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Abstract

Robust Markov decision processes (MDPs) compute reliable solutions for dynamic deci-
sion problems with partially-known transition probabilities. Unfortunately, accounting for
uncertainty in the transition probabilities significantly increases the computational com-
plexity of solving robust MDPs, which limits their scalability. This paper describes new,
efficient algorithms for solving the common class of robust MDPs with s- and sa-rectangular
ambiguity sets defined by weighted L1 norms. We propose partial policy iteration, a new,
efficient, flexible, and general policy iteration scheme for robust MDPs. We also propose
fast methods for computing the robust Bellman operator in quasi-linear time, nearly match-
ing the ordinary Bellman operator’s linear complexity. Our experimental results indicate
that the proposed methods are many orders of magnitude faster than the state-of-the-art
approach, which uses linear programming solvers combined with a robust value iteration.

Keywords: Robust Markov decision processes, optimization, reinforcement learning

1. Introduction

Markov decision processes (MDPs) provide a versatile methodology for modeling and solving
dynamic decision problems under uncertainty (Puterman, 2005). Unfortunately, however,
MDP solutions can be very sensitive to estimation errors in the transition probabilities
and rewards. This is of particular worry in reinforcement learning applications, where the
model is fit to data and therefore inherently uncertain. Robust MDPs (RMDPs) do not
assume that the transition probabilities are known precisely but instead allow them to take
on any value from a given ambiguity set or uncertainty set (Xu and Mannor, 2006; Mannor
et al., 2012; Hanasusanto and Kuhn, 2013; Tamar et al., 2014; Delgado et al., 2016). With
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appropriately chosen ambiguity sets, RMDP solutions are often much less sensitive to model
errors (Xu and Mannor, 2009; Petrik, 2012; Petrik et al., 2016).

Most of the RMDP literature assumes rectangular ambiguity sets that constrain the
errors in the transition probabilities independently for each state (Iyengar, 2005; Nilim and
El Ghaoui, 2005; Le Tallec, 2007; Kaufman and Schaefer, 2013; Wiesemann et al., 2013).
This assumption is crucial to retain many of the desired structural features of MDPs. In
particular, the robust return of an RMDP with a rectangular ambiguity set is maximized by
a stationary policy, and the optimal value function satisfies a robust variant of the Bellman
optimality equation. Rectangularity also ensures that an optimal policy can be computed
in polynomial time by robust versions of the classical value or policy iteration (Iyengar,
2005; Hansen et al., 2013).

A particularly popular class of rectangular ambiguity sets is defined by bounding the
L1-distance of any plausible transition probabilities from a nominal distribution (Iyengar,
2005; Strehl et al., 2009; Jaksch et al., 2010; Petrik and Subramanian, 2014; Taleghan
et al., 2015; Petrik et al., 2016). Such ambiguity sets can be readily constructed from
samples (Weissman et al., 2003; Behzadian et al., 2021), and their polyhedral structure
implies that the worst transition probabilities can be computed by the solution of linear
programs (LPs). Unfortunately, even for the specific class of L1-ambiguity sets, an LP
has to be solved for each state and each step of the value or policy iteration. Generic LP
algorithms have a worst-case complexity that is approximately quartic in the number of
states (Vanderbei, 1998), and they thus become prohibitively expensive for large RMDPs.

In this paper, we propose a new framework for solving RMDPs. Our framework ap-
plies to both sa-rectangular ambiguity sets, where adversarial nature observes the agent’s
actions before choosing the worst plausible transition probabilities (Iyengar, 2005; Nilim
and El Ghaoui, 2005), and s-rectangular ambiguity sets, where nature must commit to a
realization of the transition probabilities before observing the agent’s actions (Le Tallec,
2007; Wiesemann et al., 2013). We achieve a significant theoretical and practical accelera-
tion over the robust value and policy iteration by reducing the number of iterations needed
and by reducing the computational complexity of each iteration. The overall speedup of our
framework—both theoretical and practical—allows us to solve RMDPs with L1-ambiguity
sets in a time complexity that is similar to that of classical MDPs. Our framework comprises
of three components, each of which represents a novel contribution.

Our first contribution is partial policy iteration (PPI), which generalizes the classi-
cal modified policy iteration to RMDPs. PPI resembles the robust modified policy itera-
tion (Kaufman and Schaefer, 2013), which has been proposed for sa-rectangular ambiguity
sets. In contrast to the robust modified policy iteration, however, PPI applies to both sa-
rectangular and s-rectangular ambiguity sets, and it is guaranteed to converge at the same
linear rate as robust value and robust policy iteration. In our experimental results, PPI
outperforms robust value iteration by several orders of magnitude.

Our second contribution is a fast algorithm for computing the robust Bellman opera-
tor for sa-rectangular weighted L1-ambiguity sets. Our algorithm employs the homotopy
continuation strategy (Vanderbei, 1998): it starts with a singleton ambiguity set for which
the worst transition probabilities can be trivially identified, and it subsequently traces the
most adverse transition probabilities as the size of the ambiguity set increases. The time
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complexity of our homotopy method is quasi-linear in the number of states and actions,
which is significantly faster than the quartic worst-case complexity of generic LP solvers.

Our third contribution is a fast algorithm for computing the robust Bellman operator
for s-rectangular weighted L1-ambiguity sets. While often less conservative and hence more
appropriate in practice, s-rectangular ambiguity sets are computationally challenging since
the agent’s optimal policy can be randomized (Wiesemann et al., 2013). We propose a
bisection approach to decompose the s-rectangular Bellman computation into a series of
sa-rectangular Bellman computations. When our bisection method is combined with our
homotopy method, its time complexity is quasi-linear in the number of states and actions,
compared again to the quartic complexity of generic LP solvers.

Put together, our contributions comprise a complete framework that can be used to
solve RMDPs efficiently. Besides being faster than solving LPs directly, our framework
does not require an expensive black-box commercial optimization package such as CPLEX,
Gurobi, or Mosek. A well-tested and documented implementation of the methods described
in this paper is available at https://github.com/marekpetrik/craam2. Compared to an
earlier conference version of this work (Ho et al., 2018), the present paper introduces PPI, it
improves the bisection method to work with PPI, it provides extensive and simpler proofs,
and it reports more complete experimental results.

The remainder of the paper is organized as follows. We summarize relevant prior work
in Section 2 and subsequently review basic properties of RMDPs in Section 3. Section 4
describes our partial policy iteration (PPI), Section 5 develops the homotopy method for
sa-rectangular ambiguity sets, and Section 6 is devoted to the bisection method for s-
rectangular ambiguity sets. Section 7 compares our algorithms with the solution of RMDPs
via Gurobi, a leading commercial LP solver, and we offer concluding remarks in Section 8.

We use the following notation throughout the paper. Regular lowercase letters (such
as p) denote scalars, boldface lowercase letters (such as p) denote vectors, and boldface
uppercase letters (such as X) denote matrices. Indexed values are printed in bold if they
are vectors and in regular font if they are scalars. That is, pi refers to the i-th component
of a vector p, whereas pi is the i-th vector of a sequence of vectors. An expression in
parentheses indexed by a set of natural numbers, such as ppiqiPZ for Z “ t1, . . . , ku, denotes
the vector pp1, p2, . . . , pkq. Similarly, if each pi is a vector, then P “ ppiqiPZ is a matrix with
each vector pJ

i as a row. The expression ppiqj P R represents the component in i-th row and
j-th column. All vector inequalities are understood to hold component-wise. Calligraphic
letters and uppercase Greek letters (such as X and Ξ) are reserved for sets. The symbols 1
and 0 denote vectors of all ones and all zeros, respectively, of the size appropriate to their
context. The symbol I denotes the identity matrix of the appropriate size. The probability
simplex in R

S
` is denoted as ∆S “

 
p P R

S
` | 1Jp “ 1

(
. The set R represents real numbers

and the set R` represents non-negative real numbers.

2. Related Work

We review relevant prior work that aims at (i) reducing the number of iterations needed to
compute an optimal RMDP policy, as well as (ii) reducing the computational complexity
of each iteration. We also survey algorithms for related machine learning problems.

3



Ho, Petrik, and Wiesemann

The standard approach for computing an optimal RMDP policy is robust value iteration,
which is a variant of the classical value iteration for ordinary MDPs that iteratively applies
the robust Bellman operator to an increasingly accurate approximation of the optimal robust
value function (Givan et al., 2000; Iyengar, 2005; Le Tallec, 2007; Wiesemann et al., 2013).
Robust value iteration is easy to implement and versatile, and it converges linearly with a
rate of γ, the discount factor of the RMDP.

Unfortunately, robust value iteration requires many iterations and thus performs poorly
when the discount factor of the RMDP approaches 1. To alleviate this issue, robust policy
iteration alternates between robust policy evaluation steps that determine the robust value
function for a fixed policy and policy improvement steps that select the optimal greedy
policy for the current estimate of the robust value function (Iyengar, 2005; Hansen et al.,
2013). While the theoretical convergence rate guarantee for robust policy iteration matches
that for robust value iteration, its practical performance tends to be superior for discount
factors close to 1. However, unlike the classical policy iteration for ordinary MDPs, which
solves a system of linear equations in each policy evaluation step, robust policy iteration
solves a large LP in each robust policy evaluation step. The need to solve large LPs restricts
robust policy iteration to small RMDPs.

Modified policy iteration, also known as optimistic policy iteration, tends to significantly
outperform both value and policy iteration on ordinary MDPs (Puterman, 2005). Modified
policy iteration adopts the same strategy as policy iteration, but it merely approximates the
value function in each policy evaluation step by executing a small number of value iterations.
Generalizing the modified policy iteration to RMDPs is not straightforward. There were
several early attempts to develop a robust modified policy iteration (Satia and Lave, 1973;
White and Eldeib, 1994), but their convergence guarantees are in doubt (Kaufman and
Schaefer, 2013). The challenge is that the alternating maximization (in the policy improve-
ment step) and minimization (in the policy evaluation step) may lead to infinite cycles in
the presence of approximation errors. Several natural robust policy iteration variants have
been shown to loop infinitely on some inputs (Condon, 1993).

To the best of our knowledge, robust modified policy iteration (RMPI) is the first gen-
eralization of the classical modified policy iteration to RMDPs with provable convergence
guarantees (Kaufman and Schaefer, 2013). RMPI alternates between robust policy evalua-
tion steps and policy improvement steps. The robust policy evaluation steps approximate
the robust value function of a fixed policy by executing a small number of value iterations,
and the policy improvement steps select the optimal greedy policy for the current esti-
mate of the robust value function. Our partial policy iteration (PPI) improves on RMPI
in several respects. RMPI only applies to sa-rectangular problems in which there exist
optimal deterministic policies, while PPI also applies to s-rectangular problems in which
all optimal policies may be randomized. Also, RMPI relies on value iteration to partially
evaluate a fixed policy, whereas PPI can evaluate the fixed policy more efficiently using
other schemes such as policy or modified policy iteration. Finally, PPI enjoys a guaranteed
linear convergence rate of γ, the discount factor of the RMDP.

Besides value and (modified) policy iteration, ordinary MDPs have been successfully
solved with accelerated value iteration, which reduces the number of required Bellman
operator evaluations. Recent accelerated value iteration methods have employed Anderson
and Nesterov-type acceleration approaches (Geist and Scherrer, 2018; Goyal and Grand-
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Clement, 2019; Zhang et al., 2020). These acceleration schemes eschew policy evaluation
in lieu of computing a linear combination of recent value function iterates. However, it is
unclear how these accelerated value iteration approaches can be generalized to RMDPs.

In addition to accelerating value iteration, prior work has also focused on speeding up
the computation of the robust Bellman operator for structured ambiguity sets. While this
evaluation amounts to the solution of a convex optimization problem for generic convex
ambiguity sets and reduces to the solution of an LP for polyhedral ambiguity sets, the
resulting polynomial runtime guarantees are insufficient due to the large number of evalu-
ations required. Quasi-linear time algorithms for computing Bellman updates for RMDPs
with unweighted sa-rectangular L1-ambiguity sets have been proposed by Iyengar (2005)
and Petrik and Subramanian (2014). Similar algorithms have been used to guide the explo-
ration of MDPs (Strehl et al., 2009; Taleghan et al., 2015). In contrast, our algorithm for
sa-rectangular ambiguity sets applies to both unweighted and weighted L1-ambiguity sets,
where the latter ones have been shown to provide superior robustness guarantees (Behza-
dian et al., 2021). The extension to weighted norms requires a surprisingly large change to
the algorithm. Quasi-linear time algorithms have also been proposed for sa-rectangular L8-
ambiguity sets (Givan et al., 2000), L2-ambiguity sets (Iyengar, 2005), and KL-ambiguity
sets (Iyengar, 2005; Nilim and El Ghaoui, 2005). We are not aware of any previous special-
ized algorithms for s-rectangular ambiguity sets, which are significantly more challenging
as all optimal policies may be randomized, and it is therefore not possible to compute the
worst transition probabilities independently for each action.

Our algorithm for computing the robust Bellman operator over an sa-rectangular ambi-
guity set resembles LARS, a homotopy method for solving the LASSO problem (Drori and
Donoho, 2006; Hastie et al., 2009; Murphy, 2012). It also resembles methods for computing
fast projections onto the L1-ball (Duchi et al., 2008; Thai et al., 2015) and the weighted
L1-ball (van den Berg and Friedlander, 2011). In contrast to those works, our algorithm
optimizes a linear function (instead of a more general quadratic one) over the intersection
of the (weighted) L1-ball and the probability simplex (as opposed to the entire L1-ball).

Our algorithm for computing the robust Bellman operator for s-rectangular ambiguity
sets employs a bisection method. This is a common optimization technique for solving low-
dimensional problems. We are not aware of works that use bisection to solve s-rectangular
RMDPs or similar machine learning problems. However, a bisection method has been
previously used to solve sa-rectangular RMDPs with KL-ambiguity sets (Nilim and El
Ghaoui, 2005). That bisection method, however, has a different motivation, solves a different
problem, and bisects on different problem parameters.

Throughout this paper, we focus on RMDPs with sa-rectangular or s-rectangular ambi-
guity sets but note that several more-general classes have been proposed recently (Mannor
et al., 2012, 2016; Goyal and Grand-Clement, 2018). These k-rectangular and r-rectangular
sets have tangible advantages, but also introduce additional computational complications.

3. Robust Markov Decision Processes

This section surveys RMDPs and their basic properties. We cover both sa-rectangular and
s-rectangular ambiguity sets but limit the discussion to norm-constrained ambiguity sets.
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An MDP pS,A,p0,p, r, γq is described by a state set S “ t1, . . . , Su and an action
set A “ t1, . . . , Au. The initial state is selected randomly according to the distribution
p0 P ∆S . When the MDP is in state s P S, taking the action a P A results in a stochastic
transition to a new state s1 P S according to the distribution ps,a P ∆S with a reward of
rs,a,s1 P R. We condense the transition probabilities ps,a to the transition function p “
pps,aqsPS,aPA P p∆SqSˆA which can also be also interpreted as a function p : S ˆ A Ñ ∆S .
Similarly, we condense the rewards to vectors rs,a “ prs,a,s1qs1PS P R

S and r “ prs,aqsPS,aPA.
The discount factor is γ P p0, 1q.

