
Fast Algorithms for L∞-Constrained

S-Rectangular Robust MDPs

Bahram Behzadian
University of New Hampshire

bahram@cs.unh.edu

Marek Petrik
University of New Hampshire

mpetrik@cs.unh.edu

Chin Pang Ho
City University of Hong Kong
clint.ho@cityu.edu.hk

Abstract

Robust Markov decision processes (RMDPs) are a useful building block of robust
reinforcement learning algorithms but can be hard to solve. This paper proposes
a fast, exact algorithm for computing the Bellman operator for S-rectangular
robust Markov decision processes with L∞-constrained rectangular ambiguity
sets. The algorithm combines a novel homotopy continuation method with a
bisection method to solve S-rectangular ambiguity in quasi-linear time in the
number of states and actions. The algorithm improves on the cubic time required by
leading general linear programming methods. Our experimental results confirm the
practical viability of our method and show that it outperforms a leading commercial
optimization package by several orders of magnitude.

1 Introduction

Markov decision processes (MDPs) are a powerful framework for dynamic decision-making problems
and reinforcement learning (Bertsekas and Tsitsiklis, 1996; Puterman, 2005; Sutton and Barto, 2018).
The MDP model assumes that the exact transition probabilities and rewards are available. However,
these transition probabilities are typically unknown and must be estimated from sampled data. Such
estimations are prone to errors, and the MDP’s solution is sensitive to the introduced statistical errors.
In particular, the quality of the optimal policy degrades significantly even with small errors in the
transition probabilities (Le Tallec, 2007).

Robust MDPs (RMDPs) mitigate MDPs’ sensitivity to estimation errors by computing an optimal
policy for the worst plausible realization of the transition probabilities. This set of plausible transition
probabilities is known as the ambiguity set. In this paper, we study RMDPs with S-rectangular
ambiguity sets, which can be solved in polynomial time (Hansen, Miltersen, and Zwick, 2013).
However, computing the worst-case realization of transition probabilities often requires solving a
linear program (LP) or another convex optimization problem. Modern solvers are powerful and
efficient, but as the problem size grows, solving an LP for every state becomes computationally
prohibitive (Ho, Petrik, and Wiesemann, 2018).

Most prior work has focused on RMDPs with L1-constrained ambiguity sets because both convenient
concentration inequalities (Weissman et al., 2003; Petrik, Ghavamzadeh, and Chow, 2016; Russel,
Gu, and Petrik, 2019) and fast algorithms (Iyengar, 2005; Petrik and Subramanian, 2014; Ho, Petrik,
and Wiesemann, 2020) exist for this scenario. The concentration inequalities play an important
role in the data-driven construction of high-confidence RMDPs. However, ambiguity sets defined
by the L∞-norm are more natural and interpretable by human modelers (Givan, Leach, and Dean,

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

2000; Delgado et al., 2016), and can significantly outperform L1-based ambiguity sets in many
circumstances (Behzadian et al., 2021). Unfortunately, RMDPs with S-rectangular ambiguity sets
defined in terms of the L∞ ball can currently be solved only using general-purpose LP solvers, which
are complex and slow.

As our main contribution, we propose a new, fast algorithm for solving RMDPs with L∞-constrained
ambiguity sets. Our algorithm combines a new homotopy continuation method with a bisection
method to achieve quasi-linear O(SA logS) time complexity with respect to the number of states S
and actions A. This computational complexity compares favorably with the cubic O((SA)3.5) time
complexity of general interior-point LP algorithms. We identify new simplifying properties of the
robust optimization problem defined over L∞ balls to develop our algorithms.

Although bisection and homotopy methods have been used previously in the context of robust MDPs,
their use and assumptions differ significantly from this work. A bisection method was used to solve
SA-rectangular RMDPs (Nilim and El Ghaoui, 2005), but their approach does not generalize to
S-rectangular RMDPs that we target. Homotopy and bisection methods have been used to solve
L1-constrained ambiguity sets (Ho, Petrik, and Wiesemann, 2018, 2020) but these methods are
based on sparsity properties of the L1-norm, which do not hold for the L∞-norm. We elaborate
on this important difference after we introduce our algorithm. The existing efficient algorithms are
developed for the SA-rectangular RMDPs with L∞ balls (Givan, Leach, and Dean, 2000), but they do
not generalize to S-rectangular RMDPs. Developing fast optimization algorithms for S-rectangular
RMDPs is especially challenging because optimal policies may need to be randomized.

Several new, fast methods have been proposed recently for solving RMDPs more efficiently. They
propose replacing the standard value and policy iteration methods with more efficient algorithms,
such as forms of modified policy iteration (Kaufman and Schaefer, 2013; Ho, Petrik, and Wiesemann,
2020) or gradient descent (Grand-Clément and Kroer, 2021). Most of these accelerated methods can
further benefit from the fast Bellman operator algorithms that we propose in this work.

The remainder of the paper is organized as follows: Section 2 describes the basic robust MDP
framework. Then, Section 3 proposes a new homotopy method for solving SA-rectangular ambiguity
sets, which serves as a building block for our main contribution. In Section 4, we propose a bisection
method that can solve, in combination with the homotopy method, RMDPs with S-rectangular
ambiguity sets. Finally, Section 5 presents experimental results that show that our method is over
1000 times faster than using Gurobi, a leading commercial linear solver, when solving RMDPs with
hundreds of states.

Notation: We reserve lower- and uppercase bold characters for vectors and matrices respectively.
The symbol ∆x denotes the probability simplex in R

x
+. Finally, we use I, 1, 0 to denote an identity

matrix, a vector of ones, and a vector of zeros respectively.

2 Preliminaries: Robust MDPs

This section surveys the basic properties of RMDPs; for example, please see (Iyengar, 2005; Wiese-
mann, Kuhn, and Rustem, 2013; Ho, Petrik, and Wiesemann, 2020) for more details. We consider
a finite RMDP model with states S = {1, . . . , S} and actions A = {1, . . . , A}. The agent takes an
action a ∈ A in state s ∈ S, it receives a reward rs,a ∈ R, and it transitions to the next state s′ ∈ S
with a probability of ps,a,s′ . The transition probabilities ps,a,s′ are unknown but are restricted to be

in an ambiguity set P ⊆ (∆S)S×A. The initial state is distributed according to ppp0 ∈ ∆S .

We aim to compute a policy π : S → ∆A from the set of stationary randomized policies Π that
maximizes the expected γ-discounted return ρ : Π×P → R for the worst-case transition probabilities:

max
π∈Π

min
ppp∈P

ρ(π,ppp) . (1)

Here, ρ(π,ppp) is the standard discounted infinite-horizon return for a policy π defined as ρ(π,ppp) =
E
[
∑∞

t=0
γt · r(St, At) | At ∼ π(St), St+1 ∼ pppSt,At

, S0 ∼ ppp0
]

. The optimization problem in (1)
can be seen as a zero-sum game, where adversarial nature chooses transition probabilities from
the ambiguity set in order to minimize the agent’s return. Since solving the general optimization
problem in (1) is NP-hard (e.g., (Wiesemann, Kuhn, and Rustem, 2013)), most research has focused
on RMDPs with S-rectangular and SA-rectangular ambiguity sets that can be solved in polynomial
time (Iyengar, 2005; Le Tallec, 2007; Wiesemann, Kuhn, and Rustem, 2013).

2

SA-rectangular ambiguity sets P are defined as Cartesian products of sets Ps,a ⊆ ∆S for each state

s and action a as P =
{

ppp ∈ (∆S)S×A | ppps,a ∈ Ps,a, s ∈ S, a ∈ A
}

. The intuitive interpretation
of SA-rectangularity is that nature can choose the worst transition probabilities from sets Ps,a for
each state s and action a independently. We focus on ambiguity sets bounded by L∞-norm distance
from nominal transition probabilities p̄pps,a ∈ ∆S defined as

Ps,a =
{

ppps,a ∈ ∆S |
∥

∥p̄pps,a − ppps,a
∥

∥

∞
≤ κs,a

}

, (2)

where κs,a ≥ 0 is the robustness budget, and the nominal transition probability p̄pps,a is typically
estimated from samples of state transitions.

