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Abstract

In many game settings, the game is not explicitly given but is only accessible by
playing it. While there have been impressive demonstrations in such settings, prior
techniques have not offered safety guarantees, that is, guarantees on the game-
theoretic exploitability of the computed strategies. In this paper we introduce
an approach that shows that it is possible to provide exploitability guarantees in
such settings without ever exploring the entire game. We introduce a notion of
a certificate of an extensive-form approximate Nash equilibrium. For verifying
a certificate, we give an algorithm that runs in time linear in the size of the cer-
tificate rather than the size of the whole game. In zero-sum games, we further
show that an optimal certificate—given the exploration so far—can be computed
with any standard game-solving algorithm (e.g., using a linear program or coun-
terfactual regret minimization). However, unlike in the cases of normal form or
perfect information, we show that certain families of extensive-form games do not
have small approximate certificates, even after making extremely nice assump-
tions on the structure of the game. Despite this difficulty, we find experimentally
that very small certificates, even exact ones, often exist in large and even in infinite
games. Overall, our approach enables one to try one’s favorite exploration strate-
gies while offering exploitability guarantees, thereby decoupling the exploration
strategy from the equilibrium-finding process.

1 Introduction

Recent years have witnessed AI breakthroughs in games such as poker [5, 28, 10, 12] where the rules
are given. In many important applications—such as many war games and finance simulations—the
rules are only given via black-box access, that is, via playing the game [36, 25], and one can try to
construct good strategies by self play. In such settings, deep reinforcement learning techniques are
typically used today [16, 33, 25, 34, 35, 2]. However, such methods lack the guarantee of low (or
zero) exploitability that game-theoretic solving techniques offer.

Prior to our paper, to compute exploitability of a strategy, one needed to compute the other player’s
best response to it, which relies on the game being known. Sampling approaches to equilibrium
finding have been suggested, but their regret guarantees are vacuous unless the algorithms touch at
least as many information sets as there are in the game [24, 34, 38]. A recent PAC-learning algorithm
has logarithmic sample complexity for pure maxmin strategies in normal-form games; it extends to
some infinite games, but not effectively to mixed strategies in extensive-form games [27].

Game abstraction is commonly used to reduce the size of a game tree prior to solving [3, 14, 8, 13].
Practical abstraction techniques were fundamental to achieving superhuman performance in no-limit
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Texas hold’em poker in the Libratus [10] and Pluribus [12] agents. However, these techniques
do not have exploitability guarantees. There has been recent work on abstraction algorithms with
exploitability guarantees for specific settings [31, 1] and for general extensive-form games (e.g., [21,
22]), but these are not scalable for large games such as no-limit Texas hold’em, and the guarantees
depend on the difference between the abstracted game and the real game being known.

We introduce an approach that can provide exploitability guarantees (even zero exploitability) in
black-box games without ever exploring the entire game tree. We introduce a notion of certificate
that is often much smaller than the full game. We show that a certificate can be verified in time linear
in the size of the certificate, without expanding the remainder of the game tree. For zero-sum games,
we give an algorithm that computes an optimal certificate given the current set of explored nodes
using any zero-sum game solver as a subroutine. Leveraging prior results, we show that perfect-
information [19] and normal-form [26] games have short certificates. We prove that extensive-form
games do not always have such, but under a certain informational assumption they do. We also show
that it is NP-hard to approximate to within a logarithmic factor the smallest certificate of a game,
even in the zero-sum setting, and give an exponential lower bound for the time complexity of solving
a black-box game as a function of the size of its smallest certificate. Despite these hardness results,
we give a game-solving algorithm that expands nodes incrementally until a certificate is found. It
often terminates while only exploring a small fraction of the tree, and works even when the game
tree is infinite and payoffs may be unbounded. Our experiments show that large and even infinite
games can be solved exactly while expanding only a small fraction of the game tree.

2 Preliminaries

We study extensive-form games, hereafter simply games. An extensive-form game consists of the
following:

(1) a set of players P , usually identified with positive integers 1, 2, . . . n. Nature, a.k.a. chance,
will be referred to as player 0. For a given player i, we will often use−i to denote all players
except i and nature.

(2) a finite tree H of histories, rooted at some initial state ∅ ∈ H . The set of leaves, or terminal
states, in H will be denoted Z . The edges connecting any node h ∈ H to its children are
labeled with actions.

(3) a map P : H → P ∪ {0}, where P (h) is the player who acts at node h (possibly nature).

(4) for each player i, a utility function ui : Z → R.

(5) for each player i, a partition of player i’s decision points, i.e., P−1(i), into information sets.
In each information set I , every pair of nodes h, h′ ∈ I must have the same set of actions.

(6) for each node h at which nature acts, a distribution σ0(·|h) over the actions available to
nature at node h.

We will use (G, u), or simply G when the utility function is clear, to denote a game. G contains
the tree and information set structure, and u = (u1, . . . , un) is the profile of utility functions. For
any history h ∈ H and any player i ∈ P , the sequence of player i at node h is the sequence of
information sets observed and actions taken by player i on the path from the root node to h. In this
paper, all games are assumed to have perfect recall.

A behavior strategy (hereafter simply strategy) σi for player i is, for each information set I ∈ Ji at
which player i acts, a distribution σi(·|I) over the actions available at that infoset. When an agent
reaches information set I , it chooses action a with probability σi(a|I).
A collection σ = (σ1, . . . , σn) of behavior strategies, one for each player i ∈ P , is a strategy profile.
The reach probability σi(h) is the probability that node h will be reached, assuming that player i
plays according to strategy σi, and all other players (including nature) always choose actions leading
to h when possible. Analogously, we define σ(h) =

∏

i∈P∪{0} σi(h) to be the probability that h is

reached under strategy profile σ. This definition naturally extends to sets of nodes or to sequences by
summing the reach probabilities of all relevant nodes. A strategy profile induces a distribution over
the terminal nodes of the game. The value of a strategy profile σ for player i is ui(σ) := Ez∼σ ui(z).
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The best response value u∗
i (σ−i) for player i against an opponent strategy σ−i is the largest achiev-

able value; i.e. in a two-player game, u∗
i (σ−i) = maxσi

ui(σi, σ−i). A strategy σi is an ε-best
response to opponent strategy σ−i if ui(σi, σ−i) ≥ u∗

i (σ−i)− ε.

