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Abstract
�e inspector/executor paradigm permits using runtime in-
formation in concert with compiler optimization. An inspec-
tor collects information that is only available at runtime;
this information is used by an optimized executor that was
created at compile time. Inspectors are widely used in op-
timizing irregular computations, where information about
data dependences, loop bounds, data structures, and memory
access pa�erns are collected at runtime and used to guide
code transformation, parallelization, and data layout. Most
research that uses inspectors relies on instantiating inspector
templates, invoking inspector library code, or manually writ-
ing inspectors. �is paper describes abstractions for generat-
ing inspectors for loop and data transformations for sparse
matrix computations using the Sparse Polyhedral Framework
(SPF). SPF is an extension of the polyhedral framework for
transformation and code generation. SPF extends the poly-
hedral framework to represent runtime information with
uninterpreted functions and inspector computations that
explicitly realize such functions at runtime. It has previously
been used to derive inspectors for data and iteration space
reordering. �is paper introduces data transformations into
SPF, such as conversions between sparse matrix formats,
and show how prior work can be supported by SPF. We also
discuss possible extensions to support inspector composition
and incorporate other optimizations. �is work represents a
step towards creating composable inspectors in keeping with
the composability of a�ne transformations on the executors.
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1 Introduction
Irregular applications such as molecular dynamics simula-
tions, �nite element analysis, and big graph analysis rely on
e�cient computation over sparse matrices or graphs. Such
sparse computations reduce data storage and computation
requirements by using indirect accesses through index ar-
rays that store only nonzero data elements. For example,
consider the canonical sparse matrix vector multiply (SpMV)
in Compressed Sparse Row (CSR) matrix format, a variation
of matrix-vector multiplication, Ax = y, where the matrix A
is sparse, and input and output vectors x and y, respectively,
are dense. Only the nonzero entries of A are stored, and

1 for (i=0; i < N; i++)
2 for(j=index[i];j<index[i+1];j++)
3 S0: y[i] += A[j]*x[col[j]];
4

Listing 1. SpMV code using CSR sparse matrix format.

auxiliary arrays index and row represent the starting index
in A for elements of each row and the corresponding column
indices of entries in A, respectively. �e number of nonzero
elements, NNZ is stored in the last element of index.

Historically, compilers have been severely limited in their
ability to optimize such sparse computations due to the in-
direction that arises in indexing and looping over just the
nonzero elements. �is indirection gives rise to non-a�ne
subscript expressions and loop bounds; i.e., array subscripts
and loop bounds are no longer linear expressions of loop
indexes. In the listing above, index and col are index arrays
used in non-a�ne loop bounds and array indexes, respec-
tively. In many such codes, the sparse structure of the matrix
or graph does not change through all or signi�cant inter-
vals of the computation so can be analyzed infrequently at
runtime. In recognition of this property, inspector-executor
strategies were developed to parallelize, simplify and/or im-
prove the data locality of such computations [2, 9, 14, 15].
At runtime, the inspector code traverses the index arrays
to determine data access pa�erns and their resulting data
dependences. �is runtime information can then be used
to derive transformed schedules [14, 16] and reordered data
structures [3, 4, 8, 10, 23] that the executor uses to execute
the computation in a more e�cient manner.

http://impact.gforge.inria.fr/impact2018
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Figure 1. Sparse Matrix Representations

A number of compiler approaches incorporate inspector-
executor to perform speci�c optimizations [9, 12, 17]. Sup-
port for non-a�ne array indexes and loop bounds have been
integrated into polyhedral transformation and code gener-
ation frameworks through the use of uninterpreted func-
tions [6, 13, 18]. Speculative optimizations performed in
the Apollo framework [7] apply polyhedral transformations
by predicting pa�erns and verifying at runtime that data
dependences have been respected.
Recent work automatically generates the inspector and

executor code in a polyhedral framework [20–22]. �ese all
develop custom inspector/executor transformations focused
on a single transformation. �e optimizations are combined
with parallel code generation, and the resulting performance
of the generated code has been show to perform very closely,
and sometimes faster, than manually-tuned code in libraries
such as MKL and OSKI. What is missing is the ability to com-
pose inspector-executor transformations with each other, re-
taining the composability property that provides the power
of polyhedral frameworks in robust code generation in the
presence of complex transformation sequences. Formalizing
these transformations, which include transformations on
sparse data representations, to facilitate inspector composi-
tion and generation, is the subject of this paper.