To streamline the definition of the robust Bellman operator, we follow the notation of Ho, Petrik,
and Wiesemann (2018) and define a nature response function q : R+ × R

S → R that represents the
nature’s response for a particular state s, action a, and budget ξ as

qs,a(ξ,vvv) = min
ppp∈∆S

{

rs,a + γ · pppTvvv |
∥

∥p̄pps,a − ppp
∥

∥

∞
≤ ξ
}

. (3)

Then, the SA-rectangular robust Bellman operator T : RS → R
S for a value function vvv ∈ R

S is

(Tvvv)s = max
a∈A

min
ξ≤κs,a

qs,a(ξ,vvv) . (4)

The optimal value function vvv⋆ ∈ R
S must satisfy the robust Bellman optimality equation vvv⋆ = Tvvv⋆

and can be computed using value iteration, policy iteration, or other methods (Iyengar, 2005; Ho,
Petrik, and Wiesemann, 2020; Kaufman and Schaefer, 2013; Grand-Clément and Kroer, 2021).

S-rectangular ambiguity sets relax the assumptions of SA-rectangular sets and compute less con-
servative policies but with a higher computational complexity (Wiesemann, Kuhn, and Rustem,
2013). They are defined as Cartesian products of sets Ps ⊆ (∆S)A for each state s as

P =
{

ppp ∈ (∆S)S×A | (ppps,a)a∈A ∈ Ps, ∀s ∈ S
}

. As with SA-rectangular sets, we also consider
marginal ambiguity sets Ps defined in terms of the L∞-norm as

Ps =

{

(ppps,a)a∈A ∈ (∆S)A |
∑

a∈A

∥

∥p̄pps,a − ppps,a
∥

∥

∞
≤ κs

}

,

where κs ≥ 0 is the robustness budget and p̄pps,a is the nominal transition probability. The important
distinction from the SA-rectangular setting is that κs depends only on the state and not the action.
The S-rectangular Bellman operator is then defined as

(Tvvv)s = max
ddd∈∆A

min
ξ≤κs

∑

a∈A

da · qs,a(ξ,vvv) . (5)

Notice that the S-rectangular Bellman operator allows for randomizing actions through the proba-
bility distribution ddd, which improves robustness but introduces additional significant computational
complexity (Wiesemann, Kuhn, and Rustem, 2013; Ho, Petrik, and Wiesemann, 2020).

The vast majority of RMDP methods employ value iteration and policy iteration principles and require
computing the robust Bellman operator many times during their run (Iyengar, 2005; Wiesemann,
Kuhn, and Rustem, 2013; Ho, Petrik, and Wiesemann, 2020). Therefore, it is important that it can be
computed efficiently. In the remainder of the paper, we develop new quasi-linear time algorithms for
computing the robust Bellman operator.

3 Computing the SA-Rectangular Bellman Operator in Linear Time

In this section, we develop a new quasi-linear time algorithm for computing the SA-rectangular
robust Bellman operator defined by the L∞-norm. This entails solving the optimization in (4). The
algorithm developed in this section also serves as the major building block of the S-rectangular
algorithm described in Section 4. The remainder of the section is organized as follows: Section 3.1
first analyzes the LP formulation of the function q, and, then, Section 3.2 uses these properties to
develop a new, fast homotopy continuation algorithm.

3

−1

0

1

2

0.0 0.3 0.6 0.9

Size of ambiguity set: ξ

R
o
b
u
s
t
Q

−
fu

n
c
ti
o
n
:
q

(ξ
)

Figure 1: Function q(ξ) in Example 3.1.

●

●

●

●

●

● ●

0.00

0.25

0.50

0.75

1.00

0.0 0.3 0.6 0.9

Size of ambiguity set: ξ

T
ra

n
s
it
io

n
 p

ro
b
a
b
ili

ty
:
p

i∗ Index

● 0

1

2

3

4

5

Figure 2: Probabilities ppp⋆(ξ) in Example 3.1.

Computing the SA-rectangular robust Bellman operator for a fixed state s, action a, and a value
function vvv requires one to evaluate the nature response function qs,a(ξ,vvv) in (3). Because the symbols
s, a,vvv are fixed throughout this section, we omit them in the notation. For example, we use q(ξ)
instead of qs,a(ξ,vvv) and p̄pp in place of p̄pps,a. To further eliminate clutter, let zzz = rs,a · 111 + γ · vvv. Then,
the optimization problem in (3) can be formulated as the following parametric LP:

q(ξ) = min
ppp∈∆S

{

pppTzzz | ‖p̄pp− ppp‖∞ ≤ ξ
}

= min
ppp∈RS

{

zzzTppp | 1Tppp = 1, −ξ ≤ pi − p̄i ≤ ξ, pi ≥ 0, i = 1, . . . , S
}

.
(6)

The remainder of this section develops fast algorithms for solving (6) for all values ξ ≥ 0.

3.1 Properties of Nature Response Function q

The LP in (6) can be solved using generic solvers, like Gurobi or Mosek, but these are impractically
slow for solving RMDPs. The optimization in (6) can also be solved in quasi-linear time for any
fixed ξ ≥ 0, as we summarize in Appendix C. The known quasi-linear algorithm is, unfortunately,
insufficient for solving the S-rectangular robust Bellman operator in Section 4. In this section, we
prove results that pave the way for solving (6) for all ξ ≥ 0 simultaneously in quasi-linear time,
which enables efficient algorithms for both S- and SA-rectangular RMDPs.

It will be convenient to use ppp⋆(ξ) to refer to an optimal solution in (6). To avoid unnecessary
technicalities, we assume that all elements of zzz are distinct, which guarantees that the optimal solution
ppp⋆(ξ) is unique. In practice, one may add an arbitrarily small value to the elements of zzz to ensure that
they are all distinct.

To get some intuition into the form of the nature response function q(ξ) and its optimal solution
ppp⋆(ξ), consider the following simple example.

Example 3.1. Consider an RMDP with six states, one action, zzz = (−1, 0, 1, 2, 3, 4)T, and nominal

transition probabilities p̄pp = (0.0, 0.1, 0.3, 0.1, 0.2, 0.3)T. The functions q(ξ) and ppp⋆(ξ) are depicted
in Figures 1 and 2, where Figure 2 shows the evolution of each pi(ξ) using a different color for each
i.

The following property of the function q is indispensable for our analysis and shows that q(ξ) is
always of the form depicted in Figure 1. It follows from standard LP properties and is proved
in Appendix A.1.

Lemma 3.2. The function q(ξ) is continuous, piecewise linear, non-increasing, and convex in ξ.

To develop an efficient algorithm, we now analyze the structure of the bases of the LP (6). Recall
that a basis is a subset of S linearly independent constraints in the LP, which must hold with equality.
There are S constraints included in each basis because S is the number of optimization variables.
Note that constraints may be active (or violated) without being included in the basis.

To represent a basis in (6), we use setsRB ,DB ,NB , TB ⊆ {1, . . . , S} to indicate which constraints
are included in the basis with their meanings summarized in Table 1. If i ∈ DB , we call it
a donor, if i ∈ RB , we call it a receiver, and if i ∈ NB , we call it a none. The set TB =
{1, . . . , S} \ RB \ DB \ NB represents the remaining indexes, and i ∈ TB is called a trader.
Lemma 3.4 below justifies the names for these sets.

4

Index i ∈ Constraints in B

RB (receiver) pi − p̄i ≤ ξ in B
DB (donor) p̄i − pi ≤ ξ in B
NB (none) pi ≥ 0 in B

Figure 3: Composition of B for i ∈ S .

ξ2ξ2ξ2ξ1ξ1ξ1

B0B0B0

B1B1B1

B2B2B2

0.5

1.0

0.0 0.1 0.2 0.3 0.4 0.5

Size of ambiguity set: ξ

R
o

b
u

s
t

Q
−

fu
n

c
ti
o

n
:
q

(ξ
)

Figure 4: An illustration of Algorithm 1.

Our homotopy algorithm will leverage the specific behavior of the optimal solution ppp⋆(ξ) as a function
of ξ. Because each basis B represents a set of S linearly independent inequalities with S variables,
there exists a unique solution pppB(ξ) for any value ξ. Note that pppB(ξ) need not be optimal or feasible.

