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Abstract— Imitation learning (IL) frameworks in robotics
typically assume that a domain expert’s demonstration always
contains a correct way of doing the task. Despite its theoretical
convenience, this assumption has limited practical values for
an IL-powered robot in real world. There are many reasons
for an expert in the real world to provide demonstrations that
may contain incorrect or potentially unsafe way of doing a
task. In order for IL-powered robots to work in the real world,
IL frameworks need to detect such adversarial demonstrations
and not learn from them. This paper proposes an IL frame-
work that can autonomously detect and remove adversarial
demonstrations, if they exist in the demonstration set, as it
directly learns a task policy from the expert. The proposed
framework that we term Robust Maximum Entropy behavior
cloning (R-MaxEnt) learns a stochastic model that maps states
to actions. In doing so, R-MaxEnt solves a minmax problem
that leverages the entropy of the model to assign weights
to different demonstrations while assigning poor weights to
adversarial samples. Our empirical results show that R-MaxEnt
outperforms the existing IL approaches in both real and
simulated robotics tasks.

I. INTRODUCTION

The main appeal of the imitation learning (IL) paradigm

in robotics, also known as learning from demonstrations or

programming by demonstrations, is its promise to enable

lay users (hereafter termed as domain experts) with the

ability to train robots new skills from demonstrations [4],

[8], [13]. IL algorithms have experienced tremendous recent

progress in learning task policies from demonstrations in

controlled laboratory settings [28], [35] or simulated en-

vironments [23], [25], [29]. IL algorithms, however, need

the following two key characteristics to enable IL-powered

robots learning realistic tasks in natural human environments

from the demonstrations of domain experts:

• Dealing with Adversarial demonstrations: Domain ex-

perts may inadvertently provide one or more demon-

strations, among many correct ones, which show a

potentially unsafe policy. Demonstrators’ fatigue or lack

of knowledge of robotics/programming may also con-

tribute to such adversarial demonstrations. A robust IL

algorithm needs to detect and eliminate such adversarial

samples from the demonstration set before learning the

task policy.

• Sample efficiency: Having a simulator for every task to

be taught to a robot by a domain expert is infeasible and,
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most importantly, invalidate the reason why IL appeals

to domain experts. Therefore, IL algorithms need to

learn only from a handful of demonstrations and without

a simulator that can generate an unlimited number of

training samples.

To the best of our knowledge, there are no IL methods

that feature both of the characteristics above. A typical

assumption in most existing IL algorithms is that all expert

demonstrations are reliable and trustworthy. There exist a

handful of work that can deal with sub-optimal or noisy

demonstrations [22], [28], [45], [14], [44], [33]. But we are

interested in tackling adversarial demonstrations. Adversarial

demonstrations are those that do not follow the task definition

and are structurally wrong. For example, in the context of

teaching a robot how to make a cup of tea, an adversarial

demonstration would be the one where water or tea-bag is

not added to the cup. No existing IL algorithm addresses

the issues with adversarial demonstration. Most existing IL

algorithms also require many training samples, often supplied

by a simulator, to learn a policy.

This paper proposes to directly learn a task policy from

a handful of demonstrations while detecting and discarding

adversarial samples, if any, from the demonstration set. The

proposed algorithm (R-MaxEnt), learns a stochastic model of

the task policy in a supervised manner through constraining

feature expectation matching between the learned policy and

the demonstrated policy. R-MaxEnt analyzes the entropy of

different policy models in the model space, and the entropy

contributed by different demonstrations to each model. It

then leverages the maximum entropy principle (MEP) [3],

[24] to choose the model with the maximum entropy while

setting weights to different demonstrations that can help

to identify adversarial samples. We demonstrate that R-

MaxEnt is more robust and sample efficient than existing

IL approaches in classical control tasks in the OpenAi-gym

simulator [11]. We also demonstrate R-MaxEnt’s ability to

teach a Yumi robot an activity of daily living: tea-making.

II. RELATED WORK

There are two main types of IL algorithms: Behavior

Cloning (BC) and Inverse Reinforcement Learning (IRL).

BC methods learn a mapping from states to actions as a su-

pervised learning problem [34]; BC is considered conceptu-

ally simple and theoretically sound [42]. The main criticism

of BC in its current state is the covariance shift [36], [37],

where small inaccuracies of the learned model compound

over time, and can lead to states that are very different from



the ones encountered during training. In recent years, BC-

based end-to-end IL realized through deep neural networks

achieved success in autonomous driving [10]. There is,

however, no known general framework that can be applied

to learn different robotics tasks. In addition to that, learning

neural network-based task-policies has known issues such as

lack of convergence guarantee and sample inefficiency. There

is no BC-based IL method in the current literature that can

deal with adversarial demonstrations.

