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Abstract

Recent empirical evidence suggests that the
Weston-Watkins support vector machine is
among the best performing multiclass exten-
sions of the binary SVM. Current state-of-the-art
solvers repeatedly solve a particular subproblem
approximately using an iterative strategy. In this
work, we propose an algorithm that solves the
subproblem exactly using a novel reparametriza-
tion of the Weston-Watkins dual problem. For
linear WW-SVMs, our solver shows significant
speed-up over the state-of-the-art solver when the
number of classes is large. Our exact subproblem
solver also allows us to prove linear convergence
of the overall solver.

1. Introduction
Support vector machines (SVMs) (Boser et al., 1992;
Cortes & Vapnik, 1995) are a powerful class of algorithms
for classification. In the large scale studies by Fernández-
Delgado et al. (2014) and by Klambauer et al. (2017),
SVMs are shown to be among the best performing clas-
sifers.

The original formulation of the SVM handles only binary
classification. Subsequently, several variants of multiclass
SVMs have been proposed (Lee et al., 2004; Crammer
& Singer, 2001; Weston & Watkins, 1999). However, as
pointed out by Doǧan et al. (2016), no variant has been
considered canonical.

The empirical study of Doǧan et al. (2016) compared nine
prominent variants of multiclass SVMs and demonstrated
that the Weston-Watkins (WW) and Crammer-Singer (CS)
SVMs performed the best with the WW-SVM holding a
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slight edge in terms of both efficiency and accuracy. This
work focuses on the computational issues of solving the
WW-SVM optimization efficiently.

SVMs are typically formulated as quadratic programs.
State-of-the-art solvers such as LIBSVM (Chang & Lin,
2011) and LIBLINEAR (Fan et al., 2008) apply block co-
ordinate descent to the associated dual problem, which en-
tails repeatedly solving many small subproblems. For the
binary case, these subproblems are easy to solve exactly.

The situation in the multiclass case is more complex, where
the form of the subproblem depends on the variant of the
multiclass SVM. For the CS-SVM, the subproblem can be
solved exactly in O(k log k) time where k is the number
of classes (Crammer & Singer, 2001; Duchi et al., 2008;
Blondel et al., 2014; Condat, 2016). However, for the WW-
SVM, only iterative algorithms that approximate the sub-
problem minimizer have been proposed, and these lack run-
time guarantees (Keerthi et al., 2008; Igel et al., 2008).

In this work, we propose an algorithm called Walrus1 that
finds the exact solution of the Weston-Watkins subprob-
lem in O(k log k) time. We implement Walrus in C++ in-
side the LIBLINEAR framework, yielding a new solver for
the linear WW-SVM. For datasets with large number of
classes, we demonstrate significant speed-up over the state-
of-the-art linear solver Shark (Igel et al., 2008). We also
rigorously prove the linear convergence of block coordinate
descent for solving the dual problem of linear WW-SVM,
confirming an assertion of Keerthi et al. (2008).

1.1. Related works

Existing literature on solving the optimization from SVMs
largely fall into two categories: linear and kernel SVM
solvers. The seminal work of Platt (1998) introduced the
sequential minimal optimization (SMO) for solving kernel
SVMs. Subsequently, many SMO-type algorithms were in-
troduced which achieve faster convergence with theoretical
guarantees (Keerthi et al., 2001; Fan et al., 2005; Steinwart
et al., 2011; Torres-Barrán et al., 2021).

1WW-subproblem analytic log-linear runtime solver



Weston-Watkins SVM subproblem

SMO can be thought of as a form of (block) coordinate
descent where where the dual problem of the SVM opti-
mization is decomposed into small subproblems. As such,
SMO-type algorithms are also referred to as decomposition
methods. For binary SVMs, the smallest subproblems are
1-dimensional and thus easy to solve exactly. However, for
multiclass SVMs with k classes, the smallest subproblems
are k-dimensional. Obtaining exact solutions for the sub-
problems is nontrivial.

Many works have studied the convergence properties of
decomposition focusing on asymptotics (List & Simon,
2004), rates (Chen et al., 2006; List & Simon, 2009), bi-
nary SVM without offsets (Steinwart et al., 2011), and mul-
ticlass SVMs (Hsu & Lin, 2002). Another line of research
focuses on primal convergence instead of the dual (Hush
et al., 2006; List & Simon, 2007; List et al., 2007; Beck
et al., 2018).

Although kernel SVMs include linear SVMs as a special
case, solvers specialized for linear SVMs can scale to larger
data sets. Thus, linear SVM solvers are often developed
separately. Hsieh et al. (2008) proposed using coordinate
descent (CD) to solve the linear SVM dual problem and es-
tablished linear convergence. Analogously, Keerthi et al.
(2008) proposed block coordinate descent (BCD) for mul-
ticlass SVMs. Coordinate descent on the dual problem is
now used by the current state-of-the-art linear SVM solvers
LIBLINEAR (Fan et al., 2008), liquidSVM (Steinwart &
Thomann, 2017), and Shark (Igel et al., 2008).

