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Abstract

We study solution methods for (strongly-)convex-(strongly)-concave Saddle-Point
Problems (SPPs) over networks of two type—master/workers (thus centralized)
architectures and mesh (thus decentralized) networks. The local functions at each
node are assumed to be similar, due to statistical data similarity or otherwise.
We establish lower complexity bounds for a fairly general class of algorithms
solving the SPP. We show that a given suboptimality ¢ > 0 is achieved over
master/workers networks in Q(A-8/4-log(1/¢)) rounds of communications, where
0 > 0 measures the degree of similarity of the local functions, p is their strong
convexity constant, and A is the diameter of the network. The lower communication
complexity bound over mesh networks reads Q(1//p - §/p - log(1/¢)), where
p is the (normalized) eigengap of the gossip matrix used for the communication
between neighbouring nodes. We then propose algorithms matching the lower
bounds over either types of networks (up to log-factors). We assess the effectiveness
of the proposed algorithms on a robust regression problem.

1 Introduction

We study smooth (strongly-)convex-(strongly-)concave SPPs over a network of M agents:

. | M
min max f (v, y) = 17 mZ:l (@), (P)
where X, Y C R? are convex and compact sets common to all the agents; and f,, (z,y) is the loss
function of agent m, known only to the agent. Problem (P) has found a wide range of applications,
including, game theory [42, 10], image deconvolution problems [7], adversarial training [3, 12], and
statistical learning [1]-see Sec. 2 for some motivating examples in the distributed setting. We are
particularly interested in learning problems, where each f,, is the empirical risk that measures the
mismatch between the model to be learned and the local dataset owned by agent m.

Since the functions f,, can be accessed only locally and routing local data to other agents is
infeasible or highly inefficient, solving (P) calls for the design of distributed algorithms that alternate
between a local computation procedure at each agent’s side, and a round of communication among
(suitably chosen) neighboring nodes. We address such a design considering explicitly two type of
computational architectures, namely: (i) master/workers networks—these are centralized systems
suitable for parallel computing; for instance, they are the typical computational architecture arising
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from federated learning applications (e.g., [17]), where data are split across multiple workers and
computations are performed in parallel, coordinated by the master node(s); and (ii) mesh networks—
these are distributed systems with no special topology (modeled just as undirected graphs), which
capture scenarios wherein there is no hierarchical structure (e.g., master nodes) and each node can
communicate only with its intermediate neighbors.

Function similarity: Motivated in particular by machine learning applications, our design and
analysis pertain to distributed algorithms for SPPs (P) where the local functions f,,,’s are related—
quantities such as gradients and the second derivatives matrices of f,;,’s differ only by a finite quantity
0 > 0; we will term such SPPs as d-related SPPs. For instance, this is the typical situation in the
aforementioned distributed empirical risk minimization setting [2, 14, 47]: when data are i.i.d. among
machines, the f,,’s reflect statistical similarities in the data residing at different nodes, resulting in a

6 = O(1/+/n), where n is the local sample size (O hides log-factors and dependence on d).

While SPPs have been extensively studied in the centralized setting (e.g., [10, 29, 18, 30, 5]) and more
recently over mesh networks [23, 27, 22, 26, 36, 4, 6], we are not aware of any analysis or (distributed)
algorithm that explicitly exploit function similarity to boost communication efficiency—either lower
complexity bounds or upper bounds. On the other hand, recent works for sum-utility minimization
problems over networks (e.g., [2, 38, 35, 45, 43, 11, 47, 14, 39, 20]) show that employing some form
of statistical preconditioning in the algorithm design provably reduces communication complexity.
Whether these improvements are possible/achievable for §-related SSPs in the form (P) remains
unclear. This paper provides a positive answer to the above open problem.

Major contributions: Our major results are summarized next. (a) Lower complexity bounds:
Under mild structural assumptions on the algorithmic oracle (satisfied by a variety of methods),
we establish lower complexity bounds for the d-related SPP (P) with p-strongly-convex-strongly
-concave, L-smooth (twice-differentiable) local functions: an € precision on the optimality gap over
master/workers system is achieved in (A - 6/ - log(1/¢)) communication steps, where A is the

diameter of the network. The lower complexity bound over mesh networks reads 2 (1 [P0/

log(1/ 5)) rounds of communications, where p is the (normalized) eigengap of the gossip matrix
used for the communication between neighbouring nodes. These new lower bounds show a more
favorable dependence on the optimization parameters (via 6 /) than that of distributed oracles for
SPPs ignoring function similarity [5, 36], whose communication complexity, e.g., over mesh networks
reads Q(1/,/p - L/ - log(1/¢)). The latter provides a pessimistic prediction when §/p < L/p.
This is the typical situation of ill-conditioned problems, such as many learning problems where the
regularization parameter that is optimal for test predictive performance is so small that a scaling
with L/p is no longer practical while §/u is (see, e.g., [25, 14]). (b) Near optimal algorithms:
We proposed algorithms for such SPPs over master/workers and mesh networks that match the
lower bounds up to logarithmic factors. They are provably faster than existing solution methods
for u-strongly-convex-strongly-concave, L-smooth SPPs, which do not exploit function similarity.
Preliminary numerical results on distributed robust logistic regression support our theoretical findings.

1.1 Related works

Methods for SPPs ignoring function similarity: (Strongly)-convex-(strongly)-concave SPPs have
been extensively studied in the optimization literature and as special instances of (strongly) monotone
Variational Inequalities (VI) [10, 16]. Several algorithms are available in the centralized setting,
some directly imported from the VI literature; representative examples include: the mirror-proximal
algorithm [29], Extragradient method [18] and the scheme in [30]-they are readily implementable on
master/workers architectures as well. For SPPs with p-strongly-convex-strongly-concave, L-smooth
loss, all these schemes achieve iteration complexity of O (L/s - log(1/¢)), which has been shown to
be optimal for first-order methods solving such a class of SPPs [46, 34]. Lower bounds and optimal
algorithms in the distributed setting for SPPs without similarity have been studied in [5].

Note that none of the above lower (and upper) complexity bounds or (centralized or distributed)
algorithmic designs capture function similarity. As a consequence, convergence rates certified in the
aforementioned works, when applicable to d-related SPPs in the form (P), provide quite pessimistic
predictions, in the setting 1 4+ ¢/ < L/ .

Methods for sum-utility minimization exploiting function similarity: Several works exploited the
idea of statistical preconditioning to provably improve communication complexity of solution methods
for the minimization of the sum of J-related, u-strongly convex and L-smooth functions over mas-



ter/workers networks. Lower complexity bounds are established in [2], and read (/6/plog(1/¢)),

which contrasts with O (+/L/plog(1/¢)) achievable by first-order (Nesterov) accelerated methods
[31], certifying thus faster rates whenever 6/ < L/u. Solutions methods exploiting function
similarity are mirror proximal-like schemes, and include [38, 35, 45] (for quadratic losses), [47] (for
self-concordant losses), [43], and [11] (for composite optimization), with [14] employing acceleration.
None of these methods are implementable over mesh networks, because they rely on a centralized
(master) node. To our knowledge, Network-DANE [20] and SONATA [39] are the only two methods
that leverage statistical similarity to enhance convergence of distributed methods over mesh networks;
[20] studies strongly convex quadratic losses while [39] considers general objectives, achieving a

communication complexity of O((1/ V/P) -0/ -log(1/e)), where O hides logarithmic factors. None
of the methods above however are applicable to the §-related SPP (P).

1.2 Notation

Given a positive integer M, we define [M] = {1,..., M}. We use (z,y) := Z?:l x;y; to denote
standard inner product of z,y € R%. It induces £2-norm in R? in the following way ||z|| := /(z, x).
We also introduce projz(z) = min,ez ||u — z|| — the Euclidean projection onto Z. We order
the eigenvalues of any symmetrix matrix A € R™*™ in nonincreasing fashion, i.e., Apax(A) =
A(A) > .00 > A (A) = Anin(A), with Apax (+) [resp. Amin (+)] denoting the largest (resp. smallest)
eigenvalue.

2 Setup and Background

Problem setting: We begin introducing the main assumptions underlying Problem (P) and some
useful notation.

Let us stack the z- and y-variables in the tuple z = (z, y); accordingly, define Z = X’ x ) and the
vector-functions F,,, F : Z — R2¢:

M
— ( Vafm(z,y) _ 1
Fp(z) = (Vyfm(:z:,y) , and F(z):= M;Fm(z). (1)
The following conditions are standard for strongly convex-strongly concave SPPs.
Assumption 1 Given (P), the following hold:

(i) 0 # Z is a convex set;

(ii) Each f,, : R** — R is twice differentiable on (an open set containing) Z, with L-Lipschitz
gradient: ||Fy,(21) — Fi(22)|| < Ll|z1 — 22|, forall z1, 22 € Z;

(iii) f(z) is p-strongly convex-strongly concave on Z, i.e., (F(z1) — F(23),21 — 22) > pllz1 —
22||?, forall z1, 2o € Z;

(iv) Each fp,(2) is convex-concave on Z, i.e. 0-strongly convex-strongly concave.
We are interested in finding the solution z* = (z*, y*) of Problem (P) under function similarity.
Assumption 2 (0-related f,,’s) The local functions are §-related: for all (x,y) € Z,
Ve fn(2,y) = Vi f(z,9)] <6,
IV 2y fn (2, y) = Vi, f (2, 9)] <6,
IV 5y fm(z.y) = Vi, f@,y)]| < 6.