The following lemma establishes the properties of the bases in (6) that we need to consider in our
optimization; its proof can be found in Appendix A.1.

Lemma 3.3. Suppose that ppp⋆ is optimal in (6) for some ξ ≥ 0. Then, there exists a basis B such that
(i) ppp⋆ = pppB(ξ), (ii) sets RB ,DB ,NB , TB do not intersect, (iii) |RB | + |DB | + |NB | + |TB | = S,
(iv) |TB | = 1, and (v) zi < zj < zk for each i ∈ RB , j ∈ TB , k ∈ DB ∪NB .

Lemma 3.3 is important because it limits the bases relevant to the optimization, which is crucial for
building fast algorithms. In particular, it shows that the setsR,D,N , T partition the set S , and there
is always exactly one trader. The lemma also shows that z coefficients for receivers are smaller than
the coefficient for the trader, which is smaller than the coefficients for donors and nones.

The following lemma establishes the rate of change of the linear function pppB(ξ), which is the last
necessary component for our homotopy algorithm. The lemma’s proof is in Appendix A.1.

Lemma 3.4. The derivatives ṗpp = ∇ξ pppB(ξ) for any basis B that satisfies the properties in Lemma 3.3
are equal to

ṗi = 1 if i ∈ RB , ṗi = −1 if i ∈ DB , ṗi = 0 if i ∈ NB , ṗi = |DB | − |RB | if i ∈ TB .

for i ∈ S . Moreover, the slope is q̇ = d/dξ qB(ξ) =
∑

i∈RB
zi −

∑

j∈DB
zj +

∑

τ∈TB
ṗτzτ .

Note that Lemma 3.3 shows that each i ∈ S is either a receiver, a donor, a trader, or none. Lemma 3.4
then shows that with an increasing ξ, a donor donates its probability mass, a receiver receives
probability mass, a trader either donates or receives at a variable rate, and a none remains unchanged.

3.2 Homotopy Algorithm

We are now ready to describe the proposed homotopy method and prove its correctness and complexity.
Algorithm 1 summarizes a conceptual version of the homotopy algorithm. As we discuss below, one
needs to avoid computing the full gradient∇ξ pppB(ξ) to achieve quasi-linear time complexity. The
complete algorithm with quasi-linear runtime is described in Algorithm 3 in Appendix A.2.

The main idea of Algorithm 1 is simple: it iteratively computes the linear segments of q(ξ) for all
ξ ≥ 0. The algorithm starts with ξ = 0, where the optimal solution is ppp0 = p̄pp with objective value
q0 = pppT0zzz. Then, the algorithm tracks the optimal bases in q(ξ) as ξ increases. When the pppBt

(ξ)
becomes infeasible with the increasing ξ, the algorithm finds a new optimal basis Bt+1 and continues
until it arrives at a basis with d/dξ q(ξ′) = 0; the function q is constant for all ξ ≥ ξ′. Since q(ξ) is
piecewise linear in ξ (see Lemma 3.2), we obtain its full description from all optimal bases.

The following theorem proves the correctness of Algorithm 1. Informally, the theorem shows that the
function q is piecewise linear with breakpoints (points of non-linearity) only at ξt, t = 1, . . . , T + 1.
Note that ξT+1 = 1 because this is the upper bound on the L∞-norm of a difference of two discrete
probability distributions, and, as a result, the function q(ξ) is constant for ξ > 1. The proof can be
found in Appendix A.1.

5

Algorithm 1 Homotopy method to compute q(ξ)

1: input: Objective zzz, and nominal probabilities p̄pp ;
2: output: Breakpoints (ξt)t=0,...,T+1 and (qt)t=0,...,T+1 such that qt = q(ξt) ;

3: Initialize ξ0 ← 0, t← 0, ppp0 ← p̄pp and q0 ← q(ξ0) = pppT0zzz, τ0 = ⌈S/2⌉ and basis B0 such that:
4: TB0

= {τ0}, RB0
= {i | i < τ0}, DB0

= {j | j > τ0}, NB0
= {};

5: while q̇t < 0 do
6: Compute maximum step size for Bt to remain feasible (TBt

= {τt}):
7: ∆ξt ← max {ξ ≥ 0 | pppt + ξ · ∇ξ pppBt

(ξt) ≥ 000, |(pppt + ξ · ∇ξ pppBt
(ξt)− p̄pp)τt | ≤ ξt + ξ} ;

8: Update breakpoints:
9: pppt+1 ← pppt +∆ξt · ∇ξ pppBt

(ξt) ; qt+1 ← pppTt+1zzz; ξt+1 ← ξt +∆ξt;
10: Let Bt+1 ← next basis with the steepest slope (see Lemma 3.7 and Table 1);
11: Let t← t+ 1 ;
12: end while
13: Let ξT+1 ← 1 and qT+1 ← qT ;
14: return: (ξt)t=0,...,T+1, and (qt)t=0,...,T+1

Type Bt+1 DBt+1
RBt+1

TBt+1
NBt+1

1: D → N B̂1 DBt
\ {l} RBt

TBt
NBt

∪ {l}
2: T → N B̂2 DBt

RBt
\ {m} {m} NBt

∪ TBt

3: T → D B̂3 DBt
∪ TBt

RBt
\ {m} {m} NBt

Table 1: Possible types of basis change at a breakpoint ξt+1 described in Lemma 3.7.

Theorem 3.5. Suppose that Algorithm 1 returns (ξt)t=0,...,T+1 and (qt)t=0,...,T+1. Then q(α · ξt +
(1− α) · ξt+1) = α · q(ξt) + (1− α) · q(ξt+1) for α ∈ [0, 1] and t = 0, . . . , T + 1.

We will refer to Figure 4 in order to provide the intuition that underlies the construction of Algorithm 1
and its correctness. The figure depicts an example state of Algorithm 1 at t = 2 and Line 10. The
solid lines show the values qB1

and qB2
when they are feasible and optimal. The dashed lines indicate

when the bases are infeasible or suboptimal at each one of the breakpoints ξ1, ξ2. The colored lines
at ξ2 indicate the slopes for the possible candidates for B2. The algorithm chooses a basis with the
minimal slope.

The correctness of Algorithm 1 follows from the following three lemmas. The first lemma shows that
the algorithm chooses the initial basis with the minimum possible slope.

Lemma 3.6. The basis B0 constructed in Line 3 of Algorithm 1 is feasible at ξ = 0 and has a steeper
slope than any other basis B that satisfies the conditions of Lemma 3.3:

d/dξ qB0
(0) ≤ d/dξ qB(0) .

The second lemma shows that the next basis will be selected according to one of the rules in Table 1.

Lemma 3.7. Let a basis Bt be optimal for ξt+1 in Algorithm 1, such that ppp⋆(ξt+1) = pppBt
(ξt+1) and

q(ξt+1) = qBt
(ξt+1). Assume that pppBt

(ξ) is infeasible for ξ > ξt+1. If B are all bases feasible for
some ξ > ξt, then one with the steepest slope can be constructed as

argmin
B∈B

d

dξ
q(ξt+1) ∋

B̂1 if (pppBt
(ξt+1))l = 0, for some l ∈ DBt

B̂2 if (pppBt
(ξt+1))τ = 0, and TBt

= {τ}

B̂3 if (p̄pp− pppBt
(ξt+1))τ = ξt+1, and TBt

= {τ}

,

where B̂1, B̂2, B̂3 are defined in Table 1 and m ∈ argmaxi∈RBt
zi.

Lemma 3.7 shows that there are three possible types of basis change; any other possible choice of the
basis would contradict the continuity of q(ξ) (Lemma 3.2). Recall also that Lemma 3.3 shows that
there is always exactly one trader. The first type of basis change occurs when pl for a donor l ∈ D
reaches zero; the donor turns into a none in the new basis. The second type of basis change occurs

6

when the trader probability mass becomes zero; the trader then turns into a none, and the receiver
with the largest z value becomes the new trader. The third type of basis change happens when the
trader’s gradient satisfies d/dξ pτ (ξ) < −1 and its probability mass reaches to its lower bound for a
given ξ, making the basis infeasible for greater values of ξ. The trader then becomes a donor, and,
again, the receiver with the largest z value becomes the new trader.

