2(3):117–126, 1987.

454 Andreas, J., Klein, D., and Levine, S. Modular multitask
 455 reinforcement learning with policy sketches. In *International
 456 Conference on Machine Learning*, pp. 166–175, 2017.

457 Araki, B., Vodrahalli, K., Leech, T., Vasile, C. I., Dona-
 458 ahue, M., and Rus, D. Learning to plan with logical
 459 automata. In *Proceedings of Robotics: Science and Sys-
 460 tems*, FreiburgimBreisgau, Germany, June 2019. doi:
 461 10.15607/RSS.2019.XV.064.

462 Araki, B., Vodrahalli, K., Leech, T., Vasile, C. I., Donahue,
 463 M., and Rus, D. Deep bayesian nonparametric learning
 464 of rules and plans from demonstrations with a learned
 465 automaton prior. In *AAAI*, pp. 10026–10034, 2020.

466 Baier, C. and Katoen, J. *Principles of model checking*. MIT
 467 Press, 2008. ISBN 978-0-262-02649-9.

468 Bhatia, A., Kavraki, L. E., and Vardi, M. Y. Sampling-based
 469 motion planning with temporal goals. In *2010 IEEE
 470 International Conference on Robotics and Automation*,
 471 pp. 2689–2696. IEEE, 2010.

472 Camacho, A., Icarte, R. T., Klassen, T. Q., Valenzano, R. A.,
 473 and McIlraith, S. A. Ltl and beyond: Formal languages
 474 for reward function specification in reinforcement learn-
 475 ing. In *IJCAI*, volume 19, pp. 6065–6073, 2019.

476 Clarke, E. M., Grumberg, O., and Peled, D. *Model Checking*.
 477 MIT Press, 2001. ISBN 978-0-262-03270-4.

478 Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
 479 In *Advances in neural information processing systems*,
 480 pp. 271–278, 1993.

481 Dietterich, T. G. Hierarchical reinforcement learning with
 482 the maxq value function decomposition. *Journal of artifi-
 483 cial intelligence research*, 13:227–303, 2000.

484 Diuk, C., Cohen, A., and Littman, M. L. An object-oriented
 485 representation for efficient reinforcement learning. In *Pro-
 486 ceedings of the 25th international conference on Machine
 487 learning*, pp. 240–247, 2008.

488 Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T.,
 489 Renault, E., and Xu, L. Spot 2.0 — a framework for LTL
 490 and ω -automata manipulation. In *Proceedings of the 14th
 491 International Symposium on Automated Technology for
 492 Verification and Analysis (ATVA'16)*, volume 9938 of *Lec-
 493 ture Notes in Computer Science*, pp. 122–129. Springer,
 494 October 2016. doi: 10.1007/978-3-319-46520-3_8.

495 Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
 496 on the replay buffer: Bridging planning and reinforce-
 497 ment learning. In *Advances in Neural Information Pro-
 498 cessing Systems*, pp. 15220–15231, 2019.

499 Faust, A., Oslund, K., Ramirez, O., Francis, A., Tapia, L.,
 500 Fiser, M., and Davidson, J. Prm-rl: Long-range robotic
 501 navigation tasks by combining reinforcement learning
 502 and sampling-based planning. In *2018 IEEE Interna-
 503 tional Conference on Robotics and Automation (ICRA)*,
 504 pp. 5113–5120. IEEE, 2018.

505 Ghosh, D., Gupta, A., and Levine, S. Learning actionable
 506 representations with goal-conditioned policies. *arXiv
 507 preprint arXiv:1811.07819*, 2018.

508 Gopalan, N., Littman, M. L., MacGlashan, J., Squire, S.,
 509 Tellex, S., Winder, J., Wong, L. L., et al. Planning with
 510 abstract markov decision processes. In *Twenty-Seventh
 511 International Conference on Automated Planning and
 512 Scheduling*, 2017.

513 Gordon, D., Fox, D., and Farhadi, A. What should i do now?
 514 marrying reinforcement learning and symbolic planning.
 515 *arXiv preprint arXiv:1901.01492*, 2019.

516 Hasanbeig, M., Abate, A., and Kroening, D. Logically-
 517 constrained reinforcement learning. *arXiv preprint
 518 arXiv:1801.08099*, 2018.

519 Icarte, R. T., Klassen, T., Valenzano, R., and McIlraith, S.
 520 Using reward machines for high-level task specification
 521 and decomposition in reinforcement learning. In *Inter-
 522 national Conference on Machine Learning*, pp. 2107–2116,
 523 2018.

524 Icarte, R. T., Waldie, E., Klassen, T., Valenzano, R., Castro,
 525 M., and McIlraith, S. Learning reward machines for
 526 partially observable reinforcement learning. In *Advances
 527 in Neural Information Processing Systems*, pp. 15523–
 528 15534, 2019.

529 Illanes, L., Yan, X., Icarte, R. T., and McIlraith, S. A. Sym-
 530 bolic plans as high-level instructions for reinforcement
 531 learning. In *Proceedings of the International Conference*

495 *on Automated Planning and Scheduling*, volume 30, pp. 496
540–550, 2020.

497 Jothimurugan, K., Alur, R., and Bastani, O. A composable 498
499 specification language for reinforcement learning tasks. 500
501 In *Advances in Neural Information Processing Systems*, 502
503 pp. 13041–13051, 2019.

502 Kansou, B. K. A. Converting a subset of ltl formula to buchi 503
504 automata. *International Journal of Software Engineering & 505
506 Applications (IJSEA)*, 10(2), 2019.

506 Kuo, Y.-L., Katz, B., and Barbu, A. Encoding formulas as 507
508 deep networks: Reinforcement learning for zero-shot 509
510 execution of ltl formulas. *arXiv preprint arXiv:2006.01110*, 511
512 2020.

510 Li, X., Vasile, C.-I., and Belta, C. Reinforcement learning 511
512 with temporal logic rewards. In *2017 IEEE/RSJ International 513
514 Conference on Intelligent Robots and Systems (IROS)*, pp. 3834–3839. IEEE, 2017.

515 Li, X., Serlin, Z., Yang, G., and Belta, C. A formal 516
517 methods approach to interpretable reinforcement learning for 518
519 robotic planning. *Science Robotics*, 4(37), 2019.

519 Lyu, D., Yang, F., Liu, B., and Gustafson, S. Sdrl: 520
521 interpretable and data-efficient deep reinforcement learning 522
523 leveraging symbolic planning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, 524
525 pp. 2970–2977, 2019.

525 Mason, G. R., Calinescu, R. C., Kudenko, D., and Banks, 526
527 A. Assured reinforcement learning with formally verified 528
529 abstract policies. In *9th International Conference on Agents and Artificial Intelligence (ICAART)*. York, 2017.

529 Oh, Y., Patel, R., Nguyen, T., Huang, B., Pavlick, E., 530
531 and Tellex, S. Planning with state abstractions for 532
533 non-markovian task specifications. *arXiv preprint arXiv:1905.12096*, 2019.

533 Parr, R. and Russell, S. J. Reinforcement learning with 534
535 hierarchies of machines. In *Advances in neural information 536
537 processing systems*, pp. 1043–1049, 1998.

537 Paxton, C., Raman, V., Hager, G. D., and Kollarov, M. 538
539 Combining neural networks and tree search for task and 540
541 motion planning in challenging environments. In *2017 IEEE/RSJ International Conference on Intelligent Robots 542
543 and Systems (IROS)*, pp. 6059–6066. IEEE, 2017.

543 Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and 544
545 Klimov, O. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

546 Shah, A., Li, S., and Shah, J. Planning with uncertain 547
548 specifications (puns). *IEEE Robotics and Automation Letters*, 5(2):3414–3421, 2020.

549 Sutton, R. S., Precup, D., and Singh, S. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. *Artificial intelligence*, 112(1-2): 181–211, 1999.

550 Yuan, L. Z., Hasanbeig, M., Abate, A., and Kroening, D. 551
552 Modular deep reinforcement learning with temporal logic 553
554 specifications. *arXiv preprint arXiv:1909.11591*, 2019.

555 Zhang, S. and Sridharan, M. A survey of knowledge-based 556
557 sequential decision making under uncertainty. *arXiv preprint arXiv:2008.08548*, 2020.

550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
A. Formulation of Logical Options Framework with Safety Automaton

In this section, we present a more general formulation of LOF than that presented in the paper. In the paper, we make two assumptions that simplify the formulation. The first assumption is that the LTL specification can be divided into two independent formulae, a liveness property and a safety property: $\phi = \phi_{liveness} \wedge \phi_{safety}$. However, not all LTL formulae can be factored in this way. We show how LOF can be applied to LTL formulae that break this assumption. The second assumption is that the safety property takes a simple form that can be represented as a penalty on safety propositions. We show how LOF can be used with arbitrary safety properties.

