

Environmental Variables Controlling Abundances of Testate Amoebae Bearing Siliceous Plates in Freshwater Lakes and Ponds on the East Coast of North America: Potential for Inferring Water Depth and pH

Peter A. Siver¹

Anne M. Lott

Paula Torres

Department of Botany

Connecticut College

New London, CT 06320

¹ Corresponding author, pasiv@conncoll.edu

19

ABSTRACT

20 Testate amoebae comprise a highly diverse and polyphyletic group of heterotrophic, free-
21 living, amoeboid protists, where the cell is enclosed within a shell, or test. These organisms
22 inhabit a broad range of habitats, including lakes, ponds, rivers, bogs, wetlands and peatlands,
23 where they prey on bacteria, algae, other protists, and even small micrometazoans. One group of
24 testate amoebae produce the test out of overlapping siliceous plates that are formed individually
25 within the cell, and then secreted and glued together to make an organized shell. Upon death, the
26 siliceous plates can accumulate in lake sediments, and in some cases eventually become part of
27 the fossil record. The goals of the current study were to document the concentrations of siliceous
28 plate morphotypes in waterbodies along the east coast of North America, examine distributional
29 patterns, determine the environmental variables controlling the abundance of plates, and evaluate
30 if plate concentrations would be useful for inferring and reconstructing historical conditions.
31 Seven siliceous plate morphotypes representing remains of testate amoebae belonging largely to
32 the Order Euglyphida were enumerated in surface sediments from 125 waterbodies situated from
33 North Carolina to Newfoundland. Circular-shaped plates were the most widely distributed
34 morphotype, found in 95% of the waterbodies, and coupled with oval-shaped plates accounted
35 for 75% of all specimens enumerated. Other plate morphotypes, including quadrangular,
36 rectangular, rhomboidal, and scutiform forms, were also common and all morphotypes exhibited
37 distinctive distribution patterns. Five environmental variables significantly added to a forward
38 linear regression model explaining the concentration of plates per dry weight of sediment in the
39 following order: pH, water depth, concentration of potassium, concentration of sulfate, and
40 latitude, and collectively accounted for 60% of the variation in plate abundance. Significantly
41 higher concentrations of siliceous plates were found in shallow and acidic waterbodies,

42 indicating the possibility of reconstructing estimates of these two variables in ancient
43 waterbodies.

44 Keywords: Euglyphida, North America, pH, siliceous plates, testate amoebae, water depth.

45

INTRODUCTION

46 Testate amoebae, often referred to as thecamoebians, form a highly diverse and
47 polyphyletic group of heterotrophic, free-living, amoeboid protists where the cell is enclosed
48 within a structure called the test (Mitchell et al. 2008). Pseudopodia, which emerge from the test
49 through an opening known as the pseudostome, are used for movement and feeding. Some testate
50 amoebae construct the test from organic or inorganic (e.g. silica plates) components secreted by
51 the cell, while others scavenge material and particles from the environment and glue them
52 together to form the covering. Differences in the test, type of pseudopodia (e.g. filose or lobose),
53 and other cellular features reflect the polyphyletic nature of the group (Mitchell et al. 2008).

54 Testate amoebae within the Class Imbricatae in the Phylum Cercozoa form tests out of
55 siliceous components, or plates, that are produced within the cell, secreted to the outside of the
56 cell membrane, and glued together to form an organized covering. The shapes of the siliceous
57 plates on the body of the organism may be circular, square, rhomboid, or scutiform, depending
58 on the species (Ogden and Hedley 1980). Some siliceous plates may bear a protruding spine,
59 and the apertural plates that surround the pseudostome are usually differentiated from body
60 plates where the anterior end is lined with teeth (Ogden 1981, Ogden and Hedley 1980). The
61 most common and ecologically important thecamoebians forming siliceous plates are taxa within
62 the Order Euglyphida Copeland 1956 emended Cavalier-Smith 1997, especially species
63 encompassing the genera *Euglypha* Dujardin 1841, *Scutiglypha* Foissner and Schiller 2001,
64 *Assulina* Ehrenberg 1872 and *Trinema* Dujardin 1841 (Wylezich et al. 2002). These organisms
65 are commonly referred to as euglyphids. The majority of non-euglyphid testate amoebae belong
66 to the Order Arcellinida within the Phylum Amoebozoa Lühe 1913 emended Cavalier-Smith

67 1998. Tests of arcellinids are formed from organic components and these organisms have lobose
68 pseudopodia instead of the filose type possessed by euglyphids.

69 Testate amoebae inhabit a broad range of terrestrial and aquatic habitats, including
70 organic rich soils, moss beds, lakes, ponds, rivers, bogs, wetlands, peatlands and even brackish
71 environments (Mitchell et al. 2008, Ogden and Hedley 1980, Escobar et al. 2008, Amesbury et
72 al. 2018, Barnett et al. 2017), where they prey on bacteria, algae, other protists, and even small
73 micrometazoans (McKeown et al. 2019). Water table depth is an important factor regulating
74 species abundances and vertical distributional patterns in wetlands and peatlands, while
75 additional variables such as soil thickness and pore space are also important in terrestrial habitats
76 (Ogden and Hedley 1980, Mitchell et al. 1999, Booth 2001, Charman 2001, Booth and Jackson
77 2003). Concentrations of organic matter in sediments, along with other factors such as pH,
78 conductivity, and trophic status, are also important variables controlling the presence/absence
79 and often concentrations of individual species (Patterson and Kumar 2002, Booth and Zygmunt
80 2005, Payne et al. 2006, Escobar et al. 2008, McKeown et al. 2019). Species responses to
81 specific environmental conditions, coupled with high reproductive rates, make thecamoebians
82 sensitive bioindicators of environmental change (Charman 2001, Ogden 1981, Schonborn 1992).
83 As a result, the remains of tests in sediments and peats are useful in reconstructing historical
84 conditions (Charman 2001, Warner 1990), such as paleoclimates (Booth 2001, 2002, 2008,
85 Charman 2001), peatland hydrology (Payne et al. 2006, Amesbury et al. 2018), the impacts of
86 land-use changes (Patterson et al. 2002), sea-level change and salt enrichment (Gehrels 2000,
87 Gehrels et al. 2001, Whittle et al. 2018).

88 The oldest account of fossil specimens representing members of the Order Euglyphida is
89 from the early Eocene Giraffe Pipe fossil locality near the Arctic Circle in Canada (Barber et al.