Finally, the third lemma shows that the optimal basis Bt identified at ξt remains feasible until ξt+1.
Note that the convexity of q(ξ) implies that the feasible basis also remains optimal.

Lemma 3.8. If Bt is feasible and optimal at ξt in Algorithm 1, then it is also optimal on the interval
[ξt, ξt +∆ξt] computed in Line 6 of Algorithm 1.

We now turn to the computational complexity of Algorithm 3. As the following theorem shows, the
number of iterations T in Algorithm 1 is at most O(S). Unfortunately, keeping track of pppt in each
iteration of Algorithm 1 requires alsoO(S) time leading to the overall time complexity ofO(S2). To
adapt Algorithm 1 to run in quasi-linear time, Algorithm 3, in Appendix A.2, generates the necessary
values ξt, qt without tracking the complete pppt values. Its runtime is quasi-linear because it needs to
sort the values of zzz to perform the optimization in Line 10 in constant time.

Theorem 3.9. Algorithm 1 terminates in at most O(S) iterations and can be adapted to run in
O(S logS) time (see Algorithm 3 in Appendix A.2).

We conclude by discussing the relationship with the homotopy method proposed for solving RMDPs
with the L1 ambiguity sets (Ho, Petrik, and Wiesemann, 2018). Although our algorithm is also a
homotopy method, it is based on analysis that departs significantly from earlier work. The simplifying
properties for the L∞ ambiguity sets differ significantly from the L1-norm. When the ambiguity
sets are defined as L1 balls, only two components of ppp change at the time. Figure 2 illustrates that
when the ambiguity sets are L∞ balls, all components of ppp may change with the increasing ξ. The
fast algorithm for the L∞-constrained RMDP relies on the more subtle structure of the optimal bases
described in Lemma 3.3, which leads to a more complex algorithm.

4 Computing the S-Rectangular Bellman Operator in Linear Time

In this section, we propose a fast algorithm for computing the robust Bellman operator (5) for
S-rectangular RMDPs. We assume a fixed state s ∈ S and omit the subscripts throughout the section.
For instance, the nominal probabilities for state s and action a are denoted by p̄ppa ∈ ∆A. We also
assume a fixed value function vvv ∈ R

S and let zzza = rs,a · 111 + γ · vvv for a ∈ A.

The fast algorithm for computing the S-rectangular robust Bellman operator builds on Algorithm 1.
As Theorem 3.9 shows, the function qa defined in (3) is piecewise linear with O(S) linear segments
that can be computed efficiently by Algorithm 3. Since qa is piecewise linear, it is easy to construct
its inverse just by swapping ξt and qt to get the following function:

q−1
a (u) = min

ppp∈∆S

{

‖ppp− p̄ppa‖∞ | pppTzzza ≤ u
}

, ∀a ∈ A. (7)

The function q−1
a returns the budget that nature needs to achieve a response u. Using the function

q−1
a , we can reformulate the S-rectangular robust Bellman operator as:

(Tvvv)s = max
ddd∈∆A

min
ξξξ∈R

A
+

{

∑

a∈A

da · qa(ξa) |
∑

a∈A

ξa ≤ κ

}

= min
u∈R

{

u |
∑

a∈A

q−1
a (u) ≤ κ

}

. (8)

The correctness of this formulation follows by standard duality arguments and is proved in Lemma A.3
in Appendix A.3.

The optimization in (8) is remarkable because its objective is a one-dimensional function with one
constraint. A natural algorithm to use with such an optimization problem is the bisection method
outlined in Algorithm 2 (see Algorithm 4 in Appendix A.3 for a more detailed algorithm). Algorithm 2
keeps an interval [umin, umax] such that the optimal u⋆ satisfies that u⋆ ∈ [umin, umax]. In every
time step, the algorithm bisects the interval [umin, umax] in half and updates umin, umax in order to
preserve that u⋆ ∈ [umin, umax]. One may think of umin as the maximal known infeasible u in (8)
and of umax as the minimal known feasible u in (8).

7

Algorithm 2 Bisection method for solving (7).

1: input: Desired precision ǫ, functions q−1
a , ∀a ∈ A

2: output: û such that |u⋆ − û| ≤ ǫ, where u⋆ is optimal in Equation (7)
3: Initialize bounds umin ← mina∈A,s∈S(zzza)s; umax ← maxa∈A,s∈S(zzza)s;
4: while umax − umin > 2 ǫ do
5: Let u← (umin + umax)/2 ;
6: if

∑

a∈A q−1
a (u) ≤ κ then umax ← u else umin ← u end if

7: end while
8: return: (umin + umax)/2

10

100

1,000

100 200 300 400

Number of states

R
e
la

ti
ve

 R
u
n
ti
m

e

Algorithm Gurobi Homotopy

10

100

1,000

100 200 300 400

Number of states

R
e
la

ti
ve

 R
u
n
ti
m

e

Algorithm Gurobi Bisection

Figure 5: Relative computation time (unitless) of our algorithms and an LP solver over nominal MDP
in SA-rectangular (left) and S-rectangular (right) inventory management RMDPs.

The time complexity of Algorithm 2 depends on the desired precision ǫ. To remove this dependence
on ǫ, it is sufficient to replace the bisection by binary search over the breakpoints; we give the details
of this method in Algorithm 4 in Appendix A.3. The following theorem, proved in Appendix A.3,
summarizes the correctness and complexity of the proposed algorithms.

Theorem 4.1. The combined Algorithms 1 and 2 compute the S-rectangular robust Bellman operator
for any state s ∈ S and can be adapted (see Algorithms 3 and 4) to run in time O(SA log(SA)).

5 Numerical Results

This section compares the empirical runtime of Algorithms 1 and 2 with the runtime of Gurobi 9.1, a
leading LP solver. The results were generated on a computer with an Intel i7-9700 CPU with 32 GB
RAM; the algorithms are implemented in C++.

As the main benchmark problem, we use the classic Inventory Management (IM) problem (Zipkin,
2000). In this problem, the decision-maker must decide at every time step how much inventory to
order. The number of states and actions in this problem corresponds to the holding capacity and
order size respectively. This makes it easy to scale the number of states and actions and evaluate
how the algorithms scale with problem size. To evaluate the performance of our methods on small
problems, we also consider the RiverSwim (RS) domain (Strehl and Littman, 2008) and the Machine
Replacement (MR) domain (Delage and Ye, 2010). Please see Appendix B for the detailed description
of these domains.

Figure 5 shows the time to compute the robust Bellman operator for a single state in the inventory
management domain. The x-axis represents the number of states (maximum holding capacity) in
the domain. The number of actions is the same as the number of states. The y-axis represents the
time to compute the robust Bellman operator divided by time to compute the standard (non-robust)
Bellman operator. The results show that even in MDPs with a few hundred states, the algorithms
we propose are about 100 times faster than the leading LP solver. Interestingly, our algorithm is an
order of magnitude faster even for small problems. We use the robustness budget κ = 1.2, but the
computation time is insensitive to the particular choice of κ.

Table 2 compares the time to compute the robust policy for Machine Replacement (MR), RiverSwim
(RS), and Inventory Management (IM) problems. The IM problem has 30 states. It is worth
emphasizing that MR and RS are very small problems with less than 30 states, yet our algorithms

8

Rect. Algorithm MR RS IM

SA Algorithm 1 < 1 3 10
SA Gurobi LP 2960 2240 9770

S Algorithm 2 40 52 67
S Gurobi LP 129 217 2740

Table 2: Time (ms) to compute the robust pol-
icy for S- and SA-rectangular RMDPs with
L∞ sets.

Rect. Algorithm MR RS IM

SA [Ho]-Alg.1 < 1 2 1
SA Gurobi LP 92 363 1140

S [Ho]-Alg.2 1 2 5
S Gurobi LP 79 317 2260

Table 3: Time (ms) to compute the robust pol-
icy for S- and SA-rectangular RMDPs with
L1 sets (Ho, Petrik, and Wiesemann, 2020).

are up to 800 times faster than using an LP solver. This indicates not only that our methods scale
well with the number of states but also that the constant overhead is quite small. For the sake of
completeness, we include in Table 3 the timing results obtained for the RMDP with L1 ambiguity sets.
These results show that solving the L∞-constrained RMDP is more difficult than the L1-constrained
RMDP, but also that we can achieve similar dramatic speedups in L∞-constrained RMDPs as (Ho,
Petrik, and Wiesemann, 2020).