There are other approaches to solving linear SVMs, e.g.,
using the cutting plane method (Joachims, 2006), and
stochastic subgradient descent on the primal optimization
(Shalev-Shwartz et al., 2011). However, these approaches
do not converge as fast as CD on the dual problem (Hsieh
et al., 2008).

For the CS-SVM introduced by Crammer & Singer (2001),
an exact solver for the subproblem is well-known and there
is a line of research on improving the solver’s efficiency
(Crammer & Singer, 2001; Duchi et al., 2008; Blondel
et al., 2014; Condat, 2016). For solving the kernel CS-
SVM dual problem, convergence of an SMO-type algo-
rithm was proven in (Lin, 2002). For solving the linear
CS-SVM dual problem, linear convergence of coordinate
descent was proven by Lee & Chang (2019). Linear CS-
SVMs with `1-regularizer have been studied by Babichev
et al. (2019)

The Weston-Watkins SVM was introduced by Breden-
steiner & Bennett (1999); Weston & Watkins (1999); Vap-
nik (1998). Empirical results from Doǧan et al. (2016) sug-
gest that the WW-SVM is the best performing multiclass
SVMs among nine prominent variants. The WW-SVM
loss function has also been successfully used in natural lan-

guage processing by Schick & Schütze (2020).

Hsu & Lin (2002) gave an SMO-type algorithm for solving
the WW-SVM, although without convergence guarantees.
Keerthi et al. (2008) proposed using coordinate descent on
the linear WW-SVM dual problem with an iterative sub-
problem solver. Furthermore, they asserted that the algo-
rithm converges linearly, although no proof was given. The
software Shark (Igel et al., 2008) features a solver for the
linear WW-SVM where the subproblem is approximately
minimized by a greedy coordinate descent-type algorithm.
MSVMpack (Didiot & Lauer, 2015) is a solver for multi-
class SVMs which uses the Frank-Wolfe algorithm. The
experiments of (van den Burg & Groenen, 2016) showed
that MSVMpack did not scale to larger number of classes
for the WW-SVM. To our knowledge, an exact solver for
the subproblem has not previously been developed.

1.2. Notations

Let n be a positive integer. Define [n] := {1, . . . , n}. All
vectors are assumed to be column vectors unless stated oth-
erwise. If v ∈ Rn is a vector and i ∈ [n], we use the
notation [v]i to denote the i-th component of v. Let 1n
and 0n ∈ Rn denote the vectors of all ones and zeros, re-
spectively. When the dimension n can be inferred from the
context, we drop the subscript and simply write 1 and 0.

Let m be a positive integer. Matrices w ∈ Rm×n are de-
noted by boldface font. The (j, i)-th entry of w is denoted
by wji. The columns of w are denoted by the same symbol
w1, . . . , wn using regular font with a single subscript, i.e.,
[wi]j = wji. A column of w is sometimes referred to as
a block. We will also use boldface Greek letter to denote
matrices, e.g., α ∈ Rm×n with columns α1, . . . , αn.

The 2-norm of a vector v is denoted by ‖v‖. The Frobenius
norm of a matrix w is denoted by ‖w‖F . The m × m
identity and all-ones matrices are denoted by Im and Om,
respectively. When m is clear from the context, we drop
the subscript and simply write I and O.

For referencing, section numbers from our supplementary
materials will be prefixed with an “A”, e.g., Section A.5.

2. Weston-Watkins linear SVM
Throughout this work, let k ≥ 2 be an integer denoting the
number of classes. Let {(xi, yi)}i∈[n] be a training dataset
of size n where the instances xi ∈ Rd and labels yi ∈ [k].
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The Weston-Watkins linear SVM 2 solves the optimization

min
w∈Rd×k

1

2
‖w‖2F +C

n∑
i=1

∑
j∈[k]:
j 6=yi

hinge(w′yixi−w
′
jxi) (P)

where hinge(t) = max{0, 1− t} and C > 0 is a hyperpa-
rameter.

Note that if an instance xi is the zero vector, then for any
w ∈ Rd×k we have hinge(w′yixi − w

′
jxi) = 1. Thus, we

can simply ignore such an instance. Below, we assume that
‖xi‖ > 0 for all i ∈ [n].

2.1. Dual of the linear SVM

In this section, we recall the dual of (P). Derivation of all
results here can be found in Hsu & Lin (2002); Keerthi et al.
(2008).

We begin by defining the function f : Rk×n → R

f(α) :=
1

2

∑
i,s∈[n]

x′sxiα
′
iαs −

∑
i∈[k]

∑
j∈[k]:
j 6=yi

αij

and the set

F :=
{
α ∈ Rk×n |

0 ≤ αij ≤ C, ∀i ∈ [n], j ∈ [k], j 6= yi,

αiyi = −
∑

j∈[k]\{yi}

αij , ∀i ∈ [n]
}
.