The interesting case is when 1 + §/u < L/u. When the f,,,’s are empirical loss functions over
local data sets of size n, under standard assumptions on data distributions and learning model (e.g.,

[47,14]), § = O(l /+/n) with high probability (O hides log-factors and dependence on d)—some
motivating examples falling in this category are discussed in Sec. 2.1 below. While such examples



represent important applications, we point out that our (lower and upper) complexity bounds are valid
in all scenarios wherein Assumption 2 holds, not necessarily due to statistical arguments.

Network setting: The communication network is modeled as a fixed, connected, undirected graph,
G=(V,E),where V = {1,..., M} denotes the vertex set—the set of agents—while & = {(i, )|, €
V} represents the set of edges—the communication links; (¢, j) € & iff there exists a communication
link between agent ¢ and j. We denote by A the diameter of the graph. When it comes to distributed
algorithms over mesh networks, we leverage neighbouring communications among adjoining nodes.
Communications of d-dimensional vectors will be modeled as a matrix multiplication by a matrix W
(a.k.a. gossip matrix). The following assumptions on W are standard to establish convergence of
distributed algorithms over mesh networks.

Assumption 3 The matrix W € RM*M satisfies the following: (a) It is compliant with G, that is,
(i) wi; > 0,Yi € [M]; (ii) wi; > 0, if {4, i} € &; and (iii) w;; = 0 otherwise; (b) It is symmetric and
stochastic, that is, W1 = 1 (and thus also 1TW = 17).

Notice that a direct consequence of Assumption 3 (along with the fact that G is connected) is that
p =1 —max{ (W), Amn(W)|} < 1, ()

where p is the eigengap between the first and second largest (magnitude) eigenvalue of . Roughly
speaking, p measures how fast the network mixes information (the larger, the faster).

2.1 Motivating examples

Several problems of interest can be cast in the SPP (P), for which function similarity arises naturally,
some are briefly discussed next.

Robust Regression: Consider the robust instance of the linear regression problem in its Lagrangian
form:
1 & A

s g S0 e 1) < Gl = G, G
where w are the weights of the model, {(x;,y;)}¥, are pairs of the training data, and 7 models the
noise, and A and (8 are the regularization parameters. Let n be the local sample size (thus N = nm).
The typical regularization parameter that is optimal for test predictive performance is A = O(1/v/N).
Assuming (3 of the same order of A and invoking function similarity § = O(1/y/n) [25, 14] yield
a condition number of the problem £ = O(y/m - n) while 6/u = O(y/m). This implies that first
order methods applied to (3) will slowdown as the local sample size n grows. Rate scaling with 6/
would be instead independent on the local sample size.

Adversarial robustness of neural networks: Recent works have demonstrated that deep neural
networks are vulnerable to adversarial examples—inputs that are almost indistinguishable from
natural data and yet classified incorrectly by the network [40, 13]. To improve resistance to a variety
of adversarial inputs, a widely studied approach is leveraging robust optimization and formulate the
training as saddle-point problem [24, 32]:

1 A B
mjnmgxﬁ ;“f(%% +r,y)° + §||w||2 - §||7"||27

where w are the weights of the model, {(z;,y;)}}¥, are pairs of the training data, r is the so-called
adversarial noise, which models a perturbation in the data, and A and /3 are the regularizers.

Other optimization problems: Other instances of the SPP are the (online) transport or Wasserstein
Barycenter (WB) problems, see [15, 9]. This representation comes from the dual view of transporta-
tion polytope. b) Another example is Lagrangian based optimization problems. For instance, consider
the minimization of the sum of loss functions, each one associated to one agent, subject to some
(common) constraints. The problem can be equivalently rewritten as a saddle-point problem using
Lagrangian multipliers. It is easy to check that if the agents’ functions are J-related, then the resulting
saddle-point problem is also so.



3 Lower Complexity Bounds

In this section we establish lower complexity bounds for centralized (i.e., master/workers-based) and
distributed (gossip-based) algorithms. We begin introducing the back-box procedure describing the
class of algorithms these lower bounds pertain to.

3.1 Optimization/communication oracle

Our procedure models a fairly general class of (centralized and distributed) algorithms over graphs,
whereby nodes perform local computation and communication tasks. Computations at each node are
based on linear operations involving current or past iterates, gradients, and vector products with local
Hessians and their inverses, as well as solving local optimization problems involving such quantities.
During communications, the nodes can share (compatibly with the graph topology) any of the vectors
they have computed up until that time. The black-box procedure can be formally describe as follows.

Definition 1 (Oracle) Each agent m has its own local memories M2 and MY, for the x- and
y-variables, respectively-with initialization MZ%, = MY, = {0}. an and ./\/lf” are updated as
follows.

o Local computation: Between communication rounds, each agent m computes and adds to its M?,
and MY, a finite number of points x,y, each satisfying
ax + BV fm(z,y) € span{x’ , Vafm(2', ),
(Vi;cfm(xuv y//) );E/ ’ (Vixfm(zuv y//) + D)fom(l‘/, y/)
(Viafm (", y") )*1 " (Viafm(@" y") + D)1V (2, y'),
(Vayfm (@ y" Ny (Vayfn (@, y")Vy fn(z',9)
0y — oVy fm(z,y) € spanly’, Vy fu(a',y'),
(Vyyfm( ", y")+ D)y, (V yyfm( 2", y") + D)V yfm(x/ y')
(Vi fm(" y") + ) Y, (Vi fm(@”y") + D)V fm (2, y),
(sz ( H ”)) (Vryfm( H7y”))Tv fTTL(I Yy )}
“)

for given ' 2" € MZ andy',y" € MY,; some o, 3,0, > 0 such that « + > 0 and 0 + ¢ > 0;
and D is some diagonal matrix (such that all the inverse matrices exist).

+ D
+ D

o Communication: Based upon communication rounds among neighbouring nodes, M?, and MY,
are updated according to

M, := span U My, MY = span U MY (5)

(i,m)e€ (i,m)e&

e Qutput: The final global output is calculated as:
M M
K ESpan{ U Mﬁl}, yX Gspan{ U Mﬁl}
m=1 m=1

The above oracle captures a gamut of existing centralized and distributed algorithms. For instance,
local computations model either inexact local solutions—e.g., based on single/multiple steps of
gradient or Newton-like updates, which corresponds to setting « = = 1 and 8 = ¢ = 0-or exact
solutions of agents’ subproblems (via some subroutine algorithm), corresponding to « = 6 = 0 and
B = ¢ = 1. Multiple rounds of computations (resp. communications) can be performed between
communication rounds (resp. computation tasks). Notice that the proposed oracle builds on [37, 2]
for minimization problems over networks—the former modeling only gradient updates and the latter
considering only centralized optimization (master/workers systems).



3.2 Lower complexity bounds

We are in the position to state our main results on lower communication complexity—Theorem 1
pertains to algorithms over master/workers systems while Theorem 2 deals with mesh networks.

Theorem 1 For any L, 1,0 > 0 and connected graph G with diameter A > 0, there exist a SPP in
the form (P) (satisfying Assumption 1) with Z = R*? (where d is sufficiently large), x* # 0, y* # 0,
and local functions f,, being L-smooth, u-strongly-convex-strongly-concave, §-related (Assumption
2) such that any centralized algorithm satisfying Definition 1 produces the following estimate on the
global output 2% = (2%, yX) after K communication rounds:

1

K
A h () -
8 320 ]

Corollary 1 In the setting of Theorem 1, the number of communication rounds required to obtain a
e-solution is lower bounded by

(o) ()

Theorem 2 For any L, 1,6 > 0 and p € (0; 1), there exist a SPP in the form (P) (satisfying Assump-
tion 1) with Z = R*¥(where d is sufficiently large), x* # 0, y* # 0, and local functions f,, being
L-smooth, u-strongly-convex-strongly-concave, d-related (Assumption 2), and a gossip matrix W
over the connected graph G, satisfying Assumption 3 and with eigengap p, such that any decentralized
algorithm satisfying Definition 1 and using the gossip matrix W in the communication steps (5)

K

125 = 2*||* = @ [ exp |12

produces the following estimate on the global output 2z = (2%, y¥) after K communication rounds:
K * (12 1 * |2
|5 P = [ exp | Ko T
1 ) 1
|/ 1+ (@) %

Corollary 2 In the setting of Theorem 2, the number of communication rounds required to obtain a
e-solution is lower bounded by

(35149 ()

These lower complexity bounds show an expected dependence on the optimization parameters and
network quantities. Specifically, the number of communications scale proportionally to ¢/ u—this
generalizes existing lower bounds [5] that do not account for such similarity, resulting instead in
the more pessimistic dependence on L/u—typically 6 < L. The network impact is captured by the
diameter A of the network for master/workers architectures—/A communications steps are required
in the worst case to transmit a message between two nodes—and the eigengap p of the matrix W,
when arbitrary graph typologies are consider; 1/,/p can be bounded as O(T"), where T is the largest
hitting time of the Markov chain with probability transition matrix W [33]. For instance, for fully
connected networks A = 1/ ﬁ = 1 while for star networks A = 1 and 1/ \/ﬁ = \/M . For general
graphs, 1/,/p can be larger than A, see [28] for more details. To certify the tightness of the derived
lower bounds, the next section designs algorithms that reach such bounds.