A strategy profile σ is an ε-Nash equilibrium (NE) if all players are playing ε-best responses. Best
responses and Nash equilibria are respectively 0-best responses and 0-Nash equilibria.

3 ε-Nash certificates via pseudogames

We are interested in finding small certificates of exact and approximate Nash equilibria. We in-
troduce a construct that we call a pseudogame, which can be used to build small certificates of
equilibria.

Definition 3.1. A pseudogame G̃ = (G̃, α, β) is a game in which some terminal nodes do not have
specified utility but rather have only lower and upper bounds on utilities. Formally, for each player
i, instead of the standard utility function ui : Z → R, there are lower and upper bound functions
αi : Z → R and βi : Z → R indicating lower and upper bounds respectively on the utility of a
node. We demand αi(z) ≤ βi(z) for every i and z. We call a node pseudoterminal if αi(z) < βi(z)
for some i, and use terminal node to refer to any leaf in a pseudogame.

Definition 3.2. An ε-Nash equilibrium of a pseudogame (G̃, α, β) is a strategy profile σ for which,
for every player i, we have β∗

i (σ−i)− αi(σ) ≤ ε.

Definition 3.3. A pseudogame (G̃, α, β) is a trunk of a game (G, u) if:

(1) G̃ can be created by collapsing some internal nodes of G into terminal nodes (and removing
them from information sets they are contained in), and

(2) if h is a pseudoterminal node of G̃, and z is a terminal node of G that is a descendant of h,
then αi(h) ≤ ui(z) ≤ βi(h) for every i. That is, the bounds α and β are correct.

It is possible for information sets of a game G to be partially or totally removed in a trunk game.

Definition 3.4. An ε-certificate for a game G is a pair (G̃, σ), where G̃ is a trunk of G and σ is an

ε-Nash equilibrium of G̃.

Importantly, the definition of a certificate is independent of the original game G; that is, given

(G̃, σ∗), ε can be computed without knowing the remainder of the game tree of G: by computing the

best response for each player in their optimistic game, it can be done in time linear in the size of G̃.

The proposition below shows that our definition of certificate is reasonable. Proofs are in the ap-
pendix.

Proposition 3.5. Let (G̃, σ) be an ε-certificate for game G. Then any strategy profile in G created

by playing according to σ in any information set appearing in G̃ and arbitrarily at information sets

not appearing in G̃ is an ε-NE in G.

4 Do small certificates exist?

In this section, we study when games have small ε-certificates. Our general goal will be to find
certificates of size O(N c poly(1/ε)) for some universal constant c < 1, where N is the number
of nodes. If a game has a small certificate, there is hope of finding such a certificate quickly, and
thus being able to find and verify an (approximate or exact) Nash equilibrium while exploring only
a small part of the game. We start by giving a connection between sparse equilibria and small
certificates, which we will use later in this section.

Proposition 4.1 (Sparse equilibria imply small certificates). Let σ be an ε-NE of a game G, and let

G̃ be the smallest trunk of game G containing every node h for which σ−i(h) > 0 for any player i.

Then (G̃, σ) is an ε-certificate of G.
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4.1 Perfect-information zero-sum games have small certificates, via alpha-beta search

In two-player perfect-information zero-sum games, under certain assumptions, small certificates
exist. Specifically, assume that

(1) there is no randomness (no nature nodes),

(2) all nodes have uniform branching factor b = O(1),

(3) moves alternate; i.e., a player-1 decision node is always followed by a player-2 decision
node, and

(4) the tree has uniform depth d.

In this case, the game has N = bd terminal nodes. Alpha-beta search with an optimal heuristic

will search only O(bd/2) = O(
√
N) tree nodes before arriving at a provably optimal strategy [19].

Thus, the portion of the game tree consisting of nodes touched by alpha-beta search contains O(
√
N)

nodes, and constitutes a 0-certificate.

4.2 Normal-form games have small certificates, via sparse equilibria

A normal-form game is a game in which each player has only a single information set. A two-player
normal-form game with a1 player-1 moves and a2 player-2 moves (hence N = a1a2 terminal
nodes) can thus be expressed as a pair of utility matrices A,B ∈ R

a1×a2 . In two-player normal-
form games, for every ε, there is an ε-NE in which each player i randomizes over O(log(a−i)/ε

2)
pure strategies [26]. Let σ∗ be such an ε-Nash equilibrium, and let Si ⊆ [ai] be the support of σi.

Consider the following extensive-form pseudogame: First, P1 chooses her strategy s1 ∈ [a1]. Then,
P2 decides whether or not she should play a node from S2. If P2 decides not to play from S2, and P1
has not played an action in S1, the pseudogame terminates immediately in a pseudoterminal node
with trivial payoff bounds, i.e., (−∞,∞). Otherwise, P2 chooses some strategy s2 ∈ S2 to play,
and the proper payoffs are given out. This pseudogame has O(a1|S2|+ a2|S1|) terminal nodes, and
by Proposition 4.1, the profile σ∗ is an ε-NE in it. Thus, when a1 = Θ(a2), an a1× a2 normal-form

game has an ε-certificate of size O(
√
N log(N)/ε2).

Unlike in the case of perfect-information zero-sum games, normal-form games in general do not
have small exact certificates: an exact certificate must necessarily include all strategies played in
some equilibrium, and there are normal-form games for which the only equilibria are fully mixed.