The dual problem of (P) is

min
α∈F

f(α). (D1)

The primal and dual variables w and α are related via

w = −
∑
i∈[n]

xiα
′
i. (1)

State-of-the-art solver Shark (Igel et al., 2008) uses coordi-
nate descent on the dual problem (D1). It is also possible
to solve the primal problem (P) using stochastic gradient
descent (SGD) as in Pegasos (Shalev-Shwartz et al., 2011).
However, the empirical results of Hsieh et al. (2008) show
that CD on the dual problem converges faster than SGD on
the primal problem. Hence, we focus on the dual problem.

2.2. Solving the dual with block coordinate descent

Block coordinate descent (BCD) is an iterative algorithm
for solving the dual problem (D1) by repeatedly improving

2Similar to other works on multiclass linear SVMs (Hsu &
Lin, 2002; Keerthi et al., 2008), the formulation (P) does not use
offsets. For discussions, see Section A.1.

a candidate solution α ∈ F . Given an i ∈ [n], an inner
iteration performs the update α ← α̃ where α̃ is a mini-
mizer of the i-th subproblem:

min
α̂∈F

f(α̂) such that α̂s = αs, ∀s ∈ [n] \ {i}. (S1)

An outer iteration performs the inner iteration once for
each i ∈ [n] possibly in a random order. By running sev-
eral outer iterations, an (approximate) minimizer of (D1) is
putatively obtained.

Later, we will see that it is useful to keep track of w so that
(1) holds throughout the BCD algorithm. Suppose that α
and w satisfy (1). Then w must be updated via

w← w − xi(α̃i − αi)′ (2)

prior to updating α← α̃.

3. Reparametrization of the dual problem
In this section, we introduce a new way to parametrize the
dual optimization (D1) which allows us to derive an algo-
rithm for finding the exact minimizer of (S1).

Define the matrix π :=
[
1 −I

]
∈ R(k−1)×k. For each

y ∈ [k], let σy ∈ Rk×k be the permutation matrix which
switches the 1st and the yth indices. In other words, given
a vector v ∈ Rk, we have

[σy(v)]j =


v1 : j = y

vy : j = 1

vj : j 6∈ {1, y}.

Define the function g : R(k−1)×n → R

g(β) :=
1

2

∑
i,s∈[n]

x′sxiβ
′
iπσyiσysπ

′βs −
∑
i∈[n]

1′βi

and the set

G :=
{
β ∈ R(k−1)×n |

0 ≤ βij ≤ C, ∀i ∈ [n], j ∈ [k − 1]
}
.

Consider the following optimization:

min
β∈G

g(β). (D2)

Up to a change of variables, the optimization (D2) is equiv-
alent to the dual of the linear WW-SVM (D1). In other
words, (D2) is a reparametrization of (D1). Below, we
make this notion precise.
Definition 3.1. Define a map Ψ : G → Rk×n as follows:
Given β ∈ G, construct an element Ψ(β) := α ∈ Rk×n

whose i-th block is

αi = −σyiπ′βi. (3)
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The map Ψ will serve as the change of variables map,
where π reduces the dual variable’s dimension from k for
αi to k − 1 for βi. Furthermore, σyi eliminates the depen-
dency on yi in the constraints. The following proposition
shows that Ψ links the two optimization problems (D1) and
(D2).

Proposition 3.2. The image of Ψ is F , i.e., Ψ(G) = F .
Furthermore, Ψ : G → F is a bijection and

f(Ψ(β)) = g(β).

Sketch of proof. Define another map Ξ : F → R(k−1)×n

as follows: For each α ∈ F , define β := Ξ(α) block-wise
by

βi := proj2:k(σyiαi) ∈ Rk−1

where
proj2:k =

[
0 Ik−1

]
∈ R(k−1)×k.

Then the range of Ξ is in G. Furthermore, Ξ and Ψ are
inverses of each other. This proves that Ψ is a bijection.

3.1. Reparametrized subproblem

Since the map Ψ respects the block-structure of α and β,
the result below follows immediately from Proposition 3.2:

Corollary 3.3. Let β ∈ G and i ∈ [n]. Let α = Ψ(β).
Consider

min
β̂∈G

g(β̂) such that β̂s = βs, ∀s ∈ [n] \ {i}. (S2)

Let β̃ ∈ F be arbitrary. Then β̃ is a minimizer of (S2) if
and only if α̃ := Ψ(β̃) is a minimizer of (S1).

Below, we focus on solving (D2) with BCD, i.e., repeat-
edly performing the update β ← β̃ where β̃ is a minimizer
of (S2) over different i ∈ [n]. By Corollary 3.3, this is
equivalent to solving (D1) with BCD, up to the change of
variables Ψ.