Classical IRL-based IL methods first learn the demon-

strator’s reward function and then use it to learn a policy

that maximizes the total reward [2], [31], [38], [41], [45].

Through connecting IRL with generative adversarial net-

works (GANs) [16], [20], several recent papers [17], [18],

[23], [25] achieve higher expected return than the classical

IRL based IL methods in simulated environments.

Despite their elegance and the capability of dealing with

sub-optimal demonstrations, IRL-based IL methods have

rarely been used in realistic robotics task [17]. The main

reason behind this is, IRL algorithms require millions of

samples during training to converge even for the simplest

control tasks [27]. The alternative is to have a full transition

probability knowledge [45].

The default assumption in these methods is that all demon-

strations are correct and should be considered for policy

learning [17], [18], [23], [25]. Even though these methods

use adversarial networks (i.e. GANs) for policy learning, the

definition of adversaries in GANs is markedly different from

the adversaries in demonstrations that we are interested in

exploring in this paper. For example, GANs train a generative

model G to estimate the distribution of the expert data,

and a discriminator D that tries to differentiate between the

actual expert data coming from the demonstration set and

the data coming from the generator G. At the convergence

point, the generator will produce data close enough to the

expert data that the discriminator will not differentiate from

the expert demonstrations. In IRL methods, the generator

G typically represents the policy, and the D represents the

reward function. However these recent approaches [17], [18],

[23], [25] use the given demonstrations as a reference to

discriminate the data coming from the generator to come

closer to the optimal policy. These approaches do not have

any mechanism to deal with the present of adversarial

demonstration in the dataset.

A recent line of research in [29], [43], [44] considers a

limited amount of random noise in a demonstration set and

proposes a a various approaches to detect such noisy demon-

strations. However, limited random noise in demonstrations

is different from adversarial demonstrations that always lead

to a potentially unsafe policy. Beside they still leverage the

advantage of using more samples through interaction with

the simulator

A few other IRL based approaches [21], [40] used “failed”

demonstration, in addition to correct ones, to train the model.

However, they assume that these failed demonstrations are

labeled a priori and do not detect them autonomously.

III. FEATURE EXPECTATION MATCHING

As the basic framework, we assume the Markov decision

process (S,A, P, r, ρ0) with the stochastic shortest path

objective (assuming some terminal states) [7], where S is the

state space, A is the action space, and ρ0 ∈ ∆S represents

the distribution over the initial state. Here, ∆S denotes the

probability simplex overt the set S . The unknown transition

probabilities are P : S×A → ∆S and the unknown rewards

are r : S ×A → R.

Our goal is to compute a randomized policy π : S → ∆A

that matches the expert’s policy π̃ : S → ∆A of the

expert. The policy π is unknown and, instead, must be

estimated from a set of demonstrations. The demonstrations

D = (si, ai)i=1,...,Q consist of Q states and expert’s actions

for these states such that ai ∼ π̃(·, si). We also assume that

there is a distribution p̃ ∈ ∆S over the states that represents

the expert’s probability of visiting the state. In practice, we

assume that this distribution is uniform over the states in D.

In most IL algorithms, we try to represent the task using a

set of n features fi : S ×A → R, i = 1, 2, . . . , n defined for

state-action pairs that contain enough information to enable

generalization from the demonstrations to the entire state

space. The important question in IL is “How can the learner

match the expert’s demonstrations?” Many approaches have

been introduced and studied in the IL community. Some

of the most-successful methods have been based on feature

expectation matching (FEM) [13], [33], [45] where the goal

is compute a policy π that satisfies the following equality:

Eπ̃[fi] = Eπ[fi], i = 1, 2, . . . , n . (1)

The feature expectations are computed with respect to the

policy indicated by the subscript and the state probabilities

as follows:

Eπ̃[fi] =
∑

s∈S

∑

a∈A

p̃(s)π̃(a|s)fi(s, a)

Eπ[fi] =
∑

s∈S

∑

a∈A

p̃(s)π(a|s)fi(s, a) .

Note that we assume we can compute a policy that matches

the expert’s state distribution p̃ sufficiently well.

The FEM problem in (1) is ill-defined because it can be

satisfied by many policies [45]. To select a policy π that

is most-likely to generalize beyond the demonstrations, we

employ the principle of maximum entropy [3], [24] and solve

the following optimization problem to compute the policy π:

max
π∈RS×A

H(π) ≡ −
∑

s∈S

∑

a∈A

p̃(s)π(a|s) log π(a|s)

s.t. Eπ̃[fi]− Eπ[fi] = 0 i = 1, . . . , n
∑

a∈A

π(a|s)− 1 = 0 ∀ s ∈ S

(2)

Here, H(π) denotes the causal entropy of the policy π. Using

the standard convex duality arguments, we can see that the

optimal solution π⋆ to (2) must satisfy, for some λ ∈ R
N ,



that [3], [6], [15]:

π⋆(a|s) = (zλ(s))
−1 · exp

(

N
∑

i=1

λifi(s, a)

)

, (3)

where zλ(s) =
∑

a∈A
exp

(

∑N

i=1 λifi(s, a)
)

is a nor-

malization constant. Equation (3) indicates that it may be

possible to match the expert’s policy even with a limited

number of demonstrations because the policy π⋆ depends

only on a small number of features.