A (stationary) randomized policy π “ pπsqsPS , πs P ∆A for all s P S, is a function that
prescribes to take an action a P A with the probability πs,a whenever the MDP is in a state
s P S. We use Π “ p∆AqS to denote the set of all randomized stationary policies.

For a given policy π P Π, an MDP becomes a Markov reward process, which is a
Markov chain with the S ˆS transition matrix P pπq “ ppspπqqsPS and the rewards rpπq “
prspπqqsPS P R

S where

pspπq “
ÿ

aPA

πs,a ¨ ps,a and rspπq “
ÿ

aPA

πs,a ¨ pJ
s,ars,a ,

and pspπq P ∆S and rspπq P R. The total expected discounted reward of this Markov
reward process is

E

«
8ÿ

t“0

γt ¨ rSt,At,St`1

ff

“ pJ
0 pI ´ γ ¨ P pπqq´1rpπq .

Here, the initial random state S0 is distributed according to p0, the subsequent random
states S1, S2, . . . are distributed according to ppπq, and the random actions A0, A1, . . . are
distributed according to π. The value function of this Markov reward process is vpπ,pq “
pI ´γ ¨P pπqq´1rpπq. For each state s P S, vspπ,pq describes the total expected discounted
reward once the Markov reward process enters s. It is well-known that the total expected
discounted reward of an MDP is optimized by a deterministic policy π satisfying πs,a P t0, 1u
for each s P S and a P A (Puterman, 2005).

RMDPs generalize MDPs in that they account for the uncertainty in the transition
function p. More specifically, the RMDP pS,A,p0,P, r, γq assumes that the transition
function p is chosen adversarially from an ambiguity set (or uncertainty set) of plausible
values P Ď p∆SqSˆA (Hanasusanto and Kuhn, 2013; Wiesemann et al., 2013; Petrik and
Subramanian, 2014; Petrik et al., 2016; Russell and Petrik, 2019). The objective is to
compute a policy π P Π that maximizes the return, or the expected sum of discounted
rewards, under the worst-case transition function from P:

max
πPΠ

min
pPP

pJ
0 vpπ,pq . (3.1)

The maximization in (3.1) represents the objective of the agent, while the minimization can
be interpreted as the objective of adversarial nature. To ensure that the minimum exists,
we assume throughout the paper that the set P is compact.

The optimal policies in RMDPs are history-dependent, stochastic and NP-hard to com-
pute even when restricted to be stationary (Iyengar, 2005; Wiesemann et al., 2013). How-
ever, the problem (3.1) is tractable for some broad classes of ambiguity sets P. The most
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common such class are the sa-rectangular ambiguity sets, which are defined as Cartesian
products of sets Ps,a Ď ∆S for each state s and action a (Iyengar, 2005; Nilim and El
Ghaoui, 2005; Le Tallec, 2007):

P “
!
p P p∆SqSˆA | ps,a P Ps,a @s P S, a P A

)
. (3.2)

Since each probability vector ps,a belongs to a separate set Ps,a, adversarial nature can select
the worst transition probabilities independently for each state and action. This amounts to
nature being able to observe the agent’s action prior to choosing the transition probabilities.
Similar to ordinary MDPs, there always exists an optimal deterministic stationary policy
in sa-rectangular RMDPs (Iyengar, 2005; Nilim and El Ghaoui, 2005).

In this paper, we study sa-rectangular ambiguity sets that constitute weighted L1-balls
around some nominal transition probabilities p̄s,a P ∆S :

Ps,a “
 
p P ∆S | }p ´ p̄s,a}1,ws,a ď κs,a

(

Here, the weights ws,a P R
S
` are assumed to be strictly positive: ws,a ą 0, s P S, a P A. The

radius κs,a P R` of the ball is called the budget, and the weighted L1-norm is defined as

}x}1,w “
nÿ

i“1

wi |xi| .

The weights ws,a can be used to control the shape of the ambiguity sets to compute better
policies. For example, RMDPs with optimized weights ws,a provide significantly improved
percentile criterion guarantees compared to uniform weights (Behzadian et al., 2021).

L1-ball ambiguity sets have gained popularity in RMDPs (Iyengar, 2005; Petrik and
Subramanian, 2014; Petrik et al., 2016; Derman et al., 2019; Behzadian et al., 2021) and
optimistic MDPs (Strehl et al., 2009; Jaksch et al., 2010; Taleghan et al., 2015) for the
following reasons. First, the L1-distance between probability distributions corresponds to
the total variation distance, a simple and intuitive statistical distance metric. Second,
the robust Bellman operator over the L1-ambiguity set can be solved as a linear program
using mature, widely-available solvers. And third, RMDPs combined with existing L1-norm
concentration inequalities can be used to provide finite sample guarantees (Weissman et al.,
2003; Petrik et al., 2016; Behzadian et al., 2021).

Similarly to MDPs, the robust value function vπ “ minpPP vpπ,pq of an sa-rectangular
RMDP for a policy π P Π can be computed using the robust Bellman policy update Lπ :
R
S Ñ R

S . For sa-rectangular RMDPs constrained by the L1-norm, the operator Lπ is
defined for each state s P S as

pLπvqs “
ÿ

aPA

ˆ
πs,a ¨ min

pPPs,a

pJprs,a ` γ ¨ vq

˙

“
ÿ

aPA

ˆ
πs,a ¨ min

pP∆S

 
pJprs,a ` γ ¨ vq | }p ´ p̄s,a}1,ws,a ď κs,a

(˙
.

(3.3)

The robust value function is the unique solution to vπ “ Lπvπ (Iyengar, 2005). To compute
the optimal value function, we use the sa-rectangular robust Bellman optimality operator
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L : RS Ñ R
S defined as

pLvqs “ max
aPA

min
pPPs,a

pJprs,a ` γ ¨ vq

“ max
aPA

min
pP∆S

 
pJprs,a ` γ ¨ vq | }p ´ p̄s,a}1,ws,a ď κs,a

(
.

(3.4)

Let π‹ P Π be an optimal robust policy which solves (3.1). Then the optimal robust value
function v‹ “ vπ‹ is the unique vector that satisfies v‹ “ Lv‹ (Iyengar, 2005; Wiesemann
et al., 2013). In addition, a policy π is called greedy for a value function v whenever
Lπv “ Lv.

The value p P ∆S in the equations above represents a probability vector rather than the
transition function p P p∆SqSˆA. To prevent confusion between the two in the remainder
of the paper, we specify the dimensions of p whenever it is not obvious from its context.

As mentioned above, sa-rectangular sets assume that nature can observe the agent’s
action when choosing the robust transition probabilities. This assumption grants nature
too much power and often results in overly conservative policies (Le Tallec, 2007; Wiesemann
et al., 2013). S-rectangular ambiguity sets partially alleviate this issue while preserving the
computational tractability of sa-rectangular sets. They are defined as Cartesian products
of sets Ps Ď p∆SqA for each state s (as opposed to state-action pairs earlier):

P “
 
p P p∆SqSˆA | pps,aqaPA P Ps @s P S

(
(3.5)

Since the probability vectors ps,a, a P A, for the same state s are subjected to the joint
constraints captured by Ps, adversarial nature can no longer select the worst transition prob-
abilities independently for each state and action. The presence of these joint constraints
amounts to nature choosing the transition probabilities while only observing the state and
not the agent’s action (but observing the agent’s policy). In contrast to ordinary MDPs
and sa-rectangular RMDPs, s-rectangular RMDPs are optimized by randomized policies
in general (Le Tallec, 2007; Wiesemann et al., 2013). As before, we restrict our atten-
tion to s-rectangular ambiguity sets defined in terms of L1-balls around nominal transition
probabilities:

Ps “

#

p P p∆SqA |
ÿ

aPA

‖pa ´ p̄s,a‖1,ws,a ď κs

+

In contrast to the earlier sa-rectangular ambiguity set, nature is now restricted by a single
budget κs P R` for all transition probabilities pps,aqaPA relating to a state s P S. We note
that although sa-rectangular ambiguity sets are a special case of s-rectangular ambiguity
sets in general (Wiesemann et al., 2013), this is not true for our particular classes of L1-ball
ambiguity sets.

The s-rectangular robust Bellman policy update Lπ : RS Ñ R
S is defined as

pLπvqs “ min
pPPs

ÿ

aPA

`
πs,a ¨ pJ

a prs,a ` γ ¨ vq
˘

“ min
pPp∆SqA

#
ÿ

aPA

πs,a ¨ pJ
a prs,a ` γ ¨ vq |

ÿ

aPA

‖pa ´ p̄s,a‖1,ws,a ď κs

+

.

(3.6)
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Input: Tolerances ǫ1, ǫ2, . . . such that ǫk`1 ă γǫk and desired precision δ

Output: Policy πk such that }vπk
´ v‹}8 ď δ

k Ð 0, v0 Ð an arbitrary initial value function ;
repeat

k Ð k ` 1;
// Policy improvement

Compute ṽk Ð Lvk´1 and choose greedy πk such that Lπk
vk´1 “ ṽk;

// Policy evaluation

With policy πk, define a MDP using Definition 4.1 and compute vk such that
}Lπk

vk ´ vk}8 ď p1 ´ γq ǫk;

until }Lvk ´ vk}8 ` }Lπk
vk ´ vk}8 ă p1 ´ γq δ;

return πk

Algorithm 4.1: Partial Policy Iteration (PPI)

As in the sa-rectangular case, the robust value function is the unique solution to vπ “ Lπvπ
(Wiesemann et al., 2013). The s-rectangular robust Bellman optimality operator L : RS Ñ
R
S is defined as

pLvqs “ max
dP∆A

min
pPPs

ÿ

aPA

da ¨ pJ
a prs,a ` γ ¨ vq

“ max
dP∆A

min
pPp∆SqA

#
ÿ

aPA

da ¨ pJ
a prs,a ` γ ¨ vq |

ÿ

aPA

‖pa ´ p̄s,a‖1,ws,a ď κs

+

.

(3.7)

The optimal robust value function v‹ “ vπ‹ in an s-rectangular RMDP is also the unique
vector that satisfies v‹ “ Lv‹ (Iyengar, 2005; Wiesemann et al., 2013). We use the same
symbols Lπ and L for sa-rectangular and s-rectangular ambiguity sets when their meaning
is clear from the context.

4. Partial Policy Iteration

In this section, we describe and analyze a new iterative method for solving RMDPs with
sa-rectangular or s-rectangular ambiguity sets which we call Partial Policy Iteration (PPI).
It resembles standard policy iteration; it evaluates policies only partially before improving
them. PPI is the first policy iteration method that provably converges to the optimal
solution for s-rectangular RMDPs. We first describe and analyze PPI and then compare it
with existing robust policy iteration algorithms.

Algorithm 4.1 provides an outline of PPI. The algorithm follows the familiar pattern
of interleaving approximate policy evaluation with policy improvement and thus resem-
bles the modified policy iteration (also known as optimistic policy iteration) for classical,
ordinary MDPs (Puterman, 2005). In contrast to classical policy iteration, which always
evaluates policies precisely, PPI approximates policy evaluation. This is fast and sufficient,
particularly when evaluating highly suboptimal policies.

Notice that by employing the robust Bellman optimality operator L, the policy im-
provement step in Algorithm 4.1 selects the updated greedy policy πk in view of the worst
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transition function from the ambiguity set. Although the robust Bellman optimality opera-
tor L requires more computational effort than its ordinary MDP counterpart, it is necessary
as several variants of PPI that employ an ordinary Bellman optimality operator have been
shown to fail to converge to the optimal solution (Condon, 1993).

The policy evaluation step in Algorithm 4.1 is performed by approximately solving the
following robust policy evaluation MDP, which is similar to the adversarial MDP used in
the context of r-rectangular RMDPs (Goyal and Grand-Clement, 2018).

Definition 4.1. For an s-rectangular RMDP pS,A,p0,P, r, γq and a fixed policy π P Π, we
define the robust policy evaluation MDP pS, Ā,p0, p̄, r̄, γq as follows. The continuous state-
dependent action sets Āpsq, s P S, represent nature’s choice of the transition probabilities
and are defined as Āpsq “ Ps. Thus, nature’s decisions are of the form α “ pαaqaPA P p∆SqA

with αa P ∆S , a P A. The transition function p̄ and the rewards r̄ are defined as

p̄s,α “
ÿ

aPA

πs,a ¨ αa and r̄s,α “ ´
ÿ

aPA

πs,a ¨ αJ
a rs,a ,

where p̄s,α P ∆S and r̄s,α P R. All other parameters of the robust policy evaluation
MDP coincide with those of the RMDP. Moreover, for sa-rectangular RMDPs we replace
Āpsq “ Ps with Āpsq “ ˆaPAPs,a.

We emphasize that although the robust policy evaluation MDP in Definition 4.1 com-
putes the robust value function of the policy π, it is, nevertheless a regular ordinary MDP.
Indeed, although the robust policy evaluation MDP has an infinite action space, its optimal
value function exists since the Assumptions 6.0.1–6.0.4 of Puterman (2005) are satisfied.
Moreover, since the rewards r̄ are continuous (in fact, linear) in α and the sets Āpsq are
compact by construction of P, there also exists an optimal deterministic stationary policy
by Theorem 6.2.7 of Puterman (2005) and the extreme value theorem. When the action sets
Āpsq are polyhedral, as is the case in our setting, the greedy action for each state can be
computed readily from an LP, and the MDP can be solved using any standard MDP algo-
rithm. Section 6.3 describes a new algorithm that computes greedy actions in quasi-linear
time, which is much faster than the time required by generic LP solvers.

The next proposition shows that the optimal solution to the robust policy evaluation
MDP from Definition 4.1 corresponds to the robust value function vπ of the policy π.

Proposition 4.2. For an RMDP pS,A,p0,P, r, γq and a policy π P Π, the optimal value
function v̄‹ of the associated robust policy evaluation MDP satisfies v̄‹ “ ´vπ.

Proof. Let L̄ be the Bellman operator for the robust policy evaluation MDP. To prove the
result, we first argue that L̄v “ ´pLπp´vqq for every v P R

S . Indeed, Definition 4.1 and

10
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basic algebraic manipulations reveal that

pL̄vqs “ max
αPĀpsq

r̄s,α ` γ ¨ p̄J
s,αv

“ max
αPPs

˜

´
ÿ

aPA

πs,a ¨ αJ
a rs,a

¸

` γ ¨

˜
ÿ

aPA

πs,a ¨ αa

¸J

v from Definition 4.1

“ max
αPPs

ÿ

aPA

πs,a ¨ αJ
a p´rs,a ` γ ¨ vq

“ ´min
αPPs

ÿ

aPA

πs,a ¨ αJ
a prs,a ` γ ¨ p´vqq “ p´Lπp´vqqs .

