The Logical Options Framework

Anonymous Authors'

Abstract

Learning composable policies for environments
with complex rules and tasks is a challenging prob-
lem. We introduce a hierarchical reinforcement
learning framework called the Logical Options
Framework (LOF) that learns policies that are saz-
isfying, optimal, and composable. LOF efficiently
learns policies that satisfy tasks by representing
the task as an automaton and integrating it into
learning and planning. We provide and prove
conditions under which LOF will learn satisfy-
ing, optimal policies. And lastly, we show how
LOF’s learned policies can be composed to sat-
isfy unseen tasks with only 10-50 retraining steps.
We evaluate LOF on four tasks in discrete and
continuous domains.

1. Introduction

To operate in the real world, intelligent agents must be able
to make long-term plans by reasoning over symbolic abstrac-
tions while also maintaining the ability to react to low-level
stimuli in their environment (Zhang & Sridharan, 2020).
Many environments obey rules that can be represented as
logical formulae; e.g., the rules a driver follows while driv-
ing, or a recipe a chef follows to cook a dish. Traditional
motion and path planning techniques struggle to formulate
plans over these kinds of long-horizon tasks, but hierarchi-
cal approaches such as hierarchical reinforcement learning
(HRL) can solve lengthy tasks by planning over both the
high-level rules and the low-level environment. However,
solving these problems involves trade-offs among multi-
ple desirable properties, which we identify as satisfaction,
optimality, and composability (described below). Today’s hi-
erarchical planning algorithms sacrifice at least one of these
objectives. For example, Reward Machines from Icarte et al.
(2018) is satisfying and optimal, but not composable; the
options framework (Sutton et al., 1999) is composable and

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

hierarchically optimal, but cannot satisfy specifications. An
algorithm that can achieve all three of these properties would
be very powerful because it would enable a model learned
on one set of rules to generalize to arbitrary sets of rules.
We introduce a new approach called the Logical Options
Framework, which builds upon the options framework and
aims to combine symbolic reasoning and low-level control
to achieve satisfaction, optimality, and composability with
as few compromises as possible. Furthermore, we show that
a model learned with our framework can indeed generalize
to arbitrary sets of rules without any further learning, and
we also we show that our framework is compatible with
a large variety of domains and planning algorithms, from
discrete domains and value iteration to continuous domains
and proximal policy optimization (PPO).

Satisfaction: An agent operating in an environment gov-
erned by rules must be able to satisfy the specified rules.
Satisfaction is a concept from formal logic, in which the
input to a logical formula causes the formula to evaluate to
True. Logical formulae can encapsulate rules and tasks
like the ones described in Fig. 1, such as “pick up the gro-
ceries” and “do not drive into a lake”. In this paper, we state
conditions under which our method is guaranteed to learn
satisfying policies.

Optimality: Optimality requires that the agent maximize
its expected cumulative reward for each episode. In general,
satisfaction can be achieved by rewarding the agent for satis-
fying the rules of the environment. In hierarchical planning
there are several types of optimality, including hierarchi-
cal optimality (optimal with respect to the hierarchy) and
optimality (optimal with respect to everything). We prove
in this paper that our method is hierarchically optimal and,
under certain conditions, optimal.

Composability: Our method also has the property of com-
posability — once it has learned the low-level components of
a task, the learned model can be rearranged to satisfy arbi-
trary tasks. More specifically, the rules of an environment
can be factored into liveness and safety properties, which
we discuss in Sec. 3. The learned model can be adapted to
satisfy any appropriate new liveness property. A shortcom-
ing of many RL models is that they are not composable —
trained to solve one specific task, they are incapable of han-
dling even small variations in the task structure. However,

The Logical Options Framework

[m=
“Go grocery shopping, pick up the kid, and go home, unless your partner calls telling you that they will pick

Mn|
up the kid, in which case just go grocery shopping and then go home. And don’t drive into the lake.”

(a) These natural language instructions can be transformed into an FSA, shown in (b).

Safety Event
proposition proposition

Subgoal propositions

W, %,) {@) {J}

(b) The FSA representing the natural language instructions. The
propositions are divided into “subgoal”, “safety”, and “event.”

L

)| @)
H
[Broa) |

(c) The low-level MDP and corresponding policy that satis-
fies the instructions.

y

Figure 1. Many parents face this task after school ends — who picks up the kid, and who gets groceries? The pictorial symbols represent
propositions, which are true or false depending on the state of the environment. The arrows in (c) represent subpolicies, and the colors of
the arrows match the corresponding transition in the FSA. The boxed phone at the beginning of some of the arrows represents how these

subpolicies can occur only after the agent receives a phone call.

the real world is a dynamic and unpredictable place, so the
ability to use a learned model to automatically reason over
as-yet-unseen tasks is a crucial element of intelligence.

The illustrations in Fig. 1 give an example of how LOF
works. The environment is a world with a grocery store,
your (hypothetical) kid, your house, and some lakes, and
in which you, the agent, are driving a car. The proposi-
tions are divided into “subgoals”, representing events that
can be achieved, such as going grocery shopping, “safety”
propositions, representing events that you must avoid (driv-
ing into a lake), and “event” propositions, corresponding
to events that you have no control over (receiving a phone
call) (Fig. 1b). In this environment, you have to follow
rules (Fig. 1a). These rules can be converted into a logical
formula, and from there into a finite state automaton (FSA)
(Fig. 1b). LOF learns an option for each subgoal (illustrated
by the arrows in Fig. 1c¢), and a meta-policy for choosing
amongst the options to reach the goal state of the FSA. After
learning, the options can be recombined to fulfill arbitrary
tasks.

1.1. Contributions

We introduce the Logical Options Framework (LOF), which
makes four contributions to the hierarchical reinforcement
learning literature:

1. The definition of a hierarchical semi-Markov Decision

Process (SMDP) that is the product of a logical FSA
and a low-level environment MDP.

2. A planning algorithm for learning options and
metapolicies for the SMDP that allows for the options
to be composed to solve new tasks with only 10-50
retraining steps and no additional samples from the
environment.

3. Conditions and proofs for achieving satisfaction and
optimality.

4. Experiments on a discrete domain and a continuous
domain on four tasks demonstrating satisfaction, opti-
mality, and composability.

2. Background

Linear Temporal Logic: We use linear temporal logic
(LTL) to formally specify rules (Clarke et al., 2001). LTL
can express tasks and rules using temporal operators such as
“eventually” and “always.” LTL formulae are used only indi-
rectly in LOF, as they are converted into automata that the
algorithm uses directly. We chose to use LTL to represent
rules because LTL corresponds closely to natural language
and has proven to be a more natural way of expressing
tasks and rules for engineers than designing FSAs by hand
(Kansou, 2019). Formulae ¢ have the syntax grammar

¢:=p| ¢ d1Voa| Oo|d1U P2

The Logical Options Framework

where p is a proposition (a boolean-valued truth statement
that can correspond to objects or events in the world), —
is negation, V is disjunction, () is “next”, and ¢{ is “until”.
The derived rules are conjunction (A), implication (=
), equivalence (<), “eventually” ($¢ = Trueld ¢) and
“always” (¢ = ~O—¢) (Baier & Katoen, 2008). ¢1 U ¢o
means that ¢4 is true until ¢ is true, {>¢ means that there is
a time where ¢ is true and [J¢ means that ¢ is always true.

The Options Framework: The options framework is a
framework for defining and solving semi-Markov Decision
Processes (SMDPs) with a type of macro-action or subpolicy
called an option (Sutton et al., 1999). The inclusion of
options in an MDP problem turns it into an SMDP problem,
because actions are dependent not just on the previous state
but also on the identity of the currently active option, which
could have been initiated many time steps before the current
time.

An option o is a variable-length sequence of actions defined
as o = (Z,m, B, Ro(s),To(s'|s)). T C S is the initiation
set of the option. 7 : § x A — [0, 1] is the policy the option
follows while the option is active. § : § — [0, 1] is the
termination condition. R,(s) is the reward model of the
option. T, (s’|s) is the transition model. A major challenge
in option learning is that, in general, the number of time
steps before the option terminates, &, is a random variable.
With this in mind, R,(s) is defined as the expected cumu-
lative reward of option o given that the option is initiated
in state s at time ¢ and ends after k time steps. Letting 7
be the reward received by the agent at ¢ time steps from the
beginning of the option,

Ro(s) =E[ry +ra +...7" 'ry] €]

T,(s'|s) is the combined probability p(s’, k) that option o
will terminate at state s” after k time steps:

To(s's) = > _p(s' k)7)
k=1

In the next section, we describe how Egs. 1 and 2 can be
simplified in the context of LOF.

3. Logical Options Framework

Here is a brief overview of how we will present our formu-
lation of LOF:

1. The LTL formula is decomposed into liveness and
safety properties. The liveness property defines the
task specification and the safety property defines the
costs for violating rules.

2. The propositions of the formula are divided into three
types: subgoals, safety propositions, and event propo-
sitions. Subgoals are used to define tasks, and each
subgoal is associated with its own option, whose goal
is to achieve that subgoal. Safety propositions are used
to define rules. Event propositions serve as control
flow variables that affect the task.

3. We define an SMDP that is the product of a low-level
MDP and a high-level logical FSA.

4. We describe how the logical options can be defined
and learned.

5. We present an algorithm for finding the hierarchically
optimal policy on the SMDP.

6. We state conditions under which satisfaction of the
LTL specification is guaranteed, and we prove that the
planning algorithm converges to an optimal policy by
showing that the hierarchically optimal SMDP policy
is the same as the optimal MDP policy.

The Logic Formula: LTL formulae can be translated into
Biichi automata using automatic translation tools such as
SPOT (Duret-Lutz et al., 2016). All Biichi automata can be
decomposed into liveness and safety properties (Alpern &
Schneider, 1987). To simplify the formulation, we assume
that the LTL formula itself can be divided into liveness and
safety formulae, @ = Priveness N Psafery. For the case
where the LTL formula cannot be factored into independent
formulae, please see Appendix A. The liveness property
describes “things that must happen” to satisfy the LTL for-
mula. It is a task specification, and it is used in planning
to determine which subgoals the agent must achieve. The
safety property describes “things that can never happen” and
is used to define costs for violating the rules. In LOF, the
liveness property must be written using a finite-trace subset
of LTL called syntactically co-safe LTL (Bhatia et al., 2010),
in which the (J (“always”) operator is not allowed and (), U,
and < are only used in positive normal form. This way, the
liveness property can be satisfied by finite-length sequences
of propositions, and the property can be represented as an
FSA.