6 Conclusion

We introduced a new homotopy method for calculating robust Bellman operators for S- and SA-
rectangular ambiguity sets constructed with L∞-norm ball. Theoretically, we show that the worst-case
time complexity of our algorithms is quasi-linear: O(SA log(S)). The algorithms also perform well
in practice, outperforming a leading LP solver by several orders of magnitude.

In addition to being faster than a general-purpose LP solver, our algorithms are also much simpler.
They make it possible to solve L∞-constrained RMDPs without the cost and complexity of involving
a general LP solver. Although free and open-source LP solvers are available, their performance falls
significantly short of commercial ones. The algorithms we propose are also easy to combine with
value function approximation methods in RMDPs (Tamar, Mannor, and Xu, 2014).

In terms of future work, we believe that it is important to understand whether similar algorithms can
be developed for RMDPs with more complex ambiguity sets, such as ones defined using Wasserstein
distance, L2-norm, or KL-divergence.

Acknowledgments

The authors would like to thank Bence Cserna for discussions on this topic and the reviewer for the
comments that improved this paper. Partial support for the work was provided by the National Science
Foundation (Grants IIS-1717368 and IIS-1815275), the CityU Start-Up Grant (Project No. 9610481),
the CityU Strategic Research Grant (Project No. 7005534), the National Natural Science Foundation
of China (Project No. 72032005), and Chow Sang Sang Group Research Fund sponsored by Chow
Sang Sang Holdings International Limited (Project No. 9229076). Any opinion, finding, conclusion,
or recommendation expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation and the National Natural Science Foundation of China.

References

Behzadian, B.; Russel, R. H.; Petrik, M.; and Ho, C. P. 2021. Optimizing Percentile Criterion using
Robust MDPs. In International Conference on Artificial Intelligence and Statistics (AISTATS),
1009–1017.

Bertsekas, D. P.; and Tsitsiklis, J. N. 1996. Neuro-dynamic programming. Athena Scientific, Belmont,
MA.

Delage, E.; and Mannor, S. 2010. Percentile Optimization for Markov Decision Processes with
Parameter Uncertainty. Operations Research, 58(1): 203–213.

9

Delage, E.; and Ye, Y. 2010. Distributionally robust optimization under moment uncertainty with
application to data-driven problems. Operations Research, 58(3): 595–612.

Delgado, K. V.; De Barros, L. N.; Dias, D. B.; and Sanner, S. 2016. Real-time dynamic programming
for Markov decision processes with imprecise probabilities. Artificial Intelligence, 230: 192–223.

Faísca, N. P.; Dua, V.; and Pistikopoulos, E. N. 2007. Multiparametric linear and quadratic
programming, 1–23. John Wiley & Sons, Ltd.

Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-parameter Markov decision processes. Artificial
Intelligence, 122(1): 71–109.

Grand-Clément, J.; and Kroer, C. 2021. First-Order Methods for Wasserstein Distributionally Robust
MDP. arXiv:2009.06790.

Hansen, T. D.; Miltersen, P. B.; and Zwick, U. 2013. Strategy iteration is strongly polynomial for
2-player turn-based stochastic games with a constant discount factor. Journal of the ACM (JACM),
60(1): 1–16.

Ho, C. P.; Petrik, M.; and Wiesemann, W. 2018. Fast Bellman Updates for Robust MDPs. In
International Conference on Machine Learning (ICML), 1979–1988.

Ho, C. P.; Petrik, M.; and Wiesemann, W. 2020. Partial Policy Iteration for L1-Robust Markov
Decision Processes. arXiv:2006.09484.

Ibaraki, T.; and Katoh, N. 1988. Resource allocation problems: Algorithmic approaches. The MIT
Press.

Iyengar, G. N. 2005. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280.

Kaufman, D. L.; and Schaefer, A. J. 2013. Robust modified policy iteration. INFORMS Journal on
Computing, 25(3): 396–410.

Le Tallec, Y. 2007. Robust, risk-sensitive, and data-driven control of Markov decision processes.
Ph.D. thesis, MIT.

Nilim, A.; and El Ghaoui, L. 2005. Robust Control of Markov Decision Processes with Uncertain
Transition Matrices. Operations Research, 53(5): 780–798.

Petrik, M.; Ghavamzadeh, M.; and Chow, Y. 2016. Safe policy improvement by minimizing robust
baseline regret. Advances in Neural Information Processing Systems, 29: 2298–2306.

Petrik, M.; and Subramanian, D. 2014. RAAM : The benefits of robustness in approximating
aggregated MDPs in reinforcement learning. In Neural Information Processing Systems (NIPS).

Puterman, M. L. 2005. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons, Inc.

Rockafellar, R. T. 1996. Convex analysis. Princeton University Press.

Russel, R. H.; Gu, T.; and Petrik, M. 2019. Robust Exploration with Tight Bayesian Plausibility Sets.
Multi-Disciplinary Conference on Reinforcement Learning and Decision Making (RLDM).

Strehl, A. L.; and Littman, M. L. 2008. An analysis of model-based interval estimation for Markov
decision processes. Journal of Computer and System Sciences, 74(8): 1309–1331.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning: An introduction. MIT Press.

Tamar, A.; Mannor, S.; and Xu, H. 2014. Scaling Up Robust MDPs using Function Approximation.
In International Conference of Machine Learning (ICML).

Weissman, T.; Ordentlich, E.; Seroussi, G.; Verdú, S.; and Weinberger, M. J. 2003. Inequalities for
the L1 Deviation of the Empirical Distribution.

Wiesemann, W.; Kuhn, D.; and Rustem, B. 2013. Robust Markov decision processes. Mathematics
of Operations Research, 38(1): 153–183.

Zipkin, P. H. 2000. Foundations of inventory management. McGraw-Hill/Irwin. ISBN 0256113793.

10

A Technical Results and Proofs

A.1 Proofs of Results in Section 3

Proof of Lemma 3.2. The functions q(ξ) is convex due to the LP formulation of Equation (6); see
(Faísca, Dua, and Pistikopoulos, 2007).

Proof of Lemma 3.3. (i) The statement follows from the results in sections (ii)-(v) of this lemma.

(ii) If the intersection of any pair ofRB , DB , and NB is not an empty set, there exist a component
i that satisfies two or more constraints in Table 1. In such a scenario, the basis B contains linearly
dependent constraints that violate the definition of a basis. TB = {1, . . . , S} \ RB \ DB \ NB by
definition does not intersect with other sets.

(iii) and (iv) By definition, B in B implies that the constraint 1Tppp = 1 is in B; thus, one needs S − 1
additional constraints selected from Figure 3 to form a basis. However, for every i ∈ [S], at most one
of the three constraints in Figure 3 should be selected, otherwise the constraints would not be linearly
independent. Therefore, it implies that there exists exactly one j ∈ [S] such that none of the three
constraints in Figure 3 is selected in B, and so j ∈ TB . For every i ∈ [S]\{j}, i ∈ RB ∪ DB ∪NB .

(v) We prove this results via contradiction with the following cases. Firstly, suppose there exist a basis
B′, in which l < τ ∈ TB′ where l ∈ DB′ , then we construct another basis B, whereRB = RB′∪{l},
DB = DB′\{l}, NB = NB′ , and TB = TB′ . By Lemma 3.4, we have:

q̇B′ =
∑

i∈RB′

zi −
∑

j∈DB′

zj + (|DB′ | − |RB′ |) zτ ,

q̇B =
∑

i∈RB′

zi −
∑

j∈DB′

zj + 2zl + (|DB′ | − |RB′ | − 2) zτ

and thus q̇B − q̇B′ = 2(zl − zτ) ≤ 0 as zl ≤ zτ . The above construction of B also ensure that pB(ξ)
is feasible in a neighborhood of ξ, as long as pB′(ξ) is feasible in a neighborhood of ξ.