4 Optimal algorithms

4.1 Centralized case (master/workers systems)

Our first optimal algorithm is for SPPs over master/workers architectures or more generally networked
systems where a spanning tree (with the root as master node) is preliminary set; it is formally described
in Algorithm 1. We assumed w.l.o.g. that the master node owns function f;.



Some insights on the genesis of this method are discussed next.

e Consider for a moment the minimization problem min,cx f(z) = 37 Z%Zl fm(z), under

Assumption 2. Following [38] we can solve it invoking the mirror descent algorithm, which reads
2" = argmin [(yV f(2"), 2) + Dy(x,2%)] (8)

where Dy (z,y) = ¢(x) — ¢(y) — (Vé(y), © — y) is the Bregman divergence, with function ¢(z) =
fi(z)+ 3|\ z||. Itis shown that we can take stepsize 17 = 1 ([48, 14]). Therefore, (8) can be rewritten
as

2
] . 9)

Noting that in Algorithm 1 v ~ % (see Appendix B.1), one infers the connection between (9) and the
updates in lines 3 (i) and 3 (ii). The extra step as in line 3 (iii) is due to the fact that Algorithm 1 solves
a SPP (and not a classical minimization as postulated above): gradient descent-like methods as (8)
are not optimal for SPPs; in fact, they might diverge when applied to general convex-concave SPPs.
Out approach is then to employ Forward-Backward-Forward algorithms [41] or the Extragradient
[18] method, which leads to the step in line 3 (iii).

r—aF+ %(Vf(xk) — Vfl(xk))

1 1
¥+ = arg min [6‘)01 (z) + 3

o Another interpretation of the proposed algorithm comes from looking at Problem (P) as a composite

minimization problem, with objective function h (z,y) + ha(z,y), with hy(z,y) = fi(x,y) and

ha(z,y) = & Z%Zl(fm(a:, y) — f1(z,y)). The first function h; is L-smooth and convex-concave

while hs is 0-smooth and, in general, non-convex-non-concave. Such type of problems can be solved
invoking sliding techniques [19, 36].

Algorithm 1 (Star Min-Max Data Similarity Algorithm)
Parameters: stepsize v, accuracy e;
Initialization: Choose 2z = (2°,4°) € Z, 20, = 29, forall m € [M];
1: for k=0,1,2,...do
2: Each worker m computes F,, (zk) and sends it to the master;
3: The master node:

(i) computes v* = 2% — - (F(z%) — F1(z%));

(i) finds u®, s.t. |u* — @¥||? < e, where @* is the solution of:

, 1 ,
el = 5l = oy l7 5 (10)

i Fulu, ) + 5
J?g}y 5{}2‘3{; YJ1 ’U/x,uy 2 Uy v
(i) updates zF*t1 = projz [u* + v - (F(2*) — Fi(2*) — F(u") + F1(u¥))] and broadcasts
2F+1 to the workers
4: end for

It is not difficult to check that Algorithm 1 is an instance of the oracle introduced in Definition 1.
It accommodates either exact solutions of the strongly convex subproblems (10) (corresponding to
e = () or inexact ones (up to tolerance e > 0)—the latter can be computed, e.g., using Extragradient
method [16], which is optimal in this case.

The communication complexity of the method is proved in the next theorem, which certifies that
the proposed algorithm is optimal, i.e., achieves the lower bound (6) on the number of required
communications—we refer to Appendix B.1 in the supplementary material for a detailed description
of the algorithmic tuning as well as a study of the computational complexity when Extragradient
method is employed to solve subproblems (10) (up to a suitably chosen tolerance).

Theorem 3 Consider Problem (P) under Assumptions 1-2 over a connected graph G with a master
node. Let {z*} be the sequence generated by Algorithm 1 with tuning as described in Appendix B.1
(cf. the supplementary material). Then, given € > 0, the number of communication rounds for
28 — 2% || < eis O((1+ 6/p) log(1/e)).



4.2 Distributed case (mesh networks)

We consider now mesh networks. Because of the lack of a master node, each agent m now owns local
estimates u,, and v,,, of the common variables u and v, respectively, which are iteratively updated.
At each iteration, a node is selected uniformly at random, which plays the role of the master node,
performing thus the update of its own local variables, followed by some rounds of communications
via accelerated (inexact) gossip protocols [21, 44]-the latter being instrumental to propagate the
updates of the u, v-variables and gradients across the network. The algorithm is formally introduced
in Algorithm 2, with the accelerated gossip procedure described in Algorithm 3.

Algorithm 2 (Distributed Min-Max Data Similarity Algorithm)
Parameters: stepsize vy, accuracy e, eg, €1, communication rounds Hy, Hy;
Initialization: Choose z° = (2°,4°) € 2, 20 = 29, forall m € [M];
1: fork=0,1,2,...do
2: Communications: Ff,... F¥, = AccGossip(Fy(2F), ... Far(2%,); Ho);
3: Local computations: Choose an index my, € [M] uniformly at random; then node m,

(i) computes vmk = zfj% — ’y (Fkk — Fin, (mek))

(ii) finds @y, ,s.t. ||aF, —ak ||* <e, where af, is the solution of:
1 2 k 2
min, max |y fon, (e, ty) + 3 lue = 05, [I” = *IIuy vy )5 D
4: Communications: Run accelerated gossip to propagate @%, . and update gradient variables:
uf,...uk; = M- AccGossip(0, ...,0,ak, ,0...,0;Hy),
FfH/Q, . F;\le/? = AccGossip(Fy (u}), ... Far(uk,); Ho);
5: Update of Z,,, -variable: node my, performs
et = Uy, + 7 (o = Fny (2,) = Fp 2 4 Fyy (a,,);
6: Communications: Run accelerated gossip to propagate ém‘flz
SPTL NP = M- AccGossip(0...,0, 25 0. .., 0; Hy);
7. Bach worker update 2! = proj; [£F 1] ;
8: end for

Algorithm 3 (AccGossip)
Input: 21,..., 25 € R24 and H > 0 (communication rounds);

Initialization: Construct matrix Z with rows 27, ..., 21 Set
— —)\2
77— 1 Z ZO Z, and n= %
1: fort=0,1,2,...,. H do I+4/1=23(W)
2: ZH = 1+ )W Zt —nzt-t,
3: end for

Output: Rows of ZH7+1

Convergence of the method is established in Theorem 4 below—we refer to Appendix B.2 in the
supplementary material for a detailed description of the algorithmic tuning [choice of the stepsize 7,
precision e, numbers of communications rounds Hy, H;, and algorithm to solve (10)].

Theorem 4 Consider Problem (P) under Assumptions 1-2 over a connected graph G. Let
{(%’%)me[ M)} be the sequence generated by Algorithm 2 with tuning as described in Appendix B.2
(cf. the supplementary material) and gossip matrix W satisfying Assumption 3. Then, given € > 0,



the number of communication rounds for || Z* — 2*||? < & reads O (1/y/p- (L+3/u)log® L), where

sk _ 1 M k
= ﬁzmzl Zme

While the algorithm achieves the lower bound (7), up to log-factors (which now however depends
on ¢ as well), there is room for improvements. In fact, selecting only one agent at time performing
the updates does not fully exploit the potential computational speedup offered by the networking
setting. Also, the use of gossip protocols to propagate the updates of a single agent across the entire
network seems to be not quite efficient. Designing alternative distributed algorithms overcoming
these limitation is a challenging open problem.

5 Numerical Results

We simulate the Robust Linear Regression problem which is defined as

1 & A 3
: T 2 2 2
min e g 9 (0 (aio+ ) =30+ Flhwl = Gl (12)
where w are the model weights, {z;, yi}ﬁil is the training dataset, and 7 is the artificially added noise;
we use {,-regularization on both w and r. We solve the problem over a master/workers topology; we
consider a network with 25 workers. We test Algorithm 1 wherein the subproblems (10) at the master
node are solved with high accuracy using Extragradient method. A description of the tuning of the
algorithm parameters can be found in Appendix C. The algorithms are implemented in Python 3.7°.
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Figure 2: Decentralized case, Alg. 2 with different noise

Our first experiment uses synthetic data, which allows us
to control the factor J, measuring statistical similarity of
functions over different nodes. Specifically, we assume all
local datasets of size n = 100. The data set {&;, §; }7~

4x107?

3x107?

at the master node is generated randomly, with each en- Nf
try of #; and ¢;, i = 1,...,n drawn from the Standard LS
IN ragradient
Gaussian distribution. The datasets at the workers’ sides, .o |~ 49 110 moces
—»— Alg. 1, 50 nodes
3Source code: https://github.com/alexrogozinl2/data_sim_sp o Mg 1rif0ngdes

0 20 4 60 80 100
communications

9 Figure 3: Centralized case, a9a dataset


https://github.com/alexrogozin12/data_sim_sp

i=2,..., M, are obtained perturbing {&;, §; }_, by ran-
dom noise &; with controlled variance.