Propositions: Propositions are boolean-valued truth state-
ments corresponding to goals, objects, and events in the
environment. We distinguish between three types of propo-
sitions: subgoals P, safety propositions Pg, and event
propositions Pg. Subgoal propositions are propositions that
must be achieved in order to satisfy the liveness property.
They are associated with goals such as “the agent is at the
grocery store”. They only appear in @;yeness- Each sub-
goal may only be associated with one state. Note that in
general, it may be impossible to avoid having subgoals ap-
pear in ¢sqfety. Appendix A describes how to deal with

The Logical Options Framework

this scenario. Safety propositions are propositions that the
agent must avoid — for example, driving into a lake. They
only appear in ¢, fety. Event propositions have a set value
that affects the task specification — for example, whether or
not a phone call is received. They may occur in @y;yenesss
and, with some extensions that are described in Appendix A,
in @sqfety. Although in the fully observable setting, event
propositions are somewhat trivial, in the partially observable
setting, where the value of the event proposition is revealed
to the agent at a random point in time, they are very useful.
Our optimality guarantees only apply in the fully observ-
able setting; however, LOF’s properties of satisfaction and
composability still apply in the partially observable setting.
The goal state of the liveness property must be reachable
from every other state using only subgoals. This means that
no matter what the values of the event propositions are, it
is always possible for the agent to satisfy the liveness prop-
erty. Proposition labeling functions relate states to the set
of propositions that are true at that state: Tp, : S — 276,
Tp, : S — 2Ps: for event propositions, a function identifies
the set of true propositions, Tp,, : 272 — {0,1}.

Hierarchical SMDP: LOF works by defining a hierarchi-
cal semi-Markov Decision Process (SMDP), learning the
options, and then planning over the options. The high-level
part of the hierarchy is defined by an FSA specified using
LTL. The low level is an environment MDP.

We assume that the high-level LTL specification ¢ can be
decomposed into a liveness property @jiyeness and a safety
property ¢sqfety- The set of propositions P is the union of
the sets of subgoals P, safety propositions Pg, and event
propositions Pr. We assume that the liveness property can
be translated into an FSA T = (F, P, Tk, R, fo, f4)- F
is the set of automaton states; P is the set of propositions;
T is the transition function relating the current state and
proposition to the next state, Tp : F x P x F — [0,1]. In
practice, T is deterministic despite our use of probabilistic
notation. We assume that there is a single initial state f
and final state f;, and that the goal state f; is reachable
from every state f € F using only subgoals. There is
also a reward function that assigns a reward to every state,
Rr : F — R. In our experiments, we assume that the
safety property takes the form /\ps eps Lps. This simple
safety property implies that every safety proposition is not
allowed, and that the safety propositions have associated
costs, Rg : 2P = R. g fety 18 not limited to this simple
case; the general case is covered in Appendix A.

There is a low-level environment MDP & =
(S,A,Re,Tr,v). S is the state space and A is the
action space. They can be discrete or continuous.
Rg : S x A — R is a low-level reward function that
characterizes, for example, distance or actuation costs. R¢
is a combination of the safety reward function Rg and R,

Algorithm 1 Learning and Planning with Logical Options

1: Given:
Propositions P partitioned into subgoals Pg, safety
props Pg, and event props Pg
Logical FSAT = (.7:, Pe X Pg,Tr, RF, fo, fq) de-
rived from qsliveness
Low-level MDP & = (S, A, Rg,Tg,7y), where
Re(s,a) = Re(s,a) + Rs(Tpy(s)) combines the en-
vironment and safety rewards
Proposition labeling functions Tr, : S — 27¢, Tp, :
S — 275 and Tp,, : 277 — {0,1}

2: To learn:
3: Set of options O, one for each subgoal p € Pg
4: Metapolicy u(f, s, 0) along with Q(f, s, 0) and V (f, s)
5. Learn logical options:
6: for p € Ps do
7: Learn an option that achieves p,
0p = Loy Toys Bogs Roy (), To, (5']5))
8: I,, =8
o B, — 1 ifpeTp,(s)

0 otherwise
10: m,, = optimal policy on & with rollouts terminating
when p € Tp,(s)
% if p € Tp,(s'); k is number
of time steps to reach p
0 otherwise
12: R, (s) = E[Rg(s,a1) +vRe(s1,0a2) + ...
+7* 1 Re (s—1, ax)]

1 T, (s']s) =

13: end for
14: Find a metapolicy . over the options:
15: Initialize @ : F X S x O - RandV : F xS — Rto
0
16: for (k, f,s) € [1,...,n] x F x S do
17: foro e O do
18: Qi(f.s,0) < Rp(f)Ro(s)+
SO X Te(fITe(s),) Tes (pe)

f'€F p.c2PE s’'€S
To(s'|5)Vi—1(f',8")

19: end for

20: V]g(f78> — maXQk(f,S,O)
0eO

21: end for

22: p(f,s,0) = argmax Q(f,s,0)
0cO

23: Return: Options O, meta-policy pu(f, s, 0) and Q- and
value functions Q(f, s,0), V(f,s)

e.g. Re(s,a) = Re(s,a) + Rs(Tps(s)). The transition
function of the environmentis T : S x A x § — [0,1].

From these parts we define a hierarchical SMDP M =
(S X .F, A, P, O, TE X Tp X TF, RS]WDP, ’y). The hierar-
chical state space contains two elements: low-level states
S and FSA states . The action space is A. The set of

The Logical Options Framework

propositions is P. The set of options (one option associated
with each subgoal in Pg) is O. The transition function con-
sists of the low-level environment transitions 7'z and the
FSA transitions Tr. Tp = Tp, X Tp, X Tp,. We classify
Tp, relating states to propositions, as a transition function
because it helps to determine when FSA transitions occur.
The transitions are applied in the order Ty, Tp, Tr. The re-
ward function Rsarpp(f,s,0) = Rp(f)Ro(s), so Rp(f)
is a weighting on the option rewards. Lastly, the SMDP has
the same discount factor v as £. Planning is done on the
SMDP in two steps: first, the options O are learned over
& using an appropriate policy-learning algorithm such as
PPO or Reward Machines. Next, a metapolicy over the task
specification 7 is found using the learned options and the
reward function Rsy/pp.

Logical Options: The first step of Alg. 1 is to learn the log-
ical options. We associate every subgoal p with an option
0p = (Lo, 7o, Bo,> Ro, T,,). These terms are defined
starting at Alg. 1 line 1. Every o, has a policy 7, whose
goal is to reach the state s, where p is true. Options are
learned by training on the environment MDP £ and termi-
nating only when s, is reached. As we discuss in Sec. 3.1,
under certain conditions the optimal option policy is guar-
anteed to always terminate at the subgoal. This allows us
to simplify the transition model of Eq. 2 to the form in
Alg. 1 line 1. In the experiments, we further simplify this
expression by setting v = 1.

Logical Value Iteration: After finding the logical options,
the next step is to find a policy for FSA 7T over the options,
as described in Alg. 1 line 1. A value function and Q-
function are found for the SMDP using the Bellman update
equations:

Qu(f,5,0) « Re(NRo(s)+ > > Y
f'eF p,e2PE s’€S
TF(f/|f7 TPG (S/)aﬁE)TPE (pe)TU(S/‘S)kal(fI? S/)
3)

Vk(fas) <;Igleaé(CQR(.ﬂ570) (4)

Eq. 3 differs from the generic equations for SMDP value
iteration in that the transition function has two extra compo-
nents, Y e Tr(f'|f, T (s'), pe) and Y corp Ty (De)-
The equations are derived from Araki et al. (2019) and the
fact that, on every step in the environment, three transitions
are applied: the option transition 7, the event proposi-
tion “transition” T’p,, and the FSA transition 7. Note that
R,(s) and T,(s’|s) compress the consequences of choosing
an option o at a state s from a multi-step trajectory into two
real-valued numbers, allowing for more efficient planning.

3.1. Conditions for Satisfaction and Optimality

Here we give an overview of the proofs and necessary con-
ditions for satisfaction and optimality. The full proofs and
definitions are in Appendix B using the more general for-
mulation of Appendix A.

First, we describe the condition necessary for an optimal
option to always reach its subgoal. Let 7/(s|s’) be the op-
timal goal-conditioned policy for reaching a goal s’. If the
optimal option policy equals the goal-conditioned policy for
reaching the subgoal s, i.e. 7*(s) = my(s|sy), then the
option will always reach the subgoal. This can also be stated
in terms of value functions: let V™ (s|s') be the expected
return of 7/(s|s’). If V™ (s|s,) > V7™ (s|s') Vs,s" # s,
then 7*(s) = m4(s|sy). This occurs for example if —co <
Re(s,a) < 0 and if the episode terminates only when the
agent reaches s,. Then V"¢ is a bounded negative num-
ber, and V™ for all other states is —co. We show that if
every option is guaranteed to achieve its subgoal, then there
must exist at least one sequence of options that satisfies the
specification.

We then give the condition for the hierarchically optimal
metapolicy p*(s) to always achieve the FSA goal state
fg- In our context, hierarchical optimality means that
the metapolicy is optimal over the available options. Let
' (f, s|f) be the hierarchically optimal goal-conditioned
metapolicy for reaching FSA state f'. If the hierarchically
optimal metapolicy equals the goal-conditioned metapol-
icy for reaching the FSA goal state fy, ie. u*(f,s) =
tg(f,slfqg), then p*(f,s) will always reach f,. In terms
of value functions: let V*'(f, s|f’) be the expected return
for y'. It Vo (f, 5| fg) > VI (f, | f)Vf,s, f' # fg» then
" = pg. This occurs if all FSA rewards Rp(f) > 0, all
environment rewards —oco < Rg(s,a) < 0, and the episode
only terminates when the agent reaches f,. Then V# is
a bounded negative number, and VH for all other states is
—o0. Because LOF uses the Bellman update equations to
learn the metapolicy, the LOF metapolicy will converge to
the hierarchically optimal metapolicy.