4.3 Extensive-form games with low information have small certificates

This can be generalized to extensive-form games where players do not learn too much information.

Theorem 4.2. Let G be a two-player game with N nodes and bounded payoffs, and let D be the
maximum number of terminal sequences in the support of any pure strategy for either player. Then
G has an ε-Nash equilibrium in which both players mix among O((D2/ε2) logN) pure strategies.

Intuitively, D is a measure of how much information the players have in the game. A player who
learns no information whatsoever throughout the game will have D = 1, so this proposition matches
the sparseness result [26] in the normal-form case. On the other hand, a player with perfect informa-

tion may have D = Ω(
√
N) or even larger, in which case this proposition is vacuous.

Under the assumptions of Section 4.1 except perfect information, any given pure strategy is sup-

ported on O(
√
N) nodes. Thus, by Proposition 4.1, we have the following result which implies the

existence of small certificates when D = O(N c) for c < 1/4:

Corollary 4.3. Under the assumptions of Theorem 4.2 and Section 4.1 except perfect information,

G has an ε-certificate of size O(
√
N(D2/ε2) logN).

As in the case of normal-form games, in general, exact certificates may need to include the whole
game tree. However, in some cases, we can do better. For example, games with a natural public game
tree1 [18] often have sparse equilibrium strategies [32] and thus small certificates by Proposition 4.1.

1Informally, the public game tree is the game tree visible to an observer with no knowledge of the players’
private information.
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We will also show later with empirical experiments that many practical games have small exact
certificates.

4.4 Small certificates do not always exist in extensive-form games

In light of the above results, one might hope that there are sparse approximate equilibria in extensive-
form games, which would allow small certificates in such games:

Question 4.4 (Existence of small ε-certificates). Let G be a two-player zero-sum game with N
nodes. Suppose that G satisfies the assumptions in Section 4.1. Let ε > 0. Is there always an
ε-certificate with O(N c poly(1/ε)) tree nodes, for some universal constant c < 1?

It would be nice if this had a positive answer, since that would interpolate between the cases of

normal form and perfect information, which, as discussed above, both have Õ(
√
N/ε2)-sized cer-

tificates. We show that, unfortunately, the answer is negative. As a counterexample, consider playing
T rounds of matching pennies. After each round, P2 learns what P1 played, but P1 does not learn
what P2 played. Each round is worth 1/T points, so the maximum score is 1. The game tree has
uniform depth 2T and uniform branching factor 2, for a total of N := 22T terminal nodes.

Theorem 4.5. Any ε-certificate of this game must have at least Ω(N1−O(ε)) nodes.

It does not help to add the assumption that the game is win-loss: any zero-sum game can be made
win-loss by adding normal-form gadget games to the terminal nodes which force the players to mix.

5 Black-box setting

For the remainder of this paper, we will assume that we are not given access to the full game tree.
Instead, we are only given black-box access to the game, in the form of a function that, given a node
h (in the form of a history of actions), gives us:

(1) upper and lower bounds on the value of any terminal descendant of h,

(2) if h is nonterminal, the player to act at that node, and a list of legal actions; and

(3) if the player to act at h is nature, a single sampled action from nature’s action distribution.

The game may possibly be very large, or even infinite, but we will assume that every node has some
terminal descendant (so that (1) is well-defined), and that the game has a finite 0-certificate. The
bounds given by (1) may be infinite, either because the oracle does not give optimal bounds, or
because the game is infinite and the payoffs along a branch may be unbounded.

The first challenge is approximating the true nature distributions via samples. We thus give a result
regarding the sample complexity of doing this for a given pseudogame with bounded payoffs2.

Theorem 5.1 (Sample complexity of approximating a game). Let G be a game with N nodes and
bounded payoffs, and suppose that the true nature distributions are unknown but have been approx-
imated by sampling at every nature node. Let σ̂0 be the approximated nature strategy resulting from
this sampling. Fix a player i. Let ûi(σ) denote the expected utility of player i when the players play
strategy σ and nature plays σ̂0. Let D be the maximum support size over terminal nodes of any pure
strategy profile in the perfect-information refinement of G. Suppose that, for every nature node h
is sampled at least σ̂0(h)(D

2/2ε2) log(2N/δ) times. Then, with probability 1− δ, for any strategy
profile σ, we have |ui(σ) − ûi(σ)| ≤ ε.

Here, D is some measure of how much randomness there is in G. For example, if G has no nature
nodes, D = 1. If G has no player nodes, D = N .

Corollary 5.2. Let G̃ be a pseudogame, and consider approximating nature’s strategy in G̃ to

precision ε as per Theorem 5.1. Let σ be an ε′-equilibrium of the approximated version of G̃. Then

σ is also an (ε′ + 2ε)-equilibrium of G̃ with probability at least 1− 2δ|P|.
2In the unbounded payoff case, the task is hopeless, since it is always possible for there to be a branch of

infinite expectation that is reached so rarely that it has never been sampled.
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In the above results, the (pseudo)game and sample size at each nature node h are both held fixed;
the probability is only over the random samples themselves. Thus, if running an algorithm that
incrementally expands nodes in a pseudogame, the samples should in principle be re-drawn every

time G̃ changes. The factor of 2|P| is not bothersome since |P| ≤ N surely, so this incurs at most a
constant factor in the sample complexity. Importantly, the sample complexity depends only on the

size and structure of the pseudogame G̃, not on whatever full game G that G̃ may be a trunk of.

In the rest of the paper, both for simplicity and to allow discussion of the case of unbounded payoffs,
we will not deal with sampling. Instead, we will assume that the exact nature action distribution is
given by the black-box oracle when a nature node is reached.

6 The zero-sum case

Our results so far have been valid for n-player general-sum games unless otherwise stated. In this
section we focus on two-player zero-sum games, where one can hope3 to perhaps efficiently find
small certificates. A two-player game is zero-sum if u1 = −u2. In this case, we refer to a single
utility function u; it is understood that player 2’s utility function is −u. In zero-sum games, all Nash
equilibria have the same expected value; this is called the value of the game, and we denote it by u∗.
The exploitability of an opponent strategy σ−i for player i is then |u∗(σ−i)− u∗|.

6.1 Certificates in zero-sum games

In the zero-sum case, we use a slightly different notion of ε-equilibrium of a pseudogame, which
will make the subsequent results more precise.

Definition 6.1. A two-player pseudogame (G̃, α, β) is zero-sum if α2 = −β1 and β2 = −α1.

As alluded to above, in this situation, we will drop the subscripts, and write α and β to mean α1 and

β1. In particular, (G̃, α) and (G̃, β) are zero-sum games.

Definition 6.2. An ε-Nash equilibrium of a two-player zero-sum pseudogame (G̃, α, β) is a strategy
profile (x∗, y∗) for which β∗(y∗)− α∗(x∗) ≤ ε.

In this sense, ε is the sum of the exploitabilities of both players’ strategies. These are related to
Definition 3.2 as follows:

Proposition 6.3. Any ε-NE in the sense of Definition 6.2 is an ε-NE in the sense of Definition 3.2.

Proposition 6.4. Any ε-NE in the sense of Definition 3.2 is a 2ε-NE in the sense of Definition 6.2.

Let (G̃, α, β) be a pseudogame. Let (x∗, y∗) be a Nash equilibrium of the game (G̃, α), and (x∗, y∗)

be a Nash equilibrium of (G̃, β). We will call the pair of strategies (x∗, y
∗) a pessimistic equilibrium

of (G̃, α, β) since both players are playing as if their utilities are as bad as possible. Similarly, we
will call (x∗, y∗) an optimistic profile4.

By definition, the pessimistic equilibrium is an ε-NE of (G̃, α, β), where ε = β∗−α∗. This gives us
an algorithm for finding the best certificate from a given trunk, that runs in time polynomial in the

size of the trunk: to get a strategy for P1 (the maximizer player), solve the game (G̃, α), and to get

a strategy for P2, solve (G̃, β). Since the zero-sum game solver is used strictly as a subroutine, any
solver of choice may be used: for example, a linear program (LP) solver with the sequence-form
LP [20, 37], modern variants of CFR [11, 9, 6, 7], or first-order methods [17, 23]. If the solver only
finds an ε′-equilibrium of the game it is solving, the result is a certificate for (ε+ 2ε′)-equilibrium.

6.2 Lower bounds

Since solving zero-sum games can be done efficiently, there is some hope that small certificates can
also be found efficiently. Another goal may be to find a certificate efficiently, say, in time polynomial
in the size of the smallest certificate of a given game. Unfortunately, these are both impossible:

3In the general-sum setting, finding an approximate Nash equilibrium is PPAD-complete, even for two
players [30], so we do not hope to devise certificate-finding algorithms for that case.

4The pessimistic equilibrium is an equilibrium of the pseudogame. The optimistic profile may not be, hence
the difference in naming.
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Theorem 6.5 (Hardness of approximating the smallest certificate). Assuming P 6= NP, there is no
poly(N, 1/ε)-time algorithm that, given the game tree of a zero-sum game with N nodes, outputs
the smallest ε-certificate of the game to better than a Θ(logN) factor of approximation.

Theorem 6.6. There is no algorithm for zero-sum game solving in the black-box setting, even as-
suming bounded branching factor, with runtime subexponential in the size of the smallest certificate.

These hardness results have slightly different flavors and consequences. The hardness in Theo-
rem 6.5 comes from the imperfect information: in the perfect-information setting, the task can be
done with a variant of alpha-beta search in linear time. Further, in practice, we usually do not care
about finding the smallest certificate, as long as we can efficiently find one of reasonable size. The
hardness in Theorem 6.6 is more fundamental: it comes from the fact that we cannot assume access
to any reasonable heuristic of where to explore; thus, we may explore the optimal path of play last
in the worst case, resulting in a large certificate.

6.3 An algorithm for solving black-box games

Despite the difficulties presented by Theorems 6.5 and 6.6, we present an algorithm for finding a
certificate in a zero-sum game in the black-box setting, with nontrivial provable guarantees. For

now, we will assume that the game G̃ has bounded payoffs; later we will relax this assumption.

Algorithm 6.7 Finding a certificate in a two-player zero-sum game

1: start with a pseudogame (G̃, α, β) that has only a root node.
2: loop

3: solve (G̃, α) and (G̃, β) with an LP solver to obtain equilibria (x∗, y∗) and (x∗, y∗).

4: expand all pseudoterminal nodes of G̃ that appear in the support of (x∗, y∗).

5: (if there are none, stop and output G̃ and the pessimistic equilibrium (x∗, y
∗).)

We use LP for the game solves in Line 3, for three reasons. First, LP5 results in an exact solution (at
least up to numerical tolerances), which is desirable because the support of the solution is relevant
to Line 4; iterative solvers such as CFR typically return fully mixed solutions. Second, only a small
number of changes are made to the LP with each node expanded, so LP algorithms that can be warm
started, such as primal or dual simplex, can be efficient in practice. Third, it will allow us to adapt
this algorithm to the case of unbounded payoffs, which we will see later; again, CFR cannot do that.

From the discussion in Section 6.1, we know that this algorithm will always output an 0-certificate.
If we want an ε-certificate for ε > 0, we can also simply terminate the algorithm when β∗−α∗ < ε.
We now prove an important fact about Algorithm 6.7.

Theorem 6.8. A pseudogame has a 0-Nash equilibrium if and only if it has an optimistic profile
with no pseudoterminal node in its support.

