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Abstract

We focus on the problem of finding an opti-
mal strategy for a team of players that faces an
opponent in an imperfect-information zero-sum
extensive-form game. Team members are not al-
lowed to communicate during play but can co-
ordinate before the game. In this setting, it is
known that the best the team can do is sample a
profile of potentially randomized strategies (one
per player) from a joint (a.k.a. correlated) proba-
bility distribution at the beginning of the game. In
this paper, we first provide new modeling results
about computing such an optimal distribution by
drawing a connection to a different literature on
extensive-form correlation. Second, we provide
an algorithm that allows one for capping the num-
ber of profiles employed in the solution. This
begets an anytime algorithm by increasing the
cap. We find that often a handful of well-chosen
such profiles suffices to reach optimal utility for
the team. This enables team members to reach
coordination through a simple and understand-
able plan. Finally, inspired by this observation
and leveraging theoretical concepts that we intro-
duce, we develop an efficient column-generation
algorithm for finding an optimal distribution for
the team. We evaluate it on a suite of common
benchmark games. It is three orders of magnitude
faster than the prior state of the art on games that
the latter can solve and it can also solve several
games that were previously unsolvable.
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1. Introduction

Much of the computational game theory literature has fo-
cused on finding strong strategies for large two-player zero-
sum extensive-form games. In that setting, perfect game
playing corresponds to playing strategies that belong to a
Nash equilibrium, and such strategies can be found in poly-
nomial time in the size of the game. Recent landmark results,
such as superhuman agents for heads-up limit and no-limit
Texas hold’em poker (Bowling et al., 2015; Brown & Sand-
holm, 2019; Morav¢ik et al., 2017) show that the problem of
computing strong strategies in two-player zero-sum games
is well understood both in theory and in practice. The same
cannot be said for almost any type of strategic multi-player
interaction, where computing strong strategies is generally
hard in the worst case.

In this paper, we study adversarial team games, that is,
games in which a team of coordinating (colluding) players
faces an opponent. We will focus on a two-player team
coordinating against a third player. Team members can
plan jointly at will before the game, but are not allowed
to communicate during the game (other than through their
actions in the game). These games are a popular middle
ground between two-player zero-sum games and multiplayer
games (von Stengel & Koller, 1997; Celli & Gatti, 2018).
They can be used to model many strategic interactions of
practical relevance. For example, how should two players
colluding against a third at a poker table play? Or, how
would the two defenders in Bridge (who are prohibited
from communicating privately during the game) play opti-
mally against the declarer? Even though adversarial team
games are conceptually zero-sum interactions between two
entities—the team and the opponent—computing optimal
strategies is hard in this setting. Even finding a best-response
strategy for the team given a fixed strategy for the opponent
is hard (Celli & Gatti, 2018).

One might think that finding the optimal strategy for the
team simply amounts to finding an optimal profile of po-
tentially mixed (a.k.a. randomized) strategies, one strategy
per team members. A solution of this type that yields maxi-
mum expected sum of utilities for the team players against
a rational (that is, best-responding) opponent is known as a
team-maxmin equilibrium (TME) strategy (Basilico et al.,
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2017; Zhang & An, 2020a;b).

In this paper, we are interested in a more powerful model.
Before the game starts, the team members are able to sam-
ple a profile from a joint (a.k.a. correlated) distribution.
This form of ex-ante coordination is known to be the best a
team can do and comes with two major advantages. First, it
offers the team larger (or equal) expected utility than TME—
sometimes with dramatic gains (Celli & Gatti, 2018). Sec-
ond, it makes the problem of computing the optimal team
strategy convex—and thus more amenable to the plethora
of convex optimization algorithms that have been developed
over the past 80 years—whereas the problem of computing
a TME strategy is not convex. In our model, an optimal
distribution for the team is known as a team-maxmin equi-
librium with coordination device (TMECor) strategy (Celli
& Gatti, 2018; Farina et al., 2018).

Our contributions.  We introduce the notion of semi-
randomized correlation plan, and propose a natural formu-
lation for the problem of finding a TMECor strategy by
drawing connections with the extensive-form strategy poly-
tope defined by von Stengel & Forges (2008). Second, we
propose an algorithm for computing a TMECor strategy
when only a fixed number of pairs of semi-randomized cor-
relation plans is allowed. This begets an anytime algorithm
by increasing that fixed number. Surprisingly, we find that
often a handful of well-chosen semi-randomized correla-
tion plans is enough to reach optimal utility. This enables
team members to reach coordination through simple and
understandable strategies. Finally, by leveraging our new
representation, we develop a column-generation algorithm
for finding a TMECor strategy. The core of our algorithm is
a new best-response (BR) oracle for computing joint team
best-response strategies. We show that, in contrast with
the previous state-of-the-art BR oracles for that problem,
our oracle enables provably polynomial-time computation
of a TMECor in some notable classes of games including,
for example, Goofspiel. This result constitutes the first
example of efficient computation of optimal ex-ante coor-
dinated strategies in adversarial team games, and cannot
be achieved by employing previous BR oracles. We evalu-
ate our column-generation algorithm on a suite of common
benchmark games. It is three orders of magnitude faster
than the prior state of the art on games that the latter can
solve. It can also solve many games that were previously
unsolvable.