For this purpose, we turn to the Sparse Polyhedral Frame-
work (SPF), which extends the polyhedral framework with
uninterpreted functions to represent index arrays at compile
time and various function calls that will create those index
arrays at runtime [18]. SPF incorporates abstractions for rep-
resenting runtime data reordering transformations (RTRTs)
and iteration reordering transformations for non-a�ne code.
An Inspector Dependence Graph, a data �ow description that

is derived from the loop and data transformations applied to
the code, is the abstraction to be used for inspector composi-
tion and code generation. �e contribution of this paper is
to extend SPF to support data transformations that modify
the sparse matrix representation to pad with zero-valued el-
ements and expand to include elements that are not present
in the original matrix as in [20], and also show how existing
support in SPF can represent the iteration-space reordering
and RTRTs in [19, 22].

In the remainder of the paper, we describe the automatic
derivation of inspectors that uni�es this prior work to derive
an Inspector Dependence Graph (IDG) and discuss possible
extensions to support inspector composition and optimiza-
tion.

2 Background: Sparse Matrix Formats
As described before, sparse matrix representations only store
the nonzero values of the matrix, and have additional auxil-
iary arrays to record the row and/or column positions. Many
di�erent sparse matrix representations have been developed
recently to exploit structural properties of thematrices when-
ever possible to improve code performance. �is paper works
with the sparse matrix representations shown in Figure1 and
described below.
• Coordinate (COO) COO maintains a vector A of just the

nonzeros in the matrix. Auxiliary arrays row and col are
of the same length as A, and provide the row and column
corresponding to each element of A (i.e., its coordinates).
• Compressed Sparse Row (CSR) CSR maintains a vector
A of just the nonzeros in the matrix. A col auxiliary array
maintains the column index, the index auxiliary array
has one element per row, indicating the index of the �rst
element of that row in the vector A.
• Block CSR (BCSR) �e BCSR format is used when the
nonzero values are clustered together in adjacent rows
and columns. In the BCSR format, the matrix is divided
into small dense blocks containing at least one nonzero
element. Zeros are added to make the size of all blocks
uniform. �e array A prime consists of all such nonzero
blocks. �e block-col auxiliary vector tracks the col-
umn of the upper le� element of each nonzero block. �e
block-.row auxiliary vector has one element per block
row, indicating the index of the �rst element of that row
in the vector A.
• DIA�eDIA format captures only the diagonals that have
nonzero elements. �e o�set auxiliary array represents
the o�set from the main diagonal. It is well-suited for
representing banded matrices.
• ELL�e ELL format uses a 2-dimensional matrix with a

�xed number of nonzero elements per row, and rows with
fewer nonzero elements are padded with zero values. An
auxiliary col matrix tracks the columns for the nonzero
values as in CSR. When most rows have a similar number
of nonzero values, ELL leads tomore e�cient code because
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Figure 2. Overview of CHiLL-I/E framework.

of a �xed number of iterations and no indirection in the
loop bounds.

We will use CSR as the default matrix representation, and
BCSR, DIA and ELL as exemplars of the range of optimized
sparse matrix representations.

3 Overview of Approach
�e goal of our approach is automatic generation of both
inspector and executor code using extensions to the poly-
hedral model to represent index arrays with uninterpreted
functions. �e inspectors then instantiate the uninterpreted
functions at runtime, so that they may be consulted by the
optimized executor.

�ese goals are part of a research program called CHiLL-
I/E to integrate the existing support for customized inspector
generation in CHiLL with more general abstractions for non-
a�ne computations in the Sparse Polyhedral Framework.
�e project and system under development are depicted
in Figure 2. At the heart of the tool are the CHiLL and SPF
frameworks, which both reason about loop and data transfor-
mations. �e input to the tool is a C function and (optionally)
a transformation recipe that describes the transformations
to be applied. (Our focus has been on designing abstractions
and code generation, but some prior work has avoided the
need for explicit transformation descriptions using a domain-
speci�c decision algorithm.) �e CHiLL compiler and SPF
exchange relations that describe loop and data transforma-
tions; both are capable of code generation through integra-
tion with polyhedra scanning. From the transformations,
an inspector dependence graph (IDG) can be automatically
constructed, which can then be optimized. �e �nal result is
a code that optimizes both inspector and executor. Although

both SPF and CHiLL implementations have automated in-
spector code generation, the extensions to SPF described
in this paper have not yet been implemented. Combining
forces in CHiLL-I/E will enable more general exploration of
inspector code generation and optimization.
For this paper, we concentrate our focus on transforma-

tions that modify the data representation, �rst proposed
in [20], extending SPF abstractions for this purpose. �is
includes conversions from CSR to the other representations
listed above, as well as a demonstration of the generality
of the approach to codes not operating on sparse matrices
with the Moldyn example. We use a number of mechanisms
that have been presented in prior work but we propose ways
to specify these transformations including their inspectors.
�e speci�cation of these transformations is a step toward
the goal of automation.