565
A.1. Automata and Propositions

566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 All LTL formulae can be translated into Büchi automata using automatic translation tools such as SPOT (Duret-Lutz et al., 2016). All Büchi automata can be decomposed into liveness and safety properties (Alpern & Schneider, 1987), so that automaton $\mathcal{W} = \mathcal{W}_{liveness} \times \mathcal{W}_{safety}$. This is a generalization of the assumption that all LTL formulae can be divided into liveness and safety properties $\phi_{liveness}$ and ϕ_{safety} . The liveness property $\mathcal{W}_{liveness}$ must be an FSA, although this assumption could also be loosened to allow it to be a deterministic Büchi automaton via some minor modifications (allowing multiple goal states to exist and continuing episodes indefinitely, even once a goal state has been reached).

581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 As in the main text, we assume that there are three types of propositions – subgoals \mathcal{P}_G , safety propositions \mathcal{P}_S , and event propositions \mathcal{P}_E . The event propositions have set values and can occur in both $\mathcal{W}_{liveness}$ and \mathcal{W}_{safety} . Safety propositions only appear in \mathcal{W}_{safety} . Subgoal propositions only appear in $\mathcal{W}_{liveness}$. Each subgoal may only be associated with one state. Note that after writing a specification and decomposing it into $\mathcal{W}_{liveness}$ and \mathcal{W}_{safety} , it is possible that some subgoals may unexpectedly appear in \mathcal{W}_{safety} . This can be dealt with by creating “safety twins” of each subgoal – safety propositions that are associated with the same low-level states as the subgoals and can therefore substitute for them in \mathcal{W}_{safety} .

594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 Subgoals are propositions that the agent must achieve in order to reach the goal state of $\mathcal{W}_{liveness}$. Although event propositions can also define transitions in $\mathcal{W}_{liveness}$, we assume that “achieving” them is not necessary in order to reach the goal state. In other words, we assume that from any state in $\mathcal{W}_{liveness}$, there is a path to the goal state that involves only subgoals. This is because in our formulation, the event propositions are meant to serve as propositions that the agent has no control over, such as

receiving a phone call. If satisfaction of the liveness property were to depend on such a proposition, then it would be impossible to guarantee satisfaction. However, if the user is unconcerned with guaranteeing satisfaction, then specifying a liveness property in which satisfaction depends on event propositions is compatible with LOF.

Safety propositions may only occur in \mathcal{W}_{safety} and are associated with things that the agent “must avoid”. This is because every state of \mathcal{W}_{safety} is an accepting state (Alpern & Schneider, 1987), so all transitions between the states are non-violating. However, any undefined transition is not allowed and is a violation of the safety property. In our formulation, we assign costs to violations, so that violations are allowed but come at a cost. In practice, it also may be the case that the agent is in a low-level state from which it is impossible to reach the goal state without violating the safety property. In our formulation, satisfaction of the liveness property (but not the safety property) is still guaranteed in this case, as the finite cost associated with violating the rule is less than the infinite cost of not satisfying the liveness property, so the optimal policy for the agent will be to violate the rule in order to satisfy the task (see the proofs, Appendix B). This scenario can be avoided in several ways. For example, do not specify an environment in which it is only possible for the agent to satisfy the task by violating a rule. Or, instead of prioritizing satisfaction of the task, it is possible to instead prioritize satisfaction of the safety property. In this case, satisfaction of the liveness property would not be guaranteed but satisfaction of the safety property would be guaranteed. This could be accomplished by terminating the rollout if a safety violation occurs.

We assume that event propositions are observed – in other words, that we know the values of the event propositions from the start of a rollout. This is because we are planning in a fully observable setting, so we must make this assumption to guarantee convergence to an optimal policy. However, the partially observable case is much more interesting, in which the values of the event propositions are not known until the agent checks or the environment randomly reveals their values. This case is beyond the scope of this paper; however, LOF can still guarantee satisfaction and compositability in this setting, just not optimality.

Proposition labeling functions relate states to propositions: $T_{P_G} : \mathcal{S} \rightarrow 2^{\mathcal{P}_G}$, $T_{P_S} : \mathcal{S} \rightarrow 2^{\mathcal{P}_S}$, and $T_{P_E} : 2^{\mathcal{P}_E} \rightarrow \{0, 1\}$.

Given these definitions of propositions, it is possible to define the liveness and safety properties formally. $\mathcal{W}_{liveness} = (\mathcal{F}, \mathcal{P}_G \cup \mathcal{P}_E, T_F, R_F, f_0, f_g)$. \mathcal{F} is the set of states of the liveness property. The propositions can be either subgoals \mathcal{P}_G or event propositions \mathcal{P}_E . The transition function relates the current FSA state and active propositions to the next FSA state, $T_F : \mathcal{F} \times 2^{\mathcal{P}_G} \times 2^{\mathcal{P}_E} \times \mathcal{F} \rightarrow [0, 1]$.

605 The reward function assigns a reward to the current FSA
 606 state, $R_F : \mathcal{F} \rightarrow \mathbb{R}$. We assume there is one initial state f_0
 607 and one goal state f_g .

608 The safety property is a Büchi automaton $\mathcal{W}_{safety} =$
 609 $(\mathcal{F}_S, \mathcal{P}_S \cup \mathcal{P}_E, T_S, R_S, F_0)$. \mathcal{F}_S are the states of the
 610 automaton. The propositions can be safety propositions \mathcal{P}_S or
 611 event propositions \mathcal{P}_E . The transition function T_S relates
 612 the current state and active propositions to the next state,
 613 $T_S : \mathcal{F}_S \times 2^{\mathcal{P}_S} \times 2^{\mathcal{P}_E} \times \mathcal{F}_S \rightarrow [0, 1]$. The reward function
 614 relates the automaton state and safety propositions to
 615 rewards (or costs), $R_S : \mathcal{F}_S \times 2^{\mathcal{P}_S} \rightarrow \mathbb{R}$. F_0 defines the set
 616 of initial states. We do not specify an accepting condition
 617 because for safety properties, every state is an accepting
 618 state.

A.2. The Environment MDP

622 There is a low-level environment MDP $\mathcal{E} =$
 623 $(\mathcal{S}, \mathcal{A}, R_E, T_E, \gamma)$. \mathcal{S} is the state space and \mathcal{A} is the
 624 action space. They can be either discrete or continuous.
 625 R_E is the low-level reward function that characterizes,
 626 for example, time, distance, or actuation costs.
 627 $T_E : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$ is the transition function and γ is
 628 the discount factor. Unlike in the simpler formulation in
 629 the paper, we do not combine R_E and the safety automaton
 630 reward function R_S in the MDP formulation \mathcal{E} .

A.3. Logical Options

634 We associate every subgoal p_g with an option $o_{p_g} =$
 635 $(\mathcal{I}_{p_g}, \pi_{p_g}, \beta_{p_g}, R_{p_g}, T_{p_g})$. Every o_{p_g} has a policy π_{p_g} whose
 636 goal is to reach the state s_{p_g} where p_g is true. Option policies are learned by training on the product of the environment and the safety automaton, $\mathcal{E} \times \mathcal{W}_{safety}$ and terminating training only when s_{p_g} is reached. $R_{\mathcal{E}} : \mathcal{F}_S \times \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is the reward function of the product MDP $\mathcal{E} \times \mathcal{W}_{safety}$. There are many reward-shaping policy-learning algorithms that specify how to define $R_{\mathcal{E}}$. In fact, learning a policy for $\mathcal{E} \times \mathcal{W}_{safety}$ is the sort of hierarchical learning problem that many reward-shaping algorithms excel at, including Reward Machines (Icarte et al., 2018) and (Li et al., 2017). This is because in LOF, safety properties are not composable, so using a learning algorithm that is satisfying and optimal but not composable to learn the safety property is appropriate. Alternatively, there are many scenarios where \mathcal{W}_{safety} is a trivial automaton in which each safety proposition is associated with its own state, as we describe in the main paper, so penalties can be assigned to propositions and the state of the agent in \mathcal{W}_{safety} can be ignored.