The “only if” direction guarantees that Line 4 does not terminate the algorithm unless a 0-certificate
has been found. The “if” direction guarantees a weak form of “this algorithm will not waste work”:
modulo the uniqueness of the optimistic profile6, the algorithm stops exactly when it has found a
0-certificate. This is not trivial: other protocols such as “expand all pseudoterminal nodes appearing
in the support of at least one player in the pessimistic equilibrium” fail to satisfy the “if” direction.

The algorithm has no runtime bound as a function of the size of the smallest certificate of G, even
assuming bounded branching factor: indeed, if G is infinite, it is even possible for the algorithm to
run indefinitely, even when a finite-sized certificate exists. One way to fix this without losing more
than a constant factor in efficiency is to, in addition to Line 4, also always expand the shallowest

strictly pseudoterminal node of G̃ at each iteration. This way, a certificate with d nodes has depth at
most d, and thus will be generated after at most after O(bd) expansions (where b is a bound on the
branching factor of the game), matching the lower bound of Theorem 6.6.

5using either an exact method such as simplex, or an interior-point method such as barrier with crossover
6When the optimistic profile is not unique, the algorithm may waste work: for example, there may be one

equilibrium which has support over pseudoterminal nodes and one which does not, the algorithm may pick the
former and continue expanding nodes, making an unnecessarily big (but still correct) certificate.
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6.4 Handling unbounded payoffs

In infinite games with unbounded payoffs, it is possible for the games (G̃, α) and (G̃, β) to have

infinite-magnitude utility on some nodes. For example, (G̃, β) may have payoff +∞ on some nodes
(but not −∞). We now show how to adapt Algorithm 6.7 for such situations. Assume WLOG that

we are solving (G̃, β); i.e. it is possible for payoffs to be +∞ but not −∞ (for (G̃, α), swap the
players). Call a P2-sequence bad if its support (over terminal nodes) contains a node of utility +∞.
Assume that it is possible for P2 to avoid all bad sequences; otherwise, the game has value +∞.

Consider the sequence-form bilinear saddle-point problem [20] for (G̃, β) (left) and its equivalent
LP (right):

max
x≥0

min
y≥0

xTAy s.t. Bx = b, Cy = c, x, y ≥ 0 max
x≥0,z

cT z s.t. Bx = b, CT z ≤ ATx.

Here A is the payoff matrix, which may contain infinite entries. Then, the main idea is to remove
any constraint corresponding to bad P2-sequences, and solve the resulting LP (which now by con-
struction contains no infinite entries and is thus well formed), for a Nash equilibrium solution x. The

problem is that x may not be a true Nash equilibrium of (G̃, β), since it is possible for P1 to end up
avoiding nodes of utility +∞, which could allow P2 to best respond by actually playing toward a
bad sequence.

Let V ∗(s) denote the value that P2 receives by playing a best response to x starting at a P2 infoset or
sequence s. Let V (s) denote the same, except while forcing P2 to avoid bad sequences. Obviously,
V ∗ ≤ V . Consider the following recursive algorithm, which we run on every P2-root infoset I:

Algorithm 6.9 CORRECT(I): Correcting a strategy in the case of infinite reward

1: for each action a available to P2 do
2: if V ∗(Ia) < V (I) then
3: for every P1-sequence i such that Ai,Ia = +∞ do xi ← xi + infinitesimal7

4: for every P2-infoset I ′ whose parent sequence is Ia do CORRECT(I ′)

Call a pair of strategies a corrected optimistic profile if it is the result of applying this procedure to
both parts of an optimistic profile. We can now make the following strengthening of Theorem 6.8:

Theorem 6.10. A pseudogame with possibly unbounded payoffs has a 0-Nash equilibrium if and
only if it has a corrected optimistic profile with no pseudoterminal node in its support.

Thus, to run Algorithm 6.7 in games with unbounded payoffs, it suffices to apply the correction
algorithm to the optimistic profile found in Line 3 before expanding nodes.

7 Experiments

We conducted experiments using the algorithm in Section 6 on the following common zero-sum
benchmark games.

(1) A zero-sum variant of the search game [4].

(2) k-rank Goofspiel. It is played as follows. At time t (for t = 1, . . . , k), players place bids
for a prize of value t. The possible bids are the integers 1, . . . , k, and each player must bid
each integer exactly once. The player with the higher bid wins the prize; if the bids are
equal, the prize is split equally. The winner of each round is made public after each round,
but the bids are not. The goal of each player is to maximize the sum of the values of her
prizes won. In the perfect-information (PI) variant, P2 knows P1’s bid while bidding, and
bids are made public after each round. This creates a perfect-information game in which P2

has a large advantage, and in which we expect a certificate of size O(
√
N). In the random

variant, the order of the prizes is randomized.

7This can be easily formalized by perturbing by ε, then taking ε sufficiently small. The strategy need not
actually ever be constructed, so there is no need to formally discuss how small ε needs to be; if coding this
algorithm, we can simply store the indices of infinitesimal entries.
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Table 1: Experimental results. The minimal certificate is a certificate after removing all unnecessary
nodes per Proposition 4.1. Percentages are relative to game size. Leduc variants have infinite size;
for them, “game size” reported is for the trunk with the number of consecutive raises restricted to
12.

game size of game size of certificate size of minimal certificate

nodes infosets nodes infosets nodes infosets

search game 234,705 11,890 13,682 5.8% 532 4.5% 5,526 2.4% 379 3.2%

4-rank PI Goofspiel 2,229 1,653 275 12.3% 110 6.7% 141 6.3% 54 3.3%

5-rank PI Goofspiel 55,731 41,331 2,593 4.7% 957 2.3% 763 1.4% 288 0.7%

6-rank PI Goofspiel 2,006,323 1,487,923 21,948 1.1% 7,584 0.5% 4,438 0.2% 1,677 0.1%