Consider the SMDP where planning is allowed over low-
level actions, and let us call it the “hierarchical MDP”
(HMDP) with optimal policy 77, pp. We can then state
the final theorem:

Theorem 3.1. Given that the conditions for satisfaction
and hierarchical optimality are met, the LOF hierarchically
optimal metapolicy |14 with optimal option subpolicies T,
has the same expected returns as the optimal policy Ty ;b p
and satisfies the task specification.

The Logical Options Framework

=
o

o
53

o
o

o
=

o
N

Average normalized reward

g
o

o
©

e
o

14
IS

o
o

Average normalized reward

0‘00.0 02 04 06 08 10 12 14 0 50 100 150 200 250 300
Number of training steps le5

(b) Satisfaction performance.

o
o

Number of metapolicy retraining steps

(c) Composability performance.

Average reward

-40

Average reward

|
@
S

!
=
S

0 1

(d) Reacher domain.

— LOF-VI — LOF-QL

Number of training steps led
(e) Satisfaction performance.

— Greedy

3 4 0 20 40 60 80 100
Number of metapolicy retraining steps

(f) Composability performance.

Flat Options —— Reward Machines

Figure 2. Performance on the satisfaction and composability experiments, averaged over all tasks. Note that LOF-VI composes new
metapolicies in just 10-50 retraining steps. Results for the delivery domain are in the first row, for the reacher domain in the second row.
All results, including RM satisfaction performance on the reacher domain, are in Appendix C.6.

4. Experiments & Results

Experiments: We performed experiments to demonstrate
satisfaction and composability. For the satisfaction experi-
ments, we measure cumulative reward over training steps.
Cumulative reward is a proxy for satisfaction, as the envi-
ronments can only achieve the maximum reward when they
satisfy their tasks. For the composability experiments, we
take the trained options and record how many metapolicy
retraining steps it takes to learn an optimal metapolicy for a
new task.

Environments: We measure the performance of LOF on
two environments. The first environment is a discrete grid-
world (Fig. 2a) called the “delivery domain,” as it can repre-
sent a delivery truck delivering packages to three locations
(a, b, ¢) and having a home base h. There are also obstacles
o (the black squares). The second environment is called
the reacher domain, from OpenAl Gym (Fig. 2d). Itis a
two-link arm that has continuous state and action spaces.
There are four subgoals represented by colored balls: red r,
green g, blue b, and yellow y. Both environments also have
an event proposition called can, which represents when the
need to fulfill part of a task is cancelled.

Tasks: We test satisfaction and composability on four tasks.
The first task is a “sequential” task. For the delivery domain,
the LTL formula is $(a A (0 A (e A GR))) A O-o —
“deliver package a, then b, then c, and then return home h.
And always avoid obstacles.” The next task is the “IF” task
(equivalent to the task shown in Fig. 1b): ({(c A Qa) A

O=can) V ($a A Sean) A O-o — “deliver package ¢, and
then a, unless a gets cancelled. And always avoid obstacles”.
We call the third task the “OR” task, {$((a V b) A $e) A
[—o — “deliver package a or b, then ¢, and always avoid
obstacles”. The “composite” task has elements of all three
of the previous tasks: ($((aVb) AO(cAOR)) AO=can)V
(O((a Vv b) AOh) A Hean) A O-o. “Deliver package a or
b, and then ¢, unless c gets cancelled, and then return to
home h. And always avoid obstacles”. The tasks for the
reacher environment are equivalent, except that there are no
obstacles for the reacher to avoid.

The sequential task is meant to show that planning is effi-
cient and effective even for long-time horizon tasks. The
“IF” task shows that the agent’s policy can respond to event
propositions, such as being alerted that a delivery is can-
celled. The “OR” task is meant to demonstrate the optimal-
ity of our algorithm versus a greedy algorithm, as discussed
in Fig. 3. Lastly, the composite task shows that learning and
planning are efficient and effective even for complex tasks.

Baselines: We test four baselines against our algorithm.
We call our algorithm LOF -V, short for “Logical Options
Framework with Value Iteration,” because it uses value
iteration for its high-level planning. Our first baseline,
LOF-QL, uses Q-learning instead (details can be found in
Appendix C.3). Unlike LOF-VI, LOF-QL does not need
explicit knowledge of T, the transition function of the FSA.
Greedy is a naive implementation of task satisfaction; it
uses its knowledge of the FSA to select the next subgoal
with the lowest cost to attain. This leaves it vulnerable to

The Logical Options Framework

]
H -5
-2 ﬁl‘ﬂl |

LOF Total

\#f, 2 - Reward: -5
’ 5 - Greedy Total
Reward: -7

Figure 3. In this environment, the agent must either pick up the kid or go grocery shopping, and then go home. This is equivalent to the
OR task. Starting at SO, the greedy algorithm picks the next step through the FSA with the lowest cost (in this case, picking up the kid),
which leads to a higher overall cost. The LOF algorithm finds the optimal path through the FSA.

choosing suboptimal paths through the FSA, as shown in
Fig. 3. Flat Options uses the regular options frame-
work with no knowledge of the FSA. In other words, its
SMDP formulation is not hierarchical — the state space and
transition function do not contain high-level states F or
transition function 7x. The last baseline is RM, short for
Reward Machines (Icarte et al., 2018). Whereas LOF learn
options to accomplish subgoals, RM learns subpolicies for
every FSA state. Appendix C.4 discusses the differences
between RM and LOF in detail.

Implementation: For the delivery domain, options were
learned using Q-learning with an e-greedy exploration pol-
icy. Options were learned simultaneously while switching
the option used for exploration at every episode. RM was
learned using the Q-learning for Reward Machines (QRM)
algorithm described in (Icarte et al., 2018). For the reacher
domain, options were learned by using proximal policy
optimization (PPO) (Schulman et al., 2017) to train goal-
oriented policy and value functions, which were represented
using a 128 x 128 fully connected neural network. Deep-
QRM was used to train RM. The implementation details are
discussed more fully in Appendix C.

4.1. Results

Satisfaction: Results for the satisfaction experiments, av-
eraged over all four tasks, are shown in Figs. 2b and 2e.
(Results on all tasks are in Appendix C.6). As expected,
Flat Options shows no ability to satisfy tasks, as it has
no knowledge of the FSAs. Greedy trains as quickly as
LOF-VI and LOF-QL, but its returns plateau before the
others because it chooses suboptimal paths in the composite
and OR tasks. The difference is small in the reacher do-
main but still present. LOF—-QL achieves as high a return
as LOF-VI, but it is less composable (discussed below).
RM learns much more slowly than the other methods. This
is because for RM, a reward is only given for reaching the
goal state, whereas in the LOF-based methods, options are

rewarded for reaching their subgoals, so during training
LOF-based methods have a richer reward function than RM.
For the reacher domain, RM takes an order of magnitude
more steps to train, so we left it out of the figure for clarity
(see Appendix Fig. 14). However, in the reacher domain,
RM eventually achieves a higher return than the LOF-based
methods. This is because for the reacher domain, we define
the subgoals to be spherical regions rather than single states,
violating one of the conditions for optimality. Therefore,
for example, it is possible that the metapolicy does not take
advantage of the dynamics of the arm to swing through
the subgoals more efficiently. RM does not have this condi-
tion and learns a single policy that can take advantage of
inter-subgoal dynamics to learn a more optimal policy.

Composability: The composability experiments were done
on the three composable baselines, LOF-VI, LOF-QL, and
Greedy. Appendix C.4 discusses why RM is not com-
posable. Flat Options is not composable because its
formulation does not include the FSA 7. Therefore it
is completely incapable of recognizing and adjusting to
changes in the FSA. The composability results are shown
in Figs. 2¢ and 2f. Greedy requires no retraining steps
to “learn” a metapolicy on a new FSA — given its current
FSA state, it simply chooses the next available FSA state
that has the lowest cost to achieve. However, its metapol-
icy may be arbitrarily suboptimal. LOF-QL learns optimal
(or in the continuous case, close-to-optimal) policies, but it
takes ~50-250 retraining steps, versus ~10-50 for LOF-VTI.
Therefore LOF -V strikes a balance between Greedy and
LOF-QL, requiring far fewer steps than LOF-QL to retrain,
and achieving better performance than Greedy.

5. Related Work

We distinguish our work from related work in HRL by its
possession of three desirable properties — composability,
satisfaction, and optimality. Most other works possess two

The Logical Options Framework

of these properties at the cost of the other, as we discuss
below.

Not Composable: The previous work most similar to ours
is Icarte et al. (2018; 2019), which introduces a method to
solve tasks defined by automata called Reward Machines.
Their method learns a subpolicy for every state of the au-
tomaton; by transferring rewards between automaton states,
they achieve satisfaction and optimality. However, the
learned policies have limited composability because they
are specific to the automaton; by contrast, LOF learns a sub-
policy for every subgoal, independent of the automaton, and
therefore the subpolicies can be arranged to satisfy arbitrary
tasks. Another similar work is Logical Value Iteration (LVI)
(Araki et al., 2019; 2020). LVI defines a hierarchical MDP
and value iteration equations that can find satisfying and op-
timal policies; however, the algorithm is limited to discrete
domains and has limited composability. A number of HRL
algorithms use reward shaping to guide the agent through
the states of an automaton (Li et al., 2017; 2019; Camacho
et al., 2019; Hasanbeig et al., 2018; Jothimurugan et al.,
2019; Shah et al., 2020; Yuan et al., 2019). While these
algorithms can guarantee satisfaction and, under certain
conditions, optimality, they cannot be composed because
their policies do not consist of composable sub-policies.
Another approach is to use a symbolic planner to find a
satisfying sequence of tasks and use an RL agent to learn
and execute that sequence of tasks (Gordon et al., 2019;
Illanes et al., 2020; Lyu et al., 2019). However, the meta-
controllers of Gordon et al. (2019) and Lyu et al. (2019)
are not composable as they are trained together with the
low-level controllers. Although the work of Illanes et al.
(2020) is amenable to transfer learning, it is not composable.
Paxton et al. (2017); Mason et al. (2017) use logical con-
straints to guide exploration, and while these approaches are
also satisfying and optimal, they are not composable as the
agent is trained for a specific set of rules.

LOF is composable whereas the above methods are not
because it has a hierarchical action space with low-level
actions and high-level options. Once the options are learned,
they can be composed arbitrarily.