2. Preliminaries

Extensive-form games (EFGs) model games that are played
on a game tree, and can capture both sequential and si-
multaneous moves, as well as private information. In this
paper, we focus on three-player zero-sum games where two
players—T1 and T2—play as a team against the opponent

player, denoted by O.

Each node v in the game tree belongs to exactly one player
i € {T1,7T2,0} U {c} whose turn is to move. Player
C is a special player, called the chance player. It models
exogenous stochasticity in the environment, such as drawing
a card from a deck or tossing a coin. The edges leaving
v represent the actions available at that node. Any node
without outgoing edges is called a leaf and represents an
end state of the game. We denote the set of such nodes by Z.
Each z € Z is associated with a tuple of payoffs specifying
the payoff u;(z) of each player i € {T1,T2,0} at z. The
product of the probabilities of all actions of C on the path
from the root of the game to leaf z is denoted by pc(z).

Private information is represented via information set (in-
foset). In particular, the set of nodes belonging to ¢ €
{T1,T2,0} is partitioned into a collection Z; of non-empty
sets: each I € Z; groups together nodes that Player ¢ cannot
distinguish among, given what they have observed. Neces-
sarily, for any I € Z; and v,w € I, nodes v and w must
have the same set of available actions. Consequently, we de-
note the set of actions available at all nodes of I by A;. As
it is customary in the related literature, we assume perfect
recall, that is, no player forgets what he/she knew earlier
in the game. Finally, given players ¢ and j, two infosets
I; € 1;, I; € 1 are connected, denoted by I; = 1, if there
exist v € I; and w € I; such that the path from the root to
v passes through w or vice versa.

Sequences. The set of sequences of Player i, denoted by
Y, is defined as ; = {(I,a): I € Z;,a € A7} U {o},
where the special element & is called the empty sequence
of Player i. The parent sequence of a node v of Player ¢,
denoted o (v), is the last sequence (information set-action
pair) for Player ¢ encountered on the path from the root of
the game to that node. Since the game has perfect recall, for
each I € Z;, nodes belonging to I share the same parent
sequence. So, given I € T;, we denote by o(I) € X, the
unique parent sequence of nodes in /. Additionally, we let
o(I) = @ if Player i never acts before infoset .

Relevant sequences. A pair of sequences 0; € X;,0; € X
is relevant if either one is the empty sequence, or if they
can be written as 0; = (I;,q;) and 0; = (I;,a;) with
I; = I;. We write 0; > o to denote that they form a
pair of relevant sequences. Given two players 7 and j, we
let 27 X Zj = {(O’ﬁO’j) L 0; € Ei,O'j S Ej,d,; > O’j}.
Similarly, given o; and I; € Z;, we say that (o;, I;) forms a
relevant sequence-information set pair (o; > I;), if o; = &
orifo; = (Ii; ai) and I; = ]j.

Reduced-normal-form plans. A reduced-normal-form
plan m; for Player ¢ defines a choice of action for every
information set I € Z; that is still reachable as a result of
the other choices in 7 itself. The set of reduced-normal-
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form plans of Player i is denoted II;. We denote by II;(])
the subset of reduced-normal-form plans that prescribe all
actions for Player ¢ on the path from the root to informa-
tion set [ € Z;. Similarly, given 0 = (I,a) € %;, let
I1; (o) C II;(I) be the set of reduced-normal-form plans be-
longing to IT;(I) where Player 4 plays action a at I, and let
IT; (@) := II;. Finally, given a leaf z € Z, we denote with
IT;(z) C II; the set of reduced-normal-form plans where
Player 7 plays so as to reach z.

Sequence-form strategies. A sequence-form strategy is a
compact strategy representation for perfect-recall players
in EFGs (Romanovskii, 1962; Koller et al., 1996). Given
aplayer i € {T1,T2,0} and a normal-form strategy u €
A(IL;),! the sequence-form strategy induced by p is the
real vector y, indexed over o € X, defined as y[o]| =
>_re; (o) 1(). The set of sequence-form strategies that
can be induced as p varies over A(II;) is denoted by Y
and is known to be a convex polytope (called the sequence-
form polytope) defined by a number of constraints equal to
|Zi| (Koller et al., 1996).