90 2013). Euglyphid fossil remains have also been uncovered from Middle Eocene (Loeblich and
91 Tappan 1964), Middle Miocene (Williams 1985, Foissner and Schiller 2001), and Pliocene
92 (Beouf and Gilbert 1997) deposits. Given the high abundances of well-preserved siliceous
93 testate plates found in the Giraffe core, Barber et al. (2013) discussed the possibility of using
94 these euglyphid remains to aid in reconstructing the history of the waterbody, which is
95 represented by over 65 m of mudstone sediments. Since the Barber et al. (2013) study, we have
96 uncovered euglyphid specimens in many additional strata from the Giraffe site, and believe they
97 may serve as a valuable group of organisms for reconstructing lake water depth, pH and possibly
98 other environmental variables.

99 Most, if not all, ecological studies of thecamoebians include members of both the Order
100 Euglyphida and the Order Arcellinida (Whittle et al., 2018), and relate individual species to
101 environmental variables. Since the fossil remains in the Giraffe Pipe locality represent isolated
102 siliceous plates and not entire tests, especially after extraction from the mudstone rocks, we have
103 abundance estimates for all plate morphologies, but not for specific species. In previous works
104 we have used surface sediments from modern lakes to document and quantify scaled
105 chrysophytes and diatoms in freshwater lakes and ponds along the east coast of North America
106 (Siver and Hamilton 2011, Siver and Lott 2012). Since the remains of scaled chrysophytes and
107 diatoms are siliceous, the preparation methods used in these studies also contain remains of
108 siliceous testate amoebae plates. The primary goals of this study were to 1) identify siliceous
109 plate morphotypes in 125 waterbodies from five regions along the east coast of North America;
110 2) examine relationships between abundances of siliceous testate plates and environmental
111 variables and; 3) investigate the utility of using abundances of testate plates to aid in

112 reconstructing water depth, pH and possibly other environmental variables in ancient
113 waterbodies such as the early Eocene Giraffe Pipe waterbody.

114

MATERIALS AND METHODS

In an earlier work, Siver and Lott (2012) reported on the biogeographic distributions of scaled chrysophytes in freshwater waterbodies spread along the east coast of North America. Waterbodies from five regions ($n = 125$) included in that work, coastal North Carolina, the Pinelands National Preserve in New Jersey (New Jersey), Connecticut, Nova Scotia and Newfoundland, were used in the current study. The sites from North Carolina and the Pinelands of New Jersey are situated in non-glaciated areas on the Atlantic Coastal Plain, while those from the three remaining regions are located in glaciated areas. Details of all regions are given in Siver and Lott (2012). Sediment cores were taken from each waterbody with a Glew gravity corer (Glew 1988) and sectioned into 1cm units using a mechanical extruder (Glew 1989). The 0-1cm section from the surface of each core was used to identify and quantify siliceous plates of testate amoebae from each site. Surface sediment samples are commonly used to study organism remains as they effectively integrate growth of the organisms over the course of a year or more (Smol 1995).

129 Twenty environmental variables were measured for each study site, including water
130 color, maximum depth, Secchi disk depth, alkalinity, pH, specific conductivity, chlorophyll-*a* ,
131 total phosphorus, total nitrogen, chloride, sulfate, potassium, sodium, calcium, magnesium,
132 latitude, mean maximum temperature in January and July, and the mean minimum temperature
133 for January and July. Maximum depth was derived from existing bathymetric maps, government
134 databases, or estimates made at the time of collection. Details for all other parameters, including
135 all chemical analyses, were according to Canavan and Siver (1994), Ahrens and Siver (2000),
136 Lott and Siver (2005) and Siver and Lott (2010), and are summarized in Siver and Lott (2012).

137 Surface sediment from the 125 cores was processed as follows to prepare samples for
138 examination with light and scanning electron microscopy: 1) Wet sediment from the 0-1 cm

139 section of each core was thoroughly mixed, and a known amount added to a beaker along with a
140 mixture of sulfuric acid-potassium dichromate according to the procedure of Marsicano and
141 Siver (1993). The amount of wet weight used per sample varied between samples, with a mean
142 of 1.3 g. The mixture was gently heated in order to facilitate oxidation of organic matter. At the
143 completion of the oxidation step the material (slurry) was transferred to a centrifuge tube and
144 washed with DW a minimum of five times. The resulting slurry was transferred to a glass vial
145 and the volume brought to 10 ml. 2) A second wet weight sample from the 0-1 cm section of the
146 core was placed onto an aluminum weighing boat and dried in a drying oven at 105 °C to a
147 constant weight. The percent dry weight was calculated and used to estimate the amount of dry
148 weight of material used to derive the slurry. 3) A known volume of the slurry was diluted to 30
149 ml and slowly poured into a Battarbee tray containing five wells, each well fitted with a 22 ml
150 diameter circular glass cover slip (Battarbee 1986). The Battarbee trays were placed on a
151 vibration-free table, covered, and the solution allowed to air dry such that the microfossils
152 became affixed to the cover glasses within the tray. 4) The cover glasses containing the dry
153 sediment material were permanently mounted onto glass slides using Hyrax or Naphrax
154 mounting medium and the slides labeled with a diamond knife. 5) The permanent slides were
155 scanned at 40x with an Olympus BX 51 microscope using a phase contrast lens (n.a. = 0.65).
156 The numbers of each testate plate morphotype within a known number of fields were recorded.
157 The surface area of a field of view under 40x magnification is 0.29 mm^2 . 6) Given the above
158 parameters, the amount of dry weight of sediment per field at 40x magnification was calculated
159 for each sample. The mean across all samples was $2.9 \times 10^{-1} \mu\text{g}$ dry weight per field.
160 Concentrations of testate plates are given on a μg dry weight basis.

161 Prior to enumeration of testate plates, samples were first examined with a Leica DMR
162 light microscope using a 100x Plan Apo lens (numerical aperture = 1.4) and coupled with a Zeiss
163 Axiocam 503 color camera, and with either a Leo (Zeiss) 982 FESEM or a FEI Nova NanoSEM
164 450 FESEM field emission scanning electron microscope (SEM). These analyses yielded initial
165 qualitative estimates and images of the plate morphotypes found in each sample. For SEM, an
166 aliquot of the oxidized slurry was air dried onto a piece of heavy duty aluminum foil, trimmed,
167 and attached to an aluminum SEM stub with Apiezon® wax. Samples were coated with a
168 mixture of gold and palladium for 2 min with a Polaron Model E sputter coater.