Furthermore, suppose there exist a basis B′, in which l < τ ∈ TB′ where l ∈ NB′ , then we construct
another basis B, where RB = RB′ ∪ {l}, DB = DB′ , NB = NB′\{l}, and TB = TB′ . By
Lemma 3.4, we have:

q̇B′ =
∑

i∈RB′

zi −
∑

j∈DB′

zj + (|DB′ | − |RB′ |) zτ ,

q̇B =
∑

i∈RB′

zi −
∑

j∈DB′

zj + zl + (|DB′ | − |RB′ | − 1) zτ

and thus q̇B − q̇B′ = zl − zτ ≤ 0 as zl ≤ zτ . The above construction of B also ensure that pB(ξ) is
feasible in a neighborhood of ξ, as long as pB′(ξ) is feasible in a neighborhood of ξ.

Now we prove the second part of this result.

Suppose there exist a basis B′, in which m > τ ∈ TB′ where m ∈ RB′ , then we construct another
basis B, where RB = RB′\{m}, DB = DB′ ∪ {m}, NB = NB′ , and TB = TB′ . By Lemma 3.4,
we have:

q̇B′ =
∑

i∈RB′

zi −
∑

j∈DB′

zj + (|DB′ | − |RB′ |) zτ ,

q̇B =
∑

i∈RB′

zi −
∑

j∈DB′

zj − 2zm + (|DB′ | − |RB′ |+ 2) zτ

and thus q̇B − q̇B′ = 2(zτ − zm) ≤ 0 as zm ≥ zτ . The above construction of B also ensure that
pB(ξ) is feasible in a neighborhood of ξ, as long as pB′(ξ) is feasible in a neighborhood of ξ.

Proof of Lemma 3.4. Note that if k ∈ NB implies (pppB(ξ))k = 0 for every ξ therefore ṗk = 0. For
all components i ∈ RB we have pi − p̄i = ξ. By taking the derivative with respect to ξ we have

11

ṗi = 1. Similarly, for all j ∈ DB we have p̄j − pj = ξ. Taking the derivative leads to ṗj = −1. We

denote by xxxG the subvector of xxx ∈ R
S formed by the elements xi, i ∈ G, where indices are contained

in the set G ⊆ S . We consider a fixed basis B and thus drop the subscript B for the rest of this proof.

Figure 3 implies the following useful equality that any ppp must satisfy.

1 = 1
Tppp = 1

TpppR + 1
TpppD + 1

TpppN + 1
TpppT

= 1
TpppR + 1

TpppD + 1
TpppT

= 1
TpppR + 1

TpppD + pτ

where the second identity follows from the fact that ∀k ∈ N implies pk = 0. By taking the derivative
d
dξ

from both sides we have:

0 = 1
TṗppR + 1

TṗppD + ṗτ
= |R| − |D|+ ṗτ .

And finally we have:

q̇ = zzzTṗpp

= zzzTṗppR + zzzTṗppD + zzzTṗppN + zzzTṗppT

=
∑

i∈R

zi −
∑

j∈D

zj + ṗτzτ .

Proof of Theorem 3.5. The statement is true due to linearity of q(ξ) on the interval [ξt, ξt+1] shown
in Lemma 3.2, as well as the results in Lemma 3.6, Lemma 3.7, and Lemma 3.8.

Proof of Lemma 3.6. At ξ = 0, we can assume the none set is empty NB = ∅ because one can
replace all non-negativity constraints pi ≥ 0 with pi − p̄i ≤ ξ or p̄i − pi ≤ ξ. In Lemma 3.3, Section
(v), we show for every B ∈ B, ∀ i ∈ RB , ∀ j ∈ DB , and τ ∈ TB we have i < τ < j. So q̇B can be
written as:

q̇B =
∑

i∈RB

zi −
∑

j∈DB

zj + (|DB | − |RB |) zτ

=

τ−1
∑

i=1

zi −
S
∑

j=τ+1

zj + ((S − τ)− (τ − 1))zτ

=

τ−1
∑

i=1

zi −
S
∑

j=τ+1

zj + (S − 2τ + 1)zτ

=

S
∑

k=1

sign(k − τ)zk + (S − 2τ + 1)zτ

(9)

Equation (9) shows at ξ = 0, the trader’s rate ṗτ = S − 2τ + 1. We can also show that at ξ = 0,
for all component i ∈ {1, . . . , S} we have −1 ≤ ṗi ≤ 1 because the constraints pi − p̄i ≤ ξ and
p̄i − pi ≤ ξ are both active in equality. Thus we have

min
B∈B

d

dξ
qB(ξo) = zzzTṗpp

s. t. 1
Tṗpp = 0 ,

−1 ≤ ṗpp ≤ 1 .

(10)

Since we previously showed the trader’s exchange rate follows from ṗτ = |DB | − |RB | we can
conclude ṗτ is an integer. Given the constraints in (10) at ξ = 0, we conclude ṗτ ∈ {−1, 0, 1}. The

12

index of the trader is obtained from one of the following scenarios:

S − 2τ + 1 = 0 =⇒ τ =
S + 1

2
, (11)

S − 2τ + 1 = 1 =⇒ τ =
S

2
, (12)

S − 2τ + 1 = −1 =⇒ τ =
S + 2

2
, (13)

When S is an odd number, τ can be only S+1

2
because S is also an integer and τ cannot be fractional.

And when S is an even number, τ can be either S
2

or S+2

2
. Algorithm 3 returns the exact solution in

both cases.

Given the index of trader for B0, the index of all donors and receivers can be achieved form Lemma 3.2
section (v). We initialize the sets: TB0

= {⌈S/2⌉}, RB0
= {i | i < τ}, DB0

= {j | j > τ}, NB0
=

{};

Proof of Lemma 3.7. Suppose z1 ≤ z2 ≤ · · · ≤ zS . Consider a base B that is feasible in the

neighborhood of ξt > 0, and satisfies B = argminB∈B
d
dξ

q(ξt). In Lemma 3.4, we show ∀ i ∈ RB

and ∀ j ∈ DB ∪NB and τ ∈ TB we have i < τ < j, and q̇B can be written as:

d

dξ
q(ξt) = q̇B =

∑

i∈RB

zi −
∑

k∈DB

zk + (|DB | − |RB |) zτ (14)

The adjacent basis B′ ∈ B can be chosen from one of the following cases:

B′ =

1 DB′ = DB\{l}, NB′ = NB ∪ {l}, TB′ = TB , RB′ = RB

2 NB′ = NB ∪ {τ}, RB′ = RB\{m}, TB′ = {m}, DB′ = DB

3 DB′ = DB ∪ {τ}, RB′ = RB\{n} TB′ = {n}, NB′ = NB

4 RB′ = RB ∪ {τ}, DB′ = DB\{o}, TB′ = {o}, NB′ = NB

5 RB′ = RB ∪ {τ}, NB′ = NB\{p}, TB′ = {p}, DB′ = DB

6 NB′ = NB\{q}, DB′ = DB ∪ {q}, TB′ = TB , RB′ = RB

(15)

Case 1 occurs when a donor becomes a none by donating all of its probability mass to a receiver. In
this basis change, the index of the trader remains unchanged. B′ is an adjacent basis for B since
we only remove one active constraint (p̄l − pl ≤ ξ), and add another one (pl ≥ 0). In case 2, the
trader becomes a none by losing all of its probability mass. The trader’s index shifts from τ to m,
one of the receivers in B. Note that in case 2 also, B′ is an adjacent basis to B. We removed one
active constraint (pm − p̄m ≤ ξ), and add another one (pτ ≥ 0). Case 3 is similar to case 2, however
in this case the trader reaches its lower bound, and as a result the new active constraint in B′ is
(p̄τ − pτ ≤ ξ). Case 4 occurs when a trader becomes a receiver. In this scenario, the trader’s index
shifts from τ to o, which was a member of DB . Case 5 and case 4 are similar. However, the trader in
B′ belongs toNB . In the last case, one of the components inNB gain probability mass and moves to
the donor’s set. In the following, we show that cases 4-6 are not a feasible choice for B′.