(4.1)
Let v̄‹ “ L̄v̄‹ be the fixed point of L̄, whose existence and uniqueness is guaranteed by the
Banach fixed-point theorem since L̄ is a contraction under the L8-norm. Substituting v̄‹

into (4.1) then gives

v̄‹ “ L̄v̄‹ “ ´Lπp´v̄‹q ùñ ´v̄‹ “ Lπp´v̄‹q ,

which shows that ´v̄‹ is the unique fixed point of Lπ since this operator is also an L8-
contraction (see Lemma A.1 in Appendix A).

The robust policy evaluation MDP can be solved by value iteration, (modified) policy
iteration, linear programming, or another suitable method. We describe in Section 6.3
an efficient algorithm for calculating Lπk

. The accuracy requirement }Lπk
vk ´ vk}8 ď

p1 ´ γq ǫk in Algorithm 4.1 can be used as the stopping criterion in the employed method.
As we show next, this condition guarantees that }vk ´ vπk

}8 ď ǫk, that is, vk is an ǫk-
approximation to the robust value function of πk.

Proposition 4.3. Consider a value function vk and a policy πk in any iteration k of
Algorithm 4.1. Then the robust value function vπk

of πk satisfies

}vπk
´ vk}8 ď

1

1 ´ γ
}Lπk

vk ´ vk}8 .

Proof. The inequality follows immediately from the fact that Lπk
vk “ Lvk by construction

and from Corollary A.4 if we set π “ πk and v “ vk.

Algorithm 4.1 terminates once the condition }Lvk ´ vk}8 ă 1´γ
2 δ is met. Note that this

condition can be verified using the computations from the current iteration and thus does
not require a new application of the Bellman optimality operator. As the next proposition
shows, this termination criterion guarantees that the computed policy πk is within δ of the
optimal policy.

Proposition 4.4. Consider any value function vk and any policy πk greedy for vk. If v‹

is the optimal robust value function that solves v‹ “ Lv‹, then

}v‹ ´ vπk
}8 ď

1

1 ´ γ

`
}Lvk ´ vk}8 ` }Lπk

vk ´ vk}8

˘
,

where vπk
the robust value function of πk.

11
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The statement of Proposition 4.4 parallels the well-known properties of approximate
value functions for classical, ordinary MDPs (Williams and Baird, 1993).

Proof of Proposition 4.4. Using the triangle inequality of vector norms, we see that

}v‹ ´ vπk
}8 ď }v‹ ´ vk}8 ` }vk ´ vπk

}8 .

Using Corollary A.4 in Appendix A with v “ vk, the first term }v‹ ´ vk}8 can be bounded
from above as follows.

}v‹ ´ vk}8 ď
1

1 ´ γ
}Lvk ´ vk}8

The second term }vk ´ vπk
}8 above can be bounded using Proposition 4.3. The result then

follows by combining the two bounds.

We are now ready to show that PPI converges linearly with a rate of at most γ to the
optimal robust value function v‹ satisfying v‹ “ Lv‹. This is no worse than the convergence
rate of the robust value iteration. The result mirrors results for classical, ordinary MDPs.
Regular policy iteration is not known to converge at a faster rate than value iteration even
though it is strongly polynomial (Puterman, 2005; Post and Ye, 2015; Hansen et al., 2013).

Theorem 4.5. Consider c ą 1 such that ǫk`1 ď γc ǫk for all k in Algorithm 4.1. Then the
optimality gap of the policy πk`1 computed in each iteration k ě 1 is bounded as

››v‹ ´ vπk`1

››
8

ď γk
ˆ

}v‹ ´ vπ1
}8 `

2 ǫ1
p1 ´ γc´1qp1 ´ γq

˙
.

Theorem 4.5 requires the sequence of acceptable evaluation errors ǫk to decrease faster
than the discount factor γ. As one would expect, the theorem shows that smaller values of ǫk
lead to a faster convergence in terms of the number of iterations. On the other hand, smaller
ǫk values also imply that each individual iteration is computationally more expensive.

The proof of Theorem 4.5 follows an approach similar to the convergence proofs of policy
iteration (Puterman and Brumelle, 1979; Puterman, 2005), modified policy iteration (Put-
erman and Shin, 1978; Puterman, 2005) and robust modified policy iteration (Kaufman and
Schaefer, 2013). The proofs for (modified) policy iteration start by assuming that the initial
value function v0 satisfies v0 ď v‹; the policy updates and evaluations then increase vk as
fast as value iteration while preserving vk ď wk for some wk satisfying limkÑ8 wk “ v‹.
The incomplete policy evaluation in RMDPs may result in vk ě v‹, which precludes the use
of the modified policy iteration proof strategy. The convergence proof for RMPI (Kaufman
and Schaefer, 2013) inverts the argument by starting with v0 ě v‹ and decreasing vk while
preserving vk ě wk. This property, however, is only guaranteed to hold when the policy
evaluation step is performed using value iteration. PPI, on the other hand, makes no as-
sumptions on how the policy evaluation step is performed. Its approximate value functions
vk may not satisfy vk ď v‹ or vk ě vk`1, but the decreasing approximation errors ǫk guar-
antee improvements in vπk

that are sufficiently close to those of robust policy iteration. As
a result, PPI is guaranteed to compute π‹ even though the policies πk can actually become
worse in the short run.

12



Partial Policy Iteration for Robust MDPs

Proof of Theorem 4.5. We first show that the robust value function of policy πk`1 is at
least as good as that of πk with a tolerance that depends on ǫk. Using this result, we then
prove that in each iteration k, the optimality gap of the determined policy πk shrinks by
the factor γ, again with a tolerance that depends on ǫk. In the third and final step, we
recursively apply our bound on the optimality gap of the policies π1,π2, . . . to obtain the
stated convergence rate.

Recall that the vector vπk
in Algorithm 4.1 satisfies vπk

“ Lπk
vπk

and represents the
precise robust value function of πk. In contrast, the vector vk merely approximates vπk

.
Moreover, we denote by π‹ the optimal robust policy for the robust value function v‹ and
abbreviate the robust Bellman policy update Lπk

as Lk. The proof uses basic properties of
robust Bellman operators, which are summarized in Appendix A.

As for the first step, recall that the policy evaluation step of PPI computes a value
function vk that approximates the robust value function vπk

within a certain tolerance:

}Lkvk ´ vk}8 ď p1 ´ γq ǫk .

Combining this bound with Proposition 4.3 yields }vπk
´ vk}8 ď ǫk, which is equivalent to

vπk
ě vk ´ ǫk ¨ 1 (4.2)

vk ě vπk
´ ǫk ¨ 1 . (4.3)

We use this bound to bound Lk`1vπk
from below as follows:

Lk`1vπk
ě Lk`1pvk ´ ǫk1q from (4.3) and Lemma A.2

ě Lk`1vk ´ γǫk1 from Lemma A.5

ě Lkvk ´ γǫk1 Lk`1 is greedy to vk

ě Lkpvπk
´ ǫk1q ´ γǫk1 from (4.2) and Lemma A.2

ě Lkvπk
´ 2γǫk1 from Lemma A.5

ě vπk
´ 2γǫk1 because vπk

“ Lkvπk

(4.4)

This lower bound on Lk`1vπk
readily translates into the following lower bound on vπk`1

:

vπk`1
´ vπk

“ Lk`1vπk`1
´ vπk

from vπk`1
“ Lk`1vπk`1

“ pLk`1vπk`1
´ Lk`1vπk

q ` pLk`1vπk
´ vπk

q add 0

ě γP pvπk`1
´ vπk

q ` pLk`1vπk
´ vπk

q from Lemma A.6

ě γP pvπk`1
´ vπk

q ´ 2γǫk1 from (4.4)

Here, P is the stochastic matrix defined in Lemma A.6. Basic algebraic manipulations show
that the inequality above further simplifies to

pI ´ γP qpvπk`1
´ vπk

q ě ´2γǫk1 .

Recall that for any stochastic matrix P , the inverse pI ´ γP q´1 exists, satisfies pI ´
γP q´11 “ p1 ´ γq´11 and is monotone in the sense that pI ´ γP q´1x ě 0 for any x ě 0.

13
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These well-known results all follow the von Neumann series expansion of pI ´γP q´1. Using
these properties, the lower bound on vπk`1

simplifies to

vπk`1
ě vπk

´
2 γ ǫk
1 ´ γ

1 , (4.5)

which concludes the first step.
To prove the second step, note that the policy improvement step of PPI reduces the

optimality gap of πk as follows:

v‹ ´ vπk`1
“ v‹ ´ Lk`1vπk`1

from the definition of vπk`1

“ pv‹ ´ Lk`1vπk
q ´ pLk`1vπk`1

´ Lk`1vπk
q subtract 0

ď pv‹ ´ Lk`1vπk
q ´ γ ¨ P pvπk`1

´ vπk
q for some P from Lemma A.6

ď pv‹ ´ Lk`1vπk
q `

2γ2ǫk
1 ´ γ

1 from (4.5) and P1 “ 1

ď pv‹ ´ Lk`1vkq `

ˆ
γǫk `

2γ2ǫk
1 ´ γ

˙
1 from (4.4)

ď pv‹ ´ Lπ‹vkq `

ˆ
γǫk `

2γ2ǫk
1 ´ γ

˙
1 Lk`1 is greedy to vk

ď pv‹ ´ Lπ‹vπk
q `

ˆ
2γǫk `

2γ2ǫk
1 ´ γ

˙
1 from (4.3) and Lemmas A.2, A.5

“ pLπ‹v‹ ´ Lπ‹vπk
q `

2γǫk
1 ´ γ

1 from v‹ “ Lπ‹v‹

Corollary A.3 shows that v‹ ě vπk`1
, which allows us to apply the L8-norm operator on

both sides of the inequality above. Using the contraction property of the robust Bellman
policy update (see Lemma A.1), the bound above implies that

››v‹ ´ vπk`1

››
8

ď }Lπ‹v‹ ´ Lπ‹vπk
}8 `

2γǫk
1 ´ γ

ď γ }v‹ ´ vπk
}8 `

2γǫk
1 ´ γ

, (4.6)

which concludes the second step.
To prove the third and final step, we recursively apply the inequality (4.6) to bound the

overall optimality gap of policy πk`1 as follows:

››v‹ ´ vπk`1

››
8

ď γ }v‹ ´ vπk
}8 `

2γǫk
1 ´ γ

ď γ2
››v‹ ´ vπk´1

››
8

`
2γǫk
1 ´ γ

`
2γ2ǫk´1

1 ´ γ

ď . . .

ď γk }v‹ ´ vπ1
}8 `

2

1 ´ γ

k´1ÿ

j“0

ǫj`1γ
k´j .

The postulated choice ǫj ď γcǫj´1 ď γ2cǫj´2 ď . . . ď γpj´1qcǫ1 with c ą 1 implies that

k´1ÿ

j“0

ǫj`1γ
k´j ď ǫ1

k´1ÿ

j“0

γjcγk´j “ γkǫ1

k´1ÿ

j“0

γjpc´1q ď γk
ǫ1

1 ´ γc´1
.
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The result follows by substituting the value of the geometric series in the bound above.

PPI improves on several existing algorithms for RMDPs. To the best of our knowledge,
the only method that has been shown to solve s-rectangular RMDPs is the robust value
iteration (Wiesemann et al., 2013). Robust value iteration is simple and versatile, but it
may be slow because computing L for s-rectangular RMDPs requires OpS3A2 logSAq time
(see Theorem 6.4). In comparison, PPI uses L only to improve policies and can resort to
policy iteration to compute the fixed point of Lπk

. The evaluation step in policy iteration
runs in OpS3q time required for solving a system of linear equations.

Robust Modified Policy Iteration (RMPI) (Kaufman and Schaefer, 2013), a similar al-
gorithm for sa-rectangular RMDPs, can be cast as a special case of PPI in which the policy
evaluation step is solved by value iteration rather than by an arbitrary MDP algorithm.
Value iteration can be much slower than (modified) policy iteration due to the complexity
of computing Lπk

. RMPI also does not reduce the approximation error ǫk in the policy eval-
uations but must be run for a fixed number of value iterations to guarantee convergence.
In contrast, PPI only requires that the tolerances ǫk decrease at a sufficient rate.

Robust policy iteration (Iyengar, 2005; Hansen et al., 2013) is also similar to PPI, but
it has only been proposed in the context of sa-rectangular RMDPs. The main difference to
PPI is that the policy evaluation step in robust policy iteration is performed exactly with
the tolerance ǫk “ 0 for all iterations k, which can be done by solving a large LP (Iyengar,
2005). Although this approach is elegant and simple to implement, our experimental results
show that it does not scale to even moderately-sized problems.

PPI is general and works for sa-rectangular and s-rectangular RMDPs whose robust
Bellman operators L and Lπ can be computed efficiently. In the next two sections we
show that, in fact, the robust Bellman optimality and update operators can be computed
efficiently for sa-rectangular and s-rectangular ambiguity sets defined by bounds on the
L1-norm.

5. Computing the Bellman Operator: SA-Rectangular Sets

In this section, we develop an efficient homotopy algorithm to compute the sa-rectangular
robust Bellman optimality operator L defined in (3.4). Our algorithm computes the inner
minimization over p P Ps,a in (3.4); to compute Lv for some v P R

S , we simply execute our
algorithm for each action a P A and select the maximum of the obtained objective values.
To simplify the notation, we fix a state s P S and an action a P A throughout this section
and drop the associated subscripts whenever the context is unambiguous (for example, we
use p̄ instead of p̄s,a). We also fix a value function v throughout this section.

Our algorithm uses the idea of homotopy continuation (Vanderbei, 1998) to solve the
optimization problem q : R` Ñ R is parameterized by ξ for a given positive w:

qpξq “ min
pP∆S

!
pJz | }p ´ p̄}1,w ď ξ

)
(5.1)

Here, we use the abbreviation z “ rs,a ` γ ¨ v. Note that ξ plays the role of the budget κs,a
in our sa-rectangular uncertainty set Ps,a, and that qpκs,aq computes the inner minimization
over p P Ps,a in (3.4). Our homotopy method achieves its efficiency by computing qpξq for
ξ “ 0 and subsequently for all ξ P p0, κs,as instead of computing qpκs,aq directly (Asif and
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i P . . . Ñ NB UB LB EB sNB
sUB

sLB

pi ´ p̄i ď li ¨ X ¨ X ¨ X ¨
p̄i ´ pi ď li ¨ ¨ X X ¨ ¨ X

pi ě 0 ¨ ¨ ¨ ¨ X X X

Table 1: Possible subsets of active constraints in (5.3). Check marks indicate active con-
straints that are included in the basis B for each index i “ 1, . . . , S.

Romberg, 2009; Garrigues and El Ghaoui, 2009). The problem qp0q is easy since the only
feasible solution is p “ p̄, and thus qp0q “ p̄Jz. We then trace an optimal solution p‹pξq as
ξ increases, until we reach ξ “ κs,a. Our homotopy algorithm is fast because the optimal
solution can be traced efficiently when ξ is increased. As we show below, qpξq is piecewise
linear with at most S2 pieces (or S pieces, if all components of w are equal), and exactly
two components of p‹pξq change when ξ increases.