169 Non-metric multidimensional scaling (MDS) was performed using Primer-E (ver. 6.1.12,
170 Clarke and Warwick 2001) in order to ordinate and display sites based on the rank order of
171 Bray–Curtis measurements of testate plate morphotypes. The organism matrix consisted of
172 concentration data for each plate morphotype at each site. Plate abundances were first
173 transformed using a square root transformation, and a resemblance matrix subsequently formed
174 using a Bray–Curtis measure. Plate abundances were also transformed using logarithmic
175 algorithms, but because these yielded similar results, only results based on a square root
176 transformation are presented. Shapiro-Wilk normality tests and all regression analyses, including
177 forward stepwise regression, were performed using SigmaPlot ver 12.5. Based on the normality
178 tests, the maximum water depth and water color variables were logarithmic transformed prior to
179 analysis.

180

181

RESULTS

182 **Physical and Chemical Properties of the Study lakes:**

183 A detailed analysis of the differences in physicochemical properties of the waterbodies
184 from each region is given in Siver and Lott (2012), and summarized here. The study sites span
185 the east coast of North America from the non-glaciated Atlantic Coastal Plain (North Carolina
186 and the Pinelands of New Jersey) to glaciated areas that include Connecticut, Nova Scotia and
187 Newfoundland. On average, waterbodies situated on the Atlantic Coastal Plain (North Carolina
188 and the Pinelands of New Jersey) are more similar to each other, as are those in Nova Scotia and
189 Newfoundland, than they are to those in Connecticut (Table 1). Although statistically different
190 from the other four regions, waterbodies in Connecticut are more similar to those in the Canadian
191 Maritime than those along the Atlantic Coastal Plain. The mean maximum and mean minimum
192 January temperatures ranged from 12.8 °C to -1.7 °C, and 1.1 °C to -9.4 °C, respectively, across
193 all regions (Table 1). There is approximately a 10 to 12 °C difference in the mean maximum and
194 mean minimum temperatures during July in all regions.

195 On average, the Connecticut waterbodies have higher pH and alkalinity, and are clearer
196 waterbodies with deeper Secchi disk depths. In contrast, sites on the Atlantic Coastal Plain are
197 more acidic, poorly buffered, with high concentrations of colored dissolved organic matter, and
198 low Secchi disk depths. A mixture of clear water and humic-stained waterbodies characterize
199 those in the Canadian Maritime regions. Although the pH ranged from 3.5 to 8.6, a total of 64 of
200 the waterbodies had a pH < 6. Lakes in Nova Scotia and Newfoundland have lower
201 concentrations of sulfate and potassium than those in the other regions. Based on chlorophyll-*a*,
202 total phosphorus, and total nitrogen concentrations, the most eutrophic lakes are situated in North

203 Carolina and New Jersey, while the more northern and glaciated sites become more oligotrophic
204 with lower nutrient and chlorophyll- *a* concentrations.

205

206 **Diversity and Abundances of Siliceous Shell Plates:**

207 Siliceous shell plates were separated into seven different morphotypes for quantitative
208 purposes (Table 2; Figs 1-3). Circular shaped plates (Figs 1H-K; 3E-F) were the most abundant
209 type, ranging from 32.6% (North Carolina) to 64% (Connecticut) of the total per region, and
210 accounting for 45% of plates from all sites. Except for North Carolina localities, circular plates
211 were the most abundant type in all other regions. Circular plates were widely distributed,
212 recorded in 95% of all study lakes. Oval plates (Figs 1D-G; 3G) were the second most abundant
213 plate type, with maximum abundances recorded from waterbodies along the Atlantic Coastal
214 Plain in New Jersey and North Carolina where they accounted for 39.7% and 37% of all plates,
215 respectively (Table 2). Collectively, circular and oval morphotypes comprised 75% of all plates.
216 Square or quadrangular shaped plates (Figs 1A-C; 3H-I) accounted for 8% of the total, were
217 relatively evenly distributed between regions, but were noticeably rare in Connecticut lakes. In
218 contrast, quadrangular plates were present in all of the New Jersey sites. Rhomboidal and
219 rectangular-shaped plates (Figs 1Q-S; 3A-D) were found in all regions, and in 46% of the study
220 sites, however accounted for only 2.7% of all plates.

221 Scutiform or shield-shaped plates with a bilateral symmetry were separated into two
222 groups based on the shape along the wider portion of the plate. The wider end of the plate,
223 referred to as the aboral end, faces the posterior of the test, while the narrower end faces the oral
224 end of the test. The first scutiform shaped plate, morphotype 1, has strongly undulating margins
225 along both the aboral and oral ends of the plate resulting in three projections on each end (Figs

226 1N-P; 2A-B). The two outer projections on the aboral end of the plate are highly accentuated,
227 and extend from the plate slightly further than the central process or projection, yielding a
228 “butterfly” shape. The margins of the plate connecting the aboral and oral ends are relatively
229 straight to slightly curved and tapering, completing the bilateral design. Except for the central
230 projection, the lateral margins along the aboral end of morphotype 2 are broadly rounded and not
231 accentuated and projected out from the plate as they are on morphotype 1(Figs 1U-Y; 2D-E, G-
232 H). Narrow scutiform morphotype 2 plates have a shape that resembles a “lemon” rather than a
233 butterfly (Figs 1U-V, Y; 3G). Scutiform morphotypes 1and 2 accounted for only 4% and 8% of
234 all plates enumerated, respectively. However, morphotype 1 was significantly more abundant
235 and accounted for between 5.6-11.8% of the total in the three northern regions, Connecticut,
236 Nova Scotia and Newfoundland. They were much less abundant in lakes situated on the Atlantic
237 Coastal Plain where they accounted for < 1% of all plates. Despite the low abundances,
238 morphotype 1 was present in 48% and 22% of the waterbodies in North Carolina and New
239 Jersey, respectively. Morphotype 2 was much more evenly distributed between regions (Table
240 2).

241 Plates with projecting teeth that surround the pseudostome opening varied in the number
242 and position of the teeth (Figs 1L-M, T; 2C, F). Denticulate plates with five to 13 teeth were
243 observed. Although combined in abundance estimates, denticulate plates can be separated into
244 two types. One type typically had 5-7 teeth, each of which originated from the undersurface of
245 the plate, and possessed a more accentuated aboral end (Figs 1L-M). The second type of
246 denticulate plate usually had more (e.g. 9-11) and smaller teeth that projected from the margin of
247 the plate in the same plane as the body of the plate. This plate type has a less projecting aboral
248 margin (Figs 1T; 2C, F).