3.1 Non-a�ne Iteration and Data Reordering
Transformations

In [18, 22, 24], non-a�ne transformations are de�ned that
require inspectors: coalesce, iteration and data reordering,
and iteration space spli�ing in the presence of non-a�ne
loop bounds, respectively. �e transformations all derive
run-time relations and perform data transformations in the
inspector that are used by the executor. A common feature of
the transformations from these prior works is a one-to-one
correspondence between iterations in the original iteration
space and the transformed iteration space. One-to-one data
mappings were also used. An uninterpreted function cap-
tures these mappings.
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1 for(i = 0; i < N; i++)
2 for(k = 0; k < N; k++)
3 for(j = index[i]; j < index[i+1]; j++)
4 if(k == col[j])
5 S0: y[i] += A[j] * x[k]

Listing 2. CSR SpMV a�er make-dense.

3.2 Loop and Data Transformations
Later work presented data transformations composed with
standard and non-a�ne transformations to convert between
matrix formations and realize optimized executors [20]. �ese
transformations do not always involve one-to-one mappings.
�e following non-a�ne transformations were used for ma-
trix format conversion:
• make-dense takes as input a set of non-a�ne array index

expressions and introduces a guard condition and as many
dense loops as necessary to replace the non-a�ne index
expressions with a�ne accesses. �e make-dense transfor-
mation enables further a�ne loop transformations such
as tiling. �e intermediate code generated a�er applying
make-dense on the code in Listing 1 is shown in Listing 2.
• compact and compact-and-pad are inspector-executor trans-

formations; an automatically generated inspector gathers
the iterations of a dense loop that are actually executed
and the optimized executor only visits those iterations.
�e executor represents the transformed code that uses
the compacted loop, which can then be further optimized.
• Using compact-and-pad, the inspector also performs a data
transformation, inserting explicit zeros when necessary
to correspond with the optimized executor.

�ese transformations have been employed for more com-
plex codes not highlighted in this paper, including stochastic
gradient descent [5] and Locality-Optimized Block Parallel
Conjugate Gradient [1]. We also use similar transformations
to support additional matrix representations, such as hybrid
CSR+ELL [24] and Compressed Sparse Block [1].

�e compact-and-pad transformation adds data locations,
for example the zeros to �ll out the blocks with at least one
non-zero in a block CSR representation. Zeros added into
the sparse matrix representation also results in iterations
being added to the iteration space. �us compact-and-pad is
not a one-to-one transformation unlike the transformations
previously represented in the Sparse Polyhedral Framework.

3.3 Sparse Polyhedral Framework
�e Sparse Polyhedral Framework (SPF) builds on the poly-
hedral framework by representing iteration and data trans-
formations as mappings that can be composed. What the
SPF adds is the idea of using uninterpreted functions to rep-
resent the index arrays from sparse computations and those
produced by the inspector. �us using integer tuple sets and
relations with a�ne constraints and constraints involving
uninterpreted function symbols, it is possible to describe

iteration space and data reordering transformations. A com-
posed transformation is a sequence of data and iteration
transformation mappings.

Formally, a data reordering transformation is expressed at
compile timewith a data reordering speci�cationRA→A prime ,
where the data that was originally stored in some locationm
will be relocated to RA→A prime (m). �e compile-time result
of reordering an array A is that all access functions with the A
data space as their range are modi�ed to target the reordered
data space A prime

An iteration-reordering transformation is expressed with
a mapping TI→I ′ that assigns each iteration p in iteration
space I to iteration TI→I ′(p) in a new iteration space I ′. �e
new execution order is given by the lexicographic order of
the iterations in I ′.