The reason we focus on solving (D2) with BCD is because
the subproblem can be cast in a simple form that makes an
exact solver more apparent. To this end, we first show that
the subproblem (S2) is a quadratic program of a particular
form. Define the matrix Θ := Ik−1 + Ok−1.

Theorem 3.4. Let v ∈ Rk−1 be arbitrary and C > 0.
Consider the optimization

min
b∈Rk−1

1

2
b′Θb− v′b (4)

s.t. 0 ≤ b ≤ C.

Then Algorithm 2, solve subproblem(v, C), computes
the unique minimizer of (4) in O(k log k) time.

We defer further discussion of Theorem 3.4 and Algo-
rithm 2 to the next section. The quadratic program (4) is
the generic form of the subproblem (S2), as the following
result shows:

Proposition 3.5. In the situation of Corollary 3.3, let β̃i be
the i-th block of the minimizer β̃ of (S2). Then β̃i is the
unique minimizer of (4) with

v := (1− πσyiw
′xi)/‖xi‖22 + Θβi

and w as in (1).

3.2. BCD for the reparametrized dual problem

As mentioned in Section 2.2, it is useful to keep track of w
so that (1) holds throughout the BCD algorithm. In Propo-
sition 3.5, we see that w is used to compute v. The update
formula (2) for w in terms of α̃ can be cast in terms of β
and β̃ by using (3):

w← w − xi(α̃i − αi)′ = w + xi(β̃i − βi)′πσyi .

We now have all the ingredients to state the reparametrized
block coordinate descent pseudocode in Algorithm 1.

Algorithm 1 Block coordinate descent on (D2)
1: β ← 0(k−1)×n
2: w← 0d×k
3: while not converged do
4: for i← 1 to n do
5: v ← (1− πσyiw

′xi)/‖xi‖22 + Θβi
6: β̃i ← solve subproblem(v, C) (Algorithm 2)
7: w← w + xi(β̃i − βi)′πσyi
8: βi ← β̃i
9: end for

10: end while

Multiplying a vector by the matrices Θ and π both only
takes O(k) time. Multiplying a vector by σyi takes O(1)
time since σti simply swaps two entries of the vector.
Hence, the speed bottlenecks of Algorithm 1 are computing
w′xi and xi(β̃i − βi)

′, both taking O(dk) time and run-
ning solve subproblem(v, C), which takes O(k log k)
time. Overall, a single inner iteration of Algorithm 1 takes
O(dk + k log k) time. If xi is s-sparse (only s entries are
nonzero), then the iteration takes O(sk + k log k) time.

3.3. Linear convergence

Similar to the binary case (Hsieh et al., 2008), BCD con-
verges linearly, i.e., it produces an ε-accurate solution in
O(log(1/ε)) outer iterations:

Theorem 3.6. Algorithm 1 has global linear convergence.
More precisely, let βt be β at the end of the t-th iteration
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of the outer loop of Algorithm 1. Let g∗ = minβ∈G g(β).
Then there exists ∆ ∈ (0, 1) such that

g(βt+1)− g∗ ≤ ∆(g(βt)− g∗), ∀t = 0, 1, 2 . . . (5)

where ∆ depends on the data {(xi, yi)}i∈[n], k and C.

Luo & Tseng (1992) proved asymptotic3 linear conver-
gence for cyclic coordinate descent for a certain class of
minimization problems where the subproblem in each co-
ordinate is exactly minimized. Furthermore, Luo & Tseng
(1992) claim that the same result holds if the subproblem is
approximately minimized, but did not give a precise state-
ment (e.g., approximation in which sense).

Keerthi et al. (2008) asserted without proof that the results
of Luo & Tseng (1992) can be applied to BCD for WW-
SVM. Possibly, no proof was given since no solver, ex-
act nor approximate with approximation guarantees, was
known at the time. Theorem 3.6 settles this issue, which
we prove in Section A.4 by extending the analysis of Luo
& Tseng (1992); Wang & Lin (2014) to the multiclass case.

4. Sketch of proof of Theorem 3.4
Throughout this section, let v ∈ Rk−1 and C > 0 be fixed.
We first note that (4) is a minimization of a strictly con-
vex function over a compact domain, and hence has unique
minimizer b̃ ∈ Rk−1. Furthermore, it is the unique point
satisfying the KKT conditions, which we present below.
Our goal is to sketch the argument that Algorithm 2 out-
puts the minimizer upon termination. The full proof can be
found in Section A.5.