Figure 1 compares the performance of Algorithm 1 and the

Centralized Extragradient method [5] applied to Problem

(12), under different level of noise added to local datasets

(level of similarity), and two different problem and network dimensions — we plot the distance of
the iterates from the solution versus the number of communications. It can be seen that Algorithm 1
consistently outperforms the Extragradient method in terms of number of communications—the smaller
the noise (the more similar the local functions are), the larger the gap between the two algorithm
(in favor of Algorithm 1). On the other hand, at high noise (amplitude 10.0) the performance of
Extragradient and Algorithm 1 become comparable. In addition, we compare the performance of
Alg.2 under different noise over networks with different topologies in Figure 2.

Alg. 2 with different

4nodes, 6/L=4.7%10"3 25 nodes, /L =1.5*10"2 100 nodes, 6 /L =2.7*1072 number of nodes
10 107 TN 101 107
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Figure 4: Decentralized case, a9a dataset, grid graph

Our second experiment is using real data, specifically LIBSVM datasets [8]. In this scenario, we do
not use additional noise, but still can control the data similarity by choosing the number of workers.
The larger the number of workers, the less similar the local functions (less data at each node). Figure 3
compares Algorithm 1 and the Extragradient method: we plot the distance of the iterates from the
solution vs. the number of communications. Quite interesting, Algorithm 1 compares favorably even
when the number of workers becomes large. Figure 4 compares Algorithm 2 with Decentralized
Extragradient method (EGD) [5] and Extragradient method with gradient-tracking (EGD-GT) [27].
The simulations are carried out with parameters tuned according to the theoretical results in the
corresponding papers.

6 Conclusion

We studied distristributed SPPs over networks, under data similarity. Such problems arise naturally
from many applications, including machine learning and signal processing. We first derived lower
complexity bounds for such problems for solution methods implementable either on star-networks
or on general topologies (modeled as undirected, static graphs). These algorithms are optimal, in
the sense that they achieve the lower bounds, up to log factors. The implementation of the proposed
method over general network, however, is improvable: by selecting only one agent at time performing
the updates, it does not fully exploit the potential computational speedup offered by the parallelism
of the networking setting. Also, the use of gossip protocols to propagate the updates of a single agent
across the entire network is not very efficient. Another interesting extension would be designing
methods that take into account the asymmetry of the function f with respect to the variables x and
y (for example, various strong-convexity constants yi, and (). Finally, it would be interesting to
combine the proposed methods with stochastic/variance reduction techniques to alleviate the cost of
local gradient computations.
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Supplementary Material

In this appendix, we provide the proofs of the results presented in the paper; in addition to the case of
strongly-convex-strongly-concave functions (discussed therein), here we establish results also for the
case of (non strongly) convex-concave functions. In this latter setting, Assumption 1 (iii) (cf. Sec. 2)
is fulfilled with y = 0; in addition, for some G > 0 it holds || F,, (2*)|| < G, for all m. In the general
convex-concave case, we also assume that the set Z is compact and introduce €2 — the diameter of Z.

For the sake of convenience, we summarize next the main lower/upper complexity bounds.

lower upper
centralized
sc 0 (A (1+2) 108 ””) 0 <A (1+2) 108 |0”)
c Q(a%2) 0 (a22)
decentralized
sc Q (lp (1 + %) log HZO_EZ*”Q) @, <\}ﬁ ( ) log? ”Z_ZHZ))
S o(57)

Table 1: Comparison of lower and upper bounds on communication rounds for J-related smooth
strongly-convex—strongly-concave (sc) or convex-concave (c) saddle-point problems in centralized
and decentralized cases. Notation: L — smothness constant of f,,,, u — strongly-convex-strongly-
concave constant, {) — diameter of optimization set, A, p — diameter of communication graph and
eigengap of the gossip matrix, € — precision. In the case of upper bounds for the convex-concave case,
the convergence is in terms of the “saddle-point residual” [cf. (16)]; for (sc) functions, it is in terms
of the (square) distance to the solution.

A Lower Complexity Bounds

We construct the following bilinearly functions with 6, x and d, = d,, = d. Let us consider a linear
graph G of M > 3 nodes. Define p = [—-| andlet B={1,...p}and B={M —p+1,...,M},
with |B| = |B| = p. The distance in edges [ between B and B can be bounded by M — 2p + 1. We
then construct the following bilinear functions on the graph:

Ae,y) = 52T Ay + & - 16plal|? — & - 16pllyl|? + ey, m € B;
fm(@,y) = fo(z,y) = §2T Aoy + J7 - 16pl|2|* — F7 - 16u[ly[|*, meB; (13
f3(z,y) = & - 16p[lz)? — & - 16pu]y|?, otherwise;

where e; = (1,0...,0) and

1 0 1 -2
1 -2 1 0
1 0 1 -2

1 -2 1 0

Al 5 A2
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Consider the global objective function:

M
P w) =32 3 fmlay) = 12 (Bl fi(e,y) + Bl fale,) + (M — |B| = |B) - fs(a,9))
m=1

p T
= 14
M 128u61 ¥ (14

2p 6 p 2 P 2
=— .-z Ay+ -— -16 ——-16
LSl ay+ L vl — L 16ply) +
with A = (A4, + A2).
It is easy to check that

V3 Si(00) = V2, faley) = Vi foleg) = V2,0 (y) = B 16pl;

p

0 o
Visfilay) = 34 Vi fa(ey) = 742

D 0
Vi fs(wy) =0, Vi, fey) =3 5A

Note that f1, fo, f3 are L—smooth (for L > §), u-strongly-convex—strongly-concave, and J-related;
the last is a consequence of the following

5
I92,51(0) = V2,0l < 192 el + 192, ] <5 (342 ) <6

5. »p
192, a(e) = V2,1l < 192, Rl + 192, ol <5 (3447 ) <6

P
V2, Fs (2, y) = Vi, f@ )l < IVE, fs(@ )]l + 1V, (2 y)]l < 947 < 6.

Lemma 1 Let Problem (13) be solved by any method that satisfies Definition 1. Then after K
communication rounds, only the first L%J coordinates of the global output can be non-zero while the

rest of the d — L%J coordinates are strictly equal to zero. Here | = M — 2p + 1 (distance in edges
between B and B).
Proof: We begin introducing some notation, instrumental for our proof. Let
Ey:={0}, Ek :=spanf{es,...,ex}.
Note that, the initialization reads My, = Ey, MY, = Ej.

Suppose that, for some m, M? = Ex and MY = Ex, at some given time. Let us analyze how
ME MY can change by performing only local computations.

Firstly, we consider the case when K odd. We have the following:
o For machines m which own f1, it holds
ax + BAry € spanfer , ', Ay, A1 AT2'} = Ek,
0y — pAlx € span{y’ , ATz, AT Ay} = Ex.
Since A; has a block diagonal structure with alternating blocks 1 x 1 and 2 x 2, A1_1 admits the
same partitions into 1 X 1 and 2 x 2 blocks on the diagonal. Therefore, after local computations,

we have M? = Ey and MY = FEj. The situation does not change, no matter how many local
computations one does.

e For machines m which own f5, it holds
ax + BAzy € span{a’, Asy’, AQAQTJU/} = FExy1,
Oy — oAl € span{y’ AT A2TA2y’} = Fg,1,
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for given 2/, 2" € MZ, and y',y" € MY,. Tt means that, after local computations, one has
M? = Egy1 and MY, = Eg ;. Therefore, machines with function f> can progress by one new
non-zero coordinate.

This means that we constantly have to transfer progress from the group of machines with f; to the
group of machines with f5 and back. Initially, all devices have zero coordinates. Further, machines
with f can receive the first nonzero coordinate (but only the first, the second is not), and the rest of
the devices are left with all zeros. Next, we pass the first non-left coordinate to machines with fs.
To do so, I communication rounds are needed. By doing so, they can make the second coordinate
non-zero, and then transfer this progress to the machines with f;. Then the process continues in the
same way. This completes the proof.

O

The next lemma is devoted to provide an approximate solution of problem (14), and shows that this
approximation is close to a real solution. The proof of the lemma follows closely that of [46, Lemma
3.3], and is reported for the sake of completeness.

Lemma 2 (Lemma 3.3 from [46]) Ler o = (6?‘)2 and ¢ = 1 (2+ a — Va? +4a) € (0;1)-the
smallest root of ¢*> — (2 + a)q + 1 = 0, and let define

3

- q .
y; = - i €[d].
The following bound holds when §* = [y7, .. .yfl]T is used to approximate the solution y*:
gt
17" =yl < ———-
a(l—q)

Proof: Let us write the dual function for (14):

P 1 52 52
9) =47 [—yT (ATA + 32#1) y+ ety

27 \ 1284 1281
where it is not difficult to check that
1 -1
-1 2 -1
-1 2 -1
-1 2 -1
AAT =
-1 2 -1
-1 2 -1
-1 2
The optimality of dual problem Vg(y*) = 0 gives
o AT A+ 32ul ) y* -
=——c¢
1284 BEJY = 198, 1

or

(ATA + aI) Y =ey.
Equivalently, we can write
(I+ajyi —ys =1,
—yi + 2+ a)ys —y3 =0,
“Yao+ 2+ )y, —y; =0,
—Yj1 +(2+a)y;=0.
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On the other hand, the approximation 4* satisfies the following set of equations:

(L+a)ii =93 =1,
Ui+ 2+ )y —y3 =0,

or equivalently

(ATA+al)y* =e1 + f_

Therefore, the difference between §* and y* reads

gy -yt = (ATA—Q—aI)i

The statement of the lemma follow from the above equality and o =11 = (ATA +al ) )
O

The next lemma provides a lower bound for the solution of (14) in the distributed case (13). The
proof follows closely that of [46, Lemma 3.4] and is reported for the sake of completeness.