4-rank Goofspiel 2,229 738 614 27.5% 117 15.9% 294 13.2% 58 7.9%

5-rank Goofspiel 55,731 9,948 11,415 20.5% 2,160 21.7% 8,518 15.3% 1,792 18.0%

6-rank Goofspiel 2,006,323 166,002 266,756 13.3% 15,776 9.5% 171,343 8.5% 12,135 7.3%

3-rank random Goofspiel 1,066 426 309 29.0% 92 21.6% 214 20.1% 65 15.3%

4-rank random Goofspiel 68,245 17,432 16,416 24.1% 3,270 18.8% 11,992 17.6% 2,335 13.4%

5-rank random Goofspiel 8,530,656 1,175,330 1,854,858 21.7% 241,985 20.6% 1,388,172 16.3% 185,946 15.8%

5-rank limit Leduc 197,736 13,920 26,306 13.3% 2,406 17.3% 12,923 6.5% 1,242 8.9%

9-rank limit Leduc 1,181,512 44,928 137,662 11.7% 6,811 15.2% 51,533 4.4% 2,891 6.4%

13-rank limit Leduc 3,578,472 93,600 337,312 9.4% 12,171 13.0% 105,769 3.0% 4,449 4.8%

(3) k-rank limit Leduc poker. It is a small variant of limit poker, played with one hole card
and one community card, and a deck with k ranks. The players are only allowed to raise by
a fixed amount, but can do so an unlimited number of times. Thus, the possible payoffs in
the game, and the length of the game, are both unbounded.

We computed 0-certificates in all cases. For the LP solver, we used Gurobi v9.0.0 [15]. Results of
experiments can be found in Table 1. In many games, we found 0-certificates of size substantially
smaller than the number of nodes in the game, and the certificate size as a fraction of the game size
decreases as the game grows.

The results in Goofspiel align with the theoretical predictions: perfect-information games have very

small certificates (basically
√
N nodes). In light of Proposition 4.1, it also makes sense that cer-

tificates are smaller (relative to the size of the game) when there is no randomness: randomness
simply increases the number of nodes in the game tree represented by any given pure strategy, so an
equilibrium with the same sparsity for the players now leads to a larger certificate.

In Leduc poker, no node involving more than 12 consecutive raises was ever expanded in any size
of game while searching for a certificate. This suggests that it is never optimal for either player to
play past this point, despite the fact that continuing to raise could in principle lead to an unbounded
payoff. This phenomenon allows our algorithm to find a finite-sized 0-certificate, thus completely
solving the game in a reasonably efficient manner, even though it has infinite size.

8 Conclusions and future research

We presented a notion of certificate for general extensive-form games that allows verification of
exact and approximate Nash equilibria without expanding the whole game tree. We showed that
small equilibria exist in some restricted classes of extensive-form game, but not all. We presented
algorithms for both verifying a certificate and computing the optimal certificate given the currently-
explored trunk of a game. Our experiments showed that many large or even infinite games have
small certificates, allowing us to find equilibria while exploring a vanishingly small portion of the
game.

This paper opens many directions for future research:

(1) Develop further the ideas of Section 5 for the case of unknown nature distributions. For
example, what is the best way to balance sampling, game tree exploration, and equilibrium
finding?

(2) Seek algorithms for finding certificates that give stronger guarantees of optimality than
Theorem 6.10, especially in the case of infinite games with unbounded utilities.
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(3) Seek algorithms with stronger guarantees than that implied by Proposition 4.1 for verifying
the Nash gap of a given strategy profile; for example, is it possible to easily construct the
smallest trunk for which a given σ is an ε-equilibrium?

Broader Impacts

The techniques have broad applicability. Furthermore, the paper opens up additional important
research directions.

Improving the strategic capabilities of people and companies will typically (but not always) improve
systemwide good as the players will be able to better reach win-win solutions. In zero-sum games
this is not the case because the size of the “cake” is constant, so there are winners and losers. In
both the general case and the zero-sum case, AI tools like the ones in this paper can help elevate
less educated and less experienced players up to the same level as expert players, thereby making
the distribution of value more fair.

A potential downside is that if the technology were only available to the privileged, that could
increase unfairness.
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A Proofs

A.1 Proposition 3.5

u∗
i (σ−i)− ui(σ) ≤ β∗

i (σ−i)− αi(σ) ≤ ε.

A.2 Proposition 4.1

By definition, it is impossible to reach any pseudoterminal node of G̃ by changing only a single
player’s strategy. Thus, for any player i, we have β∗

i (σ−i)−α(σ) ≤ u∗
i (σ−i)− u(σ) ≤ ε. (the first

inequality may not be an equality, because the best response β∗
i (σ−i) is taken in the pseudogame,

and u∗
i is taken in the full game, where there is more flexibility.

A.3 Theorem 4.5

Lemma A.1. In every ε-NE of G, the entropy of P1’s strategy is at least T (1− 2ε) bits.

Proof. Let σ1 be any P1 strategy in ε-equilibrium, and let HT be the entropy over terminal nodes
when P1 plays σ1 and P2 plays uniformly at random. Let UT be the number of rounds that P2 loses
if she best responds to P1. Since σ1 is an ε-NE strategy, we have UT ≥ T (1/2− ε). We will show
that HT ≥ 2UT + T , which will complete the proof.

Proceed by induction on T . For T = 1, the claim follows from the inequality h(p) ≥ 2min(p, 1−p),
which is true for all p ∈ [0, 1], where h is the binary entropy function.