249 The totality of differences in siliceous plate types between regions was further illustrated
250 with a MDS analysis (Figs 4-5A-F). The distribution of sites clearly shows the high degree of
251 similarity between New Jersey and North Carolina, the two most southern localities included in
252 the study. The majority of Connecticut sites also separate from those in other regions, are more
253 similar to other northern regions (Nova Scotia and Newfoundland), but very different from the
254 southern regions. Differences in the distributions of plate types between regions noted above are
255 supported in the MDS analysis. First, quadrangular plates have the most limited distribution, are
256 clearly more abundant in New Jersey and North Carolina, and largely lacking in Connecticut
257 sites (Fig 5D). Second, the distributions and abundances of scutiform morphotype 2 and
258 rectangular plate types largely overlap (Figs 5E-F). Third, butterfly-shaped scutiform
259 morphotype 1 plates have greater abundances in northern regions, and are noticeably less
260 abundant in North Carolina and New Jersey. Fourth, circular plates exhibit the widest
261 distribution, and can be found in high abundances in lakes from multiple regions (Fig. 5A). Fifth,
262 oval plates are also widely distributed with highest abundances in more southern regions, and
263 lower concentrations in many Connecticut localities (Fig. 5B). Sixth, the distribution of
264 rectangular plates (Fig. 5C) is most similar to that for oval specimens.

265 **Siliceous Plate Abundance versus Environmental Variables:**

266 Individual linear regression analyses were initially performed to investigate the
267 relationships between plate abundance and each of the 20 environmental variables. Based on
268 these analyses, plate abundance was significantly related ($p < 0.05$) to twelve variables (Table 3).
269 The strongest relationships were with pH, water depth, and water color. The relationship with
270 pH is highly significant ($p < 0.001$; $r^2 = 0.45$), where the abundance of plates increased with a
271 decrease in pH (Fig. 6B). Most waterbodies with pH above 7 had less than one plate per μg dry

272 weight sediment. In contrast, most waterbodies with a pH below 5 had three to over ten plates
273 per μg dry weight sediment. With respect to water depth ($p < 0.001$; $r^2 = 0.43$), deeper lakes had
274 significantly lower abundances of euglyphid plates (Fig. 6A). The highest abundances of plates
275 were found in waterbodies below 3m in depth, with the greatest numbers in sediments from
276 shallow ponds less than 1m deep.

277 A stepwise forward multiple regression analysis was then performed to determine the
278 suite of variables most important in determining abundance of siliceous testate plates, where
279 each variable independently accounts for a significant portion of the total variation. Five
280 variables were added to the regression model in the following order: pH, water depth,
281 concentration of potassium, concentration of sulfate, and latitude (Table 4). The resulting model
282 explained 60% of the variation in plate abundance (Fig. 6C). The pH variable accounted for
283 45% of the variance in plate abundance, while adding water depth explained an additional 7%
284 (52% total for both variables). The concentrations of potassium and sulfate, and latitude
285 accounted for an additional 8% of the variance. Due to the covariance between color and both
286 pH and water depth, the former variable did not add to the final model. If the pH variable was
287 removed from the analysis, water depth became the most important variable, accounting for 43%
288 of the variance in plate abundance. If both pH and water depth were removed, color becomes the
289 strongest factor.

290

291

DISCUSSION

292 We are confident that except for the quadrangular-shaped plates, the remaining
293 specimens in our work represent species belonging to the Order Euglyphida. Because the plates
294 are disarticulated from the original test when uncovered from the sediment samples, assigning
295 them to species, and even to genus level, is difficult. It is especially difficult to determine from
296 which taxa the circular or oval plates were derived. Plates with these shapes are common
297 morphotypes formed by some species belonging to *Euglypha* Dujardin 1841, *Assulina* Ehrenberg
298 1982, *Trinema* Dujardin 1841, *Sphenoderia* Schlumberger 1845, *Corythion* Taranek 1918,
299 *Tracheleuglypha* Deflandre 1928, and possibly *Puytoracia* Bonnet 1970. Most of the rectangular
300 or rhomboidal-shaped scales are believed to belong to members of the genus *Euglypha* (e.g. *E.*
301 *strigosa* Ehrenberg 1848), and possibly the genus *Assulina* (e.g. *A. scandinavica* Penard 1890).
302 The more rectangular-shaped plates with rounded margins likely belong to *Euglypha compressa*
303 Carter 1864, especially since denticulate plates matching this species were also found in the
304 samples. The quadrangular-shaped plates belong to species in the genus *Quadrullela* Cockerell
305 1909, which also form tests with a highly organized arrangement of siliceous plates. However,
306 unlike taxa in the Order Euglyphida that produce filose pseudopodia, *Quadrullela* belongs to the
307 Order Arcellinida Kent 1880 that includes species with lobose pseudopodia (Ogden and Hedley
308 1980).

309 The bilateral and scutiform-shaped plate morphotypes belong to the genus *Scutiglypha*
310 Foisner and Schiller 2001. *Scutiglypha* was erected to include species of *Euglypha* that bear
311 bilateral, shield-shaped plates (Foisner and Schiller 2001), and currently the genus includes at
312 least six species (DeSmet and Gibson 2009). The tests of *Scutiglypha* species also include plates
313 that are intermediate in shape between those bearing teeth that surround the pseudostome, the

314 typical shield-shaped body plates, and smaller and more circular plates that cover the posterior
315 end of the test (Foissner and Schiller, 2001; DeSmet and Gibson 2009; Schiller and Wuttke
316 2015). Based on our findings, the two shield-shaped morphotypes probably represent two
317 different *Scutiglypha* species. Although both morphotypes were found together in a few
318 samples, they were not in many collections leading us to conclude they represent closely related,
319 but different species.

320 Although some authors question the validity of the genus *Scutiglypha*, the arguments for
321 separating it from *Euglypha* were reviewed by DeSmet and Gibson (2009). In addition to the
322 obvious differences in plate morphology, our findings indicate that there is also a significant
323 difference in the structure of the denticulate plates that surround the pseudostome. The
324 denticulate plates of *Euglypha* usually have 5 to 7 teeth, a large and prominent median tooth, and
325 the teeth clearly originate from the undersurface of the plate. In our study, this type of
326 denticulate plate is always found in samples with circular and/or oval plates, and indicates that
327 many of the latter plate morphotypes may indeed belong to *Euglypha* since other genera in the
328 Euglyphidae besides *Scutiglypha* lack these distinctive denticulate plates. On the other hand,
329 denticulate plates found in samples with *Scutiglypha* body scales usually have 7 to 11(13)
330 smaller teeth, a less prominent median tooth, and the teeth originate at, and project from, the
331 margin of the plate. As additional species are described, it will be interesting to see if the
332 differences in the structures of denticulate plates form an additional character that can be
333 valuable for distinguishing between the two genera.