4.1. Intuition

We first study the structure of the minimizer b̃ in and of
itself. The KKT conditions for a point b ∈ Rk−1 to be
optimal for (4) are as follows:

∀i ∈ [k − 1], ∃λi, µi ∈ R satisfying
[(I + O)b]i + λi − µi = vi stationarity (KKT)

C ≥ bi ≥ 0 primal feasibility
λi ≥ 0, and µi ≥ 0 dual feasibility

λi(C − bi) = 0, and µibi = 0 complementary slackness

Below, let maxi∈[k−1] vi =: vmax, and 〈1〉, . . . , 〈k − 1〉 be
an argsort of v, i.e., v〈1〉 ≥ · · · ≥ v〈k−1〉.

Definition 4.1. The clipping map clipC : Rk−1 →
[0, C]k−1 is the function defined as follows: forw ∈ Rk−1,
[clipC(w)]i := max{0,min{C,wi}}.

Using the KKT conditions, we check that b̃ = clipC(v −
γ̃1) for some (unknown) γ̃ ∈ R and that γ̃ = 1′b̃.

3Asymptotic in the sense that (5) is only guaranteed after t >
t0 for some unknown t0.

Proof. Let γ̃ ∈ R be such that Ob̃ = γ̃1. The stationarity
condition can be rewritten as b̃i + λi − µi = vi − γ̃. Thus,
by complementary slackness and dual feasibility, we have

b̃i


≤ vi − γ̃ : b̃i = C

= vi − γ̃ : b̃i ∈ (0, C)

≥ vi − γ̃ : b̃i = 0

Note that this is precisely b̃ = clipC(v − γ̃1).

For γ ∈ R, let bγ := clipC(v − γ1) ∈ Rk−1. Thus,
the (k−1)-dimensional vector b̃ can be recovered from the
scalar γ̃ via bγ̃ , reducing the search space from Rk−1 to R.

However, the search space R is still a continuum. We show
that the search space for γ̃ can be further reduced to a finite
set of candidates. To this end, let us define

Iγu := {i ∈ [k − 1] : bγi = C}
Iγm := {i ∈ [k − 1] : bγi ∈ (0, C)}.

Note that Iγu and Iγm are determined by their cardinalities,
denoted nγu and nγm, respectively. This is because

Iγu = {〈1〉, 〈2〉, . . . , 〈nγu〉}
Iγm = {〈nγu + 1〉, 〈nγu + 2〉, . . . , 〈nγu + nγm〉}.

Let TkU := {0} ∪ [k − 1]. By definition, nγm, n
γ
u ∈ TkU.

For (nm, nu) ∈ TkU2, define S(nm,nu), γ̂(nm,nu) ∈ R by

S(nm,nu) :=

nu+nm∑
i=nu+1

v〈i〉, (6)

γ̂(nm,nu) :=
(
C · nu + S(nm,nu)

)
/(nm + 1). (7)

Furthermore, define b̂(nm,nu) ∈ Rk−1 such that, for i ∈
[k − 1], the 〈i〉-th entry is

b̂
(nm,nu)
〈i〉 :=


C : i ≤ nu
v〈i〉 − γ(nm,nu) : nu < i ≤ nu + nm

0 : nu + nm < i.

Using the KKT conditions, we check that

b̃ = b̂(n
γ̃
m,n

γ̃
u) = clipC(v − γ̂(nγ̃m,n

γ̃
u)1).

Proof. It suffices to prove that γ̃ = γ̂(nγ̃m,n
γ̃
u). To this end,

let i ∈ [k − 1]. If i ∈ I γ̃m, then b̃i = vi − γ̃. If i ∈ I γ̃u , then
b̃i = C. Otherwise, b̃i = 0. Thus

γ̃ = 1′b̃ = C · nγ̃u + S(nγ̃m,n
γ̃
u) − γ̃ · nγ̃m (8)

Solving for γ̃, we have

γ̃ =
(
C · nγ̃u + S(nγ̃m,n

γ̃
u)
)
/(nγ̃m + 1) = γ̂(nγ̃m,n

γ̃
u),

as desired.
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Now, since (nγ̃m, n
γ̃
u) ∈ TkU2, to find b̃we can simply check

for each (nm, nu) ∈ TkU2 if b̂(nm,nu) satisfies the KKT
conditions. However, this naive approach leads to anO(k2)
runtime.

To improve upon the naive approach, define

< := {(nγm, nγu) : γ ∈ R}. (9)

Since (nγ̃m, n
γ̃
u) ∈ <, to find b̃ it suffices to search through

(nm, nu) ∈ < instead of TkU2. Towards enumerating all el-
ements of <, a key result is that the function γ 7→ (Iγm, I

γ
u )

is locally constant outside of the set of discontinuities:

disc := {vi : i ∈ [k − 1]} ∪ {vi − C : i ∈ [k − 1]}.