One of the key ideas in the SPF is that the e�ect of run-time
reordering transformations can be expressed at compile time
through formal manipulations of the computation speci�ca-
tion (i.e., statement schedules, access functions, and data de-
pendences), thus enabling the compile-time speci�cation of
a sequence of RTRTs. �e data and iteration reorderings that
do not become explicit until runtime are expressed with the
help of uninterpreted function symbols. �e compile-time
generated inspectors will at run-time traverse and construct
explicit relations to determine the current state of access
functions, scheduling functions, and data dependences and
to create reorderings and tilings, which are also stored as
explicit relations.

Run-time reordering transformations are typically imple-
mented with inspector-executor strategies. �e original code
is transformed into the executor code. Although the com-
posed series of transformations can enable an uninterpreted-
function-enabled code generator to create the executor code,
the inspector must also be speci�ed in some way. In pre-
vious work where the inspector-executor transformations
speci�ed in SPF were one-to-one mappings, the inspectors
were speci�ed with an Inspector Dependence Graphs [19].

�e Inspector Dependence Graph (IDG) represents various
tasks the inspector must perform to generate at runtime
explicit versions of what are uninterpreted functions at com-
pile time. �e Inspector Dependence Graph (IDG) represents
these tasks, the data structures consumed and generated by
the inspector, and the dependences between data and tasks
within the inspector. �e compiler generates the inspector
code by walking the Inspector Dependence Graph (IDG).
A set of IDGs are shown in Figures 3 and 4. In the �g-

ures, each rectangular node indicates an explicit function,
which is the runtime instantiation of an uninterpreted func-
tion. Each elliptical node represents a compiler-generated,
runtime library, or programmer-provided inspector function.

�e next section describes how to specify the transforma-
tions and IDGs for data transformations that are not one-to-
one mappings.
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4 Case Studies
�is section describes how the inspectors from [18, 20, 22]
can be representedwith Inspector DependenceGraphs. In [20],
Venkat, Hall, and Strout presented the make-dense, com-
pact, and compact-and-pad transformations as an approach
to automatically transform between sparse matrix formats.
�ese transformations were speci�ed as CHiLL script com-
mands and the before and a�er loop pa�erns were pre-
sented in the paper. �e relations arising from the a�ne
and non-a�ne polyhedral transformations applied to the
code provided the foundation for the inspectors that were
generated for this work. However, the optimized inspec-
tors were customized for the speci�c transformations that
were applied, and themselves were not composable. Sim-
ilarly, other inspector-executor approaches based on the
polyhedral model show generation of inspectors for speci�c
transformations [18, 22, 24].

In this section, we show how to combine these non-a�ne
loop and data transformations with an Inspector Depen-
dence Graph such that the inspectors can be generated using
higher-level compiler abstractions that facilitate composition
and optimization of inspector and executor computations.
We show for the �rst time the entire sequence of transforma-
tion relations, and in some cases as we generalize, we adjust
the code generation strategy. �is section derives Inspector
Dependence Graphs for a large collection of examples from
prior work. We summarize the transformation relations and
inspector functions in Table 1, and the resulting Inspector
Dependence Graphs in Figures 3 and 4.

4.1 Moldyn
First we show part of an example from previously published
work, where the data transformation mappings are one-to-
one [19]. �is example describes data and iteration reorder-
ing for improving data locality. Indirect memory access
pa�ern can negatively impact both spatial and temporal
data locality. �is is because, they would allow accessing
non-contiguous portion of memory, and would make the
relationship between iteration ordering and data accesses
ambiguous. To reduce such a negative impact, we could ap-
ply a data reordering transformation followed by a iteration
reordering, a combination suggested in optimizing compiler
literature [3, 4]. To demonstrate this, we use a simpli�ed
code fragment derived from the molecular dynamics bench-
mark Moldyn [11] which appeared as Figure 1 in [18] and
is repeated for clarity in Listing 3. Table 1 shows that we
apply a data reordering and an iteration reordering trans-
formation, the reason of which is to improve data locality
of x and f x by removing the indirect accesses in the e loop
in the Simpli�ed Moldyn code. Here, we can use a data re-
ordering transformation to improve spatial data locality by
bringing the dependent pieces of x and f x closer in memory.
�e transformation can be done based on a heuristic found
in the literature. For instance, we use consecutive packing

(cpack) [3] that is generating the reordering function σ for
us.
Unfortunately, such data reordering would introduce in-

direct memory accesses in the i and k loops for x and f x
arrays. We can get rid of these newly introduced indirec-
tions by reordering iterations of the i and k loops using the
same reordering function, σ , used to reorder data in x and
f x arrays. Also, note these two transformations introduce
other indirect accesses to the vx array in the i and k loops,
but for the sake of simplicity we refrain from explaining
further transformations that can be applied to remove those
indirect accesses or further optimize the code. �e Inspector
Dependence Graph in Figure 4 shows the process described
above.