334 Although rare, two additional plate types are worth mention and likely indicate the
335 present of additional taxa in the collections. First, a few of the numerous oval plate specimens
336 had distinctively thickened rims. Plates that match this morphotype have been illustrated for

337 *Assulina muscorum* Greef 1888 (Ogden and Hedley 1980). Another rare type of plate uncovered
338 in a few samples was a small, oval, plate bearing a single tiny tooth. This plate morphotype is
339 typical of the genus *Trinema*, where it aligns the margin of the pseudostome.

340 Numerous studies have reported that the abundance, diversity, and distribution of testate
341 amoebae in freshwaters are related to a combination of environmental variables including, but
342 not limited to, water depth, pH, trophic status, conductivity, organic content, temperature,
343 moisture content and substrate type (e.g. Ogden and Hedley 1980, Collins et al. 1990, Roe and
344 Patterson 2014, Ju et al. 2014, Amesbury et al. 2018, Tsyganov et al. 2019). Of these factors,
345 water depth is often reported as the most important variable controlling diversity, abundance, and
346 species composition in freshwater lakes and peatlands (Mitchell et al. 1999, Booth 2002,
347 Patterson et al. 2012, McKeown et al. 2019, Tsyganov et al. 2019). Given the importance of
348 water depth, Sonnenburg et al. (2013) attempted to use species assemblages to infer this variable
349 over time, but concluded that additional data relating specific species to specific water depths
350 were needed. In a more recent study, Tsyganov et al. (2019) described distinctive assemblages
351 of testate amoebae species relative to lake depth, further demonstrating that these organisms have
352 great promise for inferring historical lake water levels.

353 Using testate amoebae to reconstruct paleohydrological conditions in peatlands is more
354 advanced than their use in inferring lake depth (Charman 1997, Mitchell et al. 1999, Booth
355 2002). By combining regional-scale datasets, Amesbury et al. (2018) developed transfer
356 functions applicable for inferring peatland palaeohydrology not only throughout North America,
357 but for the Holarctic. In an interesting work based on New Zealand peatlands, McKeown et al.
358 (2019) showed that testate amoebae-based inference models could be improved by dividing
359 species into subsets based on size. In their study, smaller species were related to different

360 environmental variables than larger taxa, demonstrating an even greater utility to use these
361 organisms in reconstructing efforts.

362 The pH is another important variable controlling both abundance and species
363 composition of testate amoebae (Escobar et al. 2008, Patterson et al. 2013). On a broad scale,
364 many testate amoebae species are limited by pH, with some taxa being found to be more
365 abundant in acidic habitats, and others in more alkaline sites (Ogden and Hedley 1980). A
366 similar result was reported by Patterson and Kumar (2002), who found some species of
367 euglyphids thriving at low pH, and other species mostly of Centropyxids more abundant at
368 higher pH sites. In a study of subtropical lakes in Florida, Escobar et al. (2008) reported the
369 highest diversity of testates in lakes with a high pH near 8. Although our findings largely agree
370 with those of Patterson and Kumar (2002), they are seemingly in contrast to those of Escobar et
371 al (2008). Whereas we report a significant increase in silica plate abundance with decreasing
372 pH, Escobar et al. (2008) reported greater species diversity at high pH. Many of our study lakes
373 with a pH below ca. 5.5 had abundances of silica plates five to ten times higher than in lakes
374 with a pH above 7. The difference between the Escobar et al (2008) study and our findings is
375 probably due to a difference in the species composition. Interestingly, lakes in the Escobar et al.
376 (2008) study contained primarily species that do not construct their tests out of idiosomes,
377 including internally-produced siliceous plates. In contrast, our study focused solely on species
378 that build highly organized tests using silica plates (e.g. euglyphids) formed internally within
379 cytoplasmic vesicles, and then deposited externally to form the test. Another difference is that
380 our study was based on the abundances of plates and not species diversity.

381 Lake trophic status can be another important variable determining the assemblage of
382 testate amoebae species found in a given waterbody (Schönborn 1992, Patterson et al. 2012,

383 Tsyganov et al. 2019). As a result of such relationships, Reinhardt et al. (2005) and Drljean et
384 al. (2014) used these organisms to track shifts in trophic status. Highest species diversities of
385 testate amoebae have been found in mesotrophic to eutrophic lakes (Escobar et al. 2008, Ju et al.
386 2014), and greater abundances of specimens are usually associated with organic-rich sediments
387 (Patterson and Kumar 2002, Roe and Patterson 2006). Although we did not observe a
388 relationship between plate abundance and the trophic-related variables total phosphorus and
389 chlorophyll-*a* concentrations, there were significantly greater concentrations in sites from North
390 Carolina and New Jersey that have higher total nitrogen levels and elevated water color relative
391 to most localities. These are also sites that most likely have higher concentrations of organic
392 matter.

393 A major difference between our approach and previous works using testate amoebae to
394 infer environmental conditions is that our results are based on a) only species that produce
395 siliceous plates and; b) abundances of siliceous plates and not numbers of individual species.
396 None of the previous studies relating testate amoebae to specific environmental variables, or
397 focused on inferring historical conditions, relied on abundances of siliceous plates. Nor are there
398 studies that include only the subset of species that produce siliceous plates, although some
399 studies do rely solely on Arcellacea taxa (Patterson et al. 2012, Roe and Patterson 2014). Our
400 interest in focusing on abundance of siliceous plates is because this is the metric we can best
401 estimate in modern lake sediments as well as in fossil mudstones, especially if acidic oxidation
402 procedures are needed to prepare and/or extract the microfossils. Despite not using a metric
403 based specifically on species, our model still accounted for 60% of the variation in plate
404 concentrations, which is comparable to previous works. Further, our results clearly indicate that
405 significantly higher abundances of siliceous testate plates, regardless of species diversity, are

406 found in shallow, acidic ponds and lakes. Undoubtedly, if other variables, such as biotope, food
407 supply, and predator concentration, were included, a greater percentage of variation could
408 probably be explained. With additional study, it may also be possible to improve the models by
409 linking specific plate morphotypes to specific conditions in a similar fashion as McKeown et al.
410 (2019) did based on test size.