Proof. Let γ1, γ2, γ3, γ4 ∈ R satisfy the following: 1)
γ1 < γ2 < γ3 < γ4, 2) γ1, γ4 ∈ disc, and 3) γ 6∈ disc

for all γ ∈ (γ1, γ4). Assume for the sake of contradiction
that (Iγ2m , Iγ2u ) 6= (Iγ3m , Iγ3u ). Then Iγ2m 6= Iγ3m or Iγ2u 6= Iγ3u .
Consider the case Iγ2m 6= Iγ3m . Then at least one of the sets
Iγ2m \Iγ3m and Iγ3m \Iγ2m is nonempty. Consider the case when
Iγ2m \ Iγ3m is nonempty. Then there exists i ∈ [k − 1] such
that vi−γ2 ∈ (0, C) but vi−γ3 6∈ (0, C). This implies that
there exists some γ′ ∈ (γ2, γ3) such that vi − γ′ ∈ {0, C},
or equivalently, γ′ ∈ {vi, vi − C}. Hence, γ′ ∈ disc,
which is a contradiction. For the other cases not consid-
ered, similar arguments lead to the same contradiction.

Thus, as we sweep γ from +∞ to−∞, we observe finitely
many distinct tuples of sets (Iγm, I

γ
u ) and their cardinalities

(nγm, n
γ
u). Using the index t = 0, 1, 2 . . . , we keep track

of these data in the variables (Itm, I
t
u) and (ntm, n

t
u). For

this proof sketch, we make the assumption that |disc| =
2(k − 1), i.e., no elements are repeated.

By construction, the maximal element of disc is vmax.
When γ > vmax, we check that nγm = nγu = ∅. Thus,
we put I0

m = I0
u = ∅ and (n0

m, n
0
u) = (0, 0).

Now, suppose γ has swept across t − 1 points of disconti-
nuity and that It−1

m , It−1
u , nt−1

m , nt−1
u have all been defined.

Suppose that γ crossed a single new point of discontinuity
γ′ ∈ disc. In other words, γ′′ < γ < γ′ where γ′′ is the
largest element of disc such that γ′′ < γ′.

By the assumption that no elements of disc are repeated,
exactly one of the two following possibilities is true:

there exists i ∈ [k − 1] such that γ′ = vi, (Entry)
there exists i ∈ [k − 1] such that γ′ = vi − C. (Exit)

Under the (Entry) case, the index i gets added to It−1
m while

It−1
u remains unchanged. Hence, we have the updates

Itm := Iγm = It−1
m ∪ {i}, Itu := Iγu = It−1

u (10)

ntm := nγm = nt−1
m + 1, ntu := nγu = nt−1

u . (11)

Under the (Exit) case, the index imoves from It−1
m to It−1

u .
Hence, we have the updates

Itm := Iγm = It−1
m \ {i}, Itu := Iγu = It−1

u ∪ {i} (12)

ntm := nγm = nt−1
m − 1, ntu := nγu = nt−1

u + 1. (13)

Thus, {(ntm, ntu)}2(k−1)
t=0 = <. The case when disc has

repeated elements requires more careful analysis which is
done in the full proof. Now, we have all the ingredients for
understanding Algorithm 2 and its subroutines.

4.2. A walk through of the solver

If vmax ≤ 0, then b̃ = 0 satisfies the KKT conditions.
Algorithm 2-line 3 handles this exceptional case. Below,
we assume vmax > 0.

Algorithm 2 solve subproblem(v, C)

1: Input: v ∈ Rk−1

2: Let 〈1〉, . . . , 〈k − 1〉 sort v, i.e., v〈1〉 ≥ · · · ≥ v〈k−1〉.

3: if v〈1〉 ≤ 0 then HALT and output: 0 ∈ Rk−1.

4: n0
u := 0, n0

m := 0, S0 := 0

5: (δ1, . . . , δ`)← get up dn seq() (Subroutine 3)

6: for t = 1, . . . , ` do
7: (ntm, n

t
u, S

t)← update vars() (Subroutine 4).

8: γ̂t := (C · ntu + St)/(ntm + 1)

9: if KKT cond() (Subroutine 5) returns true then
10: HALT and output: b̂t ∈ Rk−1 where

b̂t〈i〉 :=


C : i ≤ ntu
v〈i〉 − γt : ntu < i ≤ ntu + ntm
0 : ntu + ntm < i.

11: end if
12: end for

Algorithm 2-line 4 initializes the state variables ntm and ntu
as discussed in the last section. The variable St is also
initialized and will be updated to maintain St = S(ntm,n

t
u)

where the latter is defined at (6).

Algorithm 2-line 5 calls Subroutine 3 to construct the vals
ordered set, which is similar to the set of discontinuities
disc, but different in three ways: 1) vals consists of tuples
(γ′, δ′) where γ′ ∈ disc and δ′ ∈ {up, dn} is a decision
variable indicating whether γ′ satisfies the (Entry) or the
(Exit) condition, 2) vals is sorted so that the γ′s are in
descending order, and 3) only positive values of disc are
needed. The justification for the third difference is because
we prove that Algorithm 2 always halts before reaching the
negative values of disc. Subroutine 3 returns the list of
symbols (δ1, . . . , δ`) consistent with the ordering.
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Subroutine 3 get up dn seq Note: all variables from
Algorithm 2 are assumed to be visible here.