Any other case violates Lemma 3.3, Section (v). The corresponding q̇B′ obtain as follows:

q̇B′ =

1
∑

i∈RB
zi −

∑

k∈DB
zk + zl + (|DB | − |RB | − 1) zτ

2
∑

i∈RB
zi −

∑

k∈DB
zk − zm + (|DB | − |RB |+ 1) zm

3
∑

i∈RB
zi −

∑

k∈DB
zk − zτ − zn + (|DB | − |RB |+ 2) zn

4
∑

i∈RB
zi −

∑

k∈DB
zk + zτ + zo + (|DB | − |RB | − 2) zo

5
∑

i∈RB
zi −

∑

k∈DB
zk + zτ + (|DB | − |RB | − 1) zp

6
∑

i∈RB
zi −

∑

k∈DB
zk − zq + (|DB | − |RB |+ 1) zτ

(16)

13

And hence we have:

q̇B′ =

1 q̇B + (zl − zτ)

2 q̇B + (zm − zτ)(|DB | − |RB |)

3 q̇B + (zn − zτ)(|DB | − |RB |+ 1)

4 q̇B + (zo − zτ)(|DB | − |RB | − 1)

5 q̇B + (zp − zτ)(|DB | − |RB | − 1)

6 q̇B − (zq − zτ)

(17)

Given Lemmas A.1 and A.2, B′
4, B′

5, and B′
6 are not a suitable choice for B′ since q̇B′

4
≤ q̇B ,

q̇B′

5
≤ q̇B and q̇B′

6
≤ q̇B .

The choice over B′
1, B′

2, and B′
3 depend on the probability mass of the components at each breakpoint.

In order to minimize the decent rate in the case of B′ = B′
2, we can show that:

q̇B′ = min
m∈RB

q̇B + (zm − zτ)(|DB | − |RB |) (18)

We know zm − zτ ≤ 0. And 0 ≤ (zm − zτ)(|DB | − |RB |) otherwise Lemma A.2 will be violated.
As a result we conclude in this particular case (|DB | − |RB |) ≤ 0.

In order to minimize Equation (18) the term zm − zτ should be minimized. Since z1 ≤ · · · ≤ zm ≤
· · · ≤ zτ , therefore m⋆ = τ − 1. With the same reasoning we can show in the case of B′ = B′

3 we
have n⋆ = τ − 1.

Our results follows the continuity assumption of the solution ppp⋆ = pppB(ξ) for all ξ > 0, in which a
receiver can only become a trader, not a donor nor empty, at each breakpoints. Also, a donor cannot
become a receiver unless it becomes a trader first. Otherwise, the continuity assumption will be
violated.

Lemma A.1. For all B ∈ B we have |DB | − |RB | ≤ 1.

Proof. Consider the problem with fixed ξ,

q(ξ) = min
ppp∈∆S

{

pppTzzz : ‖p̄pp− ppp‖∞ ≤ ξ
}

, (19)

For any fix B ∈ B, we know:

if i ∈ RB =⇒ pi = p̄i + ξ,

if j ∈ DB =⇒ pj = p̄j − ξ,

if k ∈ NB =⇒ pk = 0,

if τ ∈ TB , ∃∆ ∈ R that pτ = p̄τ +∆.

We also know

1
Tppp = 1 ⇐⇒

∑

i∈RB

(p̄i + ξ) +
∑

j∈DB

(p̄j − ξ) + p̄τ +∆ = 1

⇐⇒ (1−
∑

k∈NB

p̄k) + (|RB | − |DB |)ξ +∆ = 1

⇐⇒ ∆ =
∑

k∈NB

p̄k + (|DB | − |RB |)ξ

We know for feasibility, ∆ ≤ ξ so we have:
∑

k∈NB

p̄k + (|DB | − |RB |)ξ ≤ ξ

∑

k∈NB

p̄k ≤ (|RB | − |DB |+ 1)ξ

14

Since
∑

k∈NB
p̄k ≥ 0, and ξ > 0, we conclude (|RB | − |DB |+ 1) ≥ 0. As a result:

|DB | − |RB | ≤ 1 .

Lemma A.2. let (ξt)t=0,...,T+1, and q(ξ) is a piecewise-affine convex function with breakpoints ξl.
Under the assumption of ξt < ξt+1 for all t = 0, . . . , T + 1, we have q̇0 ≤ q̇1 ≤ . . . ≤ q̇T+1.

Proof. The results follows from Theorem 24.1 in Rockafellar (1996).

Proof of Lemma 3.8. The optimization problem in (3) can be formulated as the following parametric
LP:

q(ξ) = min
ppp∈RS

{

zzzTppp | 1Tppp = 1, −ξ ≤ pi − p̄i ≤ ξ, pi ≥ 0, i = 1, . . . , S
}

. (20)

At each basis Bt, there are S constraints that are active and satisfied in equity. In order to maintain the
feasibility the basis Bt on the interval [ξt, ξt+∆ξt], one needs to keep track of constrains that will be
violated first by increasing ξ ∈ [ξt, ξt +∆ξt], and relax all other constraint. Since the donation rate
is equal among all donors ṗi = −1 ∀i ∈ DBt

, the non-negativity constraints could be watched by
following the donors with minimal probability mass ∆ξt ← max {ξ ≥ 0 | pppt+ ξ ·∇ξ pppBt

(ξt) ≥ 000}.
The rate of exchange for the trader varies at each basis, as a result, the trader could violate its lower
and upper bound −ξ ≤ pτ − p̄τ ≤ ξ. The algorithm trace the trader’s rate so one can check the
constrain via ∆ξt ← max {ξ ≥ 0 | |(pppt + ξ · ∇ξ pppBt

(ξt)− p̄pp)τt | ≤ ξt + ξ}. Line 6 of Algorithm 1
combines these constraints and relaxes others.

Proof of Theorem 3.9. A naive implementation of the homotopy method in Algorithm 1 has a com-
putational complexity of O(S2). The algorithm obtains the ppp⋆ at each breakpoint. The number
of iteration depends on the number of breakpoints in q(ξ), which is at most 3

2
S. We observed

numerically that the naive implementation performs on par with LP solvers and sometimes even
slower. In Algorithm 3, we take advantage of the structural property of the slope of the q-function
presented in Lemma 3.4, and only trace the optimal probability mass of the trader to speed up the
method dramatically. Algorithm 3 compute q-function for each state-action pair in O(S logS) for
sorting the values of zzz.

A.2 Detailed Homotopy Algorithm

This section provides the detailed procedure of our homotopy algorithm for computing the exact
solution for robust Bellman operator with L∞ constrained ambiguity sets. Algorithm 3 starts with the
initialization of the doner, receiver, and trader sets according to Lemma 3.6, and then iterates through
all breakpoints. Each breakpoint has been obtained concerning the conditions that are described
in Lemma 3.7. The type of each basis is change is indicated according to Table 1. We use a priority
queue to keep track of the donor with the smallest probability mass. The algorithm follows the value
of q-function at each iteration, however ignores the probability mass values for all components except
the trader. The iteration stops as soon as ξ exceeds the budget κ, which is given as an input.

A.3 Proofs of Results in Section 4

Proof of Theorem 4.1. The result follows from the complexity analysis of the bisection algorithm
with quasi-linear time complexity in (Ho, Petrik, and Wiesemann, 2020), appendix B.

Lemma A.3. The optimal objective values of Equations (7) and (8) are equivalent.

15

Algorithm 3 Homotopy method for q(κ) with L∞ constrained ambiguity set.