TMECor as a Bilinear Saddle-Point Problem. A
TMECor strategy is a probability distribution p1 over the
set of randomized strategy profiles Y1 x YVro that guaran-
tees maximum expected utility for the team against the best-
responding opponent O. Since each player has perfect recall,
any randomized strategy for a player is equivalent to a dis-
tribution over reduced-normal-form pure strategies (Kuhn,
1953). Hence, any distribution over profiles of random-
ized strategies of the team members can be expressed in an
equivalent way as a distribution over deterministic strategy
profiles II1 x IITo. The benefit of this transformation is that
II1¢ x Il is a finite set, unlike Jr1 X Vro. For this reason,
TMECor is usually defined in the literature as a distribution
over II11 x IIto without loss of generality. We will follow
the same approach in our characterization.

For each leaf z, let ti7(2) := (ut1(2) + ur2(2))pc(2). The
expected utility of the team can be written as the follow-
ing function of the distributions of play pur € A(Ilty X
Ilr2), po € A(Io):

ur(pr, po) =Y _ar(2)| Y pr(mry, wr2) || D polm) |-
2€Z w11 €M7 (2) m€llo(2)
72 €1072(2)

By definition, a feam-maxmin equilibrium with coordination
device (TMECor) is a Nash equilibrium of the game where
the team plays according to the coordinated strategy 1 €
A(TIt¢ x IIt2). In the zero-sum setting, this amounts to
finding a solution of the optimization problem

arg max min  ut(ur, po)- (D

prEA (I xTlpp) Ho€A(TIo)

' A(X) denotes the probability simplex over the finite set X.

The opponent’s strategy o can be compactly represented
through its equivalent sequence-form representation. This is
not the case for yt, which cannot be represented concisely
through the sequence form as shown by Farina et al. (2018).

3. A New Formulation of TMECor Based on
Extensive-Form Correlation Plans

We propose using a different representation of the corre-
lated distribution of play p7, inspired by the growing body
of literature on extensive-form correlated equilibria. Like
the realization form by Farina et al. (2018), in our approach
we represent ut as a vector with only a polynomial number
of components. However, unlike the realization form, the
number of components scales as the product of the number
of sequences of the two players, which can be significantly
larger than the number of leaves. This downside is amply
outweighed by the following benefits. First, we show that
in practice our proposed representation of p1 enables us
to compute best responses for the team significantly faster
than the prior representations. Second, in certain classes
of games, we even show that our proposed representation
enables the computation of a TMECor in polynomial time.
This is the case, for example, in Goofspiel, a popular bench-
mark game in computational game theory (Ross, 1971).

3.1. Extensive-Form Correlation Plans

Our representation is based on the concept of extensive-
form correlation plans, introduced by von Stengel & Forges
(2008) in their seminal paper on extensive-form correlation.
In particular, we map the correlated distribution of play ut
of the team to the vector £ indexed over pairs of sequences
(o711,0712) € X171 1 X710, Where each entry is defined as

Gllom, o) = Y

w1 €71 (071)
mwr2€llT2(072)

prl(mri,mr2)]. (2)

Here &7 is not indexed over all pairs of sequences
(o1, 012)—o0nly relevant sequence pairs. While there are
games in which this distinction is meaningless (that is,
games in which all sequences pairs for the team members
are relevant), in practice the number of all sequence pairs
is usually significantly bigger than the number of relevant
sequence pairs, as shown in Table 1(b).

The set of extensive-form correlation plans &7 that can be
induced as p1 varies over the set of all correlated distribu-
tions of play for the team members is a convex polytope.
We denote it as =7 and call it the polytope of correlation
plans. We will recall existing results and provide new ones
about the structure of =t in Section 4.
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. Num. sequences Num. leaves [X71 4 B2 B4 X B2 Triangle-free?
Game instance S [Se] % 2| Z] Enm=z, O=1 0=2 0=3
[A] Kuhn poker (3 ranks) 25 25 25 78 3.40 2.36 X X X
[B] Kuhn poker (4 ranks) 33 33 33 312 1.59 2.19 X X X
[C] Kuhn poker (12 ranks) 97 97 97 17160 0.29 1.90 X X X
[D] Goofspiel (3 ranks, limited info) 934 934 934 1296 9.54 70.59 v v v
[E] Goofspiel (3 ranks) 1630 1630 1630 1296 15.54 131.96 v v v
[F] Liar’s dice (3 faces) 1021 1021 1021 13797 5.27 14.43 X X X
[G] Liar’s dice (4 faces) 10921 10921 10921 262 080 6.25 72.79 X X X
[H] Leduc poker (3 ranks, 1 raise) 457 457 457 6477 1.82 17.70 X X X
[I1 Leduc poker (4 ranks, 1 raise) 801 801 801 20856 1.08 28.36 X X X
[J1 Leduc poker (2 ranks, 2 raises) 1443 1443 1443 8762 3.14 75.59 X X X
(a) — Game instances and sizes (b) (c)