Lemma 3 Consider a distributed saddle-point problem with objective function given by (14). For

any K, choose any problem size d > max {21ogq (4f) 2K}, where o = (MTM)Q and q =

3 (2+a— Va2 +4a) € (0;1). Then, any output &, § produced by any method satisfying Definition
1 after K communications rounds, is such that

2i¢ [lyo — y*|I*

S *2 2>
& = "2+ g = 571> > ¢

Proof: From Lemma 1 we know that after ' communication rounds only k= LKJ first coordinates
in the output can be non-zero. By definition of §*, with ¢ < 1 and &k < 5, we have

v

||Z7*Z7*||2 y,)Q:L\/q2+q4+_“+q2(d7k)
I—q

> = = Lo
Va(i—q) VI

Using Lemma 2 for d > 2log, ( 1 f) we can guarantee that §* ~ y* (for more detailed proof see
[46]) and

2 o —w"l® e lvo —w"I1®
6 -

k
* |12 __
—llyo —y*I° =¢ T

. 2 2> 25
1z =2+ lg—y*[I* > 19— y*II* > *16

O

A.1 Centralized case (Theorem 1)

Building on the above preliminary results, we are now ready to prove our complexity lower bound as
stated in Theorem 1 of the paper. The following theorem is a more detailed version of the statement
in Theorem 1.

Theorem 5 Let L, 11,6 > 0 (with L > pand L > §), A € N and K € N There exists a centralized
saddle-point problem on graph G for which the following statements are true:
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o the diameter of graph G is equal to A,
M
of = ﬁ > fm : RE¥x R — R are L-Lipschitz continuous, i — strongly-convex-strongly-concave,
m=1
e f,, are L-Lipschitz continuous, p — strongly-convex-strongly-concave, d-related,
e size d > max{210gq (4%@) ,QK}, where o = (64Tu)2 and q = % (2 +a—Va? +4a) €
(0;1),
o the solution of the problem is non-zero: x* # 0, y* # 0.

Then for any output Z of any procedure (Definition 1) with K communication rounds, one can obtain
the following estimate:

o K 1 .
12 == =Q | exp | -3 = llyo —*11”
1. /14 (L) _1
g 324 g
Proof: It suffices to consider a linear graph with A + 1 vertices {v1,...,va+1} and apply Lemma 1

and Lemma 3. We have .
1

(1) o lyo — y*II?
a) T 16([|z — a*[]2 + g — y*[?)

Taking the logarithm on both sides, we get

2K lyo — y*||? 1
> In - * 12 - + 12 1y
! 16([|2 — 2*|12 4+ |g — »*|I?) ) In(qg~1)

1 1 1+ -/ +a

Next, we work with

In(g—1) ml+(1-a)/e)  faz i, a
YT ta-5 L1
N « V4 a2

Finally, one can then write

2K — |2 1 S|
zln( i IIyOQyHA 2) 1 1+(6) 1)
! 16(]|2 — 2*[2 + [l —y*11?) ) \ 2 32p 2

and

1 2K llyo — y*|?

— | = = = )
L s \2 1 U T 1e(lE = 2P+ g - yrl?)
= 1+(7) -5
2 324 2

which completes the proof, with [ > %A.

exp

A.2 Decentralized case (Theorem 2)

The lower complexity bound as stated in Theorem 2 is proved next. The next theorem is a more
detailed version of Theorem 2.



Theorem 6 Let L, 11,0 > 0 (with L > pand L > §), p € (0;1] and K € N. There exists a
distributed saddle-point problem. For which the following statements are true:

e a gossip matrix W have p(W) = p,
M
of= ﬁ S fm : RE*xR? — R are L-Lipschitz continuous, i — strongly-convex-strongly-concave,
m=1
e f, are L-Lipschitz continuous, p — strongly-convex-strongly-concave, § - related,
2
e size d > max{Zlogq ( f) 2K}, where o = (MT“) and q = % (2+a — Va2 +4a) €
(0;1),
o the solution of the problem is non-zero: x* # 0, y* # 0.

Then for any output z of any procedure (Definition 1) with T' communication rounds, which satisfy
Definition 1, one can obtain the following estimate:

1

12— 2*|* = @ | exp ﬁK - lyo — y*|1?
/ 1
1+ (32u> T 20
Proof: The proof follow similar steps as in the proof of [37, Theorem 2]. Let vy = 1 +zzz I be g
IVI

decreasing sequence of positive numbers. Since 72 = 1 and lim,,, vas = 0, there exists M > 2 such
that yar > p > yar41-

o If M > 3, let us consider linear graph of size M with vertexes v1,...vys, and weighted with
w2 =1—aand w; ;41 = 1for i > 2. Then we applied Lemmas 1 and 3 and get:

s lyo =y II”.
16

If W, is the Laplacian of the weighted graph G, one can note that with a = 0, p(W,) = s, with
a =1-p(W,) = 0. Hence, there exists a € (0; 1] such that p(W,) = p. Then p > ypr+1 > ﬁ,

andM>£—124f Flnally,l—M—Qp—l—lZ%—lz%(%—1)—12V51nce

& — 2|2 + g — y*||* > ¢*F

p<7y3= 3. Hence,

%12
I~ 2 g |2 > oo e VI

Similarly to the proof of the previous theorem

1 lyo — y*|1?
exp \/EK > ~ ” - TR (15)
2 16(]|& — 2* 1> + 19 — y*[I?)
L+ (32u) 20
o If M = 2, we construct a totally connected network with 3 nodes with weight w3 = a € [0; 1]
Let W, is the Laplacian. If ¢ = 0, then the network is a linear graph and p(W,) = 3 = % Hence,
there exists a € [0;1] such that p(W,) = p. Finally, B = {v;}, B = {vs}and ] > 1 > ﬁ.
Whence it follows that in this case (15) is also valid.
O

A.3 Regularization and convex-concave case

To establish the lower bounds for the case of (non strongly) convex-concave problems, one can use
the classical trick of introducing a regularization and consider instead the following objective function
€ 02

9 " ||:17 - ||

2
g(x,y)Jr49 492 Ny — |7,
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which is strongly-convex-strongly-concave with constant y1 = 5&5, where ¢ is a precision within the
solution of the original problem is computed and €2 is the diameter of the sets X and ). The resulting
new SPP problem is solved to €/2-precision in order to guarantee an accuracy € on the solution of
the original problem. Therefore, one can directly leverage the lower bound estimates (6) and (7) with
the new constants above; this leads to the following lower bounds on the number of communications

2 2
a(a%), oLy,
5 N

for the centralized and decentralized case, respectively.

B Optimal algorithms

For the general convex-concave case we introduce the following metric to measure convergence:

gap(z) = gap(x,y) := g}gf(x, y') — min f(z Y)- (16)

B.1 Centralized case

B.1.1 Strongly-convex-strongly-concave case (Proof of Theorem 3)

We begin introducing some intermediate results. Throughout this section, we tacitly subsume all the
assumptions as in Theorem 3.

Lemma 4 Let {z*} be the sequence generated by Algorithm 1 over G with a master node. The
following holds:

15— 2| < (1= ) |2 = 2| = (1 = By — 4920%) || 2% — ||

e 4
+ <2 2= +47262) u — i
b

| 2

A7)
Proof: Define w* = u* + v - (F(2*) — Fy(2¥) — F(u*) + Fy(u*)). Using the non-expansiveness
of the Euclidean projection, we have

2441 = =* = [lprojz [w"] = projz =7

< lo* — =

2% = 2| 2wt — 2R 2k — ) o+ - 2

= |l = 2| 20wk — 25 a2 20wk — 2R 2 ak) 4 [t 2F)

= ||o* - = 2 L ogwh — 2k, b — )+ |w® — 2 2 | — & ‘2

= [ = I 2ty (P = R = P+ Rb) = 2468 = )

k ~k

2 2
"=l =

Tt —a
420k 4y (F(F) — Fy(29) — 2%,k — 27)

— 2y (F(uk) — F(ub), a" — 2) + |Juh —aF|” — ||F —a|.

*

= - 2

Substituting the expression of v, we have
45 = 2P < b 2 2t o i~ =) - 2P - B ), 8 - )
+ ot — @[ — || - ||

|2 +2(0% —oF ik — %) — 2y(F (W) — FL(ub), 0% — 2%)
2 ’2

k

*

-

+2(uf —aF, Ak — 27y + |l — b b ak

-
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Invoking the optimality of @*, (yFy (@*) + a% — v*, a% — 2) < 0 (for all 2z € Z), yields:

P oy (Fy(aF), 0F - 27) — 2y(F(uF) — Fy(uP), @ — 2%)
2

e I G

2 )t -
? (R (i), @ — ) — 2 {F () - Fy (@), i = =)
k

+ 2<’Y(F(ﬂk) - Fl(ﬁk) — F(uk) + Fl(uk)) +uf —ak ok — 2*)

B

ot — b))k

(18)

I
Invoking the optimality of the solution z*: (yF(z*),z* — z) < 0 (for all z € Z) along with the
p-strong convexity-strong concavity of f, we obtain

[#540 = 2P < ¥ = 27 —2np (@) - ), - 2)

+20(F(@*) = Fi(i) = F(ab) + Fi(uh) + o - ¥, = 27)

k

+ Hwk —aF — ok

-
S e e
2 (F(*) — Fy(@) = F(u) + Fy(u)) + = @0~ 27)

o

By Young’s inequality, we have

sz+1 _

2Ssz—z* 2—27/1“11’“—,2* ?