The FEM algorithm in (2) can be derived independently

from the maximum likelihood principle [6], [15]. In fact,

one can readily show that the FEM optimization in (2) is the

dual formulation of the maximal likelihood solution to the

multinomial logistic regression [9]. The derivation, which we

omit due to the lack of space, follows the derivation for other

related methods [15].

As mentioned above, our goal is to design an IL algorithm

that is suitable for real-life robotics applications where we do

not have a simulation for each task and can only generate a

limited number of demonstrations. The FEM algorithm in (2)

does not need to access the simulator. However, the algorithm

must be robust enough not to fail even when some of the

demonstrations are incorrect or even adversarial. In the next

section, we discuss an algorithm that is statistically robust to

such errors in demonstrations.

A. Connection to Max-Ent IRL Approach

Now, we discuss the relationship between FEM, described

in Section III, and the popular Max-Ent IRL [45] which

also matches feature expectations while maximizing entropy.

Although FEM is a pure behavioral cloning technique while

Max-Ent IRL is an inverse reinforcement learning technique,

these two methods are closely related. FEM can be seen as a

special case of Max-Ent IRL with a simplifying assumption

that the state distribution p̃(s, d) for the computed policy

π is the same as for expert’s policy π̃. This assumption is

likely to be satisfied when the agent can match the expert’s

policy closely, and the transition probabilities are mostly

deterministic.

Our algorithms are based on FEM instead of Max-Ent

IRL for two main reasons. First, the behavioral cloning

technique is easier to apply to robotics domains because

it does not require accessing a simulator. Second, FEM

involves a simpler optimization problem than Max-Ent IRL,

making it more convenient to develop and analyze methods

that can detect adversarial demonstrations. However, it is

important to note that the approach that we present in this

paper can be generalized to Max-Ent IRL and other related

BC and IRL algorithms.

IV. ROBUST MAXIMUM ENTROPY BEHAVIOR CLONING

(R-MAXENT)

In this section, we propose methods that add robust-

ness to our model and detect any adversarial or incor-

rect demonstration. We assume that, the dataset D =

((sdi, adi)i=1,...,Qd
)j=1,...,D comprises D individual demon-

strations, or trajectories. Each one of these trajectories is

either considered to be generated by the actual expert, or is

adversarial and should be discarded.

To reduce the sensitivity to incorrect demonstrations, we

introduce a variable w ∈ [0, 1]D which assigns an importance

weight to each demonstration. The goal is to give the

adversarial demonstration the minimum possible weight and

to give the correct demonstration a higher weight automat-

ically through our model. We assume that M =
∑D

d=1 wd

represents the assumed minimum number of demonstrations

that we can trust and is known.

We achieve statistical robustness by relying on the max-

imum entropy principle [3], [24]. In particular, we exclude

any demonstrations with high entropy with respect to other

demonstrations. The entropy is, in other words, used to

measure the consistency of the expert demonstrations. An

adversarial demonstration adds incorrect (or “random”) in-

formation to the model, which increases its entropy. We limit

the impact of this noise by assigning a lower weight wd

to a demonstration that significantly increases the learned

entropy. The goal of the formulation is to ensure that

the optimal w⋆ is w⋆
d = 0 when the demonstration d is

adversarial and w⋆
d = 1 when the demonstration is correct.

To incorporate the weights w into the FEM algorithm, we

need to assume that the expert’s policy π̃ : S×{1, . . . , D} →
∆A and the state distribution p̃ : {1, . . . , D} → ∆S

are parameterized by the demonstration. This will make it

possible to essentially ignore some of the demonstrations.

Next, we replace π̃ and p̃ in (2) by their weighted versions

defined as follows:

π̃w(a|s) =
1

M

D
∑

d=1

wd · π̃(a|s, d)

p̃w(s) =
1

M

D
∑

d=1

wd · p̃(s, d) .

In essence, we allow the expert policies to differ among

demonstrations and aim to find the one policy that is most

consistent among them.

Then, optimizing for weights w that minimize the entropy

in (2), leads to the saddle point problem in Fig. 1. We call the

method R-MaxEnt. Note that the inner maximization prob-

lem is convex (concave objective function) and, therefore, it

can be replaced by its dual minimization problem. The result

is the non-convex quadratic problem depicted in Fig. 2.