4.2 CSR to COO
�e �rst row of Table 1 and Figure 3a describe the generation
of the COO representation described in [22]. �e starting
point for the IDG I is the iteration space for the original
SpMV code, index is an uninterpreted function representing
the corresponding array in the CSR format, where i is the
index into the index array and j into the A and col arrays.
�e coalesce transformation maps the tuple (i, j) to the sin-
gle iterator k that iterates over the NNZ nonzeros, where
NNZ = count(I ). �rough c = order (I ), the inspector cre-
ates a runtime mapping c(i,j) that maps each integer tuple
to a one dimensional lexicographical ordering. �e invert
function reverses that mapping, converting the scalar val-
ues of c back to an integer tuple where c inv(k, 0) → i , and
c inv(k, 1) → j. �ese functions are converted from the
Inspector Dependence Graph into inspector code at com-
pile time. Iexec describes the iteration space of the executor,
which for this example is the one-dimensional k loop.

4.3 CSR to DIA
We now show how to incorporate data transformations into
SPF to derive the code that converts from CSR to DIA format.
DIA is appropriate for diagonally dominant matrices. As
shown in Figure 1, each diagonal that contains at least one
non-zero value of the original matrix A is represented as a
column in the DIA format. An auxiliary array indicating
the diagonal to which the column corresponds accompanies
the DIA matrix. We chose DIA for a detailed study because
we must pad the matrix in two ways: (1) we introduce zero-
valued elements into the matrix for diagonals with some
nonzero entries; and, (2) we introduce some additional en-
tries into the matrix (denoted by a?) that do not correspond
to matrix elements for diagonals that are shorter than the
main diagonal. In practice, both are initialized to 0, but from
an iteration space perspective, they are di�erent. �e trans-
formation fromCSR to DIA therefore creates an A prime that
is two-dimensional, with each column representing a diago-
nal. It must also create an auxiliary matrix called offsets
that identi�es which diagonals each column represents as
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Table 1. Details of Inspector Generation

Code in Listing 1 Given: N × N matrix, ∀j, 0 ≤ col(j) < N
Original iteration space: I = {[i, j] | 0 ≤ i < N ∧ index(i) ≤ j < index(i + 1)}

Matrix Loop and Transformation
Format Transformation Speci�cations List

COO

Tcoalesce = {[i, j] → [k] | k = c(i, j) 0 ≤ k < NNZ } coalesce( S0,k,NNZ,{i, j},c)
Iexec = Tcoalesce (I ) /* coalesced index = k
/* Generate Inspector */ indexes = {i, j}
NNZ = count(I ) inspector function = c */
c = order (I )
c inv = invert(c)

DIA

Tmake−dense = {[i, j] → [i,k, j] | 0 ≤ k < N ∧ k = col(j)} make dense(S0, j, k)
Tskew = {[i,k, j] → [i,k ′, j] | k ′ = k − i} skew(S0, k,[-1,1])
Tcompact−and−pad = {[k ′, i, j] → [i,d] | 0 ≤ d < ND ∧ k ′ = col(j) − i ∧ c(d) = k ′} compact-and-pad(
Iexec = Tcompact−and−pad (Tskew (Tmake−dense (I ))) S0, k, A, A prime)
/* Generate Inspector */
Dset = {[k ′] | ∃j,k ′ = col(j) − i ∧ index(i) ≤ j < index(i + 1)}}
ND = count(D set) and c = order (D set)
Apr ime = calloc(N ∗ ND ∗ sizeo f (datatype))
RA→A prime = {[j] → [i,d] | 0 <= d < ND ∧ ∃k ′,k ′ = col(j) − i ∧ c(d) = k ′}

BCSR

Tmake−dense = {[i, j] → [i,k, j] | 0 ≤ k < N ∧ k = col(j)} make dense(S0,j,k)
Tt ile = {[i,k, j] → [ii,kk, ri, ck, j] | R ∗ ii + ri = i ∧ 0 ≤ ri < R tile(S0, i, R)