1: vals ← {(vi, dn) : vi > 0, i = 1, . . . , k − 1} ∪
{(vi−C, up) : vi > C, i = 1, . . . , k−1} as a multiset,
where elements may be repeated.

2: Order the set vals = {(γ1, δ1), . . . , (γ`, δ`)} such that
γ1 ≥ · · · ≥ γ`, ` = |vals|, and for all j1, j2 ∈ [`] such
that j1 < j2 and γj1 = γj2 , we have δj1 = dn implies
δj2 = dn.
Note that by construction, for each t ∈ [`], there exists
i ∈ [k − 1] such that γt = vi or γt = vi − C.

3: Output: sequence (δ1, . . . , δ`) whose elements are re-
trieved in order from left to right.

In the “for” loop, Algorithm 2-line 7 calls Subroutine 4
which updates the variables ntm, n

t
u using (11) or (13), de-

pending on δt. The variable St is updated accordingly so
that St = S(ntm,n

t
u).

Subroutine 4 update vars Note: all variables from
Algorithm 2 are assumed to be visible here.

1: if δt = up then
2: ntu := nt−1

u + 1, ntm := nt−1
m − 1

3: St := St−1 − v〈nt−1
u 〉

4: else
5: ntm := nt−1

m + 1, ntu := nt−1
u .

6: St := St−1 + v〈ntu+ntm〉
7: end if
8: Output: (ntm, n

t
u, S

t)

We skip to Algorithm 2-line 9 which constructs the putative
solution b̂t. Observe that b̂t = b̂(n

t
m,n

t
u) where the latter is

defined in the previous section.

Going back one line, Algorithm 2-line 8 calls Subroutine 5
which checks if the putative solution b̂t satisfies the KKT
conditions. We note that this can be done before the puta-
tive solution is constructed.

For the runtime analysis, we note that Subroutines 5 and 4
both use O(1) FLOPs without dependency on k. The main
“for” loop of Algorithm 2 (line 6 through 11) has O(`)
runtime where ` ≤ 2(k − 1). Thus, the bottlenecks are
Algorithm 2-line 2 and 5 which sort lists of length at most
k − 1 and 2(k − 1), respectively. Thus, both lines run in
O(k log k) time.

5. Experiments
LIBLINEAR is one of the state-of-the-art solver for lin-
ear SVMs (Fan et al., 2008). However, as of the latest
version 2.42, the linear Weston-Watkins SVM is not sup-
ported. We implemented our linear WW-SVM subproblem

Subroutine 5 KKT cond Note: all variables from Algo-
rithm 2 are assumed to be visible here.

1: kkt cond← true
2: if ntu > 0 then
3: kkt cond← kkt cond ∧

(
C + γ̂t ≤ v〈ntu〉

)
Note: ∧ denotes the logical “and”.

4: end if
5: if ntm > 0 then
6: kkt cond← kkt cond ∧

(
v〈ntu+1〉 ≤ C + γ̂t

)
7: kkt cond← kkt cond ∧

(
γ̂t ≤ v〈ntu+ntm〉

)
8: end if
9: if ntd := k − 1− ntu − ntm > 0 then

10: kkt cond← kkt cond ∧
(
v〈ntu+ntm+1〉 ≤ γ̂t

)
11: end if
12: Output: kkt cond

Table 1. Data sets used. Variables k, n and d are, respectively, the
number of classes, training samples, and features.

DATA SET k n d

DNA 3 2,000 180
SATIMAGE 6 4,435 36
MNIST 10 60,000 780
NEWS20 20 15,935 62,061
LETTER 26 15,000 16
RCV1 53 15,564 47,236
SECTOR 105 6,412 55,197
ALOI 1,000 81,000 128

solver, Walrus (Algorithm 2), along with the BCD Algo-
rithm 1 as an extension to LIBLINEAR. The solver and
code for generating the figures are available4.

We compare our implementation to Shark (Igel et al.,
2008), which solves the dual subproblem (S1) using a form
of greedy coordinate descent. For comparisons, we reim-
plemented Shark’s solver also as a LIBLINEAR extension.
When clear from the context, we use the terms “Walrus”
and “Shark” when referring to either the subproblem solver
or the overall BCD algorithm.

We perform benchmark experiments on 8 datasets from
“LIBSVM Data: Classification (Multi-class)5” spanning a
range of k from 3 to 1000. See Table 1.

In all of our experiments, Walrus and Shark perform identi-
cally in terms of testing accuracy. We report the accuracies
in Section A.6.3. Below, we will only discuss runtime.