Not Satisfying: Most hierarchical frameworks cannot sat-
isfy tasks. Instead, they focus on using state and action
abstractions to make learning more efficient (Dietterich,
2000; Dayan & Hinton, 1993; Parr & Russell, 1998; Diuk
etal., 2008; Oh et al., 2019). The options framework (Sutton
et al., 1999) stands out because of its composability and its
guarantee of hierarchical optimality, which is why we based
our work off of it. There is also a class of HRL algorithms
that builds on the idea of goal-oriented policies that can
navigate to nearby subgoals (Eysenbach et al., 2019; Ghosh
et al., 2018; Faust et al., 2018). By sampling sequences of
subgoals and using a goal-oriented policy to navigate be-

tween them, these HRL algorithms can travel much longer
distances than a goal-oriented policy can travel on its own.
Although these algorithms are “composable” in that they
can navigate to far-away goals without further training, they
are not able to solve tasks. Andreas et al. (2017) presents
an algorithm for solving simple policy “sketches” which is
also composable; however, sketches are considerably less
expressive than automata and linear temporal logic, which
we use.

Unlike the above methods, LOF is satisfying because it has
a hierarchical state space with low-level MDP states and
high-level FSA states. Therefore LOF can satisfy tasks by
learning policies that reach the FSA goal state.

Not Optimal: In HRL, there are at least three types of opti-
mality — hierarchical, recursive, and overall. As defined in
Dietterich (2000), the hierarchically optimal policy is the
optimal policy given the constraints of the hierarchy, and
recursive optimality is when a policy is optimal given the
policies of its children. For example, the options frame-
work is hierarchically optimal, while MAXQ and abstract
MDPs (Gopalan et al., 2017) are recursively optimal. The
method described in Kuo et al. (2020) is fully composable,
but not optimal as it uses a recurrent neural network to gen-
erate a sequence of high-level actions and is therefore not
guaranteed to find optimal policies. LOF is hierarchically
optimal because it finds an optimal meta-policy over the
high-level options, and as we state in the paper, there are
also conditions under which the overall policy is optimal.

6. Discussion and Conclusion

In this work we claim that the Logical Options Framework
has a unique combination of three properties: satisfaction,
optimality, and composability. We state and prove the con-
ditions for satisfaction and optimality in Sec. 3.1. The
experimental results confirm our claims while also high-
lighting some weaknesses. LOF—-VI achieves optimal or
near-optimal policies and trains an order of magnitude faster
than the existing work most similar to it, RM. However, the
optimality condition that each subgoal be associated with
exactly one state cannot be met for continuous domains, and
therefore RM eventually outperforms LOF-VI. But even
when optimality is not guaranteed, LOF-VT is always hier-
archically optimal, which is why it outperforms Greedy
in the composite and OR tasks. Next, the composability
experiments show that LOF-VI can compose its learned op-
tions to accomplish new tasks in very few iterations — about
10-50. Although Greedy requires no retraining steps, it is
a tiny fraction of the tens of thousands of steps required to
learn the original policy. Lastly, we have shown that LOF
can learn policies efficiently, and that it can be used with a
variety of domains and policy-learning algorithms. In fact,
any policy-learning algorithm where it is possible to extract

The Logical Options Framework

a value (expected cumulative reward) for the policy’s execu-
tion on the subgoals is fully compatible with LOF, including
value iteration and PPO.

Thus, we have proven and demonstrated LOF’s features
of satisfaction, optimality, and composability, while also
reviewing the compromises involved in achieving this goal.
We hope that this framework can be useful in practical
settings that are governed by complex and changeable rules.

References

Abel, D. and Winder, J. The expected-length model of
options. In IJCAI, 2019.

Alpern, B. and Schneider, F. B. Recognizing safety and
liveness. Distributed computing, 2(3):117-126, 1987.

Andreas, J., Klein, D., and Levine, S. Modular multitask
reinforcement learning with policy sketches. In Interna-
tional Conference on Machine Learning, pp. 166175,
2017.

Araki, B., Vodrahalli, K., Leech, T., Vasile, C. 1., Don-
ahue, M., and Rus, D. Learning to plan with logical
automata. In Proceedings of Robotics: Science and Sys-
tems, FreiburgimBreisgau, Germany, June 2019. doi:
10.15607/RSS.2019.XV.064.

Araki, B., Vodrahalli, K., Leech, T., Vasile, C. 1., Donahue,
M., and Rus, D. Deep bayesian nonparametric learning
of rules and plans from demonstrations with a learned
automaton prior. In AAAI pp. 10026-10034, 2020.

Baier, C. and Katoen, J. Principles of model checking. MIT
Press, 2008. ISBN 978-0-262-02649-9.

Bhatia, A., Kavraki, L. E., and Vardi, M. Y. Sampling-based
motion planning with temporal goals. In 2010 IEEE
International Conference on Robotics and Automation,

pp. 2689-2696. IEEE, 2010.

Camacho, A., Icarte, R. T., Klassen, T. Q., Valenzano, R. A.,
and Mcllraith, S. A. Ltl and beyond: Formal languages
for reward function specification in reinforcement learn-
ing. In IJCAI, volume 19, pp. 6065-6073, 2019.

Clarke, E. M., Grumberg, O., and Peled, D. Model Checking.
MIT Press, 2001. ISBN 978-0-262-03270-4.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.

In Advances in neural information processing systems,
pp. 271-278, 1993.

Dietterich, T. G. Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of artifi-
cial intelligence research, 13:227-303, 2000.

Diuk, C., Cohen, A., and Littman, M. L. An object-oriented
representation for efficient reinforcement learning. In Pro-
ceedings of the 25th international conference on Machine
learning, pp. 240-247, 2008.

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T.,
Renault, E., and Xu, L. Spot 2.0 — a framework for LTL
and w-automata manipulation. In Proceedings of the 14th
International Symposium on Automated Technology for
Verification and Analysis (ATVA’16), volume 9938 of Lec-
ture Notes in Computer Science, pp. 122—129. Springer,
October 2016. doi: 10.1007/978-3-319-46520-3_8.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems, pp. 15220-15231, 2019.

Faust, A., Oslund, K., Ramirez, O., Francis, A., Tapia, L.,
Fiser, M., and Davidson, J. Prm-rl: Long-range robotic
navigation tasks by combining reinforcement learning
and sampling-based planning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp- 5113-5120. IEEE, 2018.

Ghosh, D., Gupta, A., and Levine, S. Learning actionable
representations with goal-conditioned policies. arXiv
preprint arXiv:1811.07819, 2018.

Gopalan, N., Littman, M. L., MacGlashan, J., Squire, S.,
Tellex, S., Winder, J., Wong, L. L., et al. Planning with
abstract markov decision processes. In Twenty-Seventh

International Conference on Automated Planning and
Scheduling, 2017.

Gordon, D., Fox, D., and Farhadi, A. What should i do now?
marrying reinforcement learning and symbolic planning.
arXiv preprint arXiv:1901.01492, 2019.

Hasanbeig, M., Abate, A., and Kroening, D. Logically-
constrained reinforcement learning. arXiv preprint
arXiv:1801.08099, 2018.

Icarte, R. T., Klassen, T., Valenzano, R., and Mcllraith, S.
Using reward machines for high-level task specification
and decomposition in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2107-2116,
2018.

Icarte, R. T., Waldie, E., Klassen, T., Valenzano, R., Castro,
M., and Mcllraith, S. Learning reward machines for
partially observable reinforcement learning. In Advances

in Neural Information Processing Systems, pp. 15523—
15534, 2019.

Mlanes, L., Yan, X., Icarte, R. T., and Mcllraith, S. A. Sym-
bolic plans as high-level instructions for reinforcement
learning. In Proceedings of the International Conference

The Logical Options Framework

on Automated Planning and Scheduling, volume 30, pp.
540-550, 2020.

Jothimurugan, K., Alur, R., and Bastani, O. A composable
specification language for reinforcement learning tasks.

In Advances in Neural Information Processing Systems,
pp- 13041-13051, 2019.

Kansou, B. K. A. Converting asubset of 1tl formula to buchi
automata. International Journal of Software Engineering
& Applications (IJSEA), 10(2), 2019.

Kuo, Y.-L., Katz, B., and Barbu, A. Encoding formulas as
deep networks: Reinforcement learning for zero-shot ex-
ecution of 1tl formulas. arXiv preprint arXiv:2006.01110,
2020.

Li, X., Vasile, C.-1., and Belta, C. Reinforcement learning
with temporal logic rewards. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 3834-3839. IEEE, 2017.

Li, X., Serlin, Z., Yang, G., and Belta, C. A formal meth-
ods approach to interpretable reinforcement learning for
robotic planning. Science Robotics, 4(37), 2019.

Lyu, D., Yang, F., Liu, B., and Gustafson, S. Sdrl: inter-
pretable and data-efficient deep reinforcement learning
leveraging symbolic planning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 2970-2977, 2019.

Mason, G. R., Calinescu, R. C., Kudenko, D., and Banks,
A. Assured reinforcement learning with formally verified
abstract policies. In 9th International Conference on
Agents and Artificial Intelligence (ICAART). York, 2017.

Oh, Y., Patel, R., Nguyen, T., Huang, B., Pavlick, E.,
and Tellex, S. Planning with state abstractions for
non-markovian task specifications. arXiv preprint
arXiv:1905.12096, 2019.

Parr, R. and Russell, S. J. Reinforcement learning with hier-
archies of machines. In Advances in neural information
processing systems, pp. 1043—-1049, 1998.

Paxton, C., Raman, V., Hager, G. D., and Kobilarov, M.
Combining neural networks and tree search for task and
motion planning in challenging environments. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 6059-6066. IEEE, 2017.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shah, A., Li, S., and Shah, J. Planning with uncertain
specifications (puns). [EEE Robotics and Automation
Letters, 5(2):3414-3421, 2020.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):
181-211, 1999.

Yuan, L. Z., Hasanbeig, M., Abate, A., and Kroening, D.
Modular deep reinforcement learning with temporal logic
specifications. arXiv preprint arXiv:1909.11591, 2019.

Zhang, S. and Sridharan, M. A survey of knowledge-based
sequential decision making under uncertainty. arXiv
preprint arXiv:2008.08548, 2020.