∧ 0 ≤ ii < N /R ∧C ∗ kk + ck = k ∧ 0 ≤ ck < C ∧ 0 ≤ kk < N /C} tile(S0, k, C)
Tcompact−and−pad = {[ii,kk, ri, ck, j] → [b, ri, ck] | 0 ≤ b < NB compact-and-pad(

∧ b = c(ii,kk) ∧ ∃kk, j | kk = bcol(j)/Cc ∧ ck = col(j) − kk ∗C} S0,k,A, A prime)
Iexec = Tcompact−and−pad (Tt ile (Tmake−dense (I )))
/* Generate Inspector */
B set = {[ii,kk] | ∃j,kk = bcol(j)/Cc

∧ index(ii ∗ R + ri) ≤ j < index(ii ∗ R + ri + 1)}
NB = count(B set) and c = order (B set)
A prime = calloc(R ∗C ∗ NB ∗ sizeo f (datatype))
RA→A prime = {[j] → [b, ri, ck] | b = c(ii,kk) ∧ ck = col(j) − bcol(j)/Cc ∗C

∧ c(b) = ii,kk}

ELL

Tshif t = {[i, j] → [i, j − index(i)]} shi�(S0, j, j-index(i))
Tt ile = {[i, j] → [i, jj, j ′] | 0 ≤ j ′ < M ∧M ∗ jj + j < index(i + 1) − index(i)} tile(S0,j,M)
Tcompact = {[jj, i, j ′] → [i, j ′]} compact-and-pad(
Iexec = Tcompact (Tt ile (Tshif t (I ))) S0,M,{A prime,Col prime})
/* Generate Inspector */
A prime = calloc(M ∗ N ∗ sizeo f (datatype))
col prime = calloc(M ∗ N ∗ sizeo f (indextype))
RA→A prime = {[j] → [i, j ′] | index(i) ≤ j < index(i + 1) ∧ j ′ = j − index(i)}
Rcol→col pr ime = {[j] → [i, j ′] | index(i) ≤ j < index(i + 1) ∧ j ′ = j − index(i)}
AIe→x0 = {[s, e] → [d] : d = le f t(e)} ∪ {[s, e] → [d] : d = riдht(e)}

Data and Rx0→x1 = {[d] → [d ′] | d ′ = σ (d)} d reord( x0, AI→x0,
Iteration Rf x0→f x1 = {[d] → [d ′] | d ′ = σ (d)} x1, AI→x1, σ )
reordering T = {[s, i] → [s, i1] | i1 = σ (i)} d reord( fx0, AI→f x0,
(Moldyn) T = {[s,k] → [s,k1] | k1 = σ (k)} fx1, AI→f x1, σ )

/* Generate Inspector */ i reord(Ii , 1, σ )
σ = cpack( AI→x0 ) i reord(Ik , 1, σ )
x1 = reorder(x0, σ )
fx1 = reorder(fx0, σ )
σ−1 = inverse(σ )
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Figure 3. Inspector Dependence Graphs for conversion of a matrix from CSR to di�erent formats.

1 for ( s=0; s < nS ; s++) {
2 for ( i=0; i < nV ; i++) {
3 x[i] += .. fx[i] .. vx[i] ..;
4 }
5 for ( e=0; e < nE ; e++) {
6 fx[left[e]] += .. x [left[e]] .. x[right[e]]

↪→ ..;
7 fx[right[e]] += .. x[left[e]] .. x[right[e]]

↪→ ..;
8 }
9 for (k=0; k < nV ; k++) {
10 vx[k] += .. fx[k] ..;
11 }
12 }

Listing 3. Simpli�ed code from Moldyn

an o�set from the main diagonal. �ese new data represen-
tations are created by an inspector and then accessed in the
optimized executor.

We derive the interrelated transformations to the iteration
space and data representations for the CSR to DIA conver-
sion. �e initial iteration space I for the CSR code in Listing 1
is illustrated in Figure 5a. Looking at the transformations in
the third column of Table 1, we apply make-dense and skew.
�e result ofmake-dense is shown in Listing 2 and illustrated
by Figure 5b. On this code, we perform an a�ne skew to
move the diagonals to be lined up vertically (all A[j] entries
such that col(j)+i = k prime for some value of k prime).