We solve the non-convex quadratic problem in Fig. 2 using

the Sequential Quadratic Programming (SQP) algorithm 1;

see, for example, Chapter 18 of Nocedal and Wright [32].

The SQP algorithms generalizes the Newton’s method to

constrained optimization problems. In each iteration, the

Hessian of the Lagrangian function is approximated in a

quasi-Newton style. The algorithm then solves the resulting

1Implementation: https://www.mathworks.com/help/optim/
ug/constrained-nonlinear-optimization-algorithms.

html\#bsgppl4



min
w∈RD

max
π∈RS×A

−
∑

s∈S

∑

a∈A

π(a|s) log π(a|s)

D
∑

d=1

wd · p̃(s, d)

s. t.
D
∑

d=1

wd

∑

s∈S

∑

a∈A

fi(s, a)p̃(s, d)
(

π(a|s)− π̃(a|s, d)
)

= 0, i = 1, . . . , N [π]

∑

a∈A

π(a|s)− 1 = 0, ∀s ∈ S [π]

D
∑

d=1

wd = M, wd ≥ 0, ∀d ∈ D, wd ≤ 1 ∀d = 1, . . . , D [w]

(4)

Fig. 1. R-MaxEnt saddle point problem. The gray label in square brackets indicates which variable the constraint applies to.

min
w∈RD,λ∈RN

Λ(λ,w) ≡ −
1

M

D
∑

d=1

wd

(

−
∑

s∈S

p̃(s, d) log zλ(s) +

N
∑

i=1

λi

∑

s∈S

∑

a∈A

π̃(a|s, d)f(s, a)
)

s. t.
D
∑

d=1

wd = M, wd ≥ 0 ∀d ∈ D, wd ≤ 1 ∀d ∈ D

(5)

Fig. 2. R-MaxEnt minimization problem equivalent to Fig. 1.

quadratic program finds the next iteration using the line

search procedure. This algorithm may not converge to the

global minimum, but we find it to perform very well exper-

imentally.

V. SIMULATED EXPERIMENTS AND RESULTS

A. Experiments with OpenAI-Gym Simulator

In order to demonstrate R-MaxEnt’s ability to detect

adversarial demonstrations, we now experiment with several

simulated tasks.

Although R-MaxEnt is a BC approach of policy learn-

ing that does not learn any implicit/explicit reward func-

tion, we compared its performance against three recent

IRL approaches: Generative Adversarial Imitation Learning

(GAIL) [22] and [23] with two different objective functions;

(1) Linear cost function from [2] (FEM); (2) Game-theoretic

apprenticeship learning (GTAL): the algorithm of [23] using

the cost function from [41]. The reason for this is that,

similarly to R-MaxEnt, these IRL approaches also use/build

on maximum entropy and FEM concepts. However, note that

all of these existing IRL approaches require a simulator to

improve the learned policy.

We run our algorithm on the classical control tasks

Mountain-Car [30] and Acrobot [19] in the OpenAi-Gym

simulator [11]. Both tasks have a continuous state space

and discrete actions. As the baseline, we compare to the

established BC method [5], which models πBC using a

neural network with parameters θBC . We find these pa-

rameters using maximum-likelihood estimation: θBC =
argmaxθ

∏

(s,a)∈D πBC(a|s). With a given dataset of state-

action pairs, we split the dataset as 70% for training and 30%
validation data. We train the policy with supervised learning

using ADAM [26], until the validation error stops decreasing.

As we mentioned earlier, the dual of maximizing the entropy

is maximizing the likelihood of the given dataset. Keep in

mind that the IRL approaches has the advantage of using the

simulator in the training phase to generate more samples to

improve the accuracy (it used exactly 5000 samples in each

of the 300 iterations, a total of 1, 500, 000 samples) . We

leveraged the openly available source code2 for conducting

these experiments.

We generate the expert data using TRPO [39] on the

optimal cost functions. For the adversarial demonstrations,

we manipulate the actions of the expert data and the corre-

sponding state. For example, in the mountain car, we had

two actions: 0 and 1. The adversarial demonstrations are

generated as follows. If the optimized policy takes action

0 in a given state, we replace it with an action 1, and

vice versa to generate the next state. By doing this we are

building an actual adversarial demonstration that does not

follow the optimal policy, rather than simply a sub-optimal

demonstration.

To ensure a fair comparison, we use the same experimen-

tal settings as in [22], including the exact neural network

architectures for the policies, the features, and the optimizer

parameters for TRPO [39] for all of the algorithms except

ours, which does not use a neural network.

1) Adversarial Detection and Accuracy: The main goal

for our framework is to detect those adversarial demonstra-

tions in the dataset and give higher weights only to the

“correct” demonstrations. Fig. 3(a) and 3(b) summarize the

performance of different algorithms, under varying fraction

of expert/adversarial demonstrations (6 demonstrations in

2https://github.com/openai/imitation
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