The Logical Options Framework

A. Formulation of Logical Options
Framework with Safety Automaton

In this section, we present a more general formulation of
LOF than that presented in the paper. In the paper, we make
two assumptions that simplify the formulation. The first
assumption is that the LTL specification can be divided into
two independent formulae, a liveness property and a safety
property: ¢ = Priveness /\ Psafety- However, not all LTL
formulae can be factored in this way. We show how LOF
can be applied to LTL formulae that break this assumption.
The second assumption is that the safety property takes a
simple form that can be represented as a penalty on safety
propositions. We show how LOF can be used with arbitrary
safety properties.

A.1. Automata and Propositions

All LTL formulae can be translated into Biichi automata
using automatic translation tools such as SPOT (Duret-Lutz
et al., 2016). All Biichi automata can be decomposed into
liveness and safety properties (Alpern & Schneider, 1987),
so that automaton W = Wiiyeness X Wsafety. This is a
generalization of the assumption that all LTL formulae can
be divided into liveness and safety properties ¢;peness and
@safety- The liveness property Wiiyeness must be an FSA,
although this assumption could also be loosened to allow
it to be a deterministic Biichi automaton via some minor
modifications (allowing multiple goal states to exist and
continuing episodes indefinitely, even once a goal state has
been reached).

As in the main text, we assume that there are three types
of propositions — subgoals P, safety propositions Pg, and
event propositions Pg. The event propositions have set val-
ues and can occur in both Wi;yeness and Wi pety. Safety
propositions only appear in W fe,. Subgoal propositions
only appear in Wi;yeness- Each subgoal may only be asso-
ciated with one state. Note that after writing a specification
and decomposing it into Wiiypeness and Weq ety it is possi-
ble that some subgoals may unexpectedly appear in W ety -
This can be dealt with by creating “safety twins” of each sub-
goal — safety propositions that are associated with the same
low-level states as the subgoals and can therefore substitute
for them in Wy fety-

Subgoals are propositions that the agent must achieve in
order to reach the goal state of Wi;yeness- Although event
propositions can also define transitions in Wijyeness, We
assume that “achieving” them is not necessary in order
to reach the goal state. In other words, we assume that
from any state in Wi;yeness, there is a path to the goal
state that involves only subgoals. This is because in our
formulation, the event propositions are meant to serve as
propositions that the agent has no control over, such as

receiving a phone call. If satisfaction of the liveness property
were to depend on such a proposition, then it would be
impossible to guarantee satisfaction. However, if the user is
unconcerned with guaranteeing satisfaction, then specifying
a liveness property in which satisfaction depends on event
propositions is compatible with LOF.

Safety propositions may only occur in Wi, fetyy and are as-
sociated with things that the agent “must avoid”. This is
because every state of W, ety 1S an accepting state (Alpern
& Schneider, 1987), so all transitions between the states
are non-violating. However, any undefined transition is not
allowed and is a violation of the safety property. In our
formulation, we assign costs to violations, so that violations
are allowed but come at a cost. In practice, it also may be
the case that the agent is in a low-level state from which
it is impossible to reach the goal state without violating
the safety property. In our formulation, satisfaction of the
liveness property (but not the safety property) is still guaran-
teed in this case, as the finite cost associated with violating
the rule is less than the infinite cost of not satisfying the
liveness property, so the optimal policy for the agent will be
to violate the rule in order to satisfy the task (see the proofs,
Appendix B). This scenario can be avoided in several ways.
For example, do not specify an environment in which it is
only possible for the agent to satisfy the task by violating
arule. Or, instead of prioritizing satisfaction of the task,
it is possible to instead prioritize satisfaction of the safety
property. In this case, satisfaction of the liveness property
would not be guaranteed but satisfaction of the safety prop-
erty would be guaranteed. This could be accomplished by
terminating the rollout if a safety violation occurs.

We assume that event propositions are observed — in other
words, that we know the values of the event propositions
from the start of a rollout. This is because we are planning in
a fully observable setting, so we must make this assumption
to guarantee convergence to an optimal policy. However, the
partially observable case is much more interesting, in which
the values of the event propositions are not known until
the agent checks or the environment randomly reveals their
values. This case is beyond the scope of this paper; however,
LOF can still guarantee satisfaction and composability in
this setting, just not optimality.

Proposition labeling functions relate states to propositions:
TPG S = QPG, TPS S — 2733, and TPE ;2P

{0,1}.

Given these definitions of propositions, it is possible
to define the liveness and safety properties formally.
Wiiveness = (]:a Pg U PE; Tr, RF; f0> fg) F is the set
of states of the liveness property. The propositions can be
either subgoals Pg or event propositions Pg. The transition
function relates the current FSA state and active propositions
to the next FSA state, T : F x 27¢ x 2P2 x F — [0, 1].

The Logical Options Framework

The reward function assigns a reward to the current FSA
state, Ry : F — R. We assume there is one initial state f
and one goal state f,.

The safety property is a Biichi automaton W, ety =
(Fs,Ps UPg,Ts, Rs, Fy). Fs are the states of the au-
tomaton. The propositions can be safety propositions Pg or
event propositions Pg. The transition function T’s relates
the current state and active propositions to the next state,
Ts : Fs x 2Ps x 2P5 x Fg — [0,1]. The reward func-
tion relates the automaton state and safety propositions to
rewards (or costs), Rg : Fg x 2Ps — R. F, defines the set
of initial states. We do not specify an accepting condition
because for safety properties, every state is an accepting
state.

A.2. The Environment MDP

There is a low-level environment MDP & =
(S, A, Rg,Tg,7). S is the state space and A is the
action space. They can be either discrete or continuous.
Rpg is the low-level reward function that character-
izes, for example, time, distance, or actuation costs.
Tg:S x AxS — |0,1] is the transition function and +y is
the discount factor. Unlike in the simpler formulation in
the paper, we do not combine R and the safety automaton
reward function Rg in the MDP formulation &£.

A.3. Logical Options

We associate every subgoal p, with an option o, =
(Zp, s Tpys Bpy> Ry, Tp,). Every oy, has a policy 7, whose
goal is to reach the state s,,, where p, is true. Option poli-
cies are learned by training on the product of the environ-
ment and the safety automaton, € X Wq fet,, and terminating
training only when s, is reached. Re : Fs x S x A = R
is the reward function of the product MDP £ X Wgq fety.
There are many reward-shaping policy-learning algorithms
that specify how to define R¢. In fact, learning a policy for
E X Wsq sety 18 the sort of hierarchical learning problem that
many reward-shaping algorithms excel at, including Reward
Machines (Icarte et al., 2018) and (Li et al., 2017). This is
because in LOF, safety properties are not composable, so
using a learning algorithm that is satisfying and optimal but
not composable to learn the safety property is appropriate.
Alternatively, there are many scenarios where W, feiy 18 @
trivial automaton in which each safety proposition is asso-
ciated with its own state, as we describe in the main paper,
so penalties can be assigned to propositions and the state of
the agent in Wi, fety can be ignored.

Note that since the options are trained independently, one
limitation of our formulation is that the safety properties
cannot depend on the liveness state. In other words, when
an agent reaches a new subgoal, the safety property cannot
change. However, the workaround for this is not too compli-

Algorithm 2 Learning and Planning with Logical Options

1: Given:
Propositions P partitioned into subgoals Pg, safety
propositions Pg, and
event propositions Pg
Wiiveness = (-Fa PcUPg,Tr, RF, fO, fg)
Wsafety = (-F57PS UPE3T57R57FO)
Low-level MDP &£ = (S, A, Rg, Tk, ")
Proposition labeling functions Tp., : S — 27¢, Tp, :
S — 2Ps and
Tp, : 272 — {0,1}

2: To learn:

3: Set of options O, one for each subgoal proposition
p € Pa

4: Metapolicy u(f, fs, s, 0) along with Q(f, fs, s,0) and
V(f, fsss)

5: Learn logical options:

6: For every p in Pg, learn an option for achieving p,
Op = (Iopa Tops Bopv Rop7 Top)

7. Lo, =S
g: ﬁo _ 1 ifp e TPG (S)
i 0 otherwise
9: m,, = optimal policy on & X Ws, ety With rollouts

terminating when p € Tp,, (s)
> p(fi k)t ifp € Tp(s')
k=1

0 otherwise

11: Ry, (fs,s) = E[Re(fs,8,a1) + YRe(fs1,51,02) +
c YT R (fok—1, Sk—1, ax)]

12: Find a metapolicy i over the options:

13: Initialize @ : F X Fs X S x O — Rand V : F x
FsxS—=Rto0

14: For (k, f, fs,8) € [1,...

15: Foro € O:

16: Qi (f, fs,8,0) A Rr(f)Ro(fs,s) +
Zf/e}‘ ngefs ZpQGQPE ZS’ES

10: Tp, (f1, 8| fs,8) =

s

,n] X F x Fg xS:

17: TF(fl|fa TPG (5/)7;[3@)T5(fs/|fsa TPS (81)7ﬁe)TPE (ﬁe)To(slls)Vk—l(f/a f

18: Vi(f, fsr5) roneang(f, fs,8,0)
19: p(f, fs,s,0) = argégaXQ(f, fs:5,0)

20: Return: Options O, metapolicy u(f, fs, s,0), and
Q(fa f57570)7v(fa fsas)

cated. First, if the liveness state affects the safety property,
this implies that liveness propositions such as subgoals may
be in the safety property. In this case, as we described above,
the subgoals present in the safety property need to be substi-
tuted with “safety twin” propositions. Then during option
training, a policy-learning algorithm must be chosen that
will learn subpolicies for all of the safety property states,
even if those states are only reached after completing a com-
plicated task (for example, all of the subpolicies could be

The Logical Options Framework

trained in parallel as in (Icarte et al., 2018)). Lastly, during
metapolicy learning and during rollouts, when a new option
is chosen, the current state of the safety property must be
passed to the new option.

The components of the logical options are defined starting at
Alg. 2 line 2. Note that for stochastic low-level transitions,
the number of time steps k at which the option terminates is
stochastic and characterized by a distribution function. In
general this distribution function must be learned, which is a
challenging problem. However, there are many approaches
to solving this problem; (Abel & Winder, 2019) contains an
excellent discussion.