Figure 4. IDG for Moldyn

We arrive at the intermediate code in Listing 4, and illus-
trated in Figure 5c. �e new iterator k prime represents the
diagonals in a dense version of the matrix, while retaining
the conditional statement to check for nonzero entries in
each diagonal.
Now, we must apply the compact-and-pad transforma-

tion that in prior work achieves a number of goals [20]. Here
we a�empt to use existing and proposed abstractions in SPF
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(d) Iexec=T cp(I”)

1 for (i=0; i < N; i++)
2 for (k_prime=-i; k_prime < N-i; k_prime ++)
3 for(j=index[i];j<index[i+1];j++)
4 if(k_prime ==col[j]-i)
5 S0: y[i] += A[j]*x[col[j]];

Listing 4. Tskew (Tmake−dense (I )).

to produce a similar result using the IDG, although the result-
ing inspectors are not as optimized. In the inspector, it will:
(1) compact the k prime dimension so that only nonzero
diagonals are counted (referred to as D set in Table 1); (2)
the matrix size for both A prime and offsets can then be
derived from the count, allocated and initialized to zero; and,
(3) then the data transformation is applied, copying appro-
priate entries from A to A prime. �e executor will use a
new iteration space that is based on the count of diagonals
derived by the inspector and that matches the dimensions of
the transformed data. To summarize, the e�ect of compact
is to create both inspector and executor code. �e executor
code requires an iteration space transformation that includes

1 ND = 0; D_set = emptyset;
2 for(i = 0; i<N; i++)
3 for(j = index[i]; j < index[i+1]; j++) {
4 k_prime = col(j)-i;
5 if (! marked[k_prime ]) {
6 ND++;
7 D_set = D_set U <k_prime ,ND >;
8 }
9 }
10 A_prime = calloc(N*ND*sizeof(datatype));
11 c = calloc(ND*sizeof(indextype));
12 for(i = 0; i<N; i++)
13 for(j = index[i]; j < index[i+1]; j++) {
14 k_prime = col(j)-i;
15 d = lookup(k_prime ,D_set);
16 c[d] = k_prime;
17 A_prime[i][d] = A[j];
18 }

Listing 5. Inspectors for DIA.

1 for (i=0; i < N; i++)
2 for(d=0; d<ND; d++)
3 S0: y[i] += A[i][d]*x[i+c[d]];
4

Listing 6. Executor for DIA.

additional iterations as compared to the original iteration
space to match the additional zero entries in the transformed
data (the green entries of Figure 5d pad the zero entries of
the diagonals and the blue entries correspond to the? entries
in Figure 1).

To see how to derive both codes in SPF, let us �rst look at
the two inspectors that derive the new data representation.
First, we count the number of nonzero diagonals by compact-
ing the k prime loop. Recall that k prime is modi�ed from
the original k loop that was added by make-dense. �ere-
fore, we can generate an e�cient inspector by projecting the
k prime variable from the iteration space, replacing it with
its closed form. �e boolean array marked tracks unique
k prime values so that each nonzero diagonal is counted
only once. �is boolean corresponds to the reference to ∃ j
in the de�nition of D set in Table 1.
Note that the executor iteration space is quite di�erent

and derived from i and D set, the set of diagonals that con-
tain at least one nonzero. To see how this is derived, con-
sider iteration space I ′′ = [i,k prime, j] that is the input
to Tcompact−and−pad . A�er creating the explicit set c in the
inspector, we have the mapping c that represents the o�-
set array of Figure 1. �e resulting executor is shown in
Listing 6. �is derivation is re�ected in the Inspector De-
pendence Graph of Figure 3. Note that this is a slightly
di�erent formulation than in [20], which uses a more opti-
mized inspector with a linked list to avoid two passes, and a
GPU-speci�c executor that includes a few additional a�ne
transformations.
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1 for(b = 0; b < NB; b++)
2 ii = c[b].ii
3 kk = c[b].kk
4 for(i = 0; i < R; i++)
5 for(k = 0; k < C; k++)
6 y[ii*R+i] += A_prime[b][i][k] * x[kk*C+k]

Listing 7. BCSR Executor to be Generated.

4.4 CSR to BCSR
As described in [20], the inspector for BCSR needs to gener-
ate the vector A prime, which contains all the dense nonzero
blocks of size R×C. To do this, the �rst transformation ap-
plied is make-dense which introduces a guard condition and
dense loops to remove the non-a�ne index expression and
then replaces it with an a�ne index access. In this case,
the dense loop iterates over all the columns and the guard
condition checks whether the column contains a nonzero
value. To divide the original matrix into dense blocks of size
R×C, the rows (i loop) are tiled by R and the columns (k
loop) are tiled by C.