411 An ultimate long-term goal is to use the abundances of siliceous testate plates to
412 reconstruct water depth and pH not only in modern waterbodies using recently deposited
413 sediment, but also in fossil waterbodies including the extensive mudstone core from the Giraffe
414 Pipe fossil locality (Siver and Wolfe 2009, Barber et al. 2013, Wolfe et al. 2017). This fossil site
415 is of particular interest because it represents an important deep-time freshwater analog of an
416 Arctic lake that existed under a warm greenhouse climate (Siver and Wolfe 2009, Wolfe et al.
417 2017). Reconstructed mean annual temperature and mean annual precipitation values for the
418 Giraffe locality are 17 °C higher and 4 times greater, respectively, than present, and the region
419 supported a warm mixed forest (Wolfe et al. 2017). Tracing the history of the Giraffe waterbody
420 can potentially help us understand how freshwater Arctic habitats will respond to future warming
421 scenarios. The Giraffe core contains numerous siliceous testate plates, including most of the
422 morphotypes uncovered in our modern lake study. In addition, the concentrations of plates
423 ranges widely over the length of the core, including periods of extensive numbers alternating
424 with periods with few to no testate remains (Barber et al. 2013). Preliminary results indicate that
425 concentrations of testate plates in the Giraffe core are positively correlated with remains of acidic
426 and periphytic diatoms, sponge sclerids, heliozoans, and specific types of chrysophyte cysts,
427 while low concentrations are found concurrent in strata where planktonic diatoms dominate
428 (Barber et al. 2013, Siver 2019). Based on these results, our current hypothesis is that abundant

429 concentrations of testate plates correspond to time periods represented by a shallow waterbody,
430 and vice versa. Inference models for water depth and pH based on concentrations of testate
431 plates would yield much needed independent verification of reconstructions based on other fossil
432 proxies.

433 In summary, remains of siliceous plates from testate amoebae are a common type of
434 microfossil found in many lakes and ponds, including those distributed along a wide expanse of
435 eastern North America. Most of the plate morphotypes represent taxa in the Order Euglyphida.
436 Greater concentrations of plates are significantly associated with shallower and more acidic
437 waterbodies, indicating that this metric could be used to infer historical conditions. The plate
438 morphotypes found in modern waterbodies have all been uncovered in fossil localities. This
439 finding indicates that the lineages of organisms producing these plate morphotypes had already
440 evolved by at least the Eocene (Barber et al. 2013), further supporting their use in reconstructing
441 conditions found in these ancient waterbodies.

442

443

AUTHOR CONTRIBUTIONS

444 PAS developed the concept for the project, collected and analyzed data, imaged specimens,
445 wrote and edited the manuscript; AML collected and analyzed data, imaged specimens, edited
446 the manuscript; PT collected and analyzed data.

447

ACKNOWLEDGEMENTS

449 This work was funded by the U.S. National Science Foundation under grant EAR-1725265 to
450 P.A. Siver. The authors thank the many students who helped with field collections over the
451 years, and Xuanhao Sun for assistance with the SEM facilities.

452

453

LITERATURE CITED

454 Ahrens, T. D., and P. A. Siver. 2000. The physical properties, trophic conditions, and water
455 chemistry of 60 lakes on Cape Cod, Massachusetts, USA. *Lake and Reservoir Management*
456 16:268–280.

457

458 Amesbury, M. J., R. K. Booth, T. P. Roland, J. Bunbury, M. J. Clifford, et.al. 2018. Towards a
459 Holarctic synthesis of peatland testate amoeba ecology: development of a new continental-scale
460 palaeohydrological transfer function for North America and comparison to European data.
461 *Quaternary Science Reviews* 201:483-500.

462

463 Barber, A., P. A. Siver, and W. Karis. 2013. Euglyphid testate amoebae (Rhizaria: Euglyphida)
464 from an arctic Eocene waterbody: Evidence of evolutionary stasis in plate morphology for over
465 40 million years. *Protist* 164:541-555.

466

467 Barnett, R. L., T. L. Newton, D. J. Charman, and W. R. Gehrels. 2017. Salt-marsh testate
468 amoebae as precise and widespread indicators of sea-level change. *Earth Science Reviews*
469 164:193-207.

470

471 Battarbee, R. W. 1986. Diatom analysis. Pages 527-570 *in*: B.E. Berglund (editor). *Handbook of*
472 *Holocene Paleoecology and Paleohydrology*. John Wiley & Sons Ltd, Chichester.

473

474 Boeuf, O., and D. Gilbert. 1997. Présence de thécamoebiens du genre *Trinema*, au pliocène
475 supérieur, découverte à Chilhac (Haute-Loire, France). C r hebd Séanc Acad Sci, Paris 325:623–
476 627.

477

478 Booth, R. K. 2001. Ecology of testate amoebae in two Lake Superior coastal wetlands:
479 implications for paleoecology and environmental monitoring. Wetlands 21:564–576.

480

481 Booth, R. K. 2002. Testate amoebae as paleoindicators of surface moisture changes on Michigan
482 peatlands: modern ecology and hydrological calibration. Journal of Paleolimnology 28:329–348.

483

484 Booth, R. K. 2008. Testate amoebae as proxies for mean annual water-table depth in Sphagnum-
485 dominated peatlands of North America. Journal Quaternary Science 23:43-57.

486

487 Booth, R. K., and S. T. Jackson. 2003. A high-resolution record of late Holocene moisture
488 variability from a Michigan raised bog. The Holocene 13:865–878.

489

490 Booth, R. K., and J. R. Zygmunt. 2005. Biogeography and comparative ecology of testate
491 amoebae inhabiting Sphagnum-dominated peatlands in the Great Lakes and Rocky Mountain
492 regions of North America. Diversity and Distributions 11:577–590.

493

494 Canavan, R. W., and P. A. Siver. 1994. Chemical and physical properties of Connecticut lakes.
495 Lake and Reservoir Management 10:173–186.

496

497 Charman, D. J. 1997. Modelling hydrological relationships of testate amoebae (Protozoa:
498 Rhizopoda) on New Zealand peatlands. *Journal of the Royal Society of New Zealand* 27:465–
499 483.

500

501 Charman, D. J. 2001. Biostratigraphic and palaeoenvironmental applications of testate amoebae.
502 *Quaternary Science Reviews* 20:1753–1764.

503

504 Clarke, K. R., and R. M. Warwick. 2001. Change in marine communities: An approach to
505 statistical analysis and interpretation, 2nd edition. PRIMER-E, Plymouth, UK.

506

507 Collins, E. S., F. M. G. McCarthy, F. S. Medioli, D. B. Scott, and C. A. Honig. 1990.
508 Biogeographic distribution of modern thecamoebians in a transect along the Eastern North
509 American coast. Pages 783-792 in C. Hemleben, M.A. Kaminski, W. Kuhnt, and D.B. Scott
510 (editors). *Paleoecology, biostratigraphy, paleoceanography and taxonomy of agglutinated*
511 *foraminifera*. Springer, Dordrecht.

512

513 De Smet, W. H., and J. A. E. Gibson. 2009. On a new species of euglyphid testate amoeba,
514 *Scutiglypha cabrolae*, from the Licancabur Caldera Lake, Central Andes. *Acta Protozoology*
515 48:119-126.

516

517 Drljepan, M., F.M. McCarthy, J.B Hubeny. 2014. Natural and cultural eutrophication of Sluice
518 Pond, Massachusetts, U.S.A., recorded by algal and protozoan microfossils. *Holocene* 24: 1731-
519 1742.

520 Escobar, J., M. Brenner, T. J. Whitmore et al. 2008. Ecology of testate amoebae (thecamoebians)
521 in subtropical Florida lakes. *J Paleolimnol* 40:715–731.

522

523 Foissner, W., and W. Schiller. 2001. Stable for 15 million years: scanning electron microscope
524 investigation of Miocene euglypid thecamoebians from Germany, with description of the new
525 genus *Scutiglypha*. *Eur. J. Protistol.* 37:167-180.

526

527 Gehrels, W. R. 2000. Using foraminiferal transfer functions to produce high-resolution sea-level
528 records from saltmarsh deposits, Maine, USA: *The Holocene* 10:367–376.

529

530 Gehrels, W. R., H. M. Roe, and D .J. Charman. 2001. Foraminifera, testate amoebae and diatoms
531 as sea-level indicators in UK saltmarshes: a quantitative multiproxy approach: *Journal of*
532 *Quaternary Science* 16:201–220.

533

534 Glew, J. R. 1988 A new trigger mechanism for sediment samplers. *Journal of Paleolimnology*
535 2:241–243.

536

537 Glew, J. R. 1989. A portable extruding device for close interval sectioning of unconsolidated
538 core samples. *Journal of Paleolimnology* 1:225–239.

539

540 Ju, L., J. Yang, L. Liu, and D. M. Wilkinson. 2014. Diversity and distribution of freshwater
541 testate amoebae (Protozoa) along latitudinal and trophic gradients in China. *Microb Ecol*
542 68:657–670.

543

544

545 Loeblich, A., and H. Tappan. 1964. Sarcodina, chiefly "Thecamoebians" and Foraminiferida.

546 Pages 16-54 in R.C. Moore (editor). Treatise on Invertebrate Paleobiology C(2) vol. 1.

547 Geological Society of America and University of Kansas Press, Lawrence, Kansas.

548

549 Lott, A. M., and P. A. Siver. 2005. An inventory of scaled chrysophytes from North Carolina,

550 USA, and their relationships to environmental variables. *Nova Hedwigia*, Beiheft 128:211–229.

551

552 Marsicano, L. J. and P. A. Siver. 1993. A paleolimnological assessment of lake acidification in

553 five Connecticut lakes. *Journal of Paleolimnology* 9:209–221.

554

555 McKeown, M. M., J. M. Wilmshurst, C. Duckert, J. R. Wood, and E. A. D. Mitchell. 2019.

556 Assessing the ecological value of small testate amoebae (<45 µm) in New Zealand peatlands.

557 *European Journal of Protistology* 68:1-16.

558

559 Mitchell, E. A. D., A. Buttler, B. G. Warner, and J. M. Gobat. 1999. Ecology of testate amoebae

560 (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France.

561 *Ecoscience* 6:565–576.

562

563 Mitchell, E. A. D., D. J. Charman, and B. G. Warner. 2008. Testate amoebae analysis in

564 ecological and paleoecological studies of wetlands: past, present and future. *Biodivers. Conserv.*

565 17:2115-2137.

566 Ogden, C. G. 1981. Observations of clonal cultures of Euglyphidae (Rhizopoda, Protozoa). *Bull.*
567 *Br. Mus. Nat. Hist. (Zoology)* 41:137-151.

568

569 Ogden, C. G., and R. H. Hedley. 1980. An Atlas of Freshwater Testate Amoebae. British
570 Museum of Natural History and Oxford University Press: London and Oxford, UK; 222 pp.

571

572 Patterson, R. T., and A. Kumar. 2002. A review of current testate rhizopod (thecamoebian)
573 research in Canada. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 180:225–251.

574

575 Patterson R. T., A. Dalb, A. Kumar, L. A. Henderson, and R. E. A. Boudreau. 2002.
576 Arcellaceans (thecamoebians) as indicators of land-use change: settlement history of the Swan
577 Lake area, Ontario as a case study. *J Paleolimnol* 28:297–316.

578

579 Patterson, R. T., H. M. Roe, and G. T. Swindles. 2012. Development of an Arcellacea (testate
580 lobose amoebae) based transfer function for sedimentary phosphorus in lakes. *Palaeogeogr.*
581 *Palaeoclimatol Palaeoecol* 348–349:32–44.

582

583 Patterson, R. T., E. D. R. Lamoureux, L. A. Neville, A. L. Macumber. 2013. Arcellacea (testate
584 lobose amoebae) as pH indicators in a pyrite mine-acidified lake, Northeastern Ontario, Canada.
585 *Microb Ecol* 65:541–554.

586

587 Payne, R .J., K. Kishaba, J. J. Blackford, E. A. D. Mitchell. 2006. Ecology of testate amoebae
588 (Protista) in south-central Alaska peatlands: building transfer-function models for
589 paleoenvironmental studies. *The Holocene* 16:403–414.

590

591 Reinhardt, E.G., M. Little, S. Donato et al. 2005. Arcellacean (thecamoebian) evidence of land-
592 use change and eutrophication in Frenchman's Bay, Pickering, Ontario. *Environ. Geol.* 47: 729-
593 739.

594

595 Roe, H. M., and R. T. Patterson. 2006. Distribution of thecamoebians (testate amoebae) in small
596 lakes and ponds, Barbados, West Indies. *J. Foraminiferal Res.* 36: 116-134.