The most notable difference between the general formula-
tion and the formulation in the paper is that the option policy,
transition, and reward functions are functions of the safety
automaton state f, as well as the low-level state s. This
makes Logical Value Iteration more complicated, because
in the paper, we could assume we knew the final state of
each option (i.e., the state of its associated subgoal s,). But
now, although we still assume that the option will termi-
nate at s4, we do not know which safety automaton state
it will terminate in, so the transition model must learn a
distribution over safety automaton states, and Logical Value
Iteration must account for this uncertainty.

A.4. Hierarchical SMDP

Given a low-level environment &£, a liveness property
Wiiveness, a safety property Wiq rety, and logical options
O, we can define a hierarchical semi-Markov Decision Pro-
cess (SMDP) M = £ X Wiiveness X Wsa ety With options
O and reward function Rgy;pp. This SMDP differs sig-
nificantly from the SMDP in the paper in that the safety
property Wsq fety is now an integral part of the formulation.

Rsyipp(f, fs,5,0) = Rp(f)Ro(fs,0).

A.5. Logical Value Iteration

A value function and Q-function are found for the SMDP
using the Bellman update equations:

also apply to the simpler formulation used in the paper.

Definition B.1. Let the reward function of the environment
be Rg(fs,s,a), which is some combination of Rg (s, a) and
Rs(fs,ﬁs) = Rs(fs, TPS (S)) Letmm' : FsxSxAxS —
[0, 1] be the optimal goal-conditioned policy for reaching
a state s'. In the case of a goal-conditioned policy, the
reward function is Rg, and the objective is to maximize the
expected reward with the constraint that s' is reached in
a finite amount of time. We assume that every state s' is
reachable from any state s, a standard regularity assump-
tion in MDP literature. Let V™ (f, s|s') be the optimal
expected cumulative reward for reaching s' from s with
goal-conditioned policy 7'. Let s, be the state associated
with the subgoal, and let T4 be the optimal goal-conditioned
policy associated with reaching s,. Let 7* be the optimal
policy for the environment &.

Condition B.1. The optimal policy for the option must be
the same as the goal-conditioned policy that has subgoal
sq as its goal: 7™ (fs,s) = my(fs,s|sg). In other words,

V75 (fo,8|54) > V™ (foy8|8') Vfsr 5,8 # 4

This condition guarantees that the optimal option policy
will always reach the subgoal s,. It can be achieved by
setting all rewards —oo < Rg(fs, s,a) < 0 and terminating
the episode only when the agent reaches s;. Therefore
the expected return for reaching s, is a bounded negative
number, and the expected return for all other states is —oco.

Lemma B.2. Given that the goal state of Wi;peness is reach-
able from any other state using only subgoals and that there
is an option for every subgoal and that all the options meet
Condition B.1, there exists a metapolicy that can reach the
FSA goal state from any non-trap state in the FSA.

Proof. This follows from the fact that transitions in
Wiiveness are determined by achieving subgoals, and it is
given that there exists an option for achieving every sub-
goal. Therefore, it is possible for the agent to execute any
sequence of subgoals, and at least one of those sequences
must satisfy the task specification since the FSA represent-
ing the task specification is finite and satisfiable, and the
goal state f, is reachable from every FSA state f € F using

Qk(fa f57570) <_‘RF(f)‘Ro(f&S) + Z Z Z Z Tﬁ@fylﬂwsl)vﬁe) O

f'EF fleFs p.c2PE s’'€S

Defipition B.2. From Dietterich (2000): A hierarchically

/ N o= _ ,
Ts(fslfs: Tes (87):Pe)Tes (Pe)To (s |5()5‘)/k—1(th' al policy for an MDP or SMDP is a policy that

Vk(f7f578)%Iglea(%{@k(f;fsvs7o) 6)

B. Proofs and Conditions for Satisfaction and
Optimality

The proofs are based on the more general LOF formulation
of Appendix A, as results on the more general formulation

achieves the highest cumulative reward among all policies
consistent with the given hierarchy.

In our case, this means that the hierarchically optimal
metapolicy is optimal over the available options.

Definition B.3. Ler the expected cumulative reward func-
tion of an option o started at state (fs,s) be R,(fs,s). Let
the reward function on the SMDP be Rsyipp(f, fs,$,0) =

The Logical Options Framework

Rr(f)Ro(fs,s) with Rp(f) > 0% Let i/ : F x Fg x
S x O x F — [0,1] be the hierarchically optimal goal-
conditioned metapolicy for achieving liveness state f'. The
objective of the metapolicy is to maximize the reward func-
tion Rgpspp with the constraint that it reaches ' in a finite
number of time steps. Let V" (f, [s,s|f') be the hierar-
chically optimal return for reaching ' from (f, fs, s) with
goal-conditioned metapolicy mu'. Let u* be the hierar-
chically optimal policy for the SMDP. Let f, be the goal
state, and g be the hierarchically optimal goal-conditioned
metapolicy for achieving the goal state.

Condition B.3. The hierarchically optimal metapolicy
must be the same as the goal-conditioned metapolicy that
has the FSA goal state f, as its goal: p*(f,fs,s) =
wg(f, fs,slfg). In other words, VFs(f, fs,s|fg) >
VIS, Lo s1F') YE Sy, # S

This condition guarantees that the hierarchically opti-
mal metapolicy will always go to the FSA goal state f,
(thereby satisfying the specification). Here is an exam-
ple of how this condition can be achieved: If —co <
Re(fs,8,a) <0 Vs, then R,(fs,8) <0 Vfs,0,s. Then
if Rp(f) > 0 (in our experiments, we set Rp(f) =1 Vf),
RSMDP(ﬂ fs, S, 0) = Rp(f)Ro(fs, s) < 0, and if the
episode only terminates when the agent reaches the goal
state, then the expected return for reaching f is a bounded
negative number, and the expected return for all other states
is —o0.

Lemma B.4. From (Sutton et al., 1999): Value iteration on
an SMDP converges to the hierarchically optimal policy.

Therefore, the metapolicy found using the Logical Options
Framework converges to a hierarchically optimal metapolicy
that satisfies the task specification as long as Conditions B.1
and B.3 are met.

Definition B.4. Consider the SMDP where planning is al-
lowed over the low-level actions instead of the options.
We will call this the hierarchical MDP (HMDP), as this
MDP is the product of the low-level environment £, the live-
ness property Wiiveness, and the safety property Wi fety-
Let RF(f) > 0 Vf, and let RHJVIDP(f; fs, S, a) =
Re(f)Re(fs,s,a), and let w5, p be the optimal policy
for the HMDP.

Theorem B.5. Given Conditions B.1 and B.3, the hierarchi-
cally optimal metapolicy 14 with optimal option policies m,
has the same expected returns as the HMDP optimal policy
" and satisfies the task specification.

Proof. By Condition B.1, every subgoal has an option asso-
ciated with it whose optimal policy is to go to the subgoal.

!The assumption that Rsmppr(f, fsy8,0) = Re(f)Ro(fs,8)
and Rgmpp(f, fs,s,a) = Rre(f)Re(fs,s,a) can be relaxed
so that Rsypp and Rgapp are functions that are monotonic
increasing in the low-level rewards R, and Re, respectively.

By Condition B.3, the hierarchically optimal metapolicy
will reach the FSA goal state f,;. The metapolicy can only
accomplish this by going to the subgoals in a sequence
that satisfies the task specification. It does this by exe-
cuting a sequence of options that correspond to a satisfy-
ing sequence of subgoals and are optimal in expectation.
Therefore, since Rp(f) > 0V fand Rsppp(f, fs,$,0) =
Rr(f)Ro(fs,s), and since the event propositions that af-
fect the order of subgoals necessary to satisfy the task are
independent random variables, the expected cumulative re-
ward is a positive linear combination of the expected option
rewards, and since all option rewards are optimal with re-
spect to the environment and the metapolicy is optimal over
the options, our algorithm attains the optimal expected cu-
mulative reward. O

C. Experimental Implementation

We discuss the implementation details of the experiments
in this section. Because the delivery and reacher domains
are analogous, we discuss the delivery domain first in every
section and then briefly relate how the same formulation
applies to the reacher domain as well. In this section, we
use the simpler formulation of the main paper and not the
more general formulation discussed in Appendix A.

C.1. Propositions

The delivery domain has 7 propositions plus 4 compos-
ite propositions. The subgoal propositions are Pg =
{a, b, c, h}. Each of these propositions is associated with a
single state in the environment (see Fig. 12a). The safety
propositions are Ps = {o,e}. o is the obstacle proposi-
tion. It is associated with many states — the black squares in
Fig. 12a. e is the empty proposition, associated with all of
the white squares in the domain. This is the default propo-
sition for when there are no other active propositions. The
event proposition is Pg = {can}. can is the “cancelled”
proposition, representing when one of the subgoals has been
cancelled.

To simplify the FSAs and the implementation, we make an
assumption that multiple propositions cannot be true at the
same state. However, it is reasonable for can to be true
at the subgoals, and therefore we introduce 4 composite
propositions, ca = a A can, cb = b A can, cc = ¢ A can,
ch = h A can. These can be counted as event propositions
without affecting the operation of the algorithm.

The reacher domain has analogous propositions. The sub-
goals are r, g, b,y and correspond to a, b, c,h. The envi-
ronment does not contain obstacles o but does have safety
proposition e, and it also has the event proposition can
and the composite propositions cr, cg, cb, cy for when can
is true at the same time that a subgoal proposition is true.

The Logical Options Framework

Another difference is that the subgoal propositions are asso-
ciated with a small spherical region instead of a single state
as in the delivery domain; this is a necessity for continuous
domains and unfortunately breaks one of our conditions for
optimality because the subgoals are now associated with
multiple states instead of a single state. However, the LOF
metapolicy will still converge to a hierarchically optimal
policy.

C.2. Reward Functions

Next, we define the reward functions of the physical environ-
ment Rg, safety propositions Rg, and FSA states Rr. We
realize that often in reinforcement learning, the algorithm
designer has no control over the reward functions of the
environment. However, in our case, there are no publicly
available environments such as OpenAl Gym or the Deep-
Mind Control Suite that we know of that have a high-level
FSA built-in. Therefore, anyone implementing our algo-
rithm will likely have to implement their own high-level
FSA and define the rewards associated with it.