649 Note that since the options are trained independently, one
 650 limitation of our formulation is that the safety properties
 651 cannot depend on the liveness state. In other words, when
 652 an agent reaches a new subgoal, the safety property cannot
 653 change. However, the workaround for this is not too compli-

Algorithm 2 Learning and Planning with Logical Options

1: Given:

Propositions \mathcal{P} partitioned into subgoals \mathcal{P}_G , safety propositions \mathcal{P}_S , and event propositions \mathcal{P}_E
 $\mathcal{W}_{liveness} = (\mathcal{F}, \mathcal{P}_G \cup \mathcal{P}_E, T_F, R_F, f_0, f_g)$
 $\mathcal{W}_{safety} = (\mathcal{F}_S, \mathcal{P}_S \cup \mathcal{P}_E, T_S, R_S, F_0)$
 Low-level MDP $\mathcal{E} = (\mathcal{S}, \mathcal{A}, R_E, T_E, \gamma)$
 Proposition labeling functions $T_{P_G} : \mathcal{S} \rightarrow 2^{\mathcal{P}_G}$, $T_{P_S} : \mathcal{S} \rightarrow 2^{\mathcal{P}_S}$, and
 $T_{P_E} : 2^{\mathcal{P}_E} \rightarrow \{0, 1\}$

2: To learn:

3: Set of options \mathcal{O} , one for each subgoal proposition $p \in \mathcal{P}_G$
 4: Metapolicy $\mu(f, f_s, s, o)$ along with $Q(f, f_s, s, o)$ and $V(f, f_s, s)$

5: Learn logical options:

6: For every p in \mathcal{P}_G , learn an option for achieving p ,
 $o_p = (\mathcal{I}_{o_p}, \pi_{o_p}, \beta_{o_p}, R_{o_p}, T_{o_p})$

7: $\mathcal{I}_{o_p} = \mathcal{S}$

8: $\beta_{o_p} = \begin{cases} 1 & \text{if } p \in T_{P_G}(s) \\ 0 & \text{otherwise} \end{cases}$

9: π_{o_p} = optimal policy on $\mathcal{E} \times \mathcal{W}_{safety}$ with rollouts terminating when $p \in T_{P_G}(s)$

10: $T_{o_p}(f'_s, s' | f_s, s) = \begin{cases} \sum_{k=1}^{\infty} p(f'_s, k) \gamma^k & \text{if } p \in T_{P_G}(s') \\ 0 & \text{otherwise} \end{cases}$

11: $R_{o_p}(f_s, s) = \mathbb{E}[\mathcal{R}_{\mathcal{E}}(f_s, s, a_1) + \gamma \mathcal{R}_{\mathcal{E}}(f_{s,1}, s_1, a_2) + \dots + \gamma^{k-1} \mathcal{R}_{\mathcal{E}}(f_{s,k-1}, s_{k-1}, a_k)]$

12: Find a metapolicy μ over the options:

13: Initialize $Q : \mathcal{F} \times \mathcal{F}_S \times \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R}$ and $V : \mathcal{F} \times \mathcal{F}_S \times \mathcal{S} \rightarrow \mathbb{R}$ to 0

14: For $(k, f, f_s, s) \in [1, \dots, n] \times \mathcal{F} \times \mathcal{F}_S \times \mathcal{S}$:

15: For $o \in \mathcal{O}$:

16: $Q_k(f, f_s, s, o) \leftarrow R_F(f) R_o(f_s, s) + \sum_{f' \in \mathcal{F}} \sum_{f'_s \in \mathcal{F}_S} \sum_{\bar{p}_e \in 2^{\mathcal{P}_E}} \sum_{s' \in \mathcal{S}}$

17: $T_F(f' | f, T_{P_G}(s'), \bar{p}_e) T_S(f'_s | f_s, T_{P_S}(s'), \bar{p}_e) T_{P_E}(\bar{p}_e) T_o(s' | s) V_{k-1}(f', f_s, s, o)$

18: $V_k(f, f_s, s) \leftarrow \max_{o \in \mathcal{O}} Q_k(f, f_s, s, o)$

19: $\mu(f, f_s, s, o) = \arg \max_{o \in \mathcal{O}} Q(f, f_s, s, o)$

20: **Return:** Options \mathcal{O} , metapolicy $\mu(f, f_s, s, o)$, and $Q(f, f_s, s, o), V(f, f_s, s)$

cated. First, if the liveness state affects the safety property, this implies that liveness propositions such as subgoals may be in the safety property. In this case, as we described above, the subgoals present in the safety property need to be substituted with “safety twin” propositions. Then during option training, a policy-learning algorithm must be chosen that will learn subpolicies for all of the safety property states, even if those states are only reached after completing a complicated task (for example, all of the subpolicies could be

660 trained in parallel as in (Icarte et al., 2018)). Lastly, during
 661 metapolicy learning and during rollouts, when a new option
 662 is chosen, the current state of the safety property must be
 663 passed to the new option.

664 The components of the logical options are defined starting at
 665 Alg. 2 line 2. Note that for stochastic low-level transitions,
 666 the number of time steps k at which the option terminates is
 667 stochastic and characterized by a distribution function. In
 668 general this distribution function must be learned, which is a
 669 challenging problem. However, there are many approaches
 670 to solving this problem; (Abel & Winder, 2019) contains an
 671 excellent discussion.

672 The most notable difference between the general formulation
 673 and the formulation in the paper is that the option policy,
 674 transition, and reward functions are functions of the safety
 675 automaton state f_s as well as the low-level state s . This
 676 makes Logical Value Iteration more complicated, because
 677 in the paper, we could assume we knew the final state of
 678 each option (i.e., the state of its associated subgoal s_g). But
 679 now, although we still assume that the option will terminate
 680 at s_g , we do not know which safety automaton state
 681 it will terminate in, so the transition model must learn a
 682 distribution over safety automaton states, and Logical Value
 683 Iteration must account for this uncertainty.

684 A.4. Hierarchical SMDP

685 Given a low-level environment \mathcal{E} , a liveness property
 686 $\mathcal{W}_{liveness}$, a safety property \mathcal{W}_{safety} , and logical options
 687 \mathcal{O} , we can define a hierarchical semi-Markov Decision Process
 688 (SMDP) $\mathcal{M} = \mathcal{E} \times \mathcal{W}_{liveness} \times \mathcal{W}_{safety}$ with options
 689 \mathcal{O} and reward function R_{SMDP} . This SMDP differs signifi-
 690 cantly from the SMDP in the paper in that the safety
 691 property \mathcal{W}_{safety} is now an integral part of the formulation.
 692 $R_{SMDP}(f, f_s, s, o) = R_F(f)R_o(f_s, o)$.

693 A.5. Logical Value Iteration

694 A value function and Q-function are found for the SMDP
 695 using the Bellman update equations:

$$702 Q_k(f, f_s, s, o) \leftarrow R_F(f)R_o(f_s, s) + \sum_{f' \in \mathcal{F}} \sum_{f'_s \in \mathcal{F}_S} \sum_{\bar{p}_e \in 2^{\mathcal{P}_E}} \sum_{s' \in \mathcal{S}} T_S(f'_s | f_s, T_{P_S}(s'), \bar{p}_e) T_{P_E}(\bar{p}_e) T_o(s' | s) V_{k-1}(703 \text{only } \{f'_s\} \text{ subgoals}, \bar{p}_e) \quad (5)$$

$$704 V_k(f, f_s, s) \leftarrow \max_{o \in \mathcal{O}} Q_k(f, f_s, s, o) \quad (6)$$

705 B. Proofs and Conditions for Satisfaction and 706 Optimality

707 The proofs are based on the more general LOF formulation
 708 of Appendix A, as results on the more general formulation

709 also apply to the simpler formulation used in the paper.

710 **Definition B.1.** Let the reward function of the environment
 711 be $R_{\mathcal{E}}(f_s, s, a)$, which is some combination of $R_E(s, a)$ and
 712 $R_S(f_s, \bar{p}_s) = R_S(f_s, T_{P_S}(s))$. Let $\pi' : \mathcal{F}_S \times \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow$
 713 $[0, 1]$ be the optimal goal-conditioned policy for reaching
 714 a state s' . In the case of a goal-conditioned policy, the
 715 reward function is $R_{\mathcal{E}}$, and the objective is to maximize the
 716 expected reward with the constraint that s' is reached in
 717 a finite amount of time. We assume that every state s' is
 718 reachable from any state s , a standard regularity assumption
 719 in MDP literature. Let $V^{\pi'}(f_s, s | s')$ be the optimal
 720 expected cumulative reward for reaching s' from s with
 721 goal-conditioned policy π' . Let s_g be the state associated
 722 with the subgoal, and let π_g be the optimal goal-conditioned
 723 policy associated with reaching s_g . Let π^* be the optimal
 724 policy for the environment \mathcal{E} .

725 **Condition B.1.** The optimal policy for the option must be
 726 the same as the goal-conditioned policy that has subgoal
 727 s_g as its goal: $\pi^*(f_s, s) = \pi_g(f_s, s | s_g)$. In other words,
 728 $V^{\pi_g}(f_s, s | s_g) > V^{\pi'}(f_s, s | s') \quad \forall f_s, s, s' \neq s_g$.

729 This condition guarantees that the optimal option policy
 730 will always reach the subgoal s_g . It can be achieved by
 731 setting all rewards $-\infty < R_{\mathcal{E}}(f_s, s, a) < 0$ and terminating
 732 the episode only when the agent reaches s_g . Therefore
 733 the expected return for reaching s_g is a bounded negative
 734 number, and the expected return for all other states is $-\infty$.

735 **Lemma B.2.** Given that the goal state of $\mathcal{W}_{liveness}$ is reachable
 736 from any other state using only subgoals and that there
 737 is an option for every subgoal and that all the options meet
 738 Condition B.1, there exists a metapolicy that can reach the
 739 FSA goal state from any non-trap state in the FSA.