Input: LP parameters zzz, κ and p̄pp .
Output: Breakpoints (ξt)t=0,...,T+1 and values (qt)t=0,...,T+1 ;

Initialize ξ0 ← 0, t← 0, ppp0 ← p̄pp and q0 ← q(ξ0) = pppT0zzz ;
Sort zzz in ascending order and rearrange p̄pp accordingly
Initialize the sets: T = {⌈S/2⌉}, R = {i | i < τ}, D = {j | j > τ}, N = {};
zR =

∑

i∈R zi; zD =
∑

j∈D zj
Push all elements of D into a min-heapH according to their probability mass
ξ ← ξ0
while ξ < κ do

ṗτ ← |D| − |R|; # The trader’s rate of exchange
j ←H.top
∆ξD ← pj − ξ
∆ξτ ← Calculate largest feasible ∆pτ given ṗτ
if ∆ξτ > ∆ξD then

Basis Change←D to N
∆ξ ← ∆ξD;

else
∆ξ ← ∆ξτ ; p′τ ← pτ + ṗτ ·∆ξ;
if p′τ = 0 then

Basis Change← T to N
else

Basis Change← T to D
end if

end if
∆ξ ← max{∆ξ, κ− ξ};
pτ ← pτ + ṗτ ·∆ξ;
qt = qt−1 + (zR − zD + ṗτzτ) ·∆ξ
ξ ← ξ +∆ξ; ξt ← ξ; t← t+ 1
if Basis Change is D to N then

zD ← zD − zj ;
D = D\{j};
N = N ∪ {j}
H.pop

else
if Basis Change is T to D then
H.push(τ) # p = pτ + ξ
D = D ∪ {τ}
zD ← zD + zτ

else if Basis Change is T to N then
N = N ∪ {τ}

end if
τ ← τ − 1;
T = {τ}
R = R\{τ}
pτ ← p̄τ + ξ
zR ← zR − zτ

end if
end while
The remainder of the function q(ξ) will be constant: qT+1 ← qt
ξT+1 ←∞
Return: (ξt)t=0,...,T+1, and (qt)t=0,...,T+1

16

Proof of Lemma A.3. Since the functions qa, for all a ∈ A in Equation (8) are convex due to the
LP formulation of Equation (6). We can exchange the maximization and minimization operators
in Equation (8) to obtain

min
ξξξ∈R

A
+

{

max
πππ∈∆A

(

∑

a∈A

πa · qa(ξa)

)

|
∑

a∈A

ξa ≤ κ

}

, (21)

Since the inner maximization is linear in πππ, it is optimized at an extreme point of ∆A. This allows us
to re-express the optimization problem as

min
ξξξ∈R

A
+

{

max
a∈A

qa(ξa) |
∑

a∈A

ξa ≤ κ

}

. (22)

We can linearize the objective function in this problem by introducing the epigraphical variable u ∈ R

min
u∈R

min
ξξξ∈R

A
+

{

u |
∑

a∈A

ξa ≤ κ, u ≥ max
a∈A

[qa(ξa)]

}

(23)

It can be readily seen that for a fixed u in the outer minimization, there is an optimal ξξξ in the inner
minimization that minimizes each ξa a individually while satisfying qa(ξa) ≤ u for all a ∈ A. Define
gq as the a-th component of this optimal ξξξ:

ga(u) = min
ξa∈R

A
+

{ξa | qa(ξa) ≤ u}. (24)

We show that ga(u) = q−1
a . To see this, we substitude qa in Equation (24) to get:

ga(u) = min
ξa∈R

A
+

min
pppa∈∆S

{

ξa | ppp
T

azzza ≤ u, ‖pppa − p̄ppa‖∞ ≤ ξa
}

. (25)

The identity ga = q−1
a then follows by realizing that the optimal ξ⋆a in the equation above must satisfy

ξ⋆a = ‖pppa − p̄ppa‖∞. Finally, substituiting the definition of ga in Equation (24) into the problem (23)
show that the optimization problem (8) is equivalent to Equation (7).

Algorithm 4 Bisection method for the robust Bellman optimality operator (Ho, Petrik, and Wiese-
mann, 2020).

1: Input: Precision ǫ, functions q−1
a , ∀a ∈ A

2: umin: maximum known u for which Equation (7) is infeasible
3: umax: minimum known u for which Equation (7) is feasible
4: Output: û such that |u⋆ − û| ≤ ǫ, where u⋆ is optimal in Equation (7)
5: Return: (umin + umax)/2)
6: while umax − umin > 2 ǫ do
7: Split interval [umin, umax] in half: u← (umin + umax)/2
8: Calculate the budget required to achieve the mid-point u: s←

∑

a∈A q−1
a (u)

9: if s ≤ κ then
10: u is feasible: update the feasible upper bound: umax ← u
11: else
12: u is infeasible: update the infeasible lower bound: umin ← u
13: end if
14: end while

17

B Detailed Description of Domains

In this section, we provide a detailed description of five standard reinforcement domains that have
been previously used to evaluate robustness.

As the primary metric, we compare the running time of our homotopy and bisection algorithm with
Gurobi 9.1.2—a standard LP solver. In order to enable the comparison of the results among different
domains, we also compare our results with the homotopy and bisection algorithm for L1-constrained
ambiguity sets in (Ho, Petrik, and Wiesemann, 2020).

As the first benchmark, we employ Inventory Management (IM), a classic inventory management
problem (Zipkin, 2000), with discrete inventory levels 0, . . . , S = 30. The purchase cost, sale
price, and holding cost are 2.49, 3.99, and 0.03, respectively. The demand is sampled from a normal
distribution with a mean S/4 and a standard deviation of S/6. The initial state is 0 (empty stock).
It also uses a Dirichlet prior. Table 2 summarizes the run-time for computed guaranteed returns of
different methods at 0.95 confidence levels.

The second domain is RiverSwim (RS) which is a standard benchmark (Strehl and Littman, 2008),
which is an MDP consisting of six states and two actions. The process follows by sampling synthetic
datasets from the true model and then computing the guaranteed robust returns for different methods.
The prior is a uniform Dirichlet distribution over reachable states.

Moreover, Machine Replacement (MR) is a small benchmark MDP problem with S = 10 states that
models progressive deterioration of a mechanical device (Delage and Mannor, 2010). Two repair
actions A = 2 are available and restore the machine’s state.

C Fast Algorithm for Nature Response with Fixed ξ

Let us consider the optimization problem (3) with fixed ξ > 0:

min
ppp∈∆S

{pppTzzz : ‖p̄pp− ppp‖∞ ≤ ξ}, (26)

This problem was studied by Ibaraki and Katoh (1988). For the sake of completeness, in this section,
we provide the computational procedure of solving this problem. As expressed earlier, the problem
can be formulated as the following LP problem:

q(ξ) = min
ppp∈RS

zzzTppp

s. t. − ξξξ ≤ ppp− p̄pp ≤ ξξξ

111Tppp = 1, ppp ≥ 000

⇐⇒

min
ppp∈RS

zzzTppp

s. t. lll′ ≤ ppp ≤ uuu′

111Tppp = 1 .

(27)

Here, lll′ = max{000, lll} and uuu′ = min{111,uuu} where lll = −ξξξ + p̄pp and uuu = ξξξ + p̄pp. The problem (27) is
a bounded resource allocation problem with continuous variables, where the objective function
is convex and continuously differentiable. Without loss of generality we add the following restrictions:

First, lll′ < uuu′, since if l′j = u′
j for any j ∈ {1, . . . , S} implies that pj is fixed and can be dropped

from (27). Second, 1Tlll′ < 1 < 1
Tuuu′. Otherwise the problems is either infeasible or trivially solvable.

We consider the following equivalent problem, which obtained by change in variables xxx = ppp− lll′,
and the modified upper bound uuu = uuu′ − lll′. Let α = 1− 1

Tlll′:

min
xxx∈RS

zzzTxxx

s. t. 0 ≤ xxx ≤ uuu

111Txxx = α .

(28)

To solve (28), we rely on the following relaxed problem

min
xxx∈RS

zzzTxxx

s. t. 0 ≤ xxx

111Txxx = α .

(29)

18

The above problem has a trivial solution; for example, one optimal solution is xi = α for any one of
i ∈ argminj zj and xj = 0 otherwise. Therefore, one can efficiently solve the this relaxed problem
(29) and check if the solution is feasible in (28). If it is feasible, then this solution is optimal in (28);
otherwise, we can eliminate the associate variable xi using the following lemma.

Lemma C.1. Let x̂xx = (x̂1, . . . , x̂n) be the optimal solution of (29). Then x̂j ≥ uj implies that
x⋆
j = uj holds in an optimal solution xxx⋆ of (28).

The proof is provided by Ibaraki and Katoh (1988). This lemma allows us to fix the optimal x⋆
j = uj

and remove it from (28) and (29), which α should be updated and be subtracted by uj . We can apply
the same strategy until the optimal solution of the (29) (after removing the known optimal xj’s) is
also optimal in (28).

19