Our low-level environment reward function Rg : S x A —
R is defined to be —1 Vs,a. In other words, it is a
time/distance cost.

We assign costs to the safety propositions by defining the
reward function Rg : Ps — R. All of the costs are 0 except
for the obstacle cost, Rg(0) = —1000. Therefore, there is a
very high penalty for encountering an obstacle.

We define the environment reward function Rg : S x A —
Rtobe Re(s,a) = Rg(s,a)+ Rs(Tr(s)). In other words,
it is the sum of Rg and Rg. This reward function meets
Condition B.1 for the optimal option policies to always
converge to their subgoals.

Lastly, we define Rp : F — Rtobe Rp(f) = 1 Vf.
Therefore the SMDP cost RgM DP(f,s,0) = R,(s) and
meets Condition B.3 so that the LOF metapolicy converges
to the optimal policy.

The reacher environment has analogous reward functions.
The safety reward function Rg(p) = 0 Vp € Pg because
there is no obstacle proposition. Also, the physical envi-
ronment reward function differs during option training and
metapolicy learning. For metapolicy learning, the reward
function is Rg(s,a) = —a'a — 0.1 — a time cost and an
actuation cost. During option training, we speed learning
by adding the distance to the goal state as a cost, instead
of a time cost: Rg(s,a) = —a'a — ||s — s4||?. Although
the reward functions and value functions are different, the
costs are analogous and lead to good performance as seen in
the results. Note that this method can’t be used for Reward
Machines, because it trains subpolicies for FSA states, and
the subgoals for FSA states are not known ahead of time, so
distance to subgoal cannot be calculated.

Algorithm 3 LOF with e-greedy Q-learning

1: Given:
Propositions P partitioned into subgoals Pg, safety
propositions Pg, and
event propositions Pg
Environment MDP € = (S, A, Tg, Re,)
Logical options O with reward models R,(s) and tran-
sition models T, (s|s)
Liveness property 7 = (F,Pc U Pg,Tr, Rr, fo, fg)
(T'r does not have to be
explicitly known if it can be sampled from a simulator)
Learning rate «, exploration probability e
Number of training episodes n, episode length m
: To learn:
: Metapolicy p(f, s, 0) along with Q(f, s,0) and V (£, s)
: Find a metapolicy p over the options:
: Initialize @ : F XS x O - RandV : F xS — Rto
0
: Forke[l,...,n:
7: Initialize FSA state f < 0, s a random initial state from
&
8: Pe ~ Tpy ()
9: Forje[l,...,m]:
10: With probability € let o be a random option; otherwise,
0 + argmax Q(f,s,0')
o’'e0
11: §" ~T,(s)
12: f' ~Tp(Tp,(s"),De, f)
13: Qk(f,s,0) « Qir-1(f,s,0) + a(RF(f)RO(s) +
Wv(flv S/) - Qkfl(fv S, 0))
14: Vi (f,s) + max Qx(f,s,0")
o’'eO
15: f« f'
16: u(f,s,0) = argmax Q(f,s,0)
0cO

WA W N

[*))

17: Return: Options O, metapolicy u(f, s, 0) and Q- and
value functions Q(f, s,0), V(f, s)

C.3. Algorithm for LOF-QL

The LOF-QL baseline uses Q-learning to learn the metapol-
icy instead of value iteration. We therefore use “Logical Q-
Learning” equations in place of the Logical Value Iteration
equations described in Egs. 3 and 4 in the main text. The al-
gorithm is described in Alg. 3. A benefit of using Q-learning
instead of value iteration is that the transition function 7'r
of the FSA T does not have to be explicitly known, as the
algorithm samples from the transitions rather than using 7w
explicitly in the formula. However, as described in the main
text, this comes at the expense of reduced composability,
as LOF—-QL takes around 52 more iterations to converge to
a new metapolicy than LOF-VI does. Let Qo(f, s,0) be
initialized to be all Os. The Q update formulas are given in
Alg. 3 lines 3 and 3.

The Logical Options Framework

C.4. Comparison of LOF and Reward Machines

Figs. 4, 5, 6, and 7 give a visual overview of how LOF and
Reward Machines work, and hopefully illustrate how they
differ.

C.5. Tasks

We test the environments on four tasks, a “sequential” task
(Fig. 8), an “IF” task (Fig. 9), an “OR” task (Fig. 10), and
a “composite” task (Fig. 11). The reacher domain has the
same tasks, expect r, g, b, y replace a, b, ¢, h, and there are
no obstacles o. Note that in the LTL formulae, (o is the
safety property @.q ety; the preceding part of the formula is
the liveness property ¢;yeness used to construct the FSA.

C.6. Full Experimental Results

For the satisfaction experiments for the delivery domain, 10
policies were trained for each task and for each baseline.
Training was done for 1600 episodes, with 100 steps per
episode. Every 2000 training steps, the policies were tested
on the domain and the returns recorded. For this discrete
domain, we know the minimum and maximum possible
returns for each task, and we normalized the returns using
these minimum and maximum returns. The error bars are
the standard deviation of the returns over the 10 policies’
rollouts.

For the satisfaction experiments for the reacher domain, a
single policy was trained for each task and for each baseline.
The baselines were trained for 900 epochs, with 50 steps per
epoch. Every 2500 training steps, each policy was tested
by doing 10 rollouts and recording the returns. For the
RM baseline, training was for 1000 epochs with 800 steps
per epoch, and the policy was tested every 8000 training
steps. Because we don’t know the minimum and maximum
rewards for each task, we did not normalize the returns. The
error bars are the standard deviation over the 10 rollouts for
each baseline.

For the composability experiments, a set of options was
trained once, and then metapolicing training using LOF-V1I,
LOF-QL, and Greedy was done for each task. Returns
were recorded at every training step by rolling out each
baseline 10 times. The error bars are the standard deviations
on the 10 rollouts.

Code and videos of the domains and tasks are in the supple-
ment.

D. Further Discussion

What happens when incorrect rules are used? One
benefit of representing the rules of the environment as LTL
formulae/automata is that these forms of representing rules
are much more interpretable than alternatives (such as neu-
ral nets). Therefore, if an agent’s learned policy has bad
behavior, a user of LOF can inspect the rules to see if the
bad behavior is a consequence of a bad rule specification.
Furthermore, one of the consequences of composability is
that any modifications to the FSA will alter the resulting
policy in a direct and predictable way. Therefore, for exam-
ple, if an incorrect human-specified task yields undesirable
behavior, with our framework it is possible to tweak the task
and test the new policy without any additional low-level
training (however, tweaking the safety rules would require
retraining the logical options).

What happens if there is a rule conflict? If the specified
LTL formula is invalid, the LTL-to-automaton translation
tool will either throw an error or return a trivial single-state

The Logical Options Framework

ﬂl‘ﬂl

(a) Environment MDP &.

Go grocery shopping OR pick up the kid, then go home.

(b) Liveness property 7. The natural language rule can be represented as an LTL

formula which can be translated into an FSA.

Figure 4. LOF and RM both require an environment MDP £ and an automaton 7 that specifies a task.

|
l Worg

(T Goal

l |
%{’4—
T |+

State

:
;
:

p
P las(—] 1

:
W
;

:
;
+

Figure 5. In RV, subpolicies are learned for each state of the automaton. In this case, in state SO, a subpolicy is learned that goes either to
the shopping cart of the kid, whichever is closer. In state S1, the subpolicy goes to the house.

automaton that is not an accepting state. Rollouts would
terminate immediately.

What happens if the agent can’t satisfy a task without
violating a rule? The solution to this problem depends on
the user’s priorities. In our formulation, we have assigned
finite costs to rule violations and an infinite cost to not satis-
fying the task (see Appendix B). We have prioritized task
satisfaction over safety satisfaction. However, it is possible
to flip the priorities around by terminating training/rollouts
if there is a safety violation. In our proofs, we have assumed
that the agent can reach every subgoal from any state, imply-
ing either that it is always possible to avoid safety violations
or that safety violations are allowed.

Why is the safety property not composable? The safety
property is not composable because we allow safety propo-
sitions to be associated with more than one state in the
environment (unlike subgoals). The fact that there can be
multiple instances of a safety proposition in the environ-
ment means that it is impossible to guarantee that a new
option policy will be optimal if retraining is done only at the
level of the safety automaton and not also over the low-level
states. In order to guarantee optimality, retraining would
have to be done over both the high and low levels (the safety
automaton and the environment). Our definition of com-

posability involves only replanning over the high level of
the FSA. Therefore, safety properties are not composable.
Furthermore, rewards/costs of the safety property can be
associated with propositions and not just with states (as
with the liveness property). This is because a safety viola-
tion via one safety proposition (e.g., a car going onto the
wrong side of the road) may incur a different penalty than
a violation via a different proposition (a car going off the
road). The propositions are associated with low-level states
of the environment. Therefore any retraining would have
to involve retraining at both the high and low levels, once
again violating our definition of composability.

Simplifying the option transition model: In our experi-
ments, we simplify the transition model by setting v = 1,
an assumption that does not affect convergence to optimal-
ity. In the case where v = 1, Eq. 2 reduces to T,(s'|s) =
> xp(s’, k). Assuming that the option terminates only at
state s4, then Eq.2 further reduces to T;,(s4|s) = 1 and
To(s'|s) = 0 for all other s” # s,. Therefore no learning
is required for the transition model. For cases where the
assumption that v = 1 does not apply, (Abel & Winder,
2019) contains an interesting discussion.

Learning the option reward model: The option reward
model R,(s) is the expected reward of carrying out option

The Logical Options Framework

option

option

l<—<—<— — | —p
=4 o o - 1ime
t<<l«| [~
tlaw| 1] — |

—| ARARAR.
mal. Wi
—| & AR A0h 5
—bT —><—<—

(a) Step 1 of LOF: Learn a logical option for each subgoal.

%)
o

S1

g £ A

ElEIE Worg Ams Goal
¥ el B
(L) 7 State
% E A

(b) Step 2 of LOF: Use Logical Value Iteration to find a metapolicy that satisfies the liveness property. In this image, the boxed subgoals
indicate that the corresponding option is the optimal option to take from that low-level state. The policy ends up being the same as RM’s
policy — in state S0, the optimal metapolicy chooses the “grocery shoppping” option if the grocery cart is closer and the “pick up kid”
option if the kid is closer. In the state S1, the optimal metapolicy is to always choose the “home” option.