740 *Proof.* This follows from the fact that transitions in
 741 $\mathcal{W}_{liveness}$ are determined by achieving subgoals, and it is
 742 given that there exists an option for achieving every sub-
 743 goal. Therefore, it is possible for the agent to execute any
 744 sequence of subgoals, and at least one of those sequences
 745 must satisfy the task specification since the FSA represent-
 746 ing the task specification is finite and satisfiable, and the
 747 goal state f_g is reachable from every FSA state $f \in \mathcal{F}$ using
 748 $T_{\text{only } \{f\} \text{ subgoals}}(f, f_g, \bar{p}_e)$ \square

749 **Definition B.2.** From Dietterich (2000): A **hierarchically**
 750 **optimal** policy for an MDP or SMDP is a policy that
 751 achieves the highest cumulative reward among all policies
 752 consistent with the given hierarchy.

753 In our case, this means that the hierarchically optimal
 754 metapolicy is optimal over the available options.

755 **Definition B.3.** Let the expected cumulative reward func-
 756 tion of an option o started at state (f_s, s) be $R_o(f_s, s)$. Let
 757 the reward function on the SMDP be $R_{SMDP}(f, f_s, s, o) =$

715 $R_F(f)R_o(f_s, s)$ with $R_F(f) \geq 0$ ¹. Let $\mu' : \mathcal{F} \times \mathcal{F}_S \times$
 716 $\mathcal{S} \times \mathcal{O} \times \mathcal{F} \rightarrow [0, 1]$ be the hierarchically optimal goal-
 717 conditioned metapolicy for achieving liveness state f' . The
 718 objective of the metapolicy is to maximize the reward function
 719 R_{SMDP} with the constraint that it reaches f' in a finite
 720 number of time steps. Let $V^{\mu'}(f, f_s, s|f')$ be the hierar-
 721 chically optimal return for reaching f' from (f, f_s, s) with
 722 goal-conditioned metapolicy μ' . Let μ^* be the hierar-
 723 chically optimal policy for the SMDP. Let f_g be the goal
 724 state, and μ_g be the hierarchically optimal goal-conditioned
 725 metapolicy for achieving the goal state.

726 **Condition B.3.** The hierarchically optimal metapolicy
 727 must be the same as the goal-conditioned metapolicy that
 728 has the FSA goal state f_g as its goal: $\mu^*(f, f_s, s) =$
 729 $\mu_g(f, f_s, s|f_g)$. In other words, $V^{\mu_g}(f, f_s, s|f_g) >$
 730 $V^{\mu'}(f, f_s, s|f') \forall f, f_s, s, f' \neq f_g$.

731 This condition guarantees that the hierarchically optimal
 732 metapolicy will always go to the FSA goal state f_g
 733 (thereby satisfying the specification). Here is an exam-
 734 ple of how this condition can be achieved: If $-\infty <$
 735 $R_{\mathcal{E}}(f_s, s, a) < 0 \forall s$, then $R_o(f_s, s) < 0 \forall f_s, o, s$. Then
 736 if $R_F(f) > 0$ (in our experiments, we set $R_F(f) = 1 \forall f$),
 737 $R_{SMDP}(f, f_s, s, o) = R_F(f)R_o(f_s, s) < 0$, and if the
 738 episode only terminates when the agent reaches the goal
 739 state, then the expected return for reaching f_g is a bounded
 740 negative number, and the expected return for all other states
 741 is $-\infty$.

743 **Lemma B.4.** From (Sutton et al., 1999): Value iteration on
 744 an SMDP converges to the hierarchically optimal policy.
 745

746 Therefore, the metapolicy found using the Logical Options
 747 Framework converges to a hierarchically optimal metapolicy
 748 that satisfies the task specification as long as Conditions B.1
 749 and B.3 are met.

750 **Definition B.4.** Consider the SMDP where planning is al-
 751 lowed over the low-level actions instead of the options.
 752 We will call this the hierarchical MDP (HMDP), as this
 753 MDP is the product of the low-level environment \mathcal{E} , the live-
 754 ness property $\mathcal{W}_{liveness}$, and the safety property \mathcal{W}_{safety} .
 755 Let $R_F(f) > 0 \forall f$, and let $R_{HMDP}(f, f_s, s, a) =$
 756 $R_F(f)R_{\mathcal{E}}(f_s, s, a)$, and let π_{HMDP}^* be the optimal policy
 757 for the HMDP.

758 **Theorem B.5.** Given Conditions B.1 and B.3, the hierarchi-
 759 cally optimal metapolicy μ_g with optimal option policies π_g
 760 has the same expected returns as the HMDP optimal policy
 761 π^* and satisfies the task specification.

763 *Proof.* By Condition B.1, every subgoal has an option asso-
 764 ciated with it whose optimal policy is to go to the subgoal.

766 ¹The assumption that $R_{SMDP}(f, f_s, s, o) = R_F(f)R_o(f_s, s)$
 767 and $R_{HMDP}(f, f_s, s, a) = R_F(f)R_{\mathcal{E}}(f_s, s, a)$ can be relaxed
 768 so that R_{SMDP} and R_{HMDP} are functions that are monotonic
 769 increasing in the low-level rewards R_o and $R_{\mathcal{E}}$, respectively.

By Condition B.3, the hierarchically optimal metapolicy will reach the FSA goal state f_g . The metapolicy can only accomplish this by going to the subgoals in a sequence that satisfies the task specification. It does this by executing a sequence of options that correspond to a satisfying sequence of subgoals and are optimal in expectation. Therefore, since $R_F(f) > 0 \forall f$ and $R_{SMDP}(f, f_s, s, o) = R_F(f)R_o(f_s, s)$, and since the event propositions that affect the order of subgoals necessary to satisfy the task are independent random variables, the expected cumulative reward is a positive linear combination of the expected option rewards, and since all option rewards are optimal with respect to the environment and the metapolicy is optimal over the options, our algorithm attains the optimal expected cumulative reward. \square

C. Experimental Implementation

We discuss the implementation details of the experiments in this section. Because the delivery and reacher domains are analogous, we discuss the delivery domain first in every section and then briefly relate how the same formulation applies to the reacher domain as well. In this section, we use the simpler formulation of the main paper and not the more general formulation discussed in Appendix A.

C.1. Propositions

The delivery domain has 7 propositions plus 4 composite propositions. The subgoal propositions are $\mathcal{P}_G = \{a, b, c, h\}$. Each of these propositions is associated with a single state in the environment (see Fig. 12a). The safety propositions are $\mathcal{P}_S = \{o, e\}$. o is the obstacle proposition. It is associated with many states – the black squares in Fig. 12a. e is the empty proposition, associated with all of the white squares in the domain. This is the default proposition for when there are no other active propositions. The event proposition is $\mathcal{P}_E = \{can\}$. can is the “cancelled” proposition, representing when one of the subgoals has been cancelled.

To simplify the FSAs and the implementation, we make an assumption that multiple propositions cannot be true at the same state. However, it is reasonable for can to be true at the subgoals, and therefore we introduce 4 composite propositions, $ca = a \wedge can$, $cb = b \wedge can$, $cc = c \wedge can$, $ch = h \wedge can$. These can be counted as event propositions without affecting the operation of the algorithm.

The reacher domain has analogous propositions. The subgoals are r, g, b, y and correspond to a, b, c, h . The environment does not contain obstacles o but does have safety proposition e , and it also has the event proposition can and the composite propositions cr, cg, cb, cy for when can is true at the same time that a subgoal proposition is true.

770 Another difference is that the subgoal propositions are asso-
 771 ciated with a small spherical region instead of a single state
 772 as in the delivery domain; this is a necessity for continuous
 773 domains and unfortunately breaks one of our conditions for
 774 optimality because the subgoals are now associated with
 775 multiple states instead of a single state. However, the LOF
 776 metapolicy will still converge to a hierarchically optimal
 777 policy.
 778

C.2. Reward Functions

781 Next, we define the reward functions of the physical environ-
 782 ment R_E , safety propositions R_S , and FSA states R_F . We
 783 realize that often in reinforcement learning, the algorithm
 784 designer has no control over the reward functions of the
 785 environment. However, in our case, there are no publicly
 786 available environments such as OpenAI Gym or the Deep-
 787 Mind Control Suite that we know of that have a high-level
 788 FSA built-in. Therefore, anyone implementing our algo-
 789 rithm will likely have to implement their own high-level
 790 FSA and define the rewards associated with it.

791 Our low-level environment reward function $R_E : \mathcal{S} \times \mathcal{A} \rightarrow$
 792 \mathbb{R} is defined to be $-1 \ \forall s, a$. In other words, it is a
 793 time/distance cost.

794 We assign costs to the safety propositions by defining the
 795 reward function $R_S : \mathcal{P}_S \rightarrow \mathbb{R}$. All of the costs are 0 except
 796 for the obstacle cost, $R_S(o) = -1000$. Therefore, there is a
 797 very high penalty for encountering an obstacle.