+ (P = P = Fub) + () + ot =t :

2 w ~ko %
+2Hu z

2

e

2 3yp

2
+ PG = A = P+ A+ 2 - ot

N 2
< -2 ik — 2

+ [|uf + - (F(F) = Fi(zF) = Pub) + Fy (b)) — o b at||”

= |l - 2| - 22

2
+ [P = Fy(@) = Pty + R+ - ot - i

2

ﬂk—z*H

2

+2|uf — @F|” + 292 || F(2F) — Fi(z%) — F(u¥) + By (ub)||” — |25 — a¥||” .

Note that the function f — f; is §-smooth, since ||V, f — th”? <8, IVayf — Vaufi ”2 <.
Hvyyf - vyyf1H2 S 5; therefore,

e ey e L
2
T kb St -t

+2[[uf = aF|* + 2420 [|F — uF|* — ||2F — at||”
23w
2

4962 4
+@+7++Mwww_w
wo

<= == o e O] Ea

|’1]k— *

2

Finally, using ||a + b||* > 2 l|al|* = 2|b]|*, we obtain the desired result (17).
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O

Theorem 7 Let {2*} the sequence generated by Algorithm 1 (in the setting of Theorem 3) with the
step-size vy given by

1 1
=min{ —, — ;. 19
y=min{ g5 (19)
Let each subproblem (10) be solved up to (relative) precision ¢,
1
= (20

2(2+ 92 4 L+ 4922)

Then, || 2% — Z*H2 < € after

K=0((142)1logmZ—=1L
o €

Proof: The output «* produced by inner method satisfies

) iterations/communications. 2n

e
Combining this fact and Lemma 4 yields

254 = 2P < (1 =) |25 = 2*|° = (1 = By — 44207 || 2% — @

4462 4
+<2+1++47262>5sz—ak

T
(; — 3y — 47262) sz — ﬂkHz .

The proof is completed by choosing v according to (19).

| 2

| 2

ER Y E

|

Corollary 3 Let we solve the subproblem (10) via Extragradient method with starting point z* and
1

T=0 ((1 +~L)log ~) (22)
é

iterations. Then we can estimate the total number local iterations at the server side by

0 _ % 2
O<(1+6+L) 1og{logHZZH>.
meoop e €

Proof: Firstly, one can note that after 7" iterations of Extragradient method from (22) we can achieve
e precision. It follows readily from the convergence of Extragradient method [5] and the fact that the
objective function in (10) is 1-strongly-convex-strongly-concave and (1 4 ~L)-smooth. Then we can
estimate the total number of local iterations at the server side, namely:
1 1 ?
K-T=0(—(1+4+~L)log=log
TH e

1 L 1 02~
0 <+) 1ogjlogu
yuoop) CE e

2)
5 LY, 1 oz

:(’)<<1++)log~10guzz>.
T é £

Remark. If the server is located in the center of a graph with a diameter A, then an additional factor
A will appear in the total number of communications (21).

HZO _ ¥

O

22



B.1.2 Convex-Concave case
Lemma S For one iteration of Algorithm 1, the following estimate holds:
2y (F(uk),uf —2) < |25 — 2" = |5+ = 2| = (1 = 29%6%) || 2* — u*|”
+ (BYLQ + 649G +29) [[uF — || + 2 ||u — a*|| . (23)

Proof: The proof follows similar steps as that of Lemma 4, with the difference that z* therein is
replaced here with any z € Z. Specifically, recalling the first equality in (18), we have

|25 = 2] < |2 = 2| — 2 Fa (@), - 2) — 29(F(u) — Fy(ub), ab - 2)

L L o Calt W PLE L
=W“wH—m&<)w—w—%<M> Fi(u"),u* —2)

+ 29(Fy (uF) — Fy (@F),uF — 2) + 29(Fy (@%), u* — a¥)

+ 2v{F(u ) Fi(u )uk—u >—|—2<u —uk,ﬂk 2)

- [[u® = aF|” — ||k - at]).

Small rearrangement gives
2y(F (), u — 2) < [|* — 2|~ |4 — 5]
+ 29(Fy () — Fy(a¥),uf — 2) + 2y (Fy (aF), o — i¥)

+ 2v(F (u ) Fy(ub),u® — aF) + 2(ub — ok ab — 2)

2

Hz —aF

+Hw
k+1 2
SHz—di—W — 2

+ 29[| Py (u*) — Fy(@F)]| - [|u® = 2] + 29[| Fu (@) - [Ju® — a¥))

+ 29[| F(u ) Fi(u k)ll =@t 4 2)|ut = aF) - @t - 2|

Ak 2

+ |jw
Invoking the definition of w* :Huk + - (F(2F) — F1(2%) — F(uF) + Fy(u)), we get
2y(F (uF), uk — 2) < ||z’C — zH2 - ||zchrl — zH2
+ 29[ P (u?) = F(@®)] - Ju® = 2l + 29[| P (@) - flu® - af)|
+29[|F(u*) = Fi(uh)|] - [[u® = a*|| + 2)|u* —a¥| - IIka Z|
+|[u¥ + v (F (%) = Fy(2%) — F(u®) + Fi(u¥)) — @
< [l =2 = I = )
+ 29[ P (u?) = F@®)] - Ju® = 2l + 29[| P (@) - flu® -t
+ 29| F(u*) — Fl(uk)ll o 7 ] s o R |
+2Huk—u — R (%) = F(u*) + Fi(u H
— [IF - ak”.
Then we use smoothness of f — f1, f, f1 and obtain
2v(F(ub),uf — z) < ||zk—zH2— |2 —ZH2
+29L|ju" — @) - Q@+ 29(G + LQ) - [|uF — "
+4v(G + LO)|| - Ju* — ¥ + 29 - [[u* — a" ||
2|t — 0 * 4298 || — " — | - |
= [ =2l = [l = 2] - (- 20787 |l -

+ (BYLQ + 649G +29) [[uF — || + 2 ||u* — a¥|| .

N
ko _ gk

k+1
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Here we additionally used the diameter 2 of Z and simple fact:
IF (@) = G < | Fu (@) = | Fa (=)l < |Fu(a®) — Fu(=")| < L. (24)

Theorem 8 Let problem (10) be solved by Extragradient with precision e:

— min EL (25)
= 5 (LQ+ G + 69)2

and number of iterations T':
Q2
T=0 ((1+7L)10g) :
e
Additionally, let us choose stepsize vy as follows
= —. 26
V=55 (26)
Then it holds that gap (=L, ) ~ € after
502
K=0 () iterations, 27)
€

K
where 21, define as follows: zf, = Zk o uk, Y. =% Zk 0 y

Proof: Summing (23) over all k from 0 to K

K
wz ) < [l (129700 3 o
k=0
K
+ (8yLQ + 67G + 292) Z |[u® —aF|| + 22 Hu -
k=0
Then, by 2% ¢ =7 Z k=0 u® and ym,g 7 ZkK:O u’yC , Jensen’s inequality and convexity-concavity
of f:

K K
gap(251,) < max f (Il( (Z U’£> 71/) ~ min, f < % (Z u;j))

gap(zly,) < max KZ — [ uy))

Using convexity and concavity of the function f:
K

gap(2gy) < max > (fluz.y) = [ uy))
= QJIHIE,LX - (f(uﬁay/) - f( Uy y) + f( Uy y) f(x/,u];))
1 K k ’
SI/HIE/%X ?Z(<V f( Uy y)y_u> <V f( Ugs y) U$—.’E>)
k=

K
Z Juf — 2).
K=

24



Then it gives with our choice of ~y

Hzo—zH2 (4vLQ + 37G + Q)
<
gap(z ) meaz}’( 297K + vK
Q2
327[( (4LQ+3G+ >\f+e
692

— + (4LQ + 3G + 209) /e + 2de.

K
e from (25) is completed the proof.

S o — ) + KZ”“

k=0

’ 2

O

Remark. (27) also corresponds to the number of communication rounds. It is also easy to estimate

the total number of local iterations on server:

2
K><T(9<5g€2

€

2
o (1+
€

o ((L+5)Q21

QQ
(14+~L)log e)

LY, ¥
1) ge

QQ
og e) .