By construction, qpξq varies with ξ only when ξ is small enough so that the constraint
}p ´ p̄}1,w ď ξ in (5.1) is binding at optimality. To avoid case distinctions for the trivial
case when }p ´ p̄}1,w ă ξ at optimality and qpξq is constant, we assume in the remainder
of this section that ξ is small enough. Our homotopy algorithm treats large ξ identically to
the largest ξ for which the constraint is binding at optimality.

In the remainder of this section, we first investigate the structure of basic feasible so-
lutions to the problem (5.1) in Section 5.1. We then exploit this structure to develop our
homotopy method in Section 5.2, and we conclude with a complexity analysis in Section 5.3.

5.1 Properties of the Parametric Optimization Problem

We now discuss important technical properties of the parametric optimization problem
in (5.1), which can be reformulated as the following linear program:

qpξq “ minimize
p,lPRS

zJp

subject to pi ´ p̄i ď li i “ 1, . . . , S
p̄i ´ pi ď li i “ 1, . . . , S
pi ě 0 i “ 1, . . . , S

1Jp “ 1, wJl “ ξ

(5.2)

Note that the constraint l ě 0 is enforced implicitly. Solving (5.2) using a generic LP
algorithm can be too slow to be practical as our empirical results in Section 7 show.

Throughout the paper, we make the following assumption regarding problem (5.2).

Assumption 5.1. The parameters z and w of (5.2) satisfy the following conditions.

1. Every i, j, k, ℓ P t1, . . . , Su with i ‰ j and k ‰ ℓ satisfy

pwi ` wjqpzk ´ zℓq ‰ pwk ` wℓqpzi ´ zjq.

2. Every i, j, k, ℓ P t1, . . . , Su with i ‰ j, k ‰ ℓ, wi ‰ wj and wk ‰ wℓ satisfy

pwi ´ wjqpzk ´ zℓq ‰ pwk ´ wℓqpzi ´ zjq.
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As we will see later in Lemma 5.5, the above assumption implies the uniqueness of the
solution p‹ in problem (5.2) for any ξ P R`. Since Assumption 5.1 imposes a finite number
of equality constraints on z and w, the assumption can be satisfied by arbitrarily small
perturbations of z, which result in arbitrarily small perturbations of qpξq in (5.2). When
the L1-norm is unweighted, that is, when w1, . . . , wS “ 1, the assumption requires that the
pairwise differences zi ´ zj of z are all different.

To develop the homotopy algorithm, we need the concept of a basis to a linear pro-
gram (Bertsimas and Tsitsiklis, 1997; Vanderbei, 1998). Each basis B in (5.2) is fully
characterized by 2S linearly independent (inequality and/or equality) constraints that are
active; see for example Definition 2.9 of Bertsimas and Tsitsiklis (1997). Remember that
an active constraint is satisfied with equality, but not every constraint that is satisfied as
equality has to be active in any basis B. Recall that each basis uniquely defines the values
p and l in the linear program for any ξ.

The key to the efficiency of our method is the special structure of the bases in (5.2),
which we describe next. For any given component i “ 1, . . . , S, a subset of the following
constraints in (5.1) can be active:

pi ´ p̄i ď li, p̄i ´ pi ď li, pi ě 0 . (5.3)

Table 1 shows all possible subsets of active constraints (5.3). The letters N , U , L and E
mnemonize the cases where none of the constraints is active, only the upper bound or the
lower bound on p̄i is active and where both bounds are simultaneously active and hence
pi equals p̄i. The three cases in which the nonnegativity constraint pi ě 0 is active are
adorned by a bar.

Note that the constraints (5.3) are linearly dependent for each i “ 1, . . . , S because they
involve only two variables; thus, they cannot be all active. As a result, the sets in Table 1
are mutually exclusive, jointly exhaustive, and partition the index set 1, . . . , S.

In addition to the inequality constraints (5.3), a basis B may include one or both of
the equality constraints from (5.2). The set QB Ď t1, 2u indicates which of these equality
constraints are included in the basis B. Together with the sets from Table 1, QB uniquely
identifies any basis B. The 2S linearly independent active constraints involving the 2S
decision variables uniquely specify a solution pp, lq for a given basis B as

pi ´ p̄i “ li @i P UB Y EB Y sUB

p̄i ´ pi “ li @i P LB Y EB Y sLB

pi “ 0 @i P sNB Y sUB Y sLB

1Jp “ 1 if 1 P QB

wJl “ ξ if 2 P QB .

(5.4)

We use pBpξq to denote the solution p to (5.4) and define qBpξq “ zJpBpξq for any ξ. The
vector pBpξq may be feasible in (5.2) only for some values of ξ.

Before proving formally the structure of the optimal bases in (5.2), we illustrate their
importance when developing the homotopy method. It is well known that qpξq and p‹pξq
are piecewise linear in ξ (Vanderbei, 1998) and are linear in ξ for each optimal basis in (5.2).
A point of non-linearity (referred to as a “breakpoint” or a “knot”) occurs whenever there
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Figure 1: Example evolution of p‹pξq for a uniform (left) and a non-uniform weight vector
w (right). Point markers indicate breakpoints where the optimal bases change.

is a change in the optimal bases for a particular ξ. Our algorithm starts with ξ “ 0 and
traces an optimal basis in (5.2) while increasing ξ. The following two examples show the
evolution of p‹pξq, which is unique in these cases, as a function of ξ.

Example 5.2 (Uniform Weights). Consider the function qpξq in (5.1) for an RMDP with
4 states, z “ p4, 3, 2, 1qJ, p̄ “ p0.2, 0.3, 0.4, 0.1qJ and w “ 1. Figure 1 (left) depicts the
evolution of p‹pξq as a function of ξ. Component p4 is the receiver for all values of ξ, and
the donors are the components p1, p2 and p3. We show in Section 5.3 that for uniform
weights w, the component with the smallest value of z is always the sole receiver.

Example 5.3 (Non-Uniform Weights). Consider the function qpξq in (5.1) for an RMDP
with 4 states, z “ p2.9, 0.9, 1.5, 0.0qJ, p̄ “ p0.2, 0.3, 0.3, 0.2qJ and w “ p1, 1, 2, 2qJ. Fig-
ure 1 (right) depicts the evolution of p‹pξq as a function of ξ. The donor-receiver pairs are
p1, 2q, p2, 4q p3, 4q and again p2, 4q. In particular, several components can serve as receivers
for different values of ξ when w is non-uniform. Also, the same component can serve as a
donor more than once.

Examples 5.2 and 5.3 illustrate that the values of exactly two components of p‹pξq
change with increasing ξ. Since the components of p‹pξq must sum to 1, one component
pj increases and another component pi decreases. We say that pi is a donor as it donates
some of its probability mass to the receiver pj .

The following key lemma will be used to show that the behavior observed above is not
a coincidence and that at most two components of ppξq change with an increasing ξ. As
will become apparent in Lemma 5.5, only components in UB and LB and NB can change
with an increasing ξ. The lemma bounds the cardinality of these sets from above by 2.

Lemma 5.4. Any basis B to (5.2) satisfies |UB| ` |LB| ` | sNB| ` 2|NB| “ |QB| ď 2.

Proof. The statement follows from a counting argument. Since the sets listed in Table 1
partition the index set 1, . . . , S, their cardinalities must sum to S:

|NB| ` |UB| ` |LB| ` |EB| ` | sNB| ` | sUB| ` | sLB| “ S. (5.5)
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Each index i “ 1, . . . , S contributes between zero and two active constraints to the basis.
For example, i P NB contributes no constraint, whereas i P sUB contributes 2 constraints.
The requirement that B contains exactly 2S linearly independent constraints translates to

0 ¨ |NB| ` 1 ¨ |UB| ` 1 ¨ |LB| ` 2 ¨ |EB| ` 1 ¨ | sNB| ` 2 ¨ | sUB| ` 2 ¨ | sLB| ` |QB| “ 2S . (5.6)

Subtracting two times (5.5) from (5.6), we get

´2 ¨ |NB| ´ |UB| ´ |LB| ´ | sNB| ` |QB| “ 0 .

The result then follows by performing elementary algebra.

We next show that for any basis B feasible in (5.2) for a given ξ, the components in UB

and LB act as donor-receiver pairs.

Lemma 5.5. Consider some ξ ą 0 and a basis B to problem (5.2) that is feasible in a
neighborhood of ξ. Then the derivatives 9pi “ d

dξ
ppBpξqqi, i “ 1, . . . , S, and 9q “ d

dξ
qBpξq

satisfy:

(C1) If UB “ tiu and LB “ tju, i ‰ j, then:

9q “
zi ´ zj

wi ` wj

, 9pi “
1

wi ` wj

, 9pj “ ´
1

wi ` wj

.

(C2) If UB “ ti, ju, i ‰ j and wi ‰ wj, and LB “ H, then:

9q “
zi ´ zj

wi ´ wj

, 9pi “
1

wi ´ wj

, 9pj “ ´
1

wi ´ wj

.

The derivatives 9p and 9q of all other types of feasible bases to problem (5.2) are zero.

The derivatives in the proposition exist since the functions pBpξq and qBpξq are linear
for any fixed basis B. The derivative 9p shows that in a basis of class (C1), i is the receiver
and j is the donor. In a basis of class (C2), on the other hand, an inspection of 9p reveals
that i is the receiver and j is the donor whenever wi ą wj , and the reverse situation occurs
when wi ă wj .

Proof of Lemma 5.5. In this proof, we consider a fixed basis B and thus drop the subscript
B to reduce clutter. We also denote by xD the subvector of x P R

S formed by the elements
xi, i P D, whose indices are contained in the set D Ď S.

First, observe that 9pi ‰ 0 is only possible if i P U Y L Y N . According to Table 1, if
i R U Y L Y N , then i P E Y sU Y sL Y sN . In the case where i P E , we have pi “ pi from the
definition of E , and thus 9pi “ 0. If i P sU Y sL Y sN , then pi “ 0 from the definitions of the
sets, and thus 9pi “ 0.

To derive the desired results, we consider the changes of q and p when we vary ξ in its
neighborhood with the same basis B, which by definition identifies the active constraints
in (5.2) even when ξ changes. Because at least two components of pBpξq need to change
as we vary ξ, we can restrict ourselves to bases B that satisfy |U | ` |L| ` |N | ě 2. Since
Lemma 5.4 furthermore shows that |U | ` |L| ` 2|N | ď 2, we only need to consider three
following cases:
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(C1) |U | “ |L| “ 1 and |N | “ 0;
(C2) |U | “ 2 and |L| “ |N | “ 0;
(C3) |L| “ 2 and |U | “ |N | “ 0;
In the remainder of the proof, let p and l be the unique vectors that satisfy the active

constraints in the basis B. Then, Table 1 implies the following useful equality that any p

must satisfy.

1 “ 1Jp “ 1JpN ` 1JpU ` 1JpL ` 1JpE ` 1JpĎN ` 1Jp sU ` 1Jp sL

“ 1JpN ` 1JpU ` 1JpL ` 1Jp̄E

(5.7)

Case (C1): U “ tiu, L “ tju, i ‰ j, and N “ H:
Equation (5.7) implies that pi ` pj “ 1 ´ 1Jp̄E and thus 9pi ` 9pj “ 0. We also have

wJl “ wJ
N lN ` wJ

U lU ` wJ
L lL ` wJ

E lE ` wJ
ĎN lĎN ` wJ

sU l sU ` wJ
sL l sL

“ wili ` wjlj ` wJ
E lE ` wJ

sU l sU ` wJ
sL l sL

“ wili ` wjlj ´ wJ
sU p̄ sU ` wJ

sL p̄ sL

“ wippi ´ p̄iq ` wjpp̄j ´ pjq ´ wJ
sU p̄ sU ` wJ

sL p̄ sL ,

where the second identity follows from the fact that N “ H, U “ tiu and L “ tju by
assumption, as well as sN “ H due to Lemma 5.4. The third identity holds since the active
constraints in E , sU and sL imply that lE “ 0, l sU “ ´p̄ sU and l sL “ p̄ sL, respectively. The last
identity, finally, is due to the fact that pi ´ p̄i “ li since i P U and p̄j ´ pj “ lj since j P L.
Since any feasible basis B satisfies that wJl “ ξ, we thus obtain that

wippi ´ p̄iq ` wjpp̄j ´ pjq “ ξ ` wJ
sU p̄ sU ´ wJ

sL p̄ sL
ùñ wi 9pi ´ wj 9pj “ 1 taking d{dξ on both sides
ðñ wi 9pi ` wj 9pi “ 1 from 9pi ` 9pj “ 0
ðñ 9pi “ 1

wi`wj
.

The expressions for 9pj and 9q follow from 9pi ` 9pj “ 0 and elementary algebra, respectively.
Case (C2): U “ ti, ju, i ‰ j, and L “ N “ H:

Similar steps to case (C1) show that

wippi ´ p̄iq ` wjppj ´ p̄jq “ ξ ` wJ
sU p̄ sU ´ wJ

sL p̄ sL ,

which in turn yields the desired expressions for 9pi, 9pj and 9q. Note that if wi “ wj in the
equation above, then the left hand side’s derivative with respect to ξ is zero, and we obtain
a contradiction. This allows us to assume that wi ‰ wj in case (C2).

Case (C3): L “ ti, ju, i ‰ j, and U “ N “ H:
Note that pL ď p̄L since lL satisfies both lL ě 0 and lL “ p̄L ´ pL. Since (5.7) implies
that 1Jp “ 1JpL ` 1Jp̄E “ 1, however, we conclude that pL “ p̄L, that is, we must have
9p “ 0 and 9q “ 0.

5.2 Homotopy Algorithm

We are now ready to describe our homotopy method, which is presented in Algorithm 5.1.
The algorithm starts at ξ0 “ 0 with the optimal solution p0 “ p̄ achieving the objective
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Input: LP parameters z, w and p̄

Output: Breakpoints pξtqt“0,...T`1 and values pqtqt“0,...T`1, defining the function q

Initialize ξ0 Ð 0, p0 Ð p̄ and q0 Ð qpξ0q “ pJ
0 z ;

// Derivatives 9q for bases of (5.2) (see Lemma 5.5)

for i “ 1 . . . S do

for j “ 1 . . . S satisfying i ‰ j do

Case C1 (UB “ tiu and LB “ tju): αi,j Ð pzi ´ zjq{pwi ` wjq ;
Case C2 (UB “ ti, ju): βi,j Ð pzi ´ zjq{pwi ´ wjq if wi ‰ wj ;

end

end

// Sort derivatives and map to bases (see Lemma 5.5)

Store pαi,j ,C1q, i ‰ j and αi,j ă 0, and pβi,j ,C2q, i ‰ j and βi,j ă 0, in a list D ;
Sort the list D in ascending order of the first component;
Construct bases B1, . . . , BT from D “ pd1, . . . , dT q as:

Bm “

#
pUB “ tiu, LB “ tjuq if dm “ pαi,j ,C1q ,

pUB “ ti, ju, LB “ Hq if dm “ pβi,j ,C2q ;

// Trace optimal pBpξq with increasing ξ

for l “ 1 . . . T do

if Bl infeasible for ξl´1 then

Set ξl Ð ξl´1, pl Ð pl´1 and ql Ð ql´1 ;
continue;

end

Compute 9p, 9q for Bl as well as both cases (C1) and (C2) from Lemma 5.5 ;
Compute maximum ∆ξ for which Bl remains feasible:

∆ξ Ð

$
’&

’%

max tx ě 0 | ppl´1qj ` x ¨ 9pj ě 0u if dl “ pαi,j ,C1q ,

max tx ě 0 | ppl´1qj ` x ¨ 9pj ě p̄ju if dl “ pβi,j ,C2q and wi ą wj ,

max tx ě 0 | ppl´1qi ` x ¨ 9pi ě p̄iu if dl “ pβi,j ,C2q and wi ă wj ;

Set ξl Ð ξl´1 ` ∆ξ, pl Ð pl´1 ` ∆ξ ¨ 9p, and ql Ð ql´1 ` ∆ξ ¨ 9q ;

end

Set ξT`1 Ð 8 and qT`1 Ð qT ;
return Breakpoints pξtqt“0,...T`1 and values pqtqt“0,...T`1.

Algorithm 5.1: Homotopy method to compute qpξq.
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value q0 “ pJ
0 z. The algorithm subsequently traces each optimal basis as ξ increases,

until the basis becomes infeasible and is replaced with the next basis. Since the function
qpξq is convex, it is sufficient to consider bases that have a derivative 9q that is no smaller
than the ones traced previously. Note that a basis of class (C1) satisfies UB “ tiu and
LB “ tju for some receiver i P S and some donor j P S, j ‰ i, and this basis is feasible
at p “ p‹pξq, ξ ě 0, only if pi P rp̄i, 1s and pj P r0, p̄js (see Lemma 5.5). Likewise, a basis
of class (C2) satisfies UB “ ti, ju, i ‰ j, and LB “ H, and it is feasible at p “ p‹pξq,
ξ ě 0, only if pi P rp̄i, 1s and pj P rp̄j , 1s. In a basis of class (C2), i is the receiver and
j is the donor whenever wi ą wj , and the reverse situation occurs when wi ă wj . In the
case where 9qB1

“ 9qB2
for two different bases B1 and B2, the homotopy method would have

to inspect the solution trajectories of both bases as they can differ for larger values of ξ.
This would increase the computational burden of the homotopy method. Assumption 5.1
excludes these pathological cases by stipulating that all bases in Algorithm 5.1 have pairwise
different slopes 9q. As a by-product, the assumption guarantees that p‹pξq is unique for all
ξ since there is only one optimal sequence of bases, which implies that ppξq remains unique
as ξ increases. Our implementation accounts for floating-point errors by using a queue to
store and examine the feasibility of all bases that are within some small ǫ of the last 9q.

Algorithm 5.1 generates the entire solution path of qpξq. Since qpξq is a piecewise linear
function, the outputs of Algorithm 5.1 are the breakpoints of qpξq and their function values.
If the goal is to compute the function q for a particular value of ξ, then we can terminate the
algorithm once the for loop over l has reached this value. In contrast, our bisection method
for s-rectangular ambiguity sets (described in the next section) requires the entire solution
path to compute robust Bellman policy updates. We also note that Algorithm 5.1 records
all vectors p1, . . .pT . This is done for ease of exposition; for practical implementations, it
is sufficient to only store the current iterate pl and update the two components that change
in the “for loop” over l.

The following theorem proves the correctness of our homotopy algorithm. It shows that
the function q is a piecewise linear function defined by the output of Algorithm 5.1.

Theorem 5.6. Let pξtqt“0,...,T`1 and pqtqt“0,...,T`1 be the output of Algorithm 5.1. Then,
qpξq is a piecewise linear function with breakpoints ξl that satisfies qpξtq “ qt for t “
0, . . . , T ` 1.

We prove the statement by contradiction. Since each point ql returned by Algorithm 5.1
corresponds to the objective value of a feasible solution to problem (5.2) at ξ “ ξl, the output
generated by Algorithm 5.1 provides an upper bound on qpξq. Assume to the contrary that
the output does not coincide point-wise with the function qpξq. In that case, there must be
a value of ξ at which the homotopy method disregards a feasible basis that has a strictly
smaller derivative than the one selected. This, however, contradicts the way in which bases
are selected by the algorithm.

Proof of Theorem 5.6. For ξ ď ξT , Algorithm 5.1 computes the piecewise linear function

gpξq “ min
αP∆T`1

#
Tÿ

t“0

αt qt |
Tÿ

t“0

αt ξt “ ξ

+

.
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To prove the statement, we show that gpξq “ qpξq for all ξ P r0, ξT s. Note that gpξq ě qpξq
for all ξ P r0, ξT s by construction since our algorithm only considers feasible bases. Also,
from the construction of g, we have that qpξ0q “ gpξ0q for the initial point.

To see that gpξq ď qpξq, we need to show that Algorithm 5.1 does not skip any relevant
bases. To this end, assume to the contrary that there exists a ξ1 P pξ0, ξT s such that
qpξ1q ă gpξ1q. Without loss of generality, there exists a value ξ1 such that that qpξq “ gpξq
for all breakpoints ξ ď ξ1 of q; this can always be achieved by choosing a sufficiently small
value of ξ1 where q and g differ. Let ξl be the largest element in tξt | t “ 0, . . . , T u such
that ξl ă ξ1, that is, we have ξl ă ξ1 ď ξl`1. Such ξl exists because ξ

1 ą ξ0 and qpξ0q “ gpξ0q.
Let Bl be the basis chosen by Algorithm 5.1 for the line segment connecting ξl and ξl`1.
We then observe that

9qpξ1q “
qpξ1q ´ ql

ξ1 ´ ξl
ă

gpξ1q ´ ql

ξ1 ´ ξl
“

ql`1 ´ ql

ξl`1 ´ ξl
“ 9gpξ1q ,

where the first identity follows from our choice of ξ1, the inequality directly follows from
qpξ1q ă gpξ1q, and the last two identities hold since Bl is selected by Algorithm 5.1 for the
line segment connecting ξl and ξl`1. However, by Lemmas 5.4 and 5.5, Bl is the basis with
the minimal slope between ξl and ξl`1, and it thus satisfies

ql`1 ´ ql

ξl`1 ´ ξl
ď 9qpξq ,

which contradicts the strict inequality above. The correctness of the last value ξT`1 “ 8,
finally, follows since q is constant for large ξ as the constraint wJl “ ξ is inactive.

5.3 Complexity Analysis

A naive implementation of Algorithm 5.1 has a computational complexity of OpS2 logSq
because it sorts all pairs of indexes pi, jq P S ˆS according to their derivatives 9q. Although
this already constitutes a significant improvement over the theoretical OpS4.5q complexity
of solving (5.2) using a generic LP solver, we observed numerically that the naive imple-
mentation performs on par with state-of-the-art LP solvers. In this section, we describe a
simple structural property of the parametric problem (5.2) that allows us to dramatically
speed up Algorithm 5.1.

Our improvement is based on the observation that a component i P S cannot be a
receiver in an optimal basis if there exists another component j that has both a smaller
objective coefficient zj and weight wj . We call such components i dominated, and any
dominated receivers can be eliminated from further consideration without affecting the
correctness of Algorithm 5.1.

Proposition 5.7. Consider a component i P S such that there is another component j P S
satisfying pzj , wjq ď pzi, wiq as well as pzj , wjq ‰ pzi, wiq. Then for any basis B in which i

acts as receiver, Algorithm 5.1 selects the stepsize ∆ξ “ 0.

Proof. Assume to the contrary that in iteration l, the basis Bl contains i as receiver and
Algorithm 5.1 selects a stepsize ∆ξ ą 0. Consider pξl´1,pl´1, ql´1q, the parameters at the
beginning of iteration l, as well as pξl,pl, qlq, the parameters at the end of iteration l. To
simplify the notation, we use 1i, i “ 1, . . . , S to denote the i-th unit basis vector in R

S .
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Let k P S be the donor in iteration l. Note that k ‰ j as otherwise 9q ě 0, which
would contradict the construction of the list D. Define δ via pl “ pl´1 ` δr1i ´ 1ks, and
note that δ ą 0 since ∆ξ ą 0. We claim that the alternative parameter setting pξ1

l,p
1
l, q

1
lq

with p1
l “ pl´1 ` δr1j ´ 1ks, ξ1

l “ ‖p1
l ´ p̄‖1,w and q1

l “ zJp1
l satisfies pξ1

l, q
1
lq ď pξl, qlq and

pξ1
l, q

1
lq ‰ pξl, qlq. Since this would correspond to a line segment with a steeper decrease

than the one constructed by Algorithm 5.1, this contradicts the optimality of Algorithm 5.1
proved in Theorem 5.6. To see that pξ1

l, q
1
lq ď pξl, qlq, note that

ξ1
l “

∥

∥p1
l ´ p̄

∥

∥

1,w
ď ‖pl ´ p̄‖1,w “ ξl

since wj ď wi and pi ě p̄i (otherwise, i could not be a receiver). Likewise, we have

q1
l “ zJp1

l ď zJpl “ ql

since zj ď zi. Finally, since pwi, ziq ‰ pwj , zjq, at least one of the previous two inequalities
must be strict, which implies that pξl,pl, qlq is not optimal, a contradiction.

One readily verifies that if there are two potential receivers i and j satisfying wi “ wj

and zi “ zj , either one of the receivers can be removed from further consideration without
affecting the correctness of Algorithm 5.1. We thus arrive at Algorithm 5.2, which constructs
a minimal set of receivers to be considered by Algorithm 5.1 in time OpS logSq.

Input: Objective coefficients zi and weights wi for all components i P S
Sort the elements zi and wi in non-decreasing order of zi; break ties in
non-decreasing order of wi ;

Initialize the set of possible receivers as R Ð t1u ;
for i “ 2 . . . S do

if wi ă min twk | k P Ru then

Update R Ð R Y tiu ;
end

end

return Possible receivers mapped back to their original positions in R

Algorithm 5.2: Identify non-dominated receivers i P S.

Proposition 5.7 implies that for a uniform w, only i P S with a minimal component zi
can serve as a receiver, and our homotopy method can be adapted to run in time OpS logSq.
This matches the computational complexity of existing fast algorithms for unweighted sa-
rectangular L1-norms (Iyengar, 2005; Petrik and Subramanian, 2014). More generally, if
there are C different weight values, then we need to consider at most one receiver for each
of the C values.

The following corollary summarizes the combined time complexity of Algorithms 5.1
and 5.2, which are combinatorial. That is they are strongly polynomial and their runtimes
that are independent of any optimality tolerance.

Corollary 5.8. If |twi | i P Su| “ C, then Algorithms 5.1 and 5.2 can be combined to run
in time OpCS logCSq and produce an output of length T ď CS.
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6. Computing the Bellman Operator: S-Rectangular Sets

We now develop a bisection scheme to compute the s-rectangular robust Bellman optimality
operator L defined in (3.7). Our bisection scheme builds on the homotopy method for the
sa-rectangular Bellman optimality operator described in the previous section.

The remainder of the section is structured as follows. We first describe the bisection
scheme for computing L in Section 6.1. Our method does not directly compute the greedy
policy required for our PPI from Section 4 but computes the optimal values of some dual
variables instead. Section 6.2 describes how to extract the optimal greedy policy from these
dual variables. Since our bisection scheme for computing L cannot be used to compute
the s-rectangular robust Bellman policy update Lπ for a fixed policy π P Π, we describe
a different bisection technique for computing Lπ in Section 6.3. We use this technique to
solve the robust policy evaluation MDP defined in Section 4.

6.1 Bisection Scheme for Robust Bellman Optimality Operator

To simplify the notation, we fix a state s P S throughout this section and drop the associated
subscripts whenever the context is unambiguous. In particular, we denote the nominal
transition probabilities under action a as p̄a P ∆S , the rewards under action a as ra P R

S ,
the L1-norm weight vector as wa P R

S , and the budget of ambiguity as κ. We also fix a
value function v throughout this section. We then aim to solve the optimization problem

max
dP∆A

min
ξPRA

`

#
ÿ

aPA

da ¨ qapξaq |
ÿ

aPA

ξa ď κ

+

, (6.1)

where qapξq is defined in (5.1) with subscript a P A to identify the associated action. Note
that problem (6.1) exhibits a very specific structure: It has a single constraint, and the
function qa is piecewise linear with at most S2 pieces. We will use this structure to derive
an efficient solution scheme that outperforms the naive solution of (6.1) via an LP solver.

Our bisection scheme employs the following reformulation of (6.1):

min
uPR

#

u |
ÿ

aPA

q´1
a puq ď κ

+

, (6.2)

where the inverse functions q´1
a are defined as

q´1
a puq “ min

pP∆S

 
}p ´ p̄a}1,wa | pJz ď u

(
@a P A. (6.3)

Before we formally show that (6.1) and (6.2) are indeed equivalent, we discuss the
intuition that underlies the formulation (6.2). In problem (6.1), the adversarial nature
chooses the transition probabilities pa, a P A, to minimize the value of

ř
aPA da ¨ppJ

a zq while
adhering to the ambiguity budget via

ř
aPA ξa ď κ for ξa “ }pa ´ p̄a}1,wa . In problem (6.3),

q´1
a puq can be interpreted as the minimum ambiguity budget }p ´ p̄a}1,wa assigned to the
action a P A that allows nature to ensure that taking an action a results in a robust value
pJz not exceeding u. Any value of u that is feasible in (6.2) thus implies that within the
specified overall ambiguity budget of κ, nature can ensure that every action a P A results
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Figure 2: Visualization of the s-rectangular Bellman update with the response functions
q1, q2, q3 for 3 actions.

in a robust value not exceeding u. Minimizing u in (6.2) thus determines the transition
probabilities that lead to the lowest robust value under any policy, which is the same as
computing the robust Bellman optimality operator (6.1).

The following example demonstrates the relationship between q and q´1 as well as how
they are related to the optimization in (6.2).

Example 6.1. Figure 2 shows an example q-functions q1, q2, q3 for 3 actions. To achieve the
robust value of u depicted in the figure, the smallest action-wise budgets ξa that guarantee
qpξaq ď u, i “ 1, 2, 3, are indicated at ξ1, ξ2 and ξ3, resulting in an overall budget of
κ “ ξ1 ` ξ2 ` ξ3.

We are now ready to state the main result of this section.

Theorem 6.2. The optimal objective values of (6.1) and (6.2) coincide.

Theorem 6.2 relies on the following auxiliary result, which we state first.

Lemma 6.3. The functions qa and q´1
a are convex in ξ and u, respectively.

Proof. The convexity of qa is immediate from the LP formulation (5.2). The convexity of
q´1
a can be shown in the same way by linearizing the objective function in (6.3).

Proof of Theorem 6.2. Since the functions qa, a P A, are convex (see Lemma 6.3), we can
exchange the maximization and minimization operators in (6.1) to obtain

min
ξPRA

`

#

max
dP∆A

˜
ÿ

aPA

da ¨ qapξaq

¸

|
ÿ

aPA

ξa ď κ

+

.
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Since the inner maximization is linear in d, it is optimized at an extreme point of ∆A. This
allows us to re-express the optimization problem as

min
ξPRA

`

#

max
aPA

tqapξaqu |
ÿ

aPA

ξa ď κ

+

.