Table 1: (a) Size of the game instances used in our experiments, in terms of number of sequences |X;| for each player i,
and number of leaves | Z|. (b) Ratio between the number of leaves | Z|, number of sequence pairs for the team members
[X11 X X12|, and number of relevant sequence pairs for the team members |Y11 < X12| in various benchmark games. For
all games reported in the subtable, we chose the first two players to act as the team members. (c¢) The subtable reports
whether the interaction of the team members is triangle-free (Farina & Sandholm, 2020), given the opponent player O.

3.2. Computing a TMECor using Correlation Plans

Extensive-form correlation plans encode a superset of the
information encoded by realization plans. Indeed, for all
z, &t[oT1(2), 012(2)] = p1[2]. Using the previous identity,
we can rewrite the problem of computing a TMECor of a
constant-sum game (1) as

argmax min at(2)&r[oT1(2), 012(2)]Yy[o0(2)]-

gregr Yo€Yo !

By dualizing the inner linear minimization problem over yo,
we get the following proposition that shows that a TMECor
can be found as the solution to a linear program (LP) with
a polynomial number of variables. (All the proofs of this
paper can be found in the appendix.)

Proposition 1. An extensive-form correlation plan &7 is a
TMECor if and only if it is a solution to the LP

argmax Ug,

&r
Qur— Y v < Y ar(2)érlomi(2),0m2(2)]

1"eZ, 2€Z
a'o(I/)e:(oLa) oo(z)=(1,a)

subject to:

V(Il,a)€Xo\{2}
@uo— Y op < Y ar(2)Erloni(z),om2(2)]
I/EIO 2€Z
oo(I")=2 oo0(z)=2

B®) vy free,vy free VI €I

@&t € Er.

As a direct consequence of Proposition 1, a TMECor can be
found in polynomial time whenever =t can be represented
as the intersection of a set of polynomially many linear
constraints. In Section 4, we recall when that is the case.

4. Semi-Randomized Correlation Plans and
the Structure of =1

Even though =7 is a convex polytope, the set of (potentially
exponentially many) linear constraints that define it is not
known in general. So, alternative characterizations of the set
=t are needed before the LP in Proposition 1 can be solved.
In this section, we recall two known results about the struc-
ture of =1, and propose a new one (Proposition 3). We will
use our result to arrive at two different approaches to tackle
the LP of Proposition 1 in Sections 5 and 6, respectively.

4.1. Containment in the von Stengel-Forges Polytope

The first result about the structure of =1 has to do with a
particular polytope that was introduced by von Stengel &
Forges (2008).

Definition 1. The von Stengel-Forges polytope of the team,
denoted Vr, is the polytope of all vectors € € RIEOT PR
dexed over relevant sequence pairs that satisfy the following
polynomially-sized set of linear constraints.

® ¢lo,2]=1
@ > _&lIri,ar1),012] = E[o(Ir1),or2] VIri>0m
at €A

® Y _&lori, (Ir2,at2)] = Elor1,0(Ir2)] Vori>alra.

ar€Ar,

These can be interpreted as “probability mass conservation”
constraints. They are interlaced sequence-form constraints.

The following result by von Stengel & Forges (2008) is
immediate from the definition of &7 in (2).

Proposition 2 (von Stengel & Forges (2008)). The set
of extensive-form correlation plans is a subset of the von
Stengel-Forges polytope. Formally, =1 C Vr.
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4.2, Triangle-Freeness and Polynomial-Time
Computation of TMECor

Proposition 2 shows that =7 is a subset of the von Stengel-
Forges polytope. There are games where the reverse inclu-
sion does not hold. Farina & Sandholm (2020) gave a suffi-
cient condition—called triangle-freeness—for the reverse
inclusion to hold. We state the condition for our setting.

Definition 2 (Farina & Sandholm (2020)). The interaction
of the team members T1 and T2 is triangle-free if, for
any choice of distinct information sets 11, o € Ity with
or1(I1) = or1(I2) and any choice of distinct information
sets J1, Jo € Tto with o1o(J1) = or12(J2), it is never the
case that (Il = Jl) AN (Ig = JQ) A\ (.[1 =5 Jz)

The above condition can be easily checked in polynomial-
time by iterating over all possible quadruplets of informa-
tion sets Iy, Is, J1, Jo and checking whether the condition
(which itself can be checked by performing a standard traver-
sal of the input game tree) holds. Farina & Sandholm (2020)
show that when the information structure of correlating
players (in our case, the team members) is triangle-free,
then Z1 = Vr. So, when the interaction of the team is
triangle-free, a TMECor can be found in polynomial time
by substituting constraint (4) in the LP in Proposition 1 with
the von Stengel-Forges constraints of Definition 1. As far as
we are aware, this positive complexity result has not been
noted before in the literature. We show in Table 1(c) that
Goofspiel is triangle free, since all chance outcomes are pub-
lic (and that none of the other common benchmark games
that we consider are).