Tomake the inspector have roughly the same performance
as the original computation some of the loop iterators are
projected to closed form expressions. Speci�cally, the kk
loop is projected and kk is replaced with bcol[j]/Cc to give
the index of the column tile. �e code generator also projects
the ck loop and replaces its references with a function of
C and col(j). �is leaves the inspector to iterate over the
tiled block rows and original j loop.
�e inspector should identify nonzero blocks only once.

�e �rst time a particular combination of (ii,kk) is identi-
�ed, it is marked as visited. �e set of all blocks identi�ed
is B set. �e built-in inspector routines count and order
are called on B set as shown in the IDG in Figure 3b. Count
returns the number of blocks NB in B set and order creates
a lexicographic ordering of the block row ii and block col
kk index to the monotonically increasing block identi�er
bid. �e inverse of the function c is c inv which returns
the ii and kk indexes for the executor to perform the SpMV
calculation as shown in Listing 7. All this is performed by
the inspector as result of the compact-and-pad transforma-
tion. �e inspector also allocates the vector A prime a�er
�nding out NB and initializes all elements to 0. A prime is
then populated using the iteration space [b, ii, ck], copying
nonzero entries from A into their corresponding location in
A prime.

4.5 CSR to ELL
�e goal of transforming to ELL is to derive a �xed row
length M that corresponds to the maximum number of non
zeros per row. �en, A prime is conceptually a 2-dimensional
array with N rows and M columns. We shi� the j loop so
that each iteration goes from 0 to j − index(i). We treat M as
an uninterpreted function, and tile the j loop by M.�e tile

controlling loop will then have only a single iteration. M is
computed in the inspector as a max of index(i +1)− index(i).
�en the inspector copies the non zero elements of each
row i to consecutive elements of A prime, while remaining
entries will be 0 as a result of the calloc. �e IDG for ELL is
shown in Figure 3d.

5 Future Work: Optimizing the IDG
�e ability to represent inspectors as IDGs as described in
this paper and derive these from loop and data transforma-
tions is an important step towards the goal of composing
and optimizing inspectors, which is the goal of our future
work.

In previous work, speci�c inspector compositions such
as the IDG for coalesce in Figure 3a were generated in an
optimized way. For the COO IDG, this meant recognizing
that the variable counting iterations in the iteration space I
and the variable in the order function were equivalent and
could be merged. Also, we noticed that only c inv is needed
in the executor, not c, and that invert can be implemented
by iterating over the domain of c, which is equivalent to
the iteration space I . �erefore, the generated inspector was
optimized by merging count, order, and invert into a single
loop and only creating c inv and NNZ as outputs.

Note that the IDG for converting CSR to BCSR or DIA in
Figures 3b and 3c share a similar count, order, and invert
pa�ern as the COO inspector. Count and order are depicted
as separate operations because we need to know the size
before performing the memory allocation. in [20], these
inspectors were merged together and were optimized by
allocating blocks or diagonals in a linked list to fuse the
count and data mapping inspectors and reduce the number
of passes over the code. In fact, a comparison with the BCSR
inspector and the OSKI sparse matrix library showed that
the generated inspector was substantially faster than the
OSKI format conversion due to the use of this linked list
representation.

We plan to use these observations to drive an approach to
optimizing the IDG. To facilitate fusing inspectors, the IDG
must also expose the iteration space of each explicit function
representing uninterpreted functions, as well as any fusion-
preventing dependences between the explicit functions. We
also must support custom optimizations such as using a
linked list prior to allocating storage to avoid an additional
pass over input. Commonly-used explicit functions will be
integrated into the framework as needed.

6 Conclusion and Future Work
In this paper, we walked through the set of transformation
relations that were used to generate inspectors and execu-
tors, and from these derived Inspector Dependence Graphs.
Our plan is to extend the Sparse Polyhedral Framework to
support the composition of inspectors so that we may re-
duce the number of passes that are required over the input
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data. Conceptually, the IDG is an abstraction for represent-
ing a variety of inspectors used for optimizing sparse codes.
By generalizing how to represent inspectors, we can build a
common interface for the compiler to perform such optimiza-
tions. We believe this is an important step towards creating
a framework where composition of complex transformation
sequences is realistic even for sparse executors and their
associated inspectors.
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