We can linearize the objective function in this problem by introducing the epigraphical
variable u P R:

min
uPR

min
ξPRA

`

#

u |
ÿ

aPA

ξa ď κ, u ě max
aPA

tqapξaqu

+

. (6.4)

It can be readily seen that for a fixed u in the outer minimization, there is an optimal ξ in
the inner minimization that minimizes each ξa individually while satisfying qapξaq ď u for
all a P A. Define ga as the a-th component of this optimal ξ:

gapuq “ min
ξaPR`

tξa | qapξaq ď uu. (6.5)

We show that gapuq “ q´1
a puq. To see this, we substitute qa in (6.5) to get:

gapuq “ min
ξaPR`

min
paP∆S

!
ξa | pJ

a za ď u, }pa ´ p̄a}1,wa
ď ξa

)
.

The identity ga “ q´1
a then follows by realizing that the optimal ξ‹

a in the equation above
must satisfy ξ‹

a “ }pa ´ p̄a}1,wa
. Finally, substituting the definition of ga in (6.5) into the

problem (6.4) shows that the optimization problem (6.1) is indeed equivalent to (6.2).

Input: Desired precision ǫ, functions q´1
a , a P A

umin: maximum known u for which (6.2) is infeasible,
umax: minimum known u for which (6.2) is feasible

Output: û such that |u‹ ´ û| ď ǫ, where u‹ is optimal in (6.2)
while umax ´ umin ą 2 ǫ do

Split interval rumin, umaxs in half: u Ð pumin ` umaxq{2;
Calculate the budget required to achieve the mid point u: s Ð

ř
aPA q´1

a puq ;
if s ď κ then

u is feasible: update the feasible upper bound: umax Ð u;
else

u is infeasible: update the infeasible lower bound: umin Ð u;
end

end

return pumin ` umaxq{2;

Algorithm 6.1: Bisection scheme for the robust Bellman optimality operator (3.7)

The bisection scheme for solving problem (6.2) is outlined in Algorithm 6.1. Bisection is
a natural and efficient approach for solving the one-dimensional optimization problem. This
algorithm is simple and works well in practice, but it can be further improved by leveraging
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the fact that the functions q´1
a , a P A, are piecewise linear. In fact, Algorithm 6.1 only

solves problem (6.2) to ǫ-optimality, and it requires the choice of a suitable precision ǫ.

We outline how to adapt Algorithm 6.1 to determine the optimal solution to prob-
lem (6.2) in quasi-linear time independent of the precision ǫ; please see Algorithm B.1 in
Appendix B for details. Recall that Algorithm 5.1 computes the breakpoints pξat qt“0,...,Ta`1,
and objective values pqat qt“0,...,Ta`1, Ta ď S2, of each function qa, a P A. Then each inverse
function q´1

a is also piecewise linear with breakpoints pqat qt“0,...,Ta`1, and corresponding
function values ξat “ q´1

a pqat q. Recall that we define q´1
a puq “ 8 for u ă qaTa`1. We now

combine all breakpoints qat , a P A, to a single list K in ascending order. We then execute a
variant of Algorithm 6.1 in which both umin and umax are always set to some breakpoints
from K. Instead of choosing the midpoint u Ð pumin`umaxq{2 in each iteration of the bisec-
tion, we choose the median breakpoint between umin and umax. Using the median instead
of the mean breakpoint reduces the method to a binary search which runs in logarithmic
time. We stop once umin and umax are consecutive breakpoints in K, in which case the
optimal solution of (6.2) can be computed by basic algebra.

The following statement follows from the discussion above and the results in Appendix B.

Theorem 6.4. Algorithms 5.1 and 6.1 can be adapted (see Appendix B) to run jointly in
OpS2A logSAq time, independent of the optimality tolerance.

Because each execution of Algorithm 6.1 requires that Algorithm 5.1 is executed to
produce its inputs, Theorem 6.4 states the joint complexity of the two algorithms. Using
reasoning similar to Corollary 5.8, the bound in Theorem 6.4 can be tightened as follows.

Corollary 6.5. If |twi | i P Su| “ C, then Algorithms 5.1, 5.2 and 6.1 can be adapted to
run jointly in OpCSA logCSAq time, independent of the optimality tolerance.

We emphasize that general (interior-point) algorithms for the linear programming for-
mulation of the robust Bellman optimality operator have a theoretical worst-case complexity
of OpS4.5A4.5q (Karmarkar, 1984); see Appendix C. In addition, the spatial complexity of
our algorithms is OpS2Aq because we need to store at most S2 breakpoints for each action.
Thus, the spatial complexity of our algorithms is linear in the input size since representing
a dense transition function also takes OpS2Aq space.

6.2 Recovering the Greedy Policy

Since Algorithm 6.1 only computes the value of the robust Bellman optimality operator L
and not an optimal greedy policy d‹ achieving this value, it cannot be used in PPI or related
robust policy iteration methods (Iyengar, 2005; Kaufman and Schaefer, 2013) as is. This
section describes how to compute an optimal solution d‹ to problem (6.1) from the output
of Algorithm 6.1. We again fix a state s P S and drop the associated subscripts whenever
the context is unambiguous. We also fix a value function v throughout this section. Finally,
we assume that κ ą 0; the limiting case κ “ 0 is trivial since the robust Bellman optimality
operator then reduces to the nominal Bellman optimality operator.

Recall that Algorithm 6.1 computes the optimal solution u‹ P R to problem (6.2), which
according to Theorem 6.2 equals the optimal value of problem (6.1). The same argument
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as in the proof of Theorem 6.2 thus implies that

u‹ “ max
dP∆A

min
ξPRA

`

#
ÿ

aPA

da ¨ qapξaq |
ÿ

aPA

ξa ď κ

+

(6.6)

“ min
ξPRA

`

#

max
dP∆A

ÿ

aPA

da ¨ qapξaq |
ÿ

aPA

ξa ď κ

+

. (6.7)

To compute an optimal d‹ from u‹, we first use the definition (6.3) of q´1
a to compute ξ‹

defined as
ξ‹
a “ q´1

a pu‹q @a P A . (6.8)

Intuitively, the components ξ‹
a of this vector represent the action-wise uncertainty budgets

required to ensure that no greedy policy achieves a robust value that exceeds u‹. The set
Cpξ‹q “ ta P A | qapξ‹

aq “ u‹u of all actions achieving the optimal robust value plays an
important role in the construction of an optimal greedy policy d‹. To this end, the following
result collects important properties of ξ‹ and Cpξ‹q.

Lemma 6.6. The vector ξ‹ defined in (6.8) is optimal in (6.7). Moreover, Cpξ‹q ‰ H and
(i) qapξ‹

aq “ u‹ for all a P Cpξ‹q;
(ii) ξ‹

a “ 0 and qapξ‹
aq “ p̄J

a z ď u‹ for all a P AzCpξ‹q.

Proof. We first argue that ξ‹ is optimal in (6.7). To see that ξ‹ is feasible in (6.7), fix any
optimal solution ξ̄ P R

A in (6.7). The value qa1pξ̄a1q can be upper bounded by the objective
in (6.7) as

qa1pξ̄a1q ď max
dP∆A

ÿ

aPA

da ¨ qapξ̄aq ď u‹

for all a1 P A. The definition of qa in (5.1) implies that there are pa P ∆S , a P A, such that

pJ
a z ď u‹ and }pa ´ p̄a}1,wa ď ξ̄a .

The definition of q´1
a in (6.3) implies that each pa is feasible in q´1

a pu‹q. Thus, each ξ‹
a is

bounded from above by ξ̄a, and we observe that
ÿ

aPA

ξ‹
a ď

ÿ

aPA

ξ̄a ď κ . (6.9)

Since the definition of q´1
a also implies that ξ‹

a “ q´1
a pu‹q ě 0, ξ‹ is indeed feasible in (6.7).

The optimality of ξ‹ in (6.7) then follows from the fact that qapξ‹
aq ď u‹ because there

exists p‹
a such that zJp‹

a ď u‹ and }p‹
a ´ p̄a}1,wa ď ξ‹

a, by the definition of ξ‹
a, a P A.

Next, to show that Cpξ‹q ‰ H, note that for all a P A, we have

qapξ‹
aq “ qapq´1

a pu‹qq “ min
p1P∆S

!
pJ
1 z | }p1 ´ p̄a}1,wa

ď min
p2P∆S

!
}p2 ´ p̄a}1,wa

| pJ
2 z ď u‹

))

by the definitions of qa and q´1
a in (5.1) and (6.3), respectively. Recognizing that any

optimal solution p‹
2 to the inner minimization is feasible in the outer minimization leads to

qapξ‹
aq ď pp‹

2qJz ď u‹ .
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Given the inequality above, Cpξ‹q “ H only if qapξ‹
aq ă u‹, for all a P A. Imagine now that

Cpξ‹q “ H. Then combining the equality in (6.6), the inequality in ξ‹ (6.9) and qapξ‹
aq ă u‹

leads to

u‹ “ max
dP∆A

min
ξPRA

`

#
ÿ

aPA

da ¨ qapξaq |
ÿ

aPA

ξa ď κ

+

ď max
dP∆A

ÿ

aPA

da ¨ qapξ‹
aq ă u‹ ,

which is a contradiction.
The statement (i) that qapξ‹

aq “ u‹ for all a P Cpξ‹q now follows immediately from the
definition of Cpξ‹q. To see that ξ‹

a “ 0 for a P AzCpξ‹q in statement (ii), assume to the
contrary that ξ‹

a ą 0 for some a P AzCpξ‹q. Since qapξ‹
aq ă u‹, there is p‹

a P ∆S optimal
in (6.3) satisfying pp‹

aqJz ă u‹ and }p‹
a ´ p̄a}1,wa ď ξ‹

a. At the same time, since ξ‹
a ą 0,

we have }p‹
a ´ p̄a}1,wa ą 0 as well. This implies, however, that there is ǫ ą 0 such that

p‹
a ` ǫ ¨ pp̄a ´ p‹

aq is feasible in (6.3) and achieves a lower objective value than p‹
a, which

contradicts the optimality of p‹
a in (6.3). We thus conclude that ξ‹

a “ 0 for a P AzCpξ‹q.
This immediately implies that qapξ‹

aq “ p̄J
a z for all a P AzCpξ‹q as well.

Finally, the fact stated in (ii) that qapξ‹
aq ď u‹ for all a P AzCpξ‹q has already been

shown earlier in the proof.

The construction of d‹ P ∆A relies on the slopes of qa, which are piecewise constant but
discontinuous at the breakpoints of qa. However, the functions qa are convex by Lemma 6.3,
and therefore their subdifferentials (Rockafellar, 1970) Bqapξaq exist for all ξa ě 0. Using
these subdifferentials, we construct optimal action probabilities d‹ P ∆A from ξ‹ as follows.

(i) If 0 P Bqāpξ‹
āq for some ā P Cpξ‹q, define d‹ as

d‹
a “

#
1 if a “ ā

0 otherwise
@a P A . (6.10a)

(ii) If 0 R Bqapξ‹
aq for all a P Cpξ‹q, define d‹ as

d‹
a “

eař
a1PA ea1

with ea “

#
´ 1

fa
if a P Cpξ‹q

0 otherwise
@a P A , (6.10b)

where fa can be any element from Bqapξ‹
aq, a P A.

The choice of d‹ may not be unique as there may be multiple ā P Cpξ‹q that satisfy the first
condition, and the choice of fa P Bqapξ‹

aq in the second condition may not be unique either.

Theorem 6.7. Any vector d‹ satisfying (6.10a) or (6.10b) is optimal in problem (6.1).
Moreover, for ξ‹ defined in (6.8), pd‹, ξ‹q is a saddle point in (6.1).

Proof. One readily verifies that d‹ satisfying (6.10a) is contained in ∆A. To see that d‹ P ∆A

for d‹ satisfying (6.10b), we note that Cpξ‹q is non-empty due to Lemma 6.6 and that fa ă 0
and thus ea ą 0 since qa is non-increasing. To see that d‹ satisfying (6.10a) or (6.10b) is
optimal in (6.1), we show that it achieves the optimal objective value u‹:

min
ξPRA

`

#
ÿ

aPA

d‹
a ¨ qapξaq |

ÿ

aPA

ξa ď κ

+

ě u‹ . (6.11)
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Observe that u‹ is indeed achieved for ξ “ ξ‹ since
ÿ

aPA

d‹
a ¨ qapξ‹

aq “
ÿ

aPCpξ‹q

d‹
a ¨ qapξ‹

aq “
ÿ

aPCpξ‹q

d‹
a ¨ u‹ “ u‹ .

Here, the first equality holds since d‹
a “ 0 for a R Cpξ‹q, the second equality follows from

the definition of Cpξ‹q, and the third equality follows from d‹ P ∆A.
To establish the inequality (6.11), we show that ξ‹ is optimal in (6.11). This also proves

that pd‹, ξ‹q is a saddle point of problem (6.1). We denote by Bξpfqrξ‹s the subdifferential
of a convex function f with respect to ξ, evaluated at ξ “ ξ‹. The KKT conditions for non-
differentiable convex programs (see, for example, Theorem 28.3 of Rockafellar 1970), which
are sufficient for the optimality of ξ‹ in the minimization on the left-hand side of (6.11),
require the existence of a scalar λ‹ ě 0 and a vector α‹ P R

A
` such that

0 P Bξ

˜
ÿ

aPA

d‹
a ¨ qapξaq ´ λ‹

˜

κ ´
ÿ

aPA

ξa

¸

´
ÿ

aPA

α‹
a ¨ ξa

¸

rξ‹s [Stationarity]

λ‹ ¨

˜

κ ´
ÿ

aPA

ξ‹
a

¸

“ 0, α‹
a ¨ ξ‹

a “ 0 @a P A [Compl. Slackness]

The stationarity condition simplifies using the chain rule to

0 P d‹
a ¨ Bqapξ‹

aq ` λ‹ ´ α‹
a @a P A . (6.12)

If d‹ satisfies (6.10a), then both (6.12) and complementary slackness are satisfied for
λ‹ “ 0 and α‹ “ 0. On the other hand, if d‹ satisfies (6.10b), we set

λ‹ “
1

ř
aPCpξ‹q ea

, α‹
a “ 0 @a P Cpξ‹q, α‹

a “ λ‹ @a P AzCpξ‹q ,

where ea is defined in (6.10b). This solution satisfies λ‹ ě 0 and α ě 0 because fa ď 0
and therefore ea ě 0. This solution satisfies (6.12), and Lemma 6.6 implies that the second
complementary slackness condition is satisfied as well. To see that the first complementary
slackness condition is satisfied, we argue that

ř
aPA ξ‹

a “ κ under the conditions of (6.10b).
Assume to the contrary that

ř
aPA ξ‹

a ă κ. Since 0 R Bqapξ‹
aq and the sets Bqapξ‹

aq are closed
for all a P Cpξ‹q (see page 215 and Theorem 23.4 of Rockafellar 1970), we have

Dβ̄a ą 0 such that qapξ‹
a ` βaq ă qapξaq @βa P p0, β̄aq

for all a P Cpξ‹q. We can thus marginally increase each component ξ‹
a, a P Cpξ‹q, to obtain

a new solution to problem (6.7) that is feasible and that achieves a strictly lower objective
value than u‹. This, however, contradicts the optimality of u‹. We thus conclude thatř

aPA ξ‹
a “ κ, that is, the first complementary slackness condition is satisfied as well.