In the inductive case, suppose that, at the top information set, P1 plays strategy x = [p, q] (i.e. heads
with probability p, and tails with probability q. Let H ′ ∈ R

2×2 be the matrix whose ij-entry is
the conditional entropy over terminal nodes after P1 plays i and P2 plays j in the root information
set. Similarly, let U ′ be the matrix of conditional remaining expected number of rounds lost, not
including this round, for player 2. Note that the utility matrix of the overall game, assuming that P2
plays correctly in later rounds, is A := U ′ + I . By IH, H ′ ≥ 2U ′ + T − 1 element-wise. Further,
P2’s move in this information set does not affect the future of the game, since P1 does not learn
P2’s move, and P2’s move does not otherwise affect her future optimal decisions. That is, U ′y is
the same for all (normalized) y. Let y be the uniform random strategy for player 1, and y∗ be a best
response for player 1. Then we have:

H = 1 + h(p) + xTH ′y

≥ T + h(p) + 2xTU ′y

= T + h(p) + 2xTU ′y∗

= T + h(p) + 2xTAy∗ − 2xT y∗

= T + h(p) + 2xTAy∗ − 2min(p, 1− p)

and we are once again done by the inequality h(p) ≥ 2min(p, 1− p).

The restriction on P2’s strategy is necessary: indeed, since P1 has only 2T pure strategies, there are
sparse ε-NE strategies for P2 supported on only O(T/ε2) pure strategies.

Somewhat surprisingly, this proposition becomes false if P1 learns what P2 played in each round.
Indeed, the P1 strategy “play heads if your number of losses minus number of wins is εT , and
uniformly at random otherwise” is (for large T ) an ε-equilibrium with basically T bits of entropy,
since if P2 plays uniformly at random, with very good probability their score delta will never exceed
εT . However, despite having low entropy, this strategy has a very large support over terminal nodes.

Corollary A.2. In every ε-NE of this game, for every t ≥ T/2, the first t rounds of P1’s strategy
have at least t(1 − 4ε) bits of entropy.

Corollary A.3. Let ε ≤ 1/16. In every ε-NE of this game, for every t ≥ T/2, P1’s strategy assigns
probability at least 2−t to at least half of her pure strategies at round t.

13



Proof. Let Z be a random variable for P1’s selected strategy, and E be the event that Z is among
the half least likely pure strategies to be picked.

H(Z) = H(Z,E) = Pr[E]H(Z|E) + Pr[¬E]H(Z|¬E) +H(E) ≤ 2tp

2

t

2
+

t

2

where H is the entropy. We know from above that H(Z) ≥ t(1 − 4ε), so the claim follows by
solving for p.

We now prove Theorem 4.5. The proof acts like a partial converse to Proposition 4.1 for this game.

Let ((G̃, α, β), σ) be an ε-certificate, and let Z ′ be the set of terminal nodes in G̃. Let u be the

assignment of utilities induced by P2 playing uniform random at every decision point outside G̃ (it
does not matter at this point how P1 plays). Let σ′

i be the uniform random strategy for player i.
Then:

β2(σ1, σ
′
2) ≤ β∗

2(σ1) ≤ u2(σ) + ε ≤ u2(σ
′
1, σ2) + 2ε = u2(σ1, σ

′
2) + 2ε. (A.4)

For simplicity of notation, for any terminal node z of G̃, let r(z) be the number of rounds remaining
in the game. Then note that β(z)−u(z) = r(z)/2T for every z. Now suppose for contradiction that

G̃ has fewer than n := 22T (1−16ε)−2 terminal nodes. Consider the level of the game tree after both
players have made t := (1 − 16ε)T moves; in other words, the level at which r(z) = 16εT . This

level has 4n nodes, so certainly G̃ must contain at most 1/4 of the nodes at this level. Let S be a set

of half of the nodes of G at level t to which P1 assigns probability at least 2−t. Then G̃ contains at
most half the nodes in S. Now observe that

β2(σ1, σ
′
2)− u2(σ1, σ

∗
2) =

1

2T
E
z
r(z)

≥ 1

2T

∑

z∈S\G̃

σ1(z)σ
∗
2(z)r(z)

≥ 1

2T

1

2
22t2−t2−tr(z) = 4ε

which contradicts (A.4).

A.4 Theorem 4.2

We first introduce some terminology that will be useful in this section. The realization plan corre-
sponding to a strategy σi is the vector of reach probabilities σi(s) for each sequence s for player i.
The constraints on valid realization plans are linear, and the payoff of a two-player zero-sum game
can be expressed as a bilinear form xTAy, where x and y are the realization plan vectors for the two
players, and A is a payoff matrix depending only on the terminal node values [20]. This bilinear
program is known as the sequence form of a game.

Lemma A.5. Let x be any P1 strategy. Let x̂ be a strategy profile defined by mixing uniformly at
random over a multiset of k independent sampled pure strategies from x, where

k ≥ D2

2ε2
log

2N

δ
.

and D is the maximum support size over terminal sequences of any P2 pure strategy. Then with
probability 1− δ, for any strategy profile y, we have |u2(x̂, y)− u2(x, y)| ≤ ε.

Proof. We follow basically the same idea as the proof in [26]. Let A be the P2 sequence-form payoff
matrix, restricted to those rows and columns corresponding to terminal sequences. By Hoeffding,
we have

Pr
[

|(Ax̂)i − (Ax)i| ≥
ε

D

]

≤ 2e−2kε2/D2 ≤ δ

N
by picking k as above. Taking a union bound over the at most N sequences for P2, we have
‖Ax̂−Ax‖∞ ≤ ε/D with probability 1 − δ. Now select an x′ for which this is true. Then by
Hölder’s inequality, for any pure realization plan y, we have

∣

∣yTAx̂− yTAx
∣

∣ ≤ ‖y‖1‖Ax̂−Ax‖∞ ≤ ε.
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where the last inequality follows because ‖y‖1 ≤ D. Now since
∣

∣yTAx̂− yTAx
∣

∣ is convex in y, and
the pure realization plans are the vertices of the polytope of all realization plans, we are done.

Theorem 4.2 now follows by applying the lemma to an equilibrium strategy x with any δ < 1.

A.5 Theorem 5.1

Sampling this number of samples at each nature node h is at least as good as sampling
(D2/2ε2) log(2N/δ) pure nature strategies. The proposition now follows by applying Lemma A.5
to the game in which the game tree is the same as G, P1 is nature, P2 controls every actual player in
G (and thus has perfect information), and the P2 utility function is u.