4.3. Semi-Randomized Correlation Plans

We now give a third result about the structure of =1, which
will enable us to replace Constraint () of Proposition 1
with something more practical. First, we introduce semi-
randomized correlation plans, which are elements of a sub-
set of the von Stengel-Forges polytope of the team, as we
formalize shortly. A semi-randomized correlation plan rep-
resents a strategy profile in which one of the players plays
a deterministic strategy, while the other player in the team
independently plays a randomized strategy. Formally, we
define the set of semi-randomized correlation plans for T1
and T2 as

=5 ={§eVr: €@, or] €{0,1} Vo €},
=5, ={£€Vr:€on,2] €{0,1} Vot € T},
respectively. Crucially, a point £ € =5 fori € {T1,T2}

can be expressed using real and binary variables, in addition
to the linear constraints the define V' (Definition 1).

With that, we can show the following structural result for
the polytope of extensive-form correlation plans =7.

Proposition 3. In every game, =7 is the convex hull of the

set 214, or equivalently of the set Z1,. Formally, =1 =
e — e — =% =*
c0Z}; = coET, = co(Z5, UET,).

Our notion of semi-randomized correlation plans is remi-
niscent of the auxiliary game construction of Farina et al.
(2018), in which only one of the team members (the pivot
player) is required to play a deterministic strategy. Our
setting is very different, however, since we have a different
representation of team strategies with many more variables
and stronger combinatorial structure.

S. Computing TMECor with a Small Support
of Semi-Randomized Plans of Fixed Size

From Proposition 3, it is known that =t is the convex hull
of &7 and Z7,. Furthermore, the polytopes =T, and =7,
can be described via a number of linear constraints that is
quadratic in the game size and a number of integer variables
that is linear in the game size. So, we can replace Constraint
(@ in Proposition 1 with the constraint that &1 be a convex
combination of elements from =7, and =7,. We introduce
variables 5%1), e ,5%") € 2T, UET, and the corresponding
convex combination coefficients A1) ..., (") and replace
. . . . o ) e (4)
Constralpt (@ with the lm;ar con.stramt Er=>, )\(’)ﬁT .
Here, n is a parameter with which we can cap the number
of semi-randomized correlation plans that can be included
in the strategy. This gives the following mixed integer LP.

arg max vg, subject to:

g AW LA

constraints (1) ) 3) as in Proposition 1
@& =i, Ag)

T [N (-) R ¢: ) YU ¢/} R
@‘fpezﬁv '(I')G:T27 '(I')€:T1> pe:Tzw--i
® X A =1, 29 >0 Vie{l,...,n}.

The larger n is, the higher the solution value obtained, but
the slower the program. We can make this into an anytime
algorithm by solving the integer program for increasing val-
ues of n. By Caratheodory’s theorem, this program already
yields an optimal solution to the LP in Proposition 1 when
n > |¥; < Xo| + 1. As we show in detail in Section 7,
in practice we found that near-optimal coordination can
be achieved through strategies with a significantly smaller
value of n. Hence, oftentimes the team does not need a large
number of complex profiles of randomized strategies to play
optimally: a handful (often one or two) of carefully selected
simple strategies often result in optimal coordination. That

In Constraint (5) we alternate the set of semi-randomized
correlation plans (i.e., we alternate which player’s turn it is to play
a deterministic strategy). Empirically, this increases the diversity
of the strategies of =1 that can be represented with small values of
n and leads to higher utilities for the team.



Connecting Optimal Ex-Ante Collusion in Teams to Extensive-Form Correlation

Game

Opponent player O =1

Opponent player O =2

Opponent player O =3

n=1 n=2 n:B\n:oo n=1 n=2 n:3\n:oo n=1 n=2 n:3\n:oo
Kuhn [A] 0 * * 0 0 * * 0 0 * * 0
o[BI 0.0208 0.0379 % | 00379 0.0018 0.0246 0.0265 | 0.0265 —0.0417 * * | =0.0417
p [C] 0.0470 0.0655 0.0663 | 0.0664 0.0128 0.0367 0.0376 | 0.0380 —0.0227 -0.0153 -0.0141 | —0.0140
Goofspie] [P1 02389 0.2524 * | 02524 02389 02524 * | 02524 02389 0.2524 * | 02524
PIeL (E] 02389 0.2534 * | 02534 0.2389 0.2534 * | 02534 02389 0.2534 * | 02534
Liar's  [F] 0 * * 0 02099 02554 02562 | 02562 02716 0.2840 * | 0.2840
dice [G] 0.0625 * * | 00625 02500 0.2656 0.2656 0.2656
Led [H] 00326 0.1934 0.1987 | 0.1987 0.1333 0.1899 — ] 02530 0.1461 0.1672 0.1910 | 0.2148
ek“c [1 — — — | 0.1859 0.0841 — — | 01826 -0.0532 — — | 01073
POXET 1§11 0.2609 0.3767 — | 05493 03125 0.5660 0.6274 | 0.6284 02609 0.3682 04703 | 0.5155

Table 2: Expected utility of the team for varying support sizes (n). All values for n € {1,2, 3} were computed using
the MIP of Section 5, while the values corresponding to n = oo were computed using our column generation approach

(Section 6). ‘% : A provably optimal utility has already been obtained with a lower value of the support size n.

‘—* We

were unable to compute the exact value, because the corresponding algorithm hits the time limit.

empirical observation complements the theoretical state-
ment by Celli & Gatti (2018, Proposition 3), who proved
that an optimal TMECor with support of size at most ¥ al-
ways exist. This sections shows that the theoretical bound of
Celli & Gatti (2018) is way too pessimistic in practice: for
example, in the Goofspiel game [E], the theoretical bound
would predict that a support of size at most n = 1630 is
necessary to guarantee optimality, but in Table 2 we find
that n = 2 is already enough.

6. A Fast Column Generation Approach

In this section, we present a scalable approach to solving
the LP in Proposition 1—using column generation (Ford
& Fulkerson, 1958). First, we proceed with a seeding

phase. We pick a set S containing one or more points

7€T Yt ‘E’m)

the main loop starts. First, fori € {1,...,

B(z) Uo E UT f—l— O‘T1( ) UTQ(Z)] Yoo € Yo.
z2€Z
oo(z)=00

that are known to belong to =1. Then,
|S]}, let

Then we solve the LP of Proposition 1 where Constraint (4)
has been substituted with &1 € co S:

argmax vg, Ssubjectto:
A AUSD
sl 4
OQui— Y op— » Bo0) AP <0
’ i=1
o Voo eXo\{o}
Ell
)Y @uo— Y wr— Y P (@)AD <0
I'els i=1
oo(I")=92
S i
® ZL:|1 A =1
@A) >0 Vie{l,...,|S]}
(B vy free,vy free VI € Ip.

This is called the master LP.2

Given the solution to the master LP, a pricing problem is
created. The goal of the pricing problem is to generate a
new element £|TS|+1 to be added to S so as to increase the
team utility in the next iteration, that is, the next solve of
the master LP that then has an additional variable. This
main loop of solving the larger and larger master LP keeps

repeating until termination (discussed later).

6.1. The Pricing Problem

The pricing problem consist of finding a correlation plan
éT € Z7 which, if included in the convex combination com-
puted by (*), would lead to the maximum gradient of the
objective (that is, the maximum reduced cost). By exploiting
the theory of linear programming duality, such a correlation
plan can be computed starting from the solution of the dual
of (). In particular, let « be the |¥(|-dimensional vector of
dual variables corresponding to Constraints (D) and ) of (%),
and ¥’ € R be the dual variable corresponding to Constraint
(3. Then, the reduced cost of any candidate éT is

c(br) ==+ ar(2)¢ z),012(2)]7[o0(2)].

z€Z

UT1

Now comes our crucial observation. Since ¢(&7) is a linear

function, and since from Proposition 3 we know that =1 =
=* i

co Z74, by convexity

max ¢(€7) = max ¢(€r).

ETEET ETEES,
We want to solve the LP on the left hand side, but—as
discussed in Section 4—the constraints defining =t are not

’In (x) the convex combination is among given correlation
plans, while in the MIP of Section 5, the elements to combine are
themselves variables.
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known. The above equality enables us to solve the problem
because the right hand side is a well-defined mixed integer
LP (MIP). We can use a commercial solver such as Gurobi
to solve it. When the objective value of the pricing problem
is non-positive, there is no variable that can be added to the
master LP which would increase its value. Thus, the optimal
solution to the master LP is guaranteed to be optimal for the
LP in Proposition 1 and the main loop terminates.

6.2. Implementation Details

We further speed up the solution of the pricing problem in
our implementation by the following techniques.