The values ξ‹ and d‹ can be computed in time OpA logSq since they rely on the quan-
tities qapξ‹

aq and q´1
a pu‹q that have been computed previously by Algorithm 5.1 and Algo-

rithm 6.1, respectively. The worst-case transition probabilities can also be retrieved from
the minimizers of qa defined in (5.1) since, as Theorem 6.7 implies, ξ‹ is optimal in the
minimization problem in (6.1).
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6.3 Bisection Scheme for Robust Bellman Policy Update

Recall that the robust policy evaluation MDP pS, Ā,p0, p̄, r̄, γq defined in Section 4 has
continuous action sets Āpsq “ Ps, s P S, and the transition function p̄ and the rewards r̄

defined as
p̄s,α “

ÿ

aPA

πs,a ¨ αa and r̄s,α “ ´
ÿ

aPA

πs,a ¨ αJ
a rs,a .

To solve this MDP via value iteration or (modified) policy iteration, we must compute the
Bellman optimality operator L defined as

pLvqs “ max
αPPs

 
r̄s,α ` γ ¨ p̄J

s,αv
(

“ max
αPp∆SqA

#
ÿ

aPA

πs,a ¨ αJ
a pγ ¨ v ´ rs,aq |

ÿ

aPA

‖αa ´ p̄s,a‖1,ws,a ď κs

+

“ ´ min
αPp∆SqA

#
ÿ

aPA

πs,a ¨ αJ
a prs,a ´ γ ¨ vq |

ÿ

aPA

‖αa ´ p̄s,a‖1,ws,a ď κs

+

. (6.13)

The continuous action space in this MDP makes it impossible to compute Lv by simply
enumerating the actions. The ordinary Bellman operator could be solved as a linear pro-
gram, but this suffers from the same computational limitations as its application to the
robust Bellman operator described earlier. Using similar ideas as in Section 6.1, we can
re-express the minimization problem in (6.13) as

min
ξPRA

`

#
ÿ

aPA

πs,a ¨ qs,apξaq |
ÿ

aPA

ξa ď κs

+

, (6.14)

where the function qs,a : R` Ñ R is defined for each s P S and a P A as

qs,apξq “ min
pP∆S

!
pJprs,a ´ γ ¨ vq | }p ´ p̄s,a}1,ws,a

ď ξ
)
.

Note that this definition of qs,a corresponds to (5.1) with a different choice of z.
At the first glance, problem (6.14) seems to be a special case of problem (6.1) from

Section 6.1, and one may posit that it can be solved using Algorithm 6.1. Unfortunately,
this is not the case. The lack of optimization over d precludes the transformations employed
in Theorem 6.2. However, problem (6.14) can still be solved efficiently by taking advantage
of the fact that it only contains a single constraint on ξ and that the functions qs,a are
piecewise linear and convex. To see this, note that the Lagrangian of (6.14) is

max
λPR`

min
ξPRA

`

#
ÿ

aPA

pπs,a ¨ qs,apξaqq ` λ ¨ 1Jξ ´ λκs

+

,

where the use of strong duality (Vanderbei, 1998) is justified since (6.14) can be reformulated
as a feasible linear program. The minimization can now be decomposed by actions:

max
λPR`

upλq “ max
λPR`

#
ÿ

aPA

min
ξaPR`

tπs,a ¨ qs,apξaq ` λξau ´ λκs

+

(6.15)
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The inner minimization problems over ξa, a P A, are convex and can be solved exactly by
bisection since the functions qs,a are piecewise linear. Likewise, the maximization over λ

can be solved exactly by bisection since the function u is concave and piecewise linear. The
lower bound on λ for the bisection method is 0. A sufficient upper bound on λ is a value ν

such that ´ν ď Bξ qs,ap0q for all a P A. As can be readily seen from (6.15), upλq ď upνq for
any λ ě ν. Finally, the optimal ξ in (6.14) can be recovered using a method similar to the
one described in Section 6.2.

7. Numerical Evaluation

We now compare the runtimes of PPI (Algorithm 4.1) combined with the homotopy method
(Algorithm 5.1) and the bisection method (Algorithm 6.1) with the runtime of a naive
approach that combines the robust value iteration with a computation of the robust Bellman
optimality operator L using a general LP solver. We use Gurobi 9.0, a state-of-the-art
commercial optimization package. All algorithms were implemented in C++, parallelized
using the OpenMP library, and used the Eigen library to perform linear algebra operations.
The algorithms were compiled with GCC 9.3 and executed on an AMD Ryzen 9 3900X CPU
with 64GB RAM. The source code of the implementation is available at http://github.
com/marekpetrik/craam2.

7.1 Experimental Setup

Our experiments involve two problems from different domains with a fundamentally different
structure. The two domains are the inventory management problem (Zipkin, 2000; Porteus,
2002) and the cart-pole problem (Lagoudakis and Parr, 2003). The inventory management
problem has many actions and dense transition probabilities. The cart-pole problem, on
the other hand, has only two actions and sparse transition probabilities. More actions and
dense transition probabilities make for much more challenging computation of the Bellman
update compared to policy evaluation.

Next, we give a high-level description of both problems as well as our parameter choice.
Because the two domains serve simply as benchmark problems and their full description
would be lengthy, we only outline their motivation, construction, and properties. To fa-
cilitate the reproducibility of the domains, CSV files with the precise specification of the
RMDPs being solved are available at http://github.com/marekpetrik/PPI_paper.

In our inventory management problem, a retailer orders, stores and sells a single product
over an infinite time horizon. Any orders submitted in a time period t are fulfilled at the
beginning of time period t`1 and are subject to deterministic fixed and variable costs. Any
items held in the limited-capacity inventory incur deterministic per-period holding costs.
The per-unit sales price is deterministic, but the per-period demand is stochastic. All
accrued demand in time period t is satisfied up to the available inventory. Any remaining
unsatisfied demand is backlogged at a per-unit backlogging penalty up to a given limit.
The states and actions of our MDP represent the inventory levels and the order quantities
in any given time period, respectively. The stochastic demands drive the stochastic state
transitions. The rewards are the sales revenue minus the purchase costs in each period.

In our experiments, the fixed and variable ordering costs are 5.99 and 1.0, respectively.
The inventory holding and backlogging costs are 0.1 and 0.15, respectively. We vary the
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inventory capacity I to study the impact of the problem’s size on the runtimes, while the
backlog limit is I{3. We also impose an upper limit of I{2 on each order. The corresponding
MDP thus has I ` I{3 “ 4{3 ¨ I states and I{2 actions. Note that due to the inventory
capacity limits, not all actions are available at every state. The unit sales price is 1.6. The
demand in each period follows the Gaussian distribution with a mean of I{2 and a standard
deviation of I{5 and is rounded to the closest integer. We use a discount factor of 0.995.

In our cart-pole problem, a pole has to be balanced upright on top of a cart that moves
along a single dimension. At any point in time, the state of the system is described by
four continuous quantities: the cart’s position and velocity, as well as the pole’s angle and
angular velocity. To balance the pole, one can apply a force to the cart from the left or from
the right. The resulting MDP thus accommodates a 4-dimensional continuous state space
and two actions. Several different implementations of this problem can be found in the
literature; in the following, we employ the deterministic implementation from the OpenAI
Gym. Again, we use a discount factor of 0.995.

Since the state space of our cart-pole problem is continuous, we discretize it to be
amenable to our solution methods. The discretization follows a standard procedure in
which random samples from the domain are subsampled to represent the discretized state
space. The transitions are then estimated from samples that are closest to each state. In
other words, the probability of transitioning from a discretized state s to another discretized
state s1 is proportional to the number of sampled transitions that originate near s and end
up near s1. The discretized transition probabilities are no longer deterministic, even though
the original problem transitions are.

The ambiguity sets are modified slightly in this section to ensure a more realistic eval-
uation. Assuming that the robust transition can be positive to any state of the RMDP
can lead to overly conservative policies. To obtain less conservative policies, we restrict our
ambiguity sets Ps,a and Ps from Section 3 to probability distributions that are absolutely
continuous with respect to the nominal distributions p̄s,a. Our sa-rectangular ambiguity
sets Ps,a thus become

Ps,a “
 
p P ∆S | }p ´ p̄s,a}1,ws,a ď κs,a, ps1 ď

P
p̄s,a,s1

T
@s1 P S

(
,

and we use a similar construction for our s-rectangular ambiguity sets Ps. We set the
ambiguity budget to κs,a “ 0.2 and κs “ 1.0 in the sa-rectangular and s-rectangular version
of our inventory management problem, respectively, and we set κs,a “ κs “ 0.1 in our cart-
pole problem. Anecdotally, the impact of the ambiguity budget on the runtimes is negligible.
We report separate results for uniform weights ws,a “ 1 and non-uniform weights ws,a that
are derived from the value function v. In the latter case, we choose weights pws,aqs1 that are
proportional to |vs1 ´ 1Jv{S|, which have been shown to optimize the percentile criterion
for uncertain MDPs (Behzadian et al., 2021). All weights ws,a are normalized so that their
values are contained in r0, 1s. Note that the simultaneous scaling of ws,a and κs,a does not
affect the solution.

Recall that the policy evaluation step in PPI can be accomplished by any MDP solu-
tion method. In our inventory management problem, whose instances have up to 1, 000
states, we use policy iteration and solve the arising systems of linear equations via the
LU decomposition of the Eigen library (Puterman, 2005). This approach does not scale
well to MDPs with S " 1, 000 states as the policy iteration manipulates matrices of di-
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SA-rectangular S-rectangular

Problem Ambiguity States LP Solver Alg. 5.1 LP Solver Alg. 6.1

Inventory Uniform 100 13.96 0.02 24.67 0.06
Inventory Weighted 100 13.85 0.75 21.36 0.86
Inventory Uniform 500 583.20 0.36 1,715.94 19.65
Inventory Weighted 500 440.35 20.69 655.00 36.24
Inventory Uniform 1,000 ą 10,000.00 20.00 ą 10,000.00 51.97
Inventory Weighted 1,000 4,071.47 109.27 3,752.21 163.32

Cart-pole Uniform 1,000 9.50 0.18 19.85 1.94
Cart-pole Weighted 1,000 12.70 1.93 32.80 1.90
Cart-pole Uniform 2,000 12.81 1.90 13.33 1.88
Cart-pole Weighted 2,000 12.04 2.03 13.08 1.95
Cart-pole Uniform 4,000 23.39 1.91 23.29 1.76
Cart-pole Weighted 4,000 19.96 2.05 21.16 2.14

Table 2: Runtime (in seconds) required by different algorithms to compute 200 steps of the
robust Bellman optimality operator.

mension S ˆ S. Therefore, in our cart-pole problem, whose instances have 1, 000 or more
states, we use modified policy iteration (Puterman, 2005) instead. We compare the per-
formance of our algorithms to the robust value iteration as well as the robust modified
policy iteration (RMPI) of Kaufman and Schaefer (2013). Recall that in contrast to PPI,
RMPI evaluates robust policies through a fixed number of value iteration steps. Since
the impact of the number of value iteration steps on the overall performance of RMPI is
not well understood, we fix this number to 1, 000 throughout our experiments. Finally,
we set ǫk`1 “ mintγ2ǫk, 0.5{p1 ´ γq ¨ }Lπk

vk ´ vk}8u in Algorithm 4.1, which satisfies the
convergence condition in Theorem 4.5.

7.2 Results and Discussion

Table 2 reports the runtimes required by our homotopy method (Algorithm 5.1), our bisec-
tion method (Algorithm 6.1) and Gurobi (LP Solver) to compute 200 steps of the robust
Bellman optimality operator L across all states s P S. We fixed the number of Bellman eval-
uations in this experiment to clearly separate the speedups achieved by a quicker evaluation
of the Bellman operator itself, studied in this experiment, from the speedups obtained by
using PPI in place of value iteration, studied in the next experiment. The computations are
parallelized over all available threads via OpenMP using Jacobi-style value iteration (Put-
erman, 2005). By construction, all algorithms identify the same optimal solutions in each
application of the Bellman operator. The computations were terminated after 10, 000 sec-
onds.

There are several important observations we can make from the results in Table 2.
First of all, that our algorithms outperform Gurobi by an order of magnitude for weighted
ambiguity sets and by two orders of magnitude for uniform (unweighted) ambiguity sets,
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SA-rectangular S-rectangular

Problem Ambiguity States VI RMPI PPI VI PPI

Inventory Uniform 100 0.12 0.03 0.01 3.52 0.15
Inventory Weighted 100 10.28 0.94 0.14 15.02 1.02
Inventory Uniform 500 1.39 0.06 0.14 24.69 2.71
Inventory Weighted 500 140.53 5.69 2.11 276.63 16.76
Inventory Uniform 1,000 8.65 0.23 0.59 217.90 13.98
Inventory Weighted 1,000 393.90 14.36 6.90 519.21 163.18

Cart-pole Uniform 1,000 0.03 0.06 0.03 0.80 0.15
Cart-pole Weighted 1,000 0.25 0.17 0.04 0.98 0.28
Cart-pole Uniform 10,000 0.32 0.26 0.13 8.40 1.06
Cart-pole Weighted 10,000 1.72 1.13 0.21 13.43 3.52
Cart-pole Uniform 20,000 0.44 0.54 0.29 16.24 2.40
Cart-pole Weighted 20,000 6.37 3.22 0.62 28.50 9.30

Table 3: Runtime (in seconds) required by different algorithms to compute an approxi-
mately optimal robust value function.

independent of the type of rectangularity. This impressive performance is because the
inventory management problem has many actions, which makes computing the Bellman
operator particularly challenging. The computation time also reflects that homotopy and
bisection methods have quasi-linear time complexities when used with uniform L1 norms.
It is remarkable that even with the simple cart-pole problem our algorithms are about
10 to 20 times faster than a state-of-the-art LP solver. In fact, our results indicate that
even moderately-sized RMDPs may be practically intractable when solved with generic LP
solvers.

Table 3 reports the runtimes required by the parallelized versions of the robust value
iteration (VI), the robust modified policy iteration (RMPI) and our partial policy iteration
(PPI) to solve our inventory management and cart-pole problems to approximate optimality.
To this end, we choose a precision of δ “ 40 (that is, }Lπk

vk ´ vk}8 ď 0.1), as defined
in Algorithm 4.1, for our inventory management problem, as well as a smaller precision
of δ “ 4 (that is, }Lπk

vk ´ vk}8 ď 0.01) for our cart-pole problem, to account for the
smaller rewards in this problem. All algorithms use the homotopy (Algorithm 5.1) and
the bisection method (Algorithm 6.1) to compute the robust Bellman optimality operator.
Note that RMPI is only applicable to sa-rectangular ambiguity sets. The computations
were terminated after 10, 000 seconds.