798 We define the environment reward function $R_E : \mathcal{S} \times \mathcal{A} \rightarrow$
 799 \mathbb{R} to be $R_E(s, a) = R_E(s, a) + R_S(T_P(s))$. In other words,
 800 it is the sum of R_E and R_S . This reward function meets
 801 Condition B.1 for the optimal option policies to always
 802 converge to their subgoals.

803 Lastly, we define $R_F : \mathcal{F} \rightarrow \mathbb{R}$ to be $R_F(f) = 1 \ \forall f$.
 804 Therefore the SMDP cost $R_{SMDP}(f, s, o) = R_o(s)$ and
 805 meets Condition B.3 so that the LOF metapolicy converges
 806 to the optimal policy.

807 The reacher environment has analogous reward functions.
 808 The safety reward function $R_S(p) = 0 \ \forall p \in \mathcal{P}_S$ because
 809 there is no obstacle proposition. Also, the physical envi-
 810 ronment reward function differs during option training and
 811 metapolicy learning. For metapolicy learning, the reward
 812 function is $R_E(s, a) = -a^\top a - 0.1$ – a time cost and an
 813 actuation cost. During option training, we speed learning
 814 by adding the distance to the goal state as a cost, instead
 815 of a time cost: $R_E(s, a) = -a^\top a - \|s - s_g\|^2$. Although
 816 the reward functions and value functions are different, the
 817 costs are analogous and lead to good performance as seen in
 818 the results. Note that this method can't be used for Reward
 819 Machines, because it trains subpolicies for FSA states, and
 820 the subgoals for FSA states are not known ahead of time, so
 821 distance to subgoal cannot be calculated.

Algorithm 3 LOF with ϵ -greedy Q-learning

1: Given:

Propositions \mathcal{P} partitioned into subgoals \mathcal{P}_G , safety
 propositions \mathcal{P}_S , and
 event propositions \mathcal{P}_E
 Environment MDP $\mathcal{E} = (\mathcal{S}, \mathcal{A}, T_E, R_E, \gamma)$
 Logical options \mathcal{O} with reward models $R_o(s)$ and transi-
 tion models $T_o(s'|s)$
 Liveness property $\mathcal{T} = (\mathcal{F}, \mathcal{P}_G \cup \mathcal{P}_E, T_F, R_F, f_0, f_g)$
 $(T_F$ does not have to be
 explicitly known if it can be sampled from a simulator)
 Learning rate α , exploration probability ϵ
 Number of training episodes n , episode length m

2: To learn:

- 3: Metapolicy $\mu(f, s, o)$ along with $Q(f, s, o)$ and $V(f, s)$
- 4: **Find a metapolicy μ over the options:**
- 5: Initialize $Q : \mathcal{F} \times \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R}$ and $V : \mathcal{F} \times \mathcal{S} \rightarrow \mathbb{R}$ to 0
- 6: For $k \in [1, \dots, n]$:
- 7: Initialize FSA state $f \leftarrow 0$, s a random initial state from \mathcal{E}
- 8: $\bar{p}_e \sim T_{P_E}()$
- 9: For $j \in [1, \dots, m]$:
- 10: With probability ϵ let o be a random option; otherwise,
 $o \leftarrow \arg \max_{o' \in \mathcal{O}} Q(f, s, o')$
- 11: $s' \sim T_o(s)$
- 12: $f' \sim T_F(T_{P_G}(s'), \bar{p}_e, f)$
- 13: $Q_k(f, s, o) \leftarrow Q_{k-1}(f, s, o) + \alpha(R_F(f)R_o(s) +$
 $\gamma V(f', s') - Q_{k-1}(f, s, o))$
- 14: $V_k(f, s) \leftarrow \max_{o' \in \mathcal{O}} Q_k(f, s, o')$
- 15: $f \leftarrow f'$
- 16: $\mu(f, s, o) = \arg \max_{o \in \mathcal{O}} Q(f, s, o)$
- 17: **Return:** Options \mathcal{O} , metapolicy $\mu(f, s, o)$ and Q- and
 value functions $Q(f, s, o), V(f, s)$

C.3. Algorithm for LOF-QL

The LOF-QL baseline uses Q-learning to learn the metapolicy instead of value iteration. We therefore use “Logical Q-Learning” equations in place of the Logical Value Iteration equations described in Eqs. 3 and 4 in the main text. The algorithm is described in Alg. 3. A benefit of using Q-learning instead of value iteration is that the transition function T_F of the FSA \mathcal{T} does not have to be explicitly known, as the algorithm samples from the transitions rather than using T_F explicitly in the formula. However, as described in the main text, this comes at the expense of reduced composability, as LOF-QL takes around 5x more iterations to converge to a new metapolicy than LOF-VI does. Let $Q_0(f, s, o)$ be initialized to be all 0s. The Q update formulas are given in Alg. 3 lines 3 and 3.

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

C.4. Comparison of LOF and Reward Machines

Figs. 4, 5, 6, and 7 give a visual overview of how LOF and Reward Machines work, and hopefully illustrate how they differ.

C.5. Tasks

We test the environments on four tasks, a “sequential” task (Fig. 8), an “IF” task (Fig. 9), an “OR” task (Fig. 10), and a “composite” task (Fig. 11). The reacher domain has the same tasks, except r, g, b, y replace a, b, c, h , and there are no obstacles o . Note that in the LTL formulae, $\square \neg o$ is the safety property ϕ_{safety} ; the preceding part of the formula is the liveness property $\phi_{liveness}$ used to construct the FSA.

C.6. Full Experimental Results

For the satisfaction experiments for the delivery domain, 10 policies were trained for each task and for each baseline. Training was done for 1600 episodes, with 100 steps per episode. Every 2000 training steps, the policies were tested on the domain and the returns recorded. For this discrete domain, we know the minimum and maximum possible returns for each task, and we normalized the returns using these minimum and maximum returns. The error bars are the standard deviation of the returns over the 10 policies’ rollouts.

For the satisfaction experiments for the reacher domain, a single policy was trained for each task and for each baseline. The baselines were trained for 900 epochs, with 50 steps per epoch. Every 2500 training steps, each policy was tested by doing 10 rollouts and recording the returns. For the RM baseline, training was for 1000 epochs with 800 steps per epoch, and the policy was tested every 8000 training steps. Because we don’t know the minimum and maximum rewards for each task, we did not normalize the returns. The error bars are the standard deviation over the 10 rollouts for each baseline.

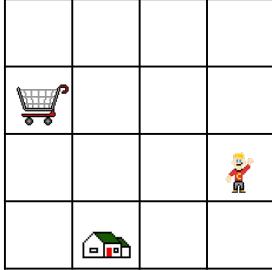
For the composability experiments, a set of options was trained once, and then metapolicing training using LOF-VI, LOF-QL, and Greedy was done for each task. Returns were recorded at every training step by rolling out each baseline 10 times. The error bars are the standard deviations on the 10 rollouts.

Code and videos of the domains and tasks are in the supplement.

D. Further Discussion

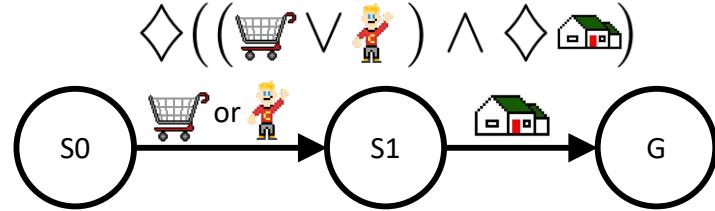
What happens when incorrect rules are used? One benefit of representing the rules of the environment as LTL formulae/automata is that these forms of representing rules are much more interpretable than alternatives (such as neural nets). Therefore, if an agent’s learned policy has bad behavior, a user of LOF can inspect the rules to see if the bad behavior is a consequence of a bad rule specification. Furthermore, one of the consequences of composability is that any modifications to the FSA will alter the resulting policy in a direct and predictable way. Therefore, for example, if an incorrect human-specified task yields undesirable behavior, with our framework it is possible to tweak the task and test the new policy without any additional low-level training (however, tweaking the safety rules would require retraining the logical options).

What happens if there is a rule conflict? If the specified LTL formula is invalid, the LTL-to-automaton translation tool will either throw an error or return a trivial single-state



(a) Environment MDP \mathcal{E} .

Go grocery shopping OR pick up the kid, then go home.



(b) Liveness property \mathcal{T} . The natural language rule can be represented as an LTL formula which can be translated into an FSA.

Figure 4. LOF and RM both require an environment MDP \mathcal{E} and an automaton \mathcal{T} that specifies a task.