B.2 Decentralized case

Before moving on to the proofs of the decentralized case, let us understand the AccGossip conver-
gence [21, 44]:

Lemma 6 Assume that {y,, }_, are output of Algorithm 3 with input {x,, }M_,. Then it holds that

Z lym —9l* < (1= )™ (Z [ x2> (28)
m=1 m=1
_ M _
And T = ﬁ Zm=1 Tm = Z\/[ Zm 1Ym =Y.
From this lemma it holds that for any ¢
ly: —gl1* < (Z [z — w|2> (29)
and
M
_ H _
ly: — 3ll < (1= /p) (Z 2 — x||2> : (30)
m=1

B.2.1 Strongly-convex-strongly-concave case

Lemma 7 For one iteration of Algorithm 2, the following estimate holds:

ekt = 2 1° < (U =) |[2h, — 2" [1° = (1 = By — 12926%) |12k, — ik, ||
+ <2+ 129262 4 — L > |k, —ak, |
_ B 2
6y |[F, — FCEIP +(67 + 2 |ese - rak)|
4 2< kJrkl Zwkyj;lagwkyj;l _ Z*> 4 ||2£€nt1 Ak+1||
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Proof: Using non-expansiveness of the Euclidean projection, we get

| k+1 *||

mk [ k+1]

[projz proj; [

< lest ==

= ||z — 2 H F (R gkl SRR ey |5k k+1||
= ||k, — = || —|—2<zfn+k1 2f ek =) || EE — mk”
+2<Ak+1 2514;1755:61 o +sz+1 Ak+1H
= ||z, _ ok ak - >+2< kL gk ok gk
e o - 2
= [z =2 |I" + 2z ank’ﬂ'%k +sz“ N
+2<2ﬁt1—2§tl’zv’2§1—z +\|Zf3$;1 sl
= |2k, = ="
+2<~7]21k+7'(ﬁ‘7{r€1k Fony (2,) = ot V2 4 By (g, ) = 2 G, — 27)
I = kI = [k, — b
+ 2<Ak+1 _ anJrl’ fntl 2+ Héﬁ;l _ 25;21”2
= |12k = ="II
t 2ty + 7+ Py, = i (2m,)) = 2y, = 27)
2YEREY? = B (), — 2 (|20 = a1 = [l2h, — I
P2 - A ) || - R
Substituting the expression for v¥, .» we have
250t — 2| < |2k, — 2|+ 2(ak,, - ok, ak, — z*)
= 2 (FEH? = B (k) ik, — 2%) 4 [|3tE — k|| = ||k, — b, ||
e
= [l — A
2Y(EHV2 — By, (k) 0k, — =) + |0 = ak, |7 = |2k, — b, |
Fogak, —ak ok, — ) 4 o(sktl - gkl gkl Hzrkn-:l Ak+1H
?Cecozr()l’ing to the optimal condition for a¥, : (yFy,, (4F, )+ af, — ok  ak —z) <0 (for all
it =2 < Il - (Fo (i), = 2°)
e N A R N e
Fogak, —ak ok, — ) 4 2(skHl — gkl gkl e ngkn-i-kl Ak+1H

= ||ank - <ka(ﬁ§nk)7ﬁﬁzk -z >
— 2y(F(ak, ) — F, (4, ), a8, —2%)
2y(FE/2 — F(ak, ) — Fo, (@, ) + Fo, (4F, ), 0k, — 2%)

L EORE N S E A
+ ik, — a0k, — 2%) £ 28R - AR SR ey |[gh gk

26



Applying property of the solution z*: (yF(z*),z* — z) < 0 (for all z € Z). And then p-strong
convexity - strong concavity of f, we obtain

H k1 z*”2 < ||zfnk - z"‘”2 - 27<F(ﬁfnk) — F(z") T z*)

P s U,
+ HZkJrl umkH || - mkH
+ 2, = i, G, = 2 > + (Y — B A - 2) 4 |3 — 2|

2

*

< llzhy = =*11° =20 |y, — =
= 2y(Ett? = F(ag,,) = Finy () + Fy (), @, — 27)

mg > Upn,
o R E
+ 2<umk — ﬁfnk,ﬁﬁzk — 2"+ 2<27k7:;1 _ éfn—:17é’;;:1 )+ sz+1 AkHH

By Young’s inequality, we have

lhit =21 < b, = 21° - 2mllak, - ="
_ 2
B2 = Ph,) = P () + P i)
+*Hu - +HZ’“+1 it || —Hzmk—ﬂq’%kHQ
+*Hﬂmk bl + H
_|_2< k+1 Zk+1 2k+1 + ||~k+1 k+1||
meg 7 myg
w2 S3TH . |2
=z, — 2 T me = 7|
2

P
+ ﬁ |t/ = F(ak,) = P, (k) + P (i)

- Hz"];fk - aﬁ%k‘ﬁ + % Hﬂfﬂk - afﬂkH

_|_2< k+1 Zrlj@tl’gs@—:l + sz—H k+1||
: STER SV NTPN |2
< Hzmk -z - T -
8 - N _ .
TRk, = Pk, = Fo G, + F ()]

mg

8 _
T |E - R,

+67 || F(zh,,) —ka<zzk>—F<~S@k>+ka<~:1,c>Hg
+69% || EY, — F(z H + 672 HF’““/2 F(ak,) ?

+2 ||y, — iy, H —H —ak, |’

+i|\ﬂ’“ k7 +2(EkEt - gk gy R gk
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Note that the function f — f,,, is 0 - smooth (since ||me—mem,cH2 < 9,
IVayf = Vay foni|* < 6, 1V f = Vg fmi | < 6), then

et =2 |* < |2k, — = |2—7 - *||2
862 | . 2
+ FL H fnk - nzk” (ufnk)

+6720% |25, —ak, ||P+ 672 [P, = PRI + 692 | Bt - Fak,,)

mp

el
2, — i, ||~ llzh, ikl

o ik, =k, I 20kt = a1 2 =) - s

mk ) mk

— 2| = (1= 124267 |2, — k||

< b == = =5

9 mi mp
+ <2+127252+ 1 8 > [
TH
2
P |[ES, — PGk + (67 + 5 s - paat,)|
+ 2< k+1 antl,gfntl + ||ant1 Ak+1||

By inequality [|a + b]|* > 2 llal* -2 Hb||2, we have

k+1 P
mp -z

< (1—yp) ||, — (1= 3yp — 124%0%) ||k, — b, ||
T ) | N |

+ 692 || B, — FGh )|+ <67+ )HF’””’" F(ab,)

+ 2<éfn-:1 k-‘rl k+1 *> + Hgﬁ;{;l _ éfn—le )

L’m

I-

’ 2

O

Lemma 8 Let for problem (11) we use Extragradient method with starting point zﬁlk and number of
iterations:

T:O((l—i—fyL)logé) . 3D
Then for an output u%, . it holds that
||a£€nk - afﬂk H2 <e Hzfnk B ﬂfﬂk ||2 :

Theorem 9 Let problem (11) be solved by Extragradient with precision e:

1
¢= 4, 8482 (32)
252 4 oyo0”
2 (24129202 4+ 4 4 220
and number of iterations T from (31). Suppose that parameters Hy and H, satisfy
. (v +32) Mo+
Hy=0| —log ,
VP eV
) (1+72L2+ %) - MO?
H=0|—1 33
1 /P 0og p—» (33)
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Additionally, let us choose stepsize v as follows

. 1 1
’y:mln{m,m}. (34)

Then Algorithm I converges linearly to the solution z* and it holds that HZK — P~ after
I L A N
K=0|—log—— iterations. 35)
TH €
Proof: Combining results from Lemma 7 and 8 gives
* . 2
|24 == < @ =m) 2, = 2" = (= 3y — 129787 |2, — ik, |

n <2+ 194252 4 & el ) ik, —a, ||
T

692 | B, — PG| + (67 + 20 e - P,

+ (kL — SR B ) ¢ b1 - k1

With the choice e from (32) and v from (34), we obtain

k+1 P 2
! — 2

*

< (1 =p) |z, — =
002 B, - b+ (0024 52 | B - Pt

+ 2k — BRI R — 2ty 4 || - k)

mk

’ 2

Passing from the local %! and 2, to z2¥*1 and z*, we have

[ == < (L= |24 = =)

+ 692 || FE — PR )|+ (67 + )HF"“/Q F(a,’;k)H2
—|—2||Zk+1 k+1|| H sk+1 — ” + ||Zk+1 Ak+1||

Zm, k Zm, k

+ 2||Zk+1 k+1|| . HZkJrl P ” =+ ||Zk+1 7k+1||

422k — 2|2 =2+ ||2E, - 2 (36)

Further we will work separately only with the last 4 lines, because the last 4 lines depend on the
number of iterations Hy and H1, then we can make them small by choosing the correct Hy and H; .