Seeding phase. To avoid having to go through many itera-
tions of the main loop, each of which requires solving the
pricing problem, we want to seed the master LP up front
with a set of good candidate variables. While any seed-
ing maintains optimality of the overall algorithm, seeding
it with variables that are likely to be part of the optimal
solution increases speed the most. We initialize the set
of correlation plans S by running m iterations of a self-
play no-external-regret algorithm. Specifically, we let each
player run CFR+ (Tammelin et al., 2015; Bowling et al.,
2015) and, at each iteration of that algorithm, we sample a
pair of pure normal-form plans for the two team members
according to the current strategies of the two players. At
each iteration of that no-regret method, we set the utility
of each team member to ut{ + uto. Finally, for each pair
(w11, 712) € IIT1 X IIT2 Of normal-form plans generated by
that no-regret algorithm, we compute and add to S the cor-
relation plan corresponding to the distribution p that assigns
probability 1 to (771, 712) using Eq. (2). While self-play no-
regret methods guarantee convergence to Nash equilibrium
in two-player zero-sum game, no guarantee is available in
our setting. However, we empirically find that this seeding
strategy leads to a strong initial set of correlation plans.

Linear relaxation. Before solving the MIP formulation of
the pricing problem, we first try to solve its linear relaxation
arg maxg .y, ¢(€r). We found that in many cases it out-
puts semi-randomized correlation plans, thus avoiding the
overhead of having to solve a MIP.

Solution pools. Modern commercial MIP solvers such as
Gurobi keep track of additional suboptimal feasible solu-
tions (in addition to the optimal one) that were found during
the process of solving a MIP. Since accessing those ad-
ditional solutions is essentially free computationally, we
add to S all the solutions (even suboptimal ones) that were
produced in the process of solving the MIP. This can be
viewed as a form of dynamic seeding and does not affect
the optimality of the overall algorithm.

Termination. Because fast integer and LP solvers work
with real-valued variables, near the end of the column-

generation loop the new variables that are generated in the
pricing problem have reduced costs that are very close to
zero. It is not clear whether they are actually positive or
zero. Therefore, we set the numeric tolerance so that we
stop the column-generation loop if the value of the pricing
problem solution is less than 1076,

Dual values. To obtain the dual values used in the pricing
problem, we do not need to formulate and solve a dual LP
as modern LP solvers already keep track of dual values.

7. Experimental Evaluation

We computationally evaluate the algorithms proposed in
Section 5 and Section 6. We test on the common parametric
games shown in Table 1. Appendix B provides additional
detail about the games. We ran the experiments on a ma-
chine with a 16-core 2.80GHz CPU, and allow a maximum
of four threads and 32GB of RAM to each experiment. We
used Gurobi 9.1.1 to solve LPs and MIPs.

7.1. Small-Supported TMECor in Practice

Table 2 describes the maximum expected utility that the
team can obtain by limiting the support of its distribution to
n € {1, 2,3} semi-randomized correlation plans. Columns
denoted by n = oo show the optimal expected utility of the
team at the TMECor (without any limit on the support size).
We ran experiments with the opponent as the first (O=1),
second (O =2), and third player (O =3) of each game. In
all the games, distributions with as few as two or three semi-
randomized coordination plans gave the team near-optimal
expected utility. Moreover, in several games, one or two
carefully selected semi-randomized coordination plans are
enough to reach an optimal solution.

7.2. Column-Generation in Practice

We evaluate our column-generation algorithm against the
two prior state-of-the art algorithms for computing a
TMECor: the column-generation technique by Celli & Gatti
(2018) (henceforth CG-18), and the fictitious-team-play al-
gorithm by Farina et al. (2018) (denoted FTP). Like our algo-
rithm, CG-18 uses a column generation approach that lets O
play sequence-form strategies, while the team’s strategy is
directly represented as a distribution over joint normal-form
plans Ity x IIto. FTP is based on the bilinear saddle-point
formulation of the problem and is essentially a variation of
fictitious play (Brown, 1951). FTP operates on the bilinear
formulation of TMECor (1): the team and the opponent
are treated as two entities that converge to equilibrium in
self-play. FTP only guarantees convergence in the limit to a
TMECor, while our algorithm certifies optimality. So, the
run-time comparison between our algorithm to FTP must
be done with care, as the latter never stops, whereas our
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Game Ours Fictitious Team Play (FTP) CG-18 Pricers Team utility after seeding | TMECor
Seeded Notseed. | e =50% e=10% €=1% Relax. MIP m =0 100 1000 value
[A] 1ms 2ms 2st 10s" 1m 08s" | 175ms 1 0 -0.556 0 0 0
[B] Ims 14ms 3m52s  37m5ls > 6h 26.81s 2 0 -0406 -0.042 -0.042 -0.042
[C] 4.96s 13.40s | 4h42m > 6h > 6h > 6h 4 22 -0.343 -0.030 -0.021 -0.014
[D] 325ms 517ms 50s 9m 21s > 6h | 3m09s 18 0 -1.000 0.247 0.252 0.252
[E] 1.18s 1.48s 4m 51s  2h 02m > 6h | 29m 38s 45 0 -2933 0.239 0.248 0.253
[F] Im12s  4m 03s > 6h > 6h > 6h > 6h 40 8 0.000 0.276 0.284 0.284
[G] > 6h > 6h > 6h > 6h > 6h > 6h — —  -0.688 0.277 oom —
[H] 2m23s  3m23s > 6h > 6h > 6h > 6h 20 171 -1.783  0.065 0.151 0.215
[ 1hO07m  1h 19m > 6h > 6h > 6h > 6h 7 610 -1216 -0.149 0.019 0.107
[J1 3m 29s Im 50s > 6h > 6h > 6h > 6h 1346 18 -6.000 -0.222 0.387 0.516
(a) — Comparison of run times (b) (c)