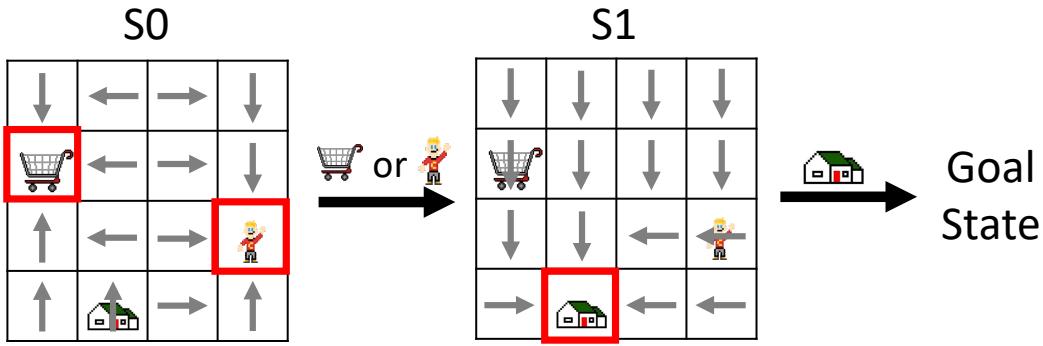


Figure 5. In RM, subpolicies are learned for each state of the automaton. In this case, in state S_0 , a subpolicy is learned that goes either to the shopping cart or the kid, whichever is closer. In state S_1 , the subpolicy goes to the house.

automaton that is not an accepting state. Rollouts would terminate immediately.

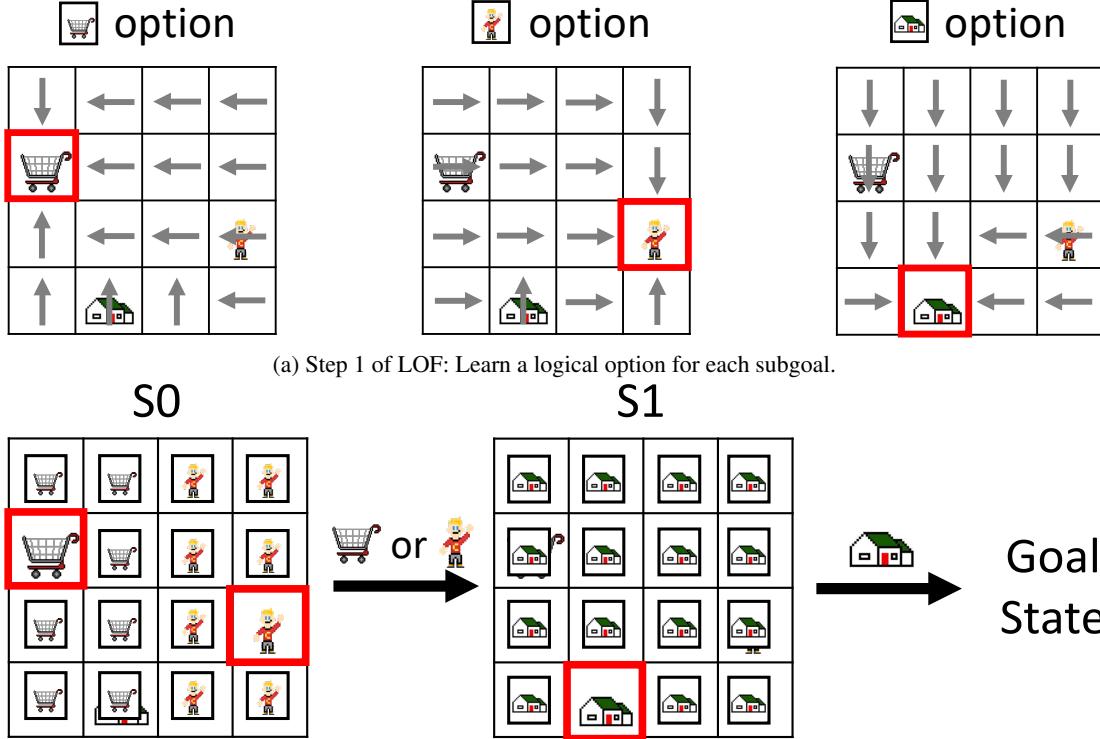
What happens if the agent can't satisfy a task without violating a rule? The solution to this problem depends on the user's priorities. In our formulation, we have assigned finite costs to rule violations and an infinite cost to not satisfying the task (see Appendix B). We have prioritized task satisfaction over safety satisfaction. However, it is possible to flip the priorities around by terminating training/rollouts if there is a safety violation. In our proofs, we have assumed that the agent can reach every subgoal from any state, implying either that it is always possible to avoid safety violations or that safety violations are allowed.

Why is the safety property not composable? The safety property is not composable because we allow safety propositions to be associated with more than one state in the environment (unlike subgoals). The fact that there can be multiple instances of a safety proposition in the environment means that it is impossible to guarantee that a new option policy will be optimal if retraining is done only at the level of the safety automaton and not also over the low-level states. In order to guarantee optimality, retraining would have to be done over both the high and low levels (the safety automaton and the environment). Our definition of com-

posability involves only replanning over the high level of the FSA. Therefore, safety properties are not composable. Furthermore, rewards/costs of the safety property can be associated with propositions and not just with states (as with the liveness property). This is because a safety violation via one safety proposition (e.g., a car going onto the wrong side of the road) may incur a different penalty than a violation via a different proposition (a car going off the road). The propositions are associated with low-level states of the environment. Therefore any retraining would have to involve retraining at both the high and low levels, once again violating our definition of compositability.

Simplifying the option transition model: In our experiments, we simplify the transition model by setting $\gamma = 1$, an assumption that does not affect convergence to optimality. In the case where $\gamma = 1$, Eq. 2 reduces to $T_o(s'|s) = \sum_k p(s', k)$. Assuming that the option terminates only at state s_g , then Eq. 2 further reduces to $T_o(s_g|s) = 1$ and $T_o(s'|s) = 0$ for all other $s' \neq s_g$. Therefore no learning is required for the transition model. For cases where the assumption that $\gamma = 1$ does not apply, (Abel & Winder, 2019) contains an interesting discussion.

Learning the option reward model: The option reward model $R_o(s)$ is the expected reward of carrying out option



(b) Step 2 of LOF: Use Logical Value Iteration to find a metapolicy that satisfies the liveness property. In this image, the boxed subgoals indicate that the corresponding option is the optimal option to take from that low-level state. The policy ends up being the same as RM’s policy – in state S_0 , the optimal metapolicy chooses the “grocery shopping” option if the grocery cart is closer and the “pick up kid” option if the kid is closer. In the state S_1 , the optimal metapolicy is to always choose the “home” option.

Figure 6. LOF has two steps. In (a) the first step, logical options are learned for each subgoal. In (b) the second step, a metapolicy is found using Logical Value Iteration.

α to termination from state s . It is equivalent to a value function. Therefore, it is convenient if the policy-learning algorithm used to learn the options learns a value function as well as a policy (e.g., Q-learning and PPO). However, as long as the expected return can be computed between pairs of states, it is not necessary to learn a complete value function. This is because during Logical Value Iteration, the reward model is only queried at discrete points in the state space (typically corresponding to the initial state and the subgoals). So as long as expected returns between the initial state and subgoals can be computed, Logical Value Iteration will work.

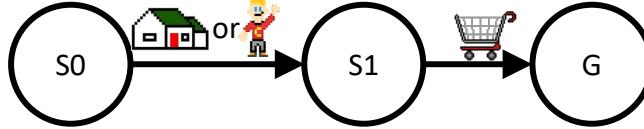
Why is LOF-VI so much more efficient than the RM baseline? In short, LOF-VI is more efficient than RM because LOF-VI has a dense reward function during training and RM has a sparse reward function. During training, LOF-VI trains the options independently and rewards the agent for reaching the subgoals associated with the options. This is in effect a dense reward function. The generic reward function for RM only rewards the agent for reaching the goal state. There are no other high-level rewards to guide

the agent through the task. This is a very sparse reward that results in less efficient training. RM’s reward function could easily be made dense by rewarding every transition of the automaton. In this case, RM would probably train as efficiently as LOF-VI. However, imagine an FSA with two paths to the goal state. One path has only 1 transition but has much lower low-level cost, and one path has 20 transitions and a much higher low-level cost. RM might learn to prefer the reward-heavy 20-transition path rather than the reward-light 1-transition path, even if the 1-transition path results in a lower low-level cost. In theory it might be possible to design an RM reward function that adjusts the automaton transition reward depending on the length of the path that the state is in, but this would not be a trivial task when accounting for branching and merging paths. We therefore decided that it would be a fairer comparison to use a trivial RM reward function, just as we use a trivial reward function for the LOF baselines. However, we were careful to not list increased efficiency in our list of contributions; although increased efficiency was an observed side effect of LOF, LOF is not inherently more efficient than other algorithms besides the fact that it automatically imposes a

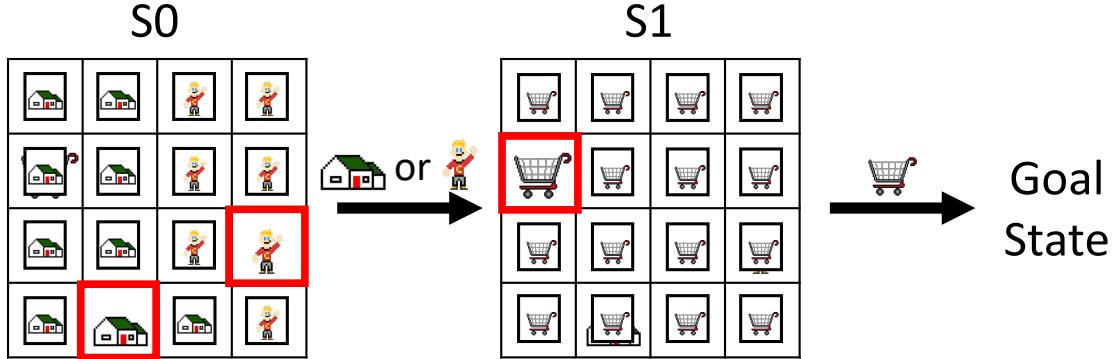
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Go home OR pick up the kid,
then go grocery shopping

$$\Diamond((\Diamond \text{home} \vee \Diamond \text{kid}) \wedge \Diamond \text{grocery})$$



(a) LOF can easily solve this new liveness property without training new options.