_ 2
Bin(k) = 60° [P, - b, + (0024 52) |t - et
+2||Ak+1 ~k+1|| H~k+1 *” + ||Zk+1 Akﬂrl”
+ 2||Z£cn+kl —k+1|| H—k+1 *” + ||Zicnt1 o Zk+1||

20|z, — 2| [12F — =7 + ||z,’;k -2

< 672 HF’]’C“‘ —F(zfjlk)H + (67 + ) Hpk+1/2 F(ak ) ‘2

my

+ 2” Ak—&-l k+1|| Q + sz+1 Ak+1H
+ 2”211%-&;1 k+1|| Q + sz+1 —k-&-l”
2z, = 2+ 2k, - 2
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Next we use the definition of 2¥ and z**! and the fact from line 6 of Algorithm 2: M z’“r1

wal Af“ and get
1 M 2 1 M 2
Ere(k) <1297 | P, — 22 D BGH| +12 |23 ) - Rk,
i=1 =1
16y M
+ (12,)/2 + ) Fk+1/2 ZF(uk)
H _
M 2
167\ || 1
2
+ (12 ) i ZFI ak, )
1Y ’
sk+1 sk+1 skt _ Ak+1
+2 |2kt —Mzzi Z
| M | M 2
+2|lproj( 1] = 57 D_projl |- @+ |proj[£t] — 57 > proj[£]
=1 =1
M M 2
+2 proj[é,}f%] - MZPI‘OJ[ 11| - @ + ||proj[2 Z proj[2
=1 =1
M 2 1 M 2
2 k k 2 k k
S A2 Foy, = 47 2 Fi(z7)|| +12y i ;F(z ) — Fzy,,)
M 2
167\ || - 1
2 k+1/2 k
+ (127 +u) Fkr/ M;Fz(uz)
M 2
167\ || 1 _
2 k k
1 & 1 & ’
sk41 sk+1 sh+1 _ sk41
+2 e Mlzlzi Q-+ M;ZZ Zm
9 U 1 X 2
sk+1  sk+1 skl sk+1
+MZ|ka i H MZ ] ||
=1 i=1
9 X 1 X 2
~k ~k sk sk
+MZ|ka_Zi|'Q+MZ ka_iH
=1 =1
1 & ’ 16+ 1 & ’
<122 ||[FF — =N E(2F 1292 + —L ) ||FFEY2 — ZNT R
<1297 || Fy, W 2 ()| + 129"+ m M; (uz)
1Y 1Y ’
sk+1 sk+1 shtl _ shtl
+ 20 2o —M;zl + M;Zl B
M 2 16 2
2 k k 2 ~k
P SIRGH - RERI+ (12 + 2 47 zu rtil,)|
=1
92 U 1 & 1 X
sk+1 sk+1 skl skl
BT EASEE v D B AR v DI i |
i=1 j=1 j=1
1 M 1 M 1 M 2
sk+1 sh+1 skl sk+1
9] CHEE S IEANE DIEAEE
i=1 j=1 j=1




+
SIS
1=
%

\
S
1M
ISH
S
+
S
1M
<
\

N>
<
2

2

<1292 ||Fk —% Fi(zF) +<1272+127) Fkr/2 ! > Fi(uf)
=1 i=1
M M 2
sk sk+1 ok ~k
+ 20 +1 M;ZJF Mz::zl thl
b s 2, 167 1 . 2
+ 124°L°— ZHz _kaH 12y p L MZHH% —umkH
i=1
9 U 1 & 2 M1 &
~ ~k+1 sk sk
SO Rl v D DL RSO (7D DL AR AN Bt
=1 Jj=1 =1 j=1
2 - k+1 1 2 k+1 ’ 2 a 1 2 k+1 k+1 ’
+MZ Z —MZ i +MZ MZ A
i=1 j=1 i=1 j=1
9 M 1 M 9 M 1 M
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Small rearrangement gives

Fk+1/2 Z Fy(u

2

Err(k) < 1242

(i)
I

1 M
Fy, — i > R
i=1

M

M
1 1
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+4Q M;zz +4 M;zl — Zmr || 29 zmk——z
2
1 M 1 M 2
+2 2fnk v Z A;“ + 1272L2M Z HprOJ[ *] — proj[zk, ]H
j=1 i=1
M M M 2
167 o 1 kL ko, 1 kE_ k
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Now we are ready to apply AccGossip convergence results ((28), (29), (30)) to each of these terms:
1
Err(k) < 1292(1 — /p)?f0 - 2M(LQ + G)* + (1272 + 67) (1—/p)?Ho . 2M(LQ + G)?
I

+20(1 — p)" VMO + (2 +2492L%) (1 — /p)*™ MQ? + 244212 (1 — /p)*T 2

2 2
<24 + Su ) L*(1—p)*" a2 + (2472 + 3}7) L? (1 - /p)*" M@Q?

+20(1— )" VMO +201 - /p)*™" MQ?
+20(1—p)" VMO +201 - /p)*™" MQ?

2
< (4872 - 3;) ML+ G)? - (1 — /p)20 410V MQ? - (1 — /p)™
4y L2
+ <10 +9672L% + 67) MQ? - (1—/p)*".
w

Here we also use (2 and the same trick as (24). Then one can easy check that with our Hy and H;
from (33) it holds Err(k) < Err ~ epuy, then with (36) we get

Zhtl _ px 2§ 1— 7 — 2*|I” + Err.
I (L—p) ||
Running the recursion, we obtain
|75 = 2| < (=) 20— 2
’Y.U

which completes the proof.

O

Remark. In the previous theorem, we obtained convergence along the point Z%. This point is virtual
and is not computed by the algorithm. But in fact, all local points 2 are also very close to 2%

Remark. In this case (35) dose not correspond to the number of communication rounds. To compute
the number of rounds we need

20 % 2
Kx(Ho—o—Hl):@(\}ﬁ <1+Z>logH€>.

It is also easy to estimate the total number of local iterations on server:

1 Hz —z* 2
KxT=0 (1+’yL)log —
T €

1 L 1 0 2~
=0 (—F)logﬂog”zz
Yo p é €

|2>

0 _ % 2

:o<(1+5+L)log1logsz
Boop é £

B.2.2 Convex-Concave case

) |

This case is proved similarly to Theorem 6 (convergence) and Theorem 7 (inexact consensus). We
just give the statement of the theorem:

Theorem 10 Let problem (11) be solved by Extragradient with precision e:
e=0(min{S; L
B 8 (LOQ+ G+ 6Q)?
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and number of iterations T':

02
T=0 <(1 +7L)10g€> .
Suppose that parameters Hy and H; satisfy
L ((#+2) Mooy
Hy=0 % log = ,
. (149222 + 22 - pe?
H =0 % log o

Additionally, let us choose stepsize v as follows

7:476'

Then it holds that gap(zE ) ~ ¢ after

avg

2

K=0 (T) iterations,

K oK 1K kK 1Kk
where z,, define as follows: 4%, = 7 > k_0 Uz Yavg = ¢ 2oheo Uy-

C Numerical Results

The numerical experiments are run on a machine with 8 Intel Core(TM) i7-9700KF 3.60GHz CPU
cores with 64GB RAM. The methods are implemented in Python 3.7 using NumPy and SciPy.

In this section, we estimate the smoothness and strong convexity parameters for objectives used in
all the experiments, as well as the similarity parameter. We denote the vector with all entries equal
to one as 1 and the identity matrix as I (with the sizes determined by the context). Given a set of
data points X = (z1...2y5)" € RV*? and an associated set of labels y = (y1 ...yn) ' € RY, the
Robust Linear Regression problem reads

B

N
. 1 A
min  max g(w,r) = IN E (W' (@i +7) —y:)* + 5”“’”2 - 5“7"”2
i=1

lwl<Rw [Ir|<Rr

Note that we need constraints on w to yield the bounds for smoothness and similarity parameters
(this will be described below in this section). Equivalently, g(w, r) can be expressed as

1 2 A 2 B2
glw,r) = N ||Xw +1rTw— yH + 5 lw]||” — 5 IIr)”,
and its gradient w.r.t. w and r writes as

1
Vwg(w,r) = ¥ (XTXw + X1 Tw—-XTy+1T(Xw — y)r) + 7w+ dw,
1
V,g(w,r) = ww r+ NlT(Xw —y)w — Pr.
The Hessian of g(w, ) w.r.t. to w and r are
1
V2 9w, r) = N (XTX+(XT1r" +717X)) +rr" + A,
1
VZ.gw,r)=— (X"1w" +17(Xw—y)I) +r wl+rw',

N
Vgrg(wa T) = wa - BI
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We are now ready to estimate the spectrum of the Hessian taking into account the constraints on w
and r. For any v € R, we have

1
||V72Uwg(w,r)vH < N)\max(XTX) [lv]| + R2 vl + = ||XT1H R, |lv]|+ = ||T1TXU|| + Al
: <J1vAmax<XTX> +R? bR X7+ A) ol =: 24, ol
192t < - 2T+ 27w — gl + o] + o]

IN

(N X7 Ru+ 1Ty + 2Rer) ol =: 28, |10l

V2 rg (@, y)o|| < [ww "ol + B llv]| < (B, + 8) - llvl| =: L, |[v]] -

Therefore, we can estimate the Lipschitz constant of Vg(w, r) as LY = max(L9, L9, LY.).

Let us discuss the bound on the similarity parameter. Given two datasets {X € RV*4 y e RV}
and {)Af e RNxd, Y€ RN}, we define

1 = 2 A
1) = = [[Fw+ 17w = g+ 5 ol - 2

To derive the similarity coefficient 699 between functions g and g, we separately estimate 6%,9, 69,
and 09,9,

59:9 ! ~—X"1
N

ww

1 1 =+ 1
= )\m X *XTX — TXTX 2 fXT
i (N N >+ HN

.

~ 1 1 ~
699 =2 HXH - =XM1
N N

.
699 = 0.

We have §9'9 = max{8%;9,69:9}.

Finally, we estimate the strong convexity parameter as 1 = max (A, 8).
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