For measuring the runtime, we start the timer after the data
sets have been loaded into memory and before the state
variables β and w have been allocated. The primal ob-
jective is the value of (P) at the current w and the dual

4See Section A.6.
5See Section A.6.2.
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Figure 1. Runtime comparison of Walrus and Shark. Abbrevia-
tions: pr. = primal and du. = dual. The X-axes show time elapsed.

objective is −1 times the value of (D2) at the current β.
The duality gap is the primal minus the dual objective. The
objective values and duality gaps are measured after each
outer iteration, during which the timer is paused.

For solving the subproblem, Walrus is guaranteed to return
the minimizer in O(k log k) time. On the other hand, to
the best of our knowledge, Shark does not have such guar-
antee. Furthermore, Shark uses a doubly-nested for loop,
each of which has length O(k), yielding a worst-case run-
time ofO(k2). For these reasons, we hypothesize that Wal-
rus scales better with larger k.

As exploratory analysis, we ran Walrus and Shark on the
SATIMAGE and SECTOR data sets6, which has 6 and 105
classes, respectively. The results, shown in Figure 1, sup-
port our hypothesis: Walrus and Shark are equally fast for
SATIMAGE while Walrus is faster for SECTOR.

We test our hypothesis on a larger scale by running Wal-
rus and Shark on the datasets in Table 1 over the grid of
hyperparameters C ∈ {2−6, 2−5, . . . , 22, 23}. The results
are shown in Figure 2 where each dot represents a triplet
(DATA SET, C, δ) where δ is a quantity we refer to as the
duality gap decay. The Y-axis shows the comparative met-
ric of runtime ETδWalrus/ET

δ
Shark to be defined next.

Consider a single run of Walrus on a fixed data set with a
given hyperparameter C. Let DGtWalrus denote the duality
gap achieved by Walrus at the end of the t-th outer iter-

6The regularizers are set to the corresponding values from Ta-
ble 5 of the supplementary material of Doǧan et al. (2016) chosen
by cross-validation.

ation. Let δ ∈ (0, 1). Define ETδWalrus to be the elapsed
time at the end of the t-th iteration where t is minimal
such that DGtWalrus ≤ δ · DG1

Walrus. Define DGtShark and
ETδShark similarly. In all experiments DG1

Walrus/DG
1
Shark ∈

[0.99999, 1.00001]. Thus, the ratio ETδWalrus/ET
δ
Shark mea-

sures how much faster Shark is relative to Walrus.

From Figure 2, it is evident that in general Walrus con-
verges faster on data sets with larger number of classes.
Not only does Walrus beat Shark for large k, but it also
seems to not do much worse for small k. In fact Walrus
seems to be at least as fast as Shark for all datasets except
SATIMAGE.

The absolute amount of time saved by Walrus is often more
significant on datasets with larger number of classes. To
illustrate this, we let C = 1 and compare the times for the
duality gap to decay by a factor of 0.01. On the data set
SATIMAGE with k = 6, Walrus and Shark take 0.0476 and
0.0408 seconds, respectively. On the data set ALOI with
k = 1000, Walrus and Shark take 188 and 393 seconds,
respectively.

We remark that Figure 2 also suggests that Walrus tends to
be faster during early iterations but can be slower at late
stages of the optimization. To explain this phenomenon,
we note that Shark solves the subproblem using an iterative
descent algorithm and is set to stop when the KKT vio-
lations fall below a hard-coded threshold. When close to
optimality, Shark takes fewer descent steps, and hence less
time, to reach the stopping condition on the subproblems.
On the other hand, Walrus takes the same amount of time
regardless of proximity to optimality.

For the purpose of grid search, a high degree of optimality
is not needed. In Section A.6.3, we provide empirical ev-
idence that stopping early versus late does not change the
result of grid search-based hyperparameter tuning. Specifi-
cally, Table 7 shows that running the solvers until δ ≈ 0.01
or until δ ≈ 0.001 does not change the cross-validation
outcomes.

Finally, the optimization (4) is a convex quadratic program
and hence can be solved using general-purpose solvers
(Voglis & Lagaris, 2004). However, we find that Walrus,
being specifically tailored to the optimization (4), is orders
of magnitude faster. See Tables 8 and 9 in the Appendix.

6. Discussions and future works
We presented an algorithm called Walrus for exactly solv-
ing the WW-subproblem which scales with the number
of classes. We implemented Walrus in the LIBLINEAR
framework and demonstrated empirically that BCD using
Walrus is significantly faster than state-of-the-art linear
WW-SVM solver Shark on datasets with a large number



Weston-Watkins SVM subproblem

Figure 2. X-coordinates jittered for better visualization.

of classes, and comparable to Shark for small number of
classes.

One possible direction for future research is whether Wal-
rus can improve kernel WW-SVM solver. Another di-
rection is lower-bounding time complexity of solving the
WW-subproblem (4).
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