(b) Logical Value Iteration can be used to find a metapolicy on the new task without the need to retrain the logical options. A new metapolicy can be found in 10-50 iterations. The new policy finds that in state S_0 , “home” option is optimal if the agent is closer to “home”, and the “kid” option is optimal if the agent is closer to “kid”. In state S_1 , the “grocery shopping” option is optimal everywhere.

Figure 7. What distinguishes LOF from RM is that the logical options of LOF can be easily composed to solve new tasks. In this example, the new task is to go home or pick up the kid, then go grocery shopping. Logical Value Iteration can find a new metapolicy in 10-50 iterations without needing to relearn the options.

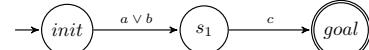


Figure 8. FSA for the sequential task. The LTL formula is $\Diamond(a \wedge \Diamond(b \wedge \Diamond(c \wedge \Diamond h))) \wedge \Box \neg o$. The natural language interpretation is “Deliver package a , then b , then c , and then return home h . And always avoid obstacles o ”.

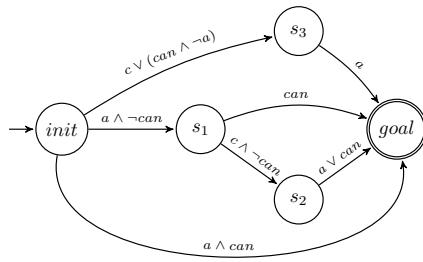


Figure 9. FSA for the IF task. The LTL formula is $(\Diamond(c \wedge \Diamond a) \wedge \Box \neg can) \vee (\Diamond a \wedge \Diamond can) \wedge \Box \neg o$. The natural language interpretation is “Deliver package c , and then a , unless a gets cancelled. And always avoid obstacles o ”.

Figure 10. FSA for the OR task. The LTL formula is $\Diamond((a \vee b) \wedge \Diamond c) \wedge \Box \neg o$. The natural language interpretation is “Deliver package a or b , then c , and always avoid obstacles o ”.

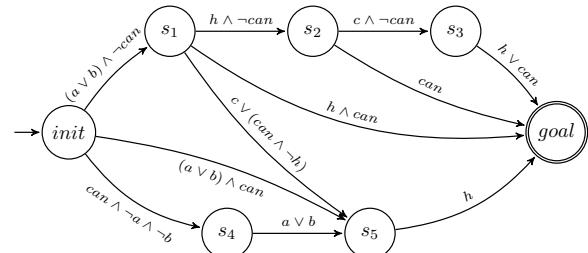


Figure 11. FSA for the composite task. The LTL formula is $(\Diamond((a \vee b) \wedge \Diamond(c \wedge \Diamond h)) \wedge \Box \neg can) \vee (\Diamond((a \vee b) \wedge \Diamond h) \wedge \Diamond can) \wedge \Box \neg o$. The natural language interpretation is “Deliver package a or b , and then c , unless c gets cancelled, and then return to home h . And always avoid obstacles o ”.

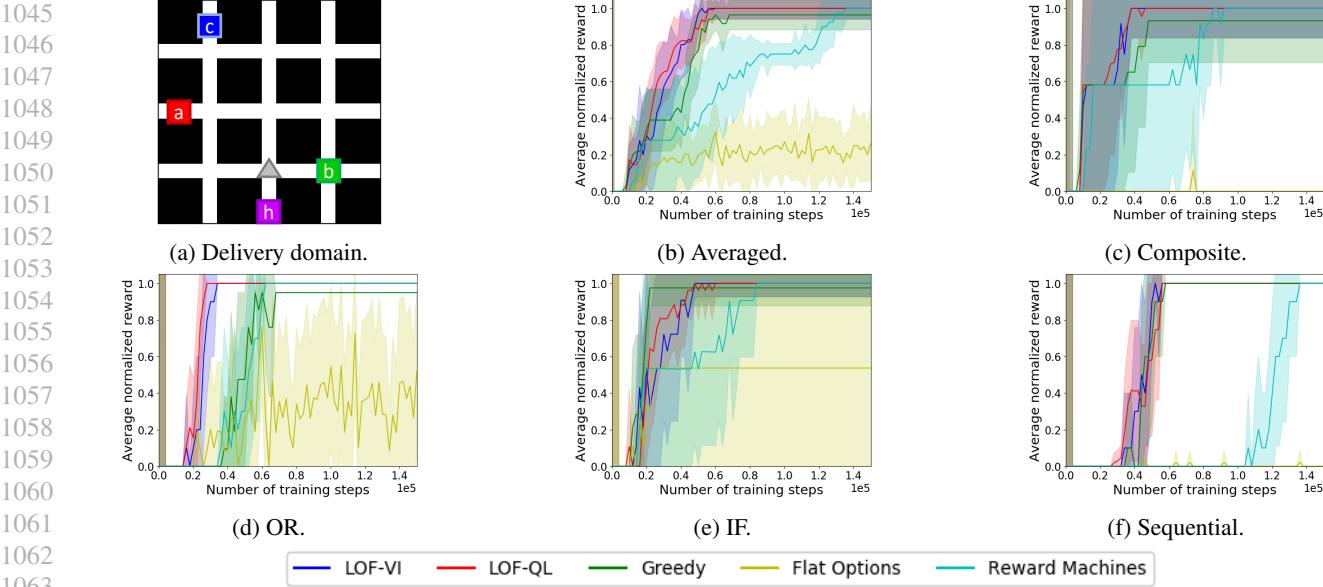


Figure 12. All satisfaction experiments on the delivery domain. Notice how for the composite and OR tasks (Figs. 12c and 12d), the Greedy baseline plateaus before LOF-VI and LOF-QL. This is because Greedy chooses a suboptimal path through the FSA, whereas LOF-VI and LOF-QL find an optimal path. Also, notice that RM takes many more training steps to achieve the optimal cumulative reward. This is because for RM, the only reward signal is from reaching the goal state. It takes a long time for the agent to learn an optimal policy from such a sparse reward signal. This is particularly evident for the sequential task (Fig. 12f), which requires the agent to take a longer sequence of actions/FSA states before reaching the goal. The options-based algorithms train much faster because when training the options, the agent receives a reward for reaching each subgoal, and therefore the reward signal is much richer.

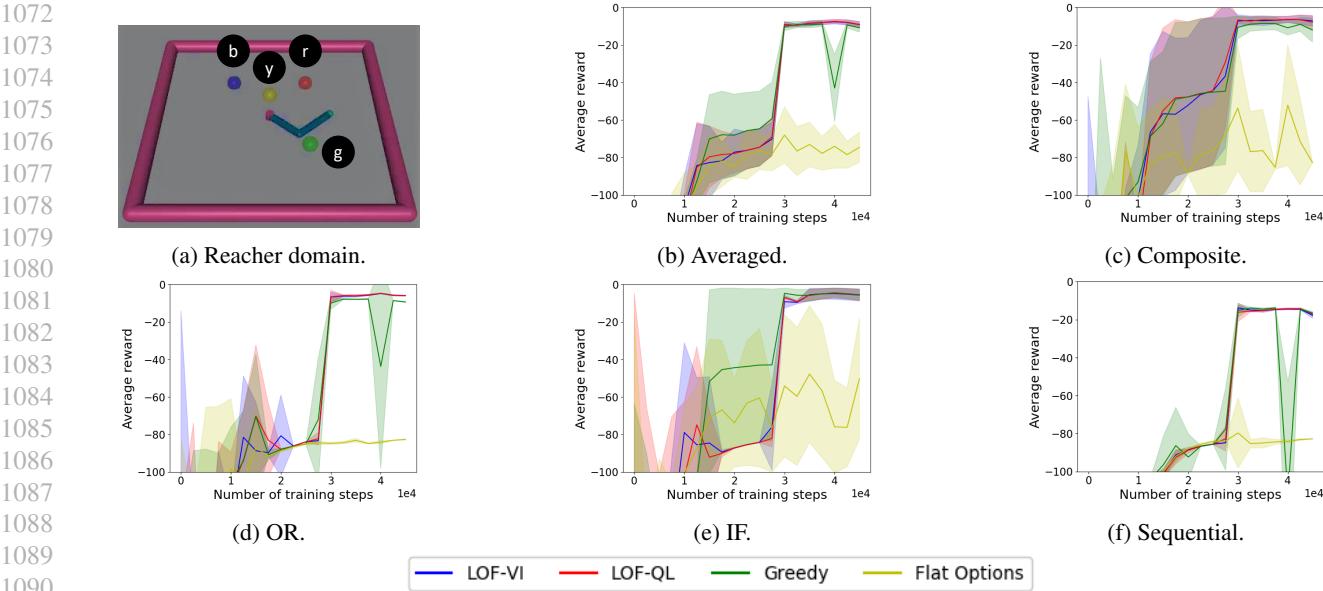
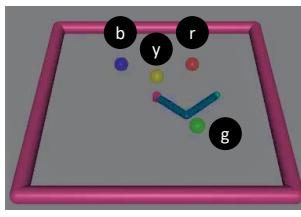
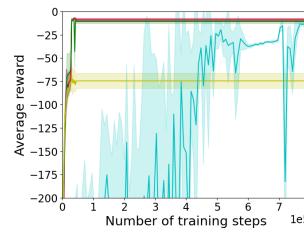