There are also several important observations we can make from the results in Table 3.
As one would expect, PPI in RMDPs behaves similarly to policy iteration in MDPs. It out-
performs value iteration in essentially all benchmarks, being almost up to 100 times faster,
but the margin varies significantly. The improvement margin depends on the relative com-
plexity of policy improvements and evaluations. In the sa-rectangular cart-pole problem,
for example, the policy improvement step is relatively cheap, and thus the benefit of em-
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ploying a policy evaluation is small. The situation is reversed in the s-rectangular inventory
management problem, in which the policy improvement step is very time-consuming. PPI
outperforms the robust value iteration most significantly in the sa-rectangular inventory
management problem since the policy evaluation step is much cheaper than the policy im-
provement step due to the large number of available actions. RMPI’s performance, on the
other hand, is more varied: while it sometimes outperforms the other methods, it is usu-
ally dominated by at least one of the competing algorithms. We attribute this fact to the
inefficient value iteration that is employed in the robust policy evaluation step of RMPI.
It is important to emphasize that PPI has the same theoretical convergence rate as the
robust value iteration, and thus its performance relative to the robust value iteration and
RMPI will depend on the specific problem instance and as well as the employed parameter
settings.

In conclusion, our empirical results show that our proposed combination of PPI and the
homotopy or bisection method achieves a speedup of up to four orders of magnitude for both
sa-rectangular and s-rectangular ambiguity sets when compared with the state-of-the-art
solution approach that combines a robust value iteration with a computation of the robust
Bellman operator via a commercial LP solver. Since our methods scale more favorably with
the size of the problem, their advantage is likely to only increase with larger problems that
what we considered here.

8. Conclusion

We proposed three new algorithms to solve robust MDPs over L1-ball uncertainty sets.
Our homotopy algorithm computes the robust Bellman operator over sa-rectangular L1-ball
uncertainty sets in quasi-linear time and is thus almost as efficient as computing the ordinary
Bellman operator. Our bisection scheme utilizes the homotopy algorithm to compute the
robust Bellman operator over s-rectangular L1-ball uncertainty sets, again in quasi-linear
time. Both algorithms can be combined with PPI, which generalizes the highly efficient
modified policy iteration scheme to robust MDPs. Our numerical results show significant
speedups of up to four orders of magnitude over a leading LP solver for both sa-rectangular
and s-rectangular ambiguity sets.

Our research opens up several promising avenues for future research. First, our homo-
topy method sorts the bases of problem (5.2) in quasi-linear time. This step could also be
implemented in linear time using a variant of the quickselect algorithm, which has led to
improvements in a similar context (Condat, 2016). Second, we believe that the techniques
presented here can be adapted to other uncertainty sets, such as L8- and L2-balls around
the nominal transition probabilities or uncertainty sets based on φ-divergences. Both the
efficient implementation of the resulting algorithms as well as the empirical comparison of
different uncertainty sets on practical problem instances would be of interest. Third, it
is important to study how our methods generalize to robust value function approximation
methods (Tamar et al., 2014). Finally, we believe that the study of robust MDPs under the
average reward setting is another interesting direction for future research.
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Appendix A. Properties of Robust Bellman Operator

We prove several fundamental properties of the robust Bellman policy update Lπ and the
robust Bellman optimality operator L over s-rectangular and sa-rectangular ambiguity sets.

Lemma A.1. For both s-rectangular and sa-rectangular ambiguity sets, the robust Bellman
policy update Lπ and the robust Bellman optimality operator L are γ-contractions under the
L8-norm, that is

}Lπx ´ Lπy}8 ď γ }x ´ y}8 and }Lx ´ Ly}8 ď γ }x ´ y}8 .

The equations Lπv “ v and Lv “ v have the unique solutions vπ and v‹, respectively.

Proof. See Theorem 3.2 of Iyengar (2005) for sa-rectangular sets and Theorem 4 of Wiese-
mann et al. (2013) for s-rectangular sets.

Lemma A.2. For both s-rectangular and sa-rectangular ambiguity sets, the robust Bellman
policy update Lπ and the robust Bellman optimality operator L are monotone:

Lπx ě Lπy and Lx ě Ly @x ě y .

Proof. We show the statement for s-rectangular ambiguity sets; the proof of sa-rectangular
uncertainty sets is analogous. Consider π P Π as well as x,y P R

S such that x ě y and
define

Fspp,xq “
ÿ

aPA

πs,a ¨ pJ
a prs,a ` γ ¨ xq .

The monotonicity of the robust Bellman policy update Lπ follows from the fact that

pLπxqs “ min
pPPs

Fspp,xq “ Fspp‹,xq ě Fspp‹,yq
(a)
ě pLπyqs @s P S ,

where p‹ P argminpPPs
Fspp,xq. The inequality (a) holds because Fspp‹, ¨q is monotone

since p‹ ě 0.
To prove the monotonicity of the robust Bellman optimality operator L, consider again

some x and y with x ě y and let π‹ be the greedy policy satisfying Ly “ Lπ‹y. We then
have that

pLyqs “ pLπ‹yqs ď pLπ‹xqs ď pLxqs,

where the inequalities follow from the (previously shown) monotonicity of Lπ‹ and the fact
that pLxqs “ pmaxπPΠ Lπxqs ě pLπ‹xqs.
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Lemmas A.1 and A.2 further imply the following two properties of Lπ and L.

Corollary A.3. For both s-rectangular and sa-rectangular ambiguity sets, the robust Bell-
man policy update Lπ and the robust Bellman optimality operator L satisfy v‹ ě vπ for
each π P Π.

Proof. The corollary follows from the monotonicity (Lemma A.2) and contraction properties
(Lemma A.1) of L and Lπ using standard arguments. See, for example, Proposition 2.1.2
in Bertsekas (2013).

Corollary A.4. For both s-rectangular and sa-rectangular ambiguity sets, the robust Bell-
man policy update Lπ and the robust Bellman optimality operator L satisfy for any v P R

S

that

}v‹ ´ v}8 ď
1

1 ´ γ
}Lv ´ v}8 and }vπ ´ v}8 ď

1

1 ´ γ
}Lπv ´ v}8 .

Proof. The corollary follows from the monotonicity (Lemma A.2) and contraction properties
(Lemma A.1) of L and Lπ using standard arguments. See, for example, Proposition 2.1.1
in Bertsekas (2013).

We next show that both Lπ and L are invariant when adding a constant to the value
function.

Lemma A.5. For both s-rectangular and sa-rectangular ambiguity sets, the robust Bellman
policy update Lπ and the robust Bellman optimality operator L are translation invariant for
each π P Π:

Lπpv ` ǫ ¨ 1q “ Lπv ` γǫ ¨ 1 and Lpv ` ǫ ¨ 1q “ Lv ` γǫ ¨ 1 @v P R
S , @ǫ P R

Proof. We show the statement for s-rectangular ambiguity sets; the proof of sa-rectangular
uncertainty sets is analogous. Fixing π P Π, v P R

S and ǫ P R, we have

pLπpv ` ǫ1qqs “ min
pPPs

ÿ

aPA

πs,a ¨ pJ
a prs,a ` γ ¨ rv ` ǫ ¨ 1sq

“ min
pPPs

ÿ

aPA

πs,a ¨ ppJ
a prs,a ` γ ¨ vq ` γǫq

“ γǫ ` min
pPPs

ÿ

aPA

πs,a ¨ pJ
a prs,a ` γ ¨ vq ,

where the first identity holds by definition of Lπ, the second is due to the fact that pJ
a 1 “ 1

since Ps Ď p∆SqA, and the third follows from the fact that
ř

aPA πs,a “ 1.
To see that Lpv ` ǫ ¨ 1q “ Lv ` γǫ ¨ 1, we note that

Lpv ` ǫ ¨ 1q “ Lπ1pv ` ǫ ¨ 1q “ Lπ1v ` γǫ ¨ 1 ď Lv ` γǫ ¨ 1 ,

where π1 P Π is the greedy policy that satisfies Lπ1pv ` ǫ ¨ 1q “ Lpv ` ǫ ¨ 1q, as well as

Lv ` γǫ ¨ 1 “ Lπ2v ` γǫ ¨ 1 “ Lπ2pv ` ǫ ¨ 1q ď Lpv ` ǫ ¨ 1q ,

where π2 P Π is the greedy policy that satisfies Lπ2v “ Lv.
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Our last result in this section shows that the difference between applying the robust
Bellman policy update Lπ to two value functions can be bounded from below by a linear
function.

Lemma A.6. For both s-rectangular and sa-rectangular ambiguity sets, there exists a
stochastic matrix P such that the robust Bellman policy update Lπ satisfies

Lπx ´ Lπy ě γ ¨ P px ´ yq ,

for each π P Π and x,y P R
S.

Proof. We show the statement for s-rectangular ambiguity sets; the proof of sa-rectangular
uncertainty sets is analogous. We have that

pLπx ´ Lπyqs “ min
pPPs

#
ÿ

aPA

πs,a ¨ pJ
a prs,a ` γ ¨ xq

+

´ min
pPPs

#
ÿ

aPA

πs,a ¨ pJ
a prs,a ` γ ¨ yq

+

ě min
pPPs

#
ÿ

aPA

`
πs,a ¨ pJ

a prs,a ` γ ¨ xq
˘

´
ÿ

aPA

`
πs,a ¨ pJ

a prs,a ` γ ¨ yq
˘
+

“ min
pPPs

#
ÿ

aPA

πs,a ¨ γ ¨ pJ
a px ´ yq

+

.

The result follows by constructing a stochastic matrix P such that its s-th row is
ř

aPA πs,a ¨
pJ
a where pa is the optimizer in the last minimization above.

Appendix B. Bisection Algorithm with Quasi-Linear Time Complexity

We adapt Algorithm 6.1 to determine the optimal solution to problem (6.2) in quasi-linear
time without dependence on any precision ǫ. Recall that Algorithm 5.1 computes the
breakpoints pξat qt, t “ 0, . . . , Ta ` 1 and objective values pqat qt, t “ 0, . . . , Ta ` 1, Ta ď S2, of
each function qa, a P A. Moreover, each inverse function q´1

a is also piecewise linear with
breakpoints pqat qt, t “ 0, . . . , Ta ` 1 and corresponding function values ξat “ q´1

a pqat q, as well
as q´1

a puq “ 8 for u ă qaTa`1. We use this data as input for our revised bisection scheme in
Algorithm B.1.

Algorithm B.1 first combines all breakpoints qat , t “ 0, . . . Ta`1 and a P A, of the inverse
functions q´1

a , a P A, to a single list K in ascending order. It then bisects on the indices of
these breakpoints. The result is a breakpoint pair pkmin, kmaxq satisfying kmax “ kmin ` 1
as well as κ P

“ř
aPA q´1

a pq̂kmin
q,
ř

aPA q´1
a pq̂kmax

q
‰
. Since none of the functions q´1

a have a
breakpoint between q̂kmin

and q̂kmax
, finding the optimal solution u‹ to problem (3.7) then

reduces to solving a single linear equation in one unknown, which is done in the last part
of Algorithm B.1.

The complexity of Algorithm B.1 is dominated by the merging of the sorted lists
pqat qt“0,...Ta`1, a P A, as well as the computation of s inside the while-loop. Merging A

sorted lists, each of size less than or equal to CS, can be achieved in time OpCSA logAq.
However, each one of these lists needs to be also sorted in Algorithm 5.1 giving the overall
complexity of OpCSA logCSAq. Then, computing q´1

a at a given point can be achieved in
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Input: Breakpoints pqat qt“0,...,Ta`1, of all functions qa, a P A
Output: The optimal solution u‹ to the problem (6.2)
Combine qat , t “ 0, . . . , Ta and a P A, to a single list K “ pq̂1, . . . , q̂Kq in ascending
order, omitting any duplicates ;

// Bisection search to find the optimal line segment pkmin, kmaxq
kmin Ð 1; kmax Ð K ;
while kmax ´ kmin ą 1 do

Split tkmin, . . . , kmaxu in half: k Ð roundppkmin ` kmaxq{2q ;
Calculate the budget required to achieve u “ q̂k: s Ð

ř
aPA q´1

a pq̂kq ;
if s ď κ then

u “ q̂k is feasible: update the feasible upper bound: kmax Ð k ;
else

u “ q̂k is infeasible: update the infeasible lower bound: kmin Ð k ;
end

end

// All q´1
a are affine on pq̂kmin

, q̂kmax
q

umin Ð q̂kmin
; umax Ð q̂kmax

;
smin Ð

ř
aPA q´1

a puminq; smax Ð
ř

aPA q´1
a pumaxq ;

α Ð pκ ´ sminq{psmax ´ sminq ;
u‹ Ð p1 ´ αq ¨ umin ` α ¨ umax;
return u‹

Algorithm B.1: Quasi-linear time bisection scheme for solving (3.7)
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time OplogCSq, so that s in an individual iteration of the while-loop can be computed in
time OpA logCSq. Since the while-loop is executed OplogCSAq many times, computing s

has an overall complexity of OpA logCS logCSAq. We thus conclude that Algorithm B.1
has a complexity of OpCSA logA ` A logCS logCSAq.

Appendix C. Computing the Bellman Operator via Linear Programming

In this section we present an LP formulation for the robust s-rectangular Bellman optimality
operator L defined in (3.7):

pLvqs “ max
dP∆A

min
pPp∆SqA

#
ÿ

aPA

da ¨ pJ
a za |

ÿ

aPA

‖pa ´ p̄s,a‖1,ws,a ď κs

+

Here, we use za “ rs,a`γ ¨v in the objective function. Employing an epigraph reformulation,
the inner minimization problem can be re-expressed as the following linear program:

minimize
pPRAˆS ,θPRAˆS

ÿ

aPA

da ¨ zJ
a pa

subject to 1Jpa “ 1 @a P A rxas

pa ´ p̄a ě ´θa @a P A ryna s

p̄a ´ pa ě ´θa @a P A rypas

´
ÿ

aPA

wJ
a θa ě ´κ rλs

p ě 0, θ ě 0

For ease of exposition, we have added the dual variables corresponding to each constraint
in brackets. This linear program is feasible by construction, which implies that its optimal
value coincides with the optimal value of its dual. We can thus dualize this linear program
and combine it with the outer maximization to obtain the following linear programming
reformulation of the the robust s-rectangular Bellman optimality operator L:

maximize
dPRA,xPRA, λPR

ypPRSˆA,ynPRSˆA

ÿ

aPA

´
xa ` p̄J

a ryn
a ´ yp

as
¯

´ κ ¨ λ

subject to 1Jd “ 1, d ě 0

´yp
a ` yn

a ` x ¨ 1 ď daza @a P A

yp
a ` yn

a ´ λ ¨ wa ď 0 @a P A

yp ě 0 yn ě 0

λ ě 0

This problem has OpSAq variables and an input bitlength of OpSAq. As such, its theoretical
runtime complexity is OpS4.5A4.5q (Karmarkar, 1984).
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