597

598 Roe, H. M., and R. T. Patterson. 2014. Arcellacea (testate amoebae) as bio-indicators of road salt
599 contamination in lakes. *Microb Ecol* 68:299–313.

600

601 Schiller, W., and M. Wuttke. 2015. First record of siliceous shell plates of *Scutiglypha* sp.
602 (Amoebozoa: Thecamoeba: Euglyphidae) from Lake Enspel (upper Oligocene, Westerwald
603 Mountains, Germany). *Palaeobio Palaeoenv* 95:513-519.

604

605 Schönborn, W. 1992. The role of protozoan communities in fresh-water and soil ecosystems.
606 *Acta Protozool* 31:11–18.

607

608 Siver, P. A. 2019. Potential use of chrysophyte cyst morphometrics as a tool for reconstructing
609 ancient lake environments. *Nova Hedwigia, Beiheft* 148:101-112.

610 Siver, P. A. and P. B. Hamilton. 2011. Diatoms of North America: The freshwater flora of the
611 Atlantic Coastal Plain. *Iconographia Diatomologica* 22:1-920.

612

613 Siver P. A., and A. M. Lott. 2010. The scaled chrysophyte flora from the Pinelands National
614 Preserve of southern New Jersey, U.S.A. *Nova Hedwigia*, Beiheft 136:167–181.

615

616 Siver, P. A., and A. M. Lott. 2012. Biogeographic patterns in scaled chrysophytes from the east
617 coast of North America. *Freshwater Biology* 57:451-467.

618

619 Siver, P. A., and A. P. Wolfe. 2009. Tropical ochrophyte algae from the Eocene of northern
620 Canada: a biogeographic response to past global warming. *Palaios* 24:192–198.

621

622 Smol, J. P. 1995. Application of chrysophytes to problems in paleoecology. Pages 303-329 in C.
623 Sandgren, J. P. Smol and J. Kristiansen (editors). *Chrysophyte Algae: Ecology, Phylogeny and*
624 *Development*. Cambridge University Press, Cambridge, UK.

625

626 Sonnenburg, E. P., J. I. Boyce, and E. G. Reinhardt. 2013. Multi-proxy lake sediment record of
627 prehistoric (Paleoindian–Archaic) archaeological paleoenvironments at Rice Lake, Ontario,
628 Canada. *Quat Sci Rev* 73:77–92.

629

630 Tsyganov, A. N, E. A. Malysheva, A. A. Zharov, T. V. Sapelko, and Y. A. Mazei. 2019.
631 Distribution of benthic testate amoeba assemblages along a water depth gradient in freshwater

632 lakes of the Meshchera Lowlands, Russia, and utility of the microfossils for inferring past lake
633 water level. *Journal of Paleolimnology*. Published online: May 18, 2019.

634

635 Warner, B. G. 1990. Testate amoebae (Protozoa). Methods in Quaternary ecology: Geoscience
636 Canada 5:65–74.

637

638 Whittle, A., M. J. Amesbury, D. J. Charman, D. A. Hodgson, B. B. Perren, S. J. Roberts and A.
639 V. Gallego-Sala. 2018. Salt-enrichment impact on biomass production in a natural population
640 of peatland dwelling Arcellinida and Euglyphida (testate amoebae). *Microbial Ecology*.
641 Published online: 11 December 2018.

642

643 Williams, J. L. 1985. Thecamoebian Scales from a Miocene Lacustrine Deposit in Northern
644 Idaho. Pages 67-71 *in* C.J. Smiley (editor). Late Cenozoic history of the Pacific northwest. Am
645 Assoc Adv Sci and Cal Acad Sci, San Francisco, CA.

646

647 Wolfe, A. P., A. V. Reyes, D. L. Royer, D. R. Greenwood, G. Doria, M. H. Gagen, P. A. Siver,
648 and J. A. Westgate. 2017. Middle Eocene CO₂ and climate reconstructed from the sediment fill
649 of a subarctic kimberlite maar. *Geology* 45:619-622.

650

651 Wylezich, C., R. Meisterfeld, S. Meisterfeld, and M. Schlegel. 2002. Phylogenetic analysis of
652 small subunit ribosomal RNA coding regions reveal a monophyletic lineage of euglyphid testate
653 amoebae (Order Euglyphida). *Journal of Eukaryote Microbiology* 49:108-118.

654

655

FIGURE LEGENDS

656 Figure 1. Light micrographs of siliceous plate morphotypes from freshwater testate amoebae.

657 Morphotypes include quadrangular (A-C), oval (D-G), circular (H-K), denticulate (L-M, T),

658 scutiform morphotype 1 (N-P), rectangular to rhomboid (Q-S), and scutiform morphotype 2 (U-

659 Y). Scale bar = 10 μ m.

660 Figure 2. Scanning electron micrographs of siliceous plate morphotypes from freshwater testate

661 amoebae. Morphotypes include scutiform morphotype 1 (A-B), denticulate (C-F), and scutiform

662 morphotype 2 (D-E, C-H). Denticulate plates illustrated have 11 (C) and nine (F) teeth. The

663 lemon-shaped plate with seven teeth (H) is situated on the test just behind the row of denticulate

664 plates. Scale bars = 3 μ m (F-G), 4 μ m (E) and 5 μ m (A-D, H).

665 Figure 3. Scanning electron micrographs of siliceous plate morphotypes from freshwater testate

666 amoebae. Morphotypes include rectangular to rhomboid (A-D), circular (E-F), oval (G), and

667 quadrangular (H-I). Scale bars = 2 μ m (A, C, F, H) and 3 μ m (B, D-E, G, I).

668 Figure 4. Result of a non-metric multidimensional scaling analysis indicating the ordination of

669 125 freshwater sites from five regions along the east coast of North America based on the

670 concentrations of different testate amoebae plate morphotypes.

671 Figure 5. Non-metric multidimensional scaling results depicting the occurrences and

672 concentrations of six testate amoebae plate morphotypes in freshwater sites representing five

673 regions along the east coast of North America. Morphotypes include circular (A), oval (B),

674 rectangular to rhomboid (C), quadrangular (D), scutiform morphotype 1 (E), and scutiform

675 morphotype 2 (F). See Figure 4 for locations of sites in each of the five regions.

676 Figure 6. Abundance of testate amoebae plates versus lake depth (A) and pH (B) in 125
677 freshwater sites along the east coast of North America. C) Predicted versus actual abundances of
678 testate amoebae plates using a multiple regression model based on five variables, pH, water
679 depth, concentration of potassium, concentration of sulfate, and latitude.