Figure 13. Satisfaction experiments for the Reacher domain, without RM results. The results are equivalent to the results on the delivery domain.

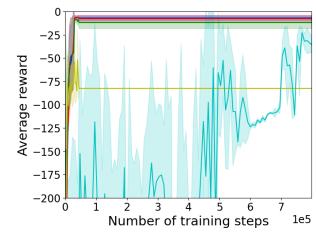
dense reward on reaching subgoals.



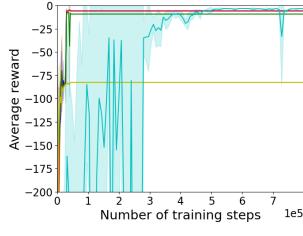
(a) Reacher domain.



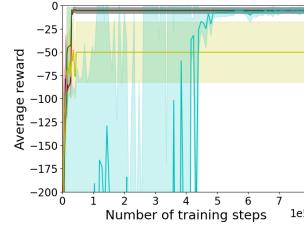
(b) Averaged.



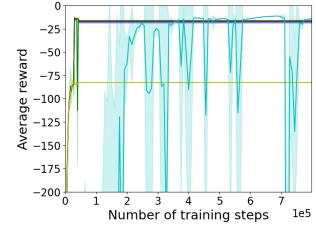
(c) Composite.



(d) OR.



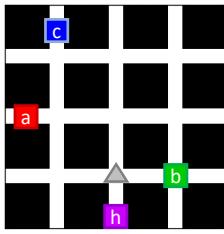
(e) IF.



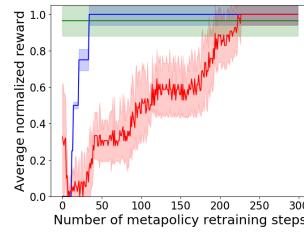
(f) Sequential.

— LOF-VI — LOF-QL — Greedy — Flat Options — Reward Machines

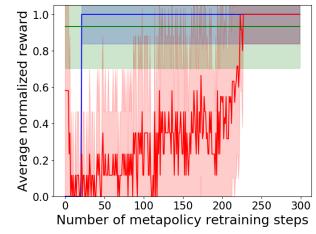
Figure 14. Satisfaction experiments for the reach domain, including RM results. RM takes significantly more training steps to train than the other baselines, although it eventually reaches and surpasses the cumulative reward of the other baselines. This is because for the continuous domain, we violate some of the conditions required for optimality when using the Logical Options Framework – in particular, the condition that each subgoal is associated with a single state. In a continuous environment, this condition is impossible to meet, and therefore we made the subgoals small spherical regions, and we only made the subgoals associated with specific Cartesian coordinates and not velocities (which are also in the state space). Meanwhile, the optimality conditions of RM are looser and were not violated, which is why it achieves a higher final cumulative reward.



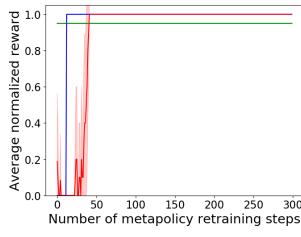
(a) Delivery domain.



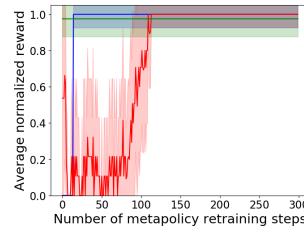
(b) Averaged.



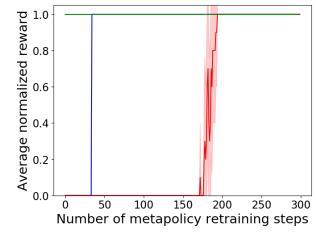
(c) Composite.



(d) OR.



(e) IF.



(f) Sequential.

— LOF-VI — LOF-QL — Greedy

Figure 15. All compositability experiments for the delivery domain.

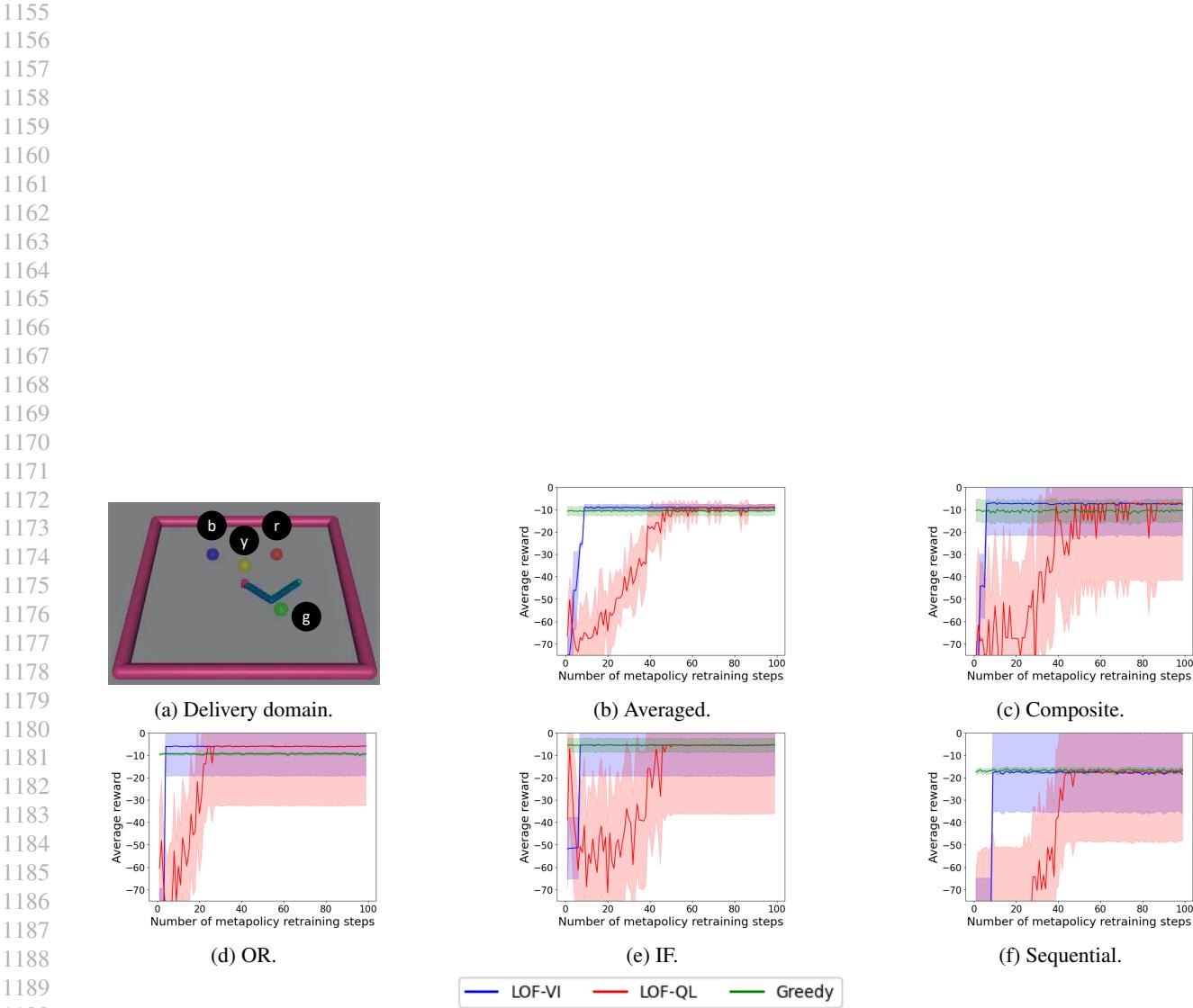


Figure 16. All compositability experiments for the reacher domain.