Table 3: (a) Runtime comparison between our column generation algorithm, FTP, and CG-18. The seeded version of
our algorithm runs m = 1000 iterations of CFR+ (Section 6.2), while the non seeded version runs m = 0. ‘t’: since the
TMECor value for the game is exactly zero, we measure how long it took the algorithm to find a distribution with expected
value at least —e/10 for the team. (b) Number of times the pricing problem for our column-generation algorithm was solved
to optimality by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our column-generation algorithm.
(c) Quality of the initial strategy of the team obtained for varying sizes of S compared to the expected utility of the team at

the TMECor. ‘oom’: out of memory.

algorithm and CG-18 terminate after a finite number of it-
erations with an exact optimal strategy. We report the run
time of FTP reaching solution quality that is ¢ = 50%, 10%,
and 1% off the optimal value (determined by the other two
algorithms). Finally, the concurrent work by Zhang et al.
(2020) proposes an alternative approach for computing a
TMECor. According to the run times reported in their pa-
per, our algorithm is significantly faster. In particular, our
algorithm takes about 2m 00s to solve game [H], while their
algorithm takes about 1h 21m, even though they conducted
their experiments on a more powerful machine.’

We set a time limit of 6 hours, a memory limit of 32GB, and
a cap of four threads for each algorithm. Table 3 shows the
results with the opponent playing as the third player. Ac-
cording to Table 2, this is almost always the hardest setting.
The results for the other two settings are in Appendix C.

Our column-generation algorithm dramatically outperforms
FTP and CG-18. For example, in Liar’s dice instance [F],
our algorithm finds an optimal TMECor in a few seconds
while the prior algorithms exceed six hours. The last column
of Table 3(c) shows the final team utility. Even when the
opponent is playing as the third player, the team is able to
reach positive expected utility. Finally, we identify Liar’s
dice instance [G] as the current boundary of problem that

3The machine which they used has a 3.6GHz CPU, 32GB of
memory, and they dedicated 12 threads to the algorithm. Moreover,
we observe that the number of terminal nodes reported for 3L3 in
their paper is inconsistent with the description of the game, which
corresponds to our game [H]; in particular, their paper reports that
the game has a larger number of terminal nodes than it actually has.
This was confirmed by the authors in private communications.

just cannot be handled with current TMECor technology: it
does not complete within six hours.

Using the linear relaxation of the pricing problem (“imple-
mentation details” in Section 6.2) often obviated the need to
run the slower MIP pricing (see Table 3(b)). In all Goofspiel
instances (games [D] and [E]) and in small Kuhn poker
instances, the MIP pricing is never invoked.

Regret-based seeding further improves the performance of
the algorithm. In the Liar’s dice instance [F], it reduced run
time by roughly a factor of ten. The objective value of the
master solution immediately after seeding (that is, before
the first column generation step) increases significantly with
the number of iterations of the no-regret algorithm that is
used for seeding.

8. Conclusions

We studied finding an optimal strategy for a team with two
members facing an opponent in an imperfect-information,
zero-sum, extensive-form game. We focused on the setting
where the team members cannot communicate during play
but can coordinate before the game. We provided modeling
results by drawing a connection to prior results on extensive-
form correlation. Then, we developed an algorithm that
computes an optimal joint distribution by just using profiles
where only one of the team members gets to randomize in
each profile. We can cap the number of such profiles we
allow in the solution. This begets an anytime algorithm
by increasing the cap. Moreover, we showed that often a
handful of well-chosen such profiles suffice to reach optimal
utility for the team. Inspired by this observation and lever-



Connecting Optimal Ex-Ante Collusion in Teams to Extensive-Form Correlation

aging theoretical concepts that we introduced, we developed
an efficient column-generation algorithm for finding an op-
timal strategy for the team. We tested our algorithm on a
suite of standard games, showing that it is three order of
magnitudes faster than the prior state of the art and also
solves many games that were previously unsolvable.
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