A.6 Corollary 5.2

By a union bound over the |P| players and the two utility functions αi and βi for each
player, we have that with probability at least 1 − 2δ|P |, for every i and every deviation σ′

i,

|α̂i(σ
′
i, σ−i)− αi(σ

′
i, σ−i)| ≤ ε and

∣

∣

∣
β̂i(σ

′
i, σ−i)− βi(σ

′
i, σ−i)

∣

∣

∣
≤ ε.

Let α̂i(σ) and β̂i(σ) for a given strategy σ be the utilities of σ under the approximated version of

G̃. Let σ̂∗
i be a best response for player i in the approximated version of G̃, and let σ∗

i be a best

response in G̃ itself. Then we have:

β∗
i (σ−i) ≤ β̂i(σ

∗
i , σ−i) + ε ≤ β̂∗

i (σ−i) + ε ≤ α̂(σ) + ε+ ε′ ≤ α(σ) + 2ε+ ε′

for every player i.

A.7 Proposition 6.3

Let (x, y) be an ε-NE in the sense of Definition 6.2. Then

β∗(y)− α(x, y) ≤ β∗(y)− α∗(x) ≤ ε and β(x, y)− α∗(x) ≤ β∗(y)− α∗(x) ≤ ε.

A.8 Proposition 6.4

Let (x, y) be an ε-NE in the sense of Definition 3.2. Then

β∗(y)− α∗(x) ≤ β∗(y)− α(x, y) + β(x, y)− α∗(x) ≤ 2ε.

A.9 Theorem 6.5

We reduce from the SET-COVER problem, which is known to be NP-hard to better than a Θ(logn)
factor [29]. In SET-COVER, we are given a universe U = {1, . . . , n} and a collection of m sets
S = {S1, . . . , Sm} whose union is U , and our task is to find the smallest subset of S whose union
is still U .

Consider the following game: P2 starts by choosing to either play or leave. If P2 leaves, then the
game immediately terminates, and P1 gets value 1/2m. If P2 chooses to play, then P1 chooses an
index i = 1, . . . ,m. Then, P1 is given m consecutive opportunities to leave the game (and imme-
diately lose), should they choose. (The sole purpose of this is to inflate the size of the certificate.)
After this, P2, without knowing the i, chooses an element u ∈ U . P1 gets value 1 if u ∈ Si, and 0
otherwise.

This game has poly(m,n) nodes, and its value (for P1) is exactly 1/2m, since P1 can force P2 to
leave by playing uniformly at random (and not choosing to lose). We now claim that, for ε < 1/2m,
finding an ε-certificate of size Θ((m + n)k) is equivalent to finding a set cover of size k, which
completes the proof.

If R ⊆ S is a set cover of size k, then consider the trunk created by expanding exactly those P2
decision nodes where P1 has played some set Si ∈ R. This creates a trunk of size Θ((m + n)k).
Even pessimistically, P1 can gain value 1/k ≥ 1/m by randomizing uniformly over R in this trunk;
thus, P2 is forced to leave, and this is a 0-certificate.
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Conversely, suppose we had an ε-certificate, for ε < 1/2m, constructed from some tree G̃. Let R
be the collection of sets Si ∈ S for which P2’s decision node after P1 plays Si has been expanded,
and let k = |R|. Then the trunk has size at least Ω((m+ n)k). If R is not a set cover, then there is
some u ∈ U outside the union of sets in R. If P1 plays u, then she gains optimistic value 0. Thus,
since ε < 1/2m, R must be a set cover.

A.10 Theorem 6.6

Consider the family of two-player games in which there is a target string x ∈ {0, 1}n, and play
proceeds as follows: Player 1 chooses, bit-by-bit, a string y ∈ {0, 1}n. If x = y, then Player 1
wins; otherwise, Player 2 chooses whether to win or lose. The smallest certificate in this game has
size Θ(n), and consists of the path of play to y. However, there is no algorithm, randomized or
deterministic, that will find the correct node y without first expanding Ω(2n) other nodes.

A.11 Theorem 6.8

(⇐) Suppose G̃ has no 0-certificate. Let (x∗, y∗) be an optimistic profile. Then

α(x∗, y∗) ≤ α∗(y∗) < β∗(x∗) ≤ β(x∗, y∗).

where the middle inequality is strict since G̃ has no 0-certificate, But then α(x∗, y∗) 6= β(x∗, y∗);
i.e., there is some uncertainty as to the value of the strategy profile (x∗, y∗); i.e., there is a nonzero
probability that a pseudoterminal node is reached.

(⇒) Now suppose G̃ has a 0-certificate, and call it (x∗, y
∗). Clearly, (x∗, y

∗) cannot contain in its

support any pseudoterminal node. We claim that (x∗, y
∗) is also an optimistic profile of G̃, which

completes the proof. Indeed, we have

α∗(x∗) ≤ β∗(x∗) ≤ β∗(y∗) and α∗(x∗) ≤ α∗(x∗) ≤ β∗(y∗)

But all of these must actually be equalities, since α∗(x∗) = β∗(y∗) for a 0-certificate. Thus, x∗ is a

Nash equilibrium strategy in (G̃, β), and y∗ is a Nash equilibrium strategy in (G̃, α), which is what
we needed to show.

A.12 Theorem 6.10

(⇐) The correction algorithm adds infinitesimal amounts to sequences such that P2 is then forced to
never play to any bad sequence that could be used to achieve value better than V (I). Thus, corrected
equilibrium is actually an ε-equilibrium for infinitesimal ε, and the proof of Appendix A.11 applies
verbatim.

(⇒) A pessimistic strategy will never be corrected, since a pessimistic player never has a terminal
node of utility +∞. Thus, again, the proof of Appendix A.11 applies verbatim.
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