Figure 6. LOF has two steps. In (a) the first step, logical options are learned for each subgoal. In (b) the second step, a metapolicy is

found using Logical Value Iteration.

o to termination from state s. It is equivalent to a value
function. Therefore, it is convenient if the policy-learning
algorithm used to learn the options learns a value function
as well as a policy (e.g., Q-learning and PPO). However,
as long as the expected return can be computed between
pairs of states, it is not necessary to learn a complete value
function. This is because during Logical Value Iteration,
the reward model is only queried at discrete points in the
state space (typically corresponding to the initial state and
the subgoals). So as long as expected returns between the
initial state and subgoals can be computed, Logical Value
Iteration will work.

Why is LOF-VI so much more efficient than the RM
baseline? In short, LOF-VI is more efficient than RM
because LOF-VTI has a dense reward function during train-
ing and RM has a sparse reward function. During training,
LOF-VT trains the options independently and rewards the
agent for reaching the subgoals associated with the options.
This is in effect a dense reward function. The generic re-
ward function for RM only rewards the agent for reaching the
goal state. There are no other high-level rewards to guide

the agent through the task. This is a very sparse reward
that results in less efficient training. RM’s reward function
could easily be made dense by rewarding every transition
of the automaton. In this case, RM would probably train as
efficiently as LOF-VI. However, imagine an FSA with two
paths to the goal state. One path has only 1 transition but
has much lower low-level cost, and one path has 20 tran-
sitions and a much higher low-level cost. RM might learn
to prefer the reward-heavy 20-transition path rather than
the reward-light 1-transition path, even if the 1-transition
path results in a lower low-level cost. In theory it might
be possible to design an RM reward function that adjusts
the automaton transition reward depending on the length of
the path that the state is in, but this would not be a trivial
task when accounting for branching and merging paths. We
therefore decided that it would be a fairer comparison to use
a trivial RM reward function, just as we use a trivial reward
function for the LOF baselines. However, we were careful
to not list increased efficiency in our list of contributions;
although increased efficiency was an observed side effect
of LOF, LOF is not inherently more efficient than other
algorithms besides the fact that it automatically imposes a

The Logical Options Framework

Go home OR pick up the kid,
then go grocery shopping

OlE@Vg)AOW)
Trorg o

SO

(a) LOF can easily solve this new liveness property without training new options.

SO S1
Bror § |
1

(b) Logical Value Iteration can be used to find a metapolicy on the new task without the need to retrain the logical options. A new
metapolicy can be found in 10-50 iterations. The new policy finds that in state SO, “home” option is optimal if the agent is closer to
“home”, and the “kid” option is optimal if the agent is closer to “kid”. In state S1, the “grocery shopping” option is optimal everywhere.

'-a
.ﬂ

'-a
.ﬂ

=g Goal
State

1€]|]< | |[<]]|<]
l< |1]|l]|]<]

7
B2 |]| e] |]
[<] | R | R | T

¥
d

Figure 7. What distinguishes LOF from RM is that the logical options of LOF can be easily composed to solve new tasks. In this example,
the new task is to go home or pick up the kid, then go grocery shopping. Logical Value Iteration can find a new metapolicy in 10-50
iterations without needing to relearn the options.

—(init)—" @ - @ @ - @ %@ - @) @

Figure 8. FSA for the sequential task. The LTL formula is {>(a A Figure 10. FSA for the OR task. The LTL formula is $>((a V b) A
Qb A O(e A Oh))) Alo. The natural language interpretation is {c) AOlo. The natural language interpretation is “Deliver package
“Deliver package a, then b, then ¢, and then return home h. And a or b, then ¢, and always avoid obstacles 0”.

always avoid obstacles 0”.

cal
N \

a A —can

Figure 11. FSA for the composite task. The LTL formula is
(O ((aVD)AS (eAOR))AOlcan)V (G ((aVO)AOR) A can) ATl o.
The natural language interpretation is “Deliver package a or b, and
then ¢, unless c gets cancelled, and then return to home h. And
always avoid obstacles”.

Figure 9. FSA for the IF task. The LTL formula is ({(c A $a) A
Olcan) V ($a A Hean) Ao, The natural language interpretation
is “Deliver package c, and then a, unless a gets cancelled. And
always avoid obstacles 0”.

The Logical Options Framework

I
o
=
o

o o o
IS o 53
o o ol
IS EY @

o
N
o
N

Average normalized reward
Average normalized reward

o
o

00 02 04 06 08 10 12 14

o
o

02 04 06 08 10 12 14
Number of training steps 1e5 Number of training steps le5

(a) Delivery domain. (b) Averaged. (c) Composite.

=
o

=
o
=
o

o
©
o
)
ol
EY

4
o
e
o
e
o

14
S
o
IS
o
IS

o
o
o
N
e
N

Average normalized reward
Average normalized reward
Average normalized reward

04 06 08 10 12 14 00 02 04 06 08 10 12 14

of
of—
©

o
2

00 02 04 06 08 10 12 14

Number of training steps le5 " Number of training steps 1le5 Number of training steps 1le5
(d) OR. (e) IF. (f) Sequential.
— LOF-VI —— LOF-QL — Greedy Flat Options —— Reward Machines

Figure 12. All satisfaction experiments on the delivery domain. Notice how for the composite and OR tasks (Figs. 12c and 12d), the
Greedy baseline plateaus before LOF-VI and LOF-QL. This is because Greedy chooses a suboptimal path through the FSA, whereas
LOF-VI and LOF-QL find an optimal path. Also, notice that RM takes many more training steps to achieve the optimal cumulative
reward. This is because for RM, the only reward signal is from reaching the goal state. It takes a long time for the agent to learn an optimal
policy from such a sparse reward signal. This is particularly evident for the sequential task (Fig. 12f), which requires the agent to take a
longer sequence of actions/FSA states before reaching the goal. The options-based algorithms train much faster because when training the
options, the agent receives a reward for reaching each subgoal, and therefore the reward signal is much richer.

0
-20 -20
i< B
© ©
g —40 g -0
v o
o j=
o -60 © -60
g $
< a0 < e
-100 -100
0 1 2 3 4 0 1 2 3 4
Number of training steps led Number of training steps led
(a) Reacher domain. (b) Averaged. (c) Composite.
0
-20 -20 -20
4 T b=
] o g
5 0 § 0 g -0
o o g
? -60 §‘ -60 o -60
g g g
L4
< -80 < s -80 I
| |
1007 1 2 3 4 S B 3 4 10ty i 2 3 4
Number of training steps led Number of training steps led Number of training steps 1e4
(d) OR. (e) IF. (f) Sequential.
— LOF-VI —— LOF-QL — Greedy Flat Options

Figure 13. Satisfaction experiments for the reacher domain, without RM results. The results are equivalent to the results on the delivery
domain.

dense reward on reaching subgoals.

The Logical Options Framework

Average reward
o
IS
8 &
Average reward
Lo
S N
8 &
——

-125 | h

\ -150
| g |
I} oo AL I

2 3 4 5 6 7 1 2 3 4 5 6 7
Number of training steps 1e5 Number of training steps ~ 1e5

(b) Averaged.

=175 A

(a) Reacher domain.

(c) Composite.

0
N
-25 ' V -25 -25 J [‘
T -50 T -50 B -50 \ ﬂ ’
5 I I
2 75 2 75 2 75 U v
2 o 4
g ~100 g ~100 g ~100 W
ﬂﬁ; -125 g -125 g -125
Z -150 Z -150 Z -150
-175 A ‘ ‘ -175 ‘ -175 ‘
—200 ~200 il ~200 - -
2 3 4 5 6 71 1 2 3 4 5 6 7 1 2 3 4 5 6 1
Number of training steps ~ 1e5 Number of training steps ~ 1e5 Number of training steps ~ 1e5
(d) OR. (e) IF. (f) Sequential.
— LOF-WVI — LOF-QL —— Greedy Flat Options —— Reward Machines

Figure 14. Satisfaction experiments for the reach domain, including RM results. RM takes significantly more training steps to train than
the other baselines, although it eventually reaches and surpasses the cumulative reward of the other baselines. This is because for the
continuous domain, we violate some of the conditions required for optimality when using the Logical Options Framework — in particular,
the condition that each subgoal is associated with a single state. In a continuous environment, this condition is impossible to meet, and
therefore we made the subgoals small spherical regions, and we only made the subgoals associated with specific Cartesian coordinates
and not velocities (Which are also in the state space). Meanwhile, the optimality conditions of RM are looser and were not violated, which
is why it achieves a higher final cumulative reward.

I T TATH]
| I!‘IIII\II‘\IIIIHIH[]
Ll

A

[
o

i

HliLIn

4
®
e
®

o
o
o
o

Average normalized reward
o o o o v
N B2 @ ® o

o
o

(a) Delivery domain.

0 50 100 150 200 250 300
Number of metapolicy retraining steps

(d) OR.

Average normalized reward
o o
S

o
o

Average normalized reward
o o o o v
N & o ® o

g
o

[50 100 150 200 250 300
Number of metapolicy retraining steps

(b) Averaged.

z

0 50 100 150 200 250 300
Number of metapolicy retraining steps

(e) IF.

Average normalized reward
o o
NI

o
)

Average normalized reward
o o o o &
N R o @ o

o
o

0 50 100 150 200 250 300
Number of metapolicy retraining steps

(c) Composite.

I

0 50 100 150 200 250 300
Number of metapolicy retraining steps

(f) Sequential.

— LOF-VI — LOF-QL —— Greedy

Figure 15. All composability experiments for the delivery domain.

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

The Logical Options Framework

Average reward
L
&
Average reward
L
&

100

0 20 80 100
Number of metapolicy retraining steps

0
Number of metapolicy retraining steps

(a) Delivery domain. (b) Averaged. (c) Composite.

-40

Average reward
i
s
Average reward
Average reward

-60 —60

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Number of metapolicy retraining steps Number of metapolicy retraining steps Number of metapolicy retraining steps

(d) OR. (e) IF. (f) Sequential.
— LOF-VI — LOF-QL —— Greedy

Figure 16. All composability experiments for the reacher domain.

