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Abstract

Rank aggregation from pairwise preferences has
widespread applications in recommendation sys-
tems and information retrieval. Given the enor-
mous economic and societal impact of these ap-
plications, and the consequent incentives for mali-
cious players to manipulate ranking outcomes in
their favor, making rank aggregation algorithms
robust to adversarial manipulations in data is a cru-
cial challenge. In this paper, we initiate the study
of robustness in rank aggregation under the popu-
lar Bradley-Terry-Luce (BTL) model for pairwise
comparisons. We consider a setting where pair-
wise comparisons are initially generated accord-
ing to a BTL model, but a fraction of these com-
parisons are corrupted adversarially prior to being
reported to us. We consider a strong contamina-
tion model, where an adversary having complete
knowledge of the initial truthful data and the true
BTL weights, can corrupt this data by inserting,
deleting, or changing data points. The goal is to
recover the true BTL weights given this corrupted
data. We characterize the extent of corruption
under which the true BTL weights are uniquely
identifiable. We also provide a novel algorithm
that provably filters out the adversarial corruption
from data under reasonable conditions on data
generation and corruption. We support our the-
ory with experiments on both synthetic as well
as real data, showing the resilience of our algo-
rithm to a substantial degree of corruption and the
vulnerability of existing approaches to even small
amounts of corruption.
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1. Introduction
The problem of rank aggregation from pairwise compar-
isons, where the goal is to aggregate pairwise preferences
between items into rankings/scores for each item, has a
wide range of applications in the areas of recommendation
systems and information retrieval (Dwork et al., 2001; Ne-
gahban et al., 2017; Maystre & Grossglauser, 2015; Agar-
wal et al., 2018; Hendrickx et al., 2019; Wauthier et al.,
2013; Ailon et al., 2008; Gleich & Lim, 2011; Guiver &
Snelson, 2009; Volkovs & Zemel, 2012). In these large
scale web-applications for recommendation and retrieval,
one obtains pairwise preferences from different users either
explicitly through survey questions or implicitly through
clicks, ratings, reviews etc. and aggregates these preferences
to score/rank items/products for these users.

The massive economic and societal impact of these applica-
tions has also meant that some players are trying to boost the
ranking/scores of their products by resorting to malicious
practices such as creating fake user accounts, manufactur-
ing fake reviews and ratings, click-fraud etc. Hence, it has
become increasingly important to guard against these ma-
licious players by designing ranking algorithms that are
robust to adversarial corruption in data.

In order to address this challenge, we initiate the study of
robustness in rank aggregation under the Bradley-Terry-
Luce (BTL) model (Bradley & Terry, 1952; Luce, 1959),
which is arguably the most popular parametric model for
rank aggregation using pairwise comparisons. We describe
the exact setting below.

1.1. Problem Formulation

Given a set of n items, the BTL model associates a pos-
itive weight/score w∗i with each item i ∈ [n], and pos-
tulates that item i wins in a pairwise comparison against
item j with probability p∗ij = w∗i /(w

∗
i + w∗j ). Since this

model is invariant under multiplicative scaling, for unique-
ness, it is assumed that w∗ ∈ ∆n, the open n-simplex,
where w∗ is the vector of the aforementioned BTL weights.
In our framework, nature first draws a comparison graph
G∗ = (V,E∗) which is an undirected graph with vertex
set V = [n] and edge set E∗ = {({ui, vi}, p̂uivi)}

m∗

i=1
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consisting of m∗ edges, where the label p̂uv1 on edge
(u, v) ∈ E∗ corresponds to the fraction of times i beats
j out of L pairwise comparisons drawn according to the
underlying BTL model with (unknown) weights w∗, for
a parameter L ∈ N. We consider a powerful contami-
nation model where an adversary having complete knowl-
edge of the truthful graph G∗ = (V,E∗), as well as true
weights w∗, can subsequently contaminate some fraction
of E∗ by adding spurious new edges with arbitrary labels,
deleting and corrupting existing edges/labels. As a result,
we receive as input a comparison graph G = (V,E) with
edge set E = {({ui, vi}, puivi)}

m
i=1 consisting of a subset

Eu = E∗ ∩E of uncorrupted edges from the initial truthful
data, where for each ({u, v}, puv) ∈ Eu, the reported prob-
ability value puv is equal to the uncorrupted probability p̂uv .
The remaining subset Ea = E \Eu consists of either newly
introduced edges, or edges already existing in E∗ whose
labels were corrupted by the adversary. In either case, no
assumptions can be made on the reported probability values
puv for edges ({u, v}, puv) ∈ Ea. The set E∗ \E is the set
of edges deleted by the adversary.

In this adversarial contamination model, our work addresses
the following fundamental questions:

• For an arbitrary truthful comparison graph G∗ =
(V,E∗), what is the extent of adversarial corruption that
can be tolerated up to which the true BTL parameters are
uniquely identifiable?

• Are there structural properties of G∗ = (V,E∗) that al-
low tolerance to high degrees of adversarial corruption?

• Do there exist efficient algorithms to estimate the true BTL
parameters (with low error) given pairwise comparison
data with a non-trivial fraction of adversarial corruption?

Notation. Given any subset of edges E′ and cut (S, V \ S),
we use E′(S, V \ S) to refer to the set of edges in E′ that
cross the cut (S, V \ S). In the event that S is a singleton
vertex u ∈ V , we use E′(u) := E′({u}, V \ {u}) to refer
to the set of edges in E′ incident on u. Given any subset of
edges E′ and a vertex u ∈ V , we use δE′(u) to refer to the
set of neighbors of u in the graph G′ = (V,E′).

1.2. Overview of Results

We naturally consider structural identifiability of the true
BTL weights within our contamination model, i.e. unique
identifiability of w∗ when the uncorrupted labels p̂uv for all
(u, v) ∈ Eu are exactly equal to the true pairwise probabili-
ties p∗uv , a setting corresponding to the limit L→∞.

We first present a candidate hard example of an adversarial

1Since the probability p̂uv can be inferred from the probability
p̂vu, we will assume that there is fixed ordering over items, if
u < v then the label corresponds to p̂uv corresponding to pair
{u, v} otherwise it corresponds to p̂vu.
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Figure 1. An instance of Example 1, with S = {1, 2}, α = 3/5,
and w∗ = (7, 14, 14, 14, 21)/70; By corrupting just the edges
crossing the cut (dotted line), the resulting graph is entirely consis-
tent with w(α,S) = (14, 28, 8, 8, 12)/70. Note how the items with
some of the lowest scores have the highest scores post corruption.

corruption, which not just demonstrates the kind of carefully
crafted corruptions that make this setting challenging, but
also helps form a basis for our identifiability results later.

Example 1 (Single Cut Corruption). Given the truthful
comparison graphG∗ = (V,E∗), and true weights w∗ with
p̂uv = p∗uv, ∀(u, v) ∈ E∗ , fix an arbitrary cut (S, V \ S).
Let w∗S :=

∑
u∈S w

∗
u be the total weight of all vertices in

S. We create new weights w(α,S), where for every vertex
u ∈ S, we scale up its weight as w(α,S)

u = αw∗u/w
∗
S , and

for every vertex v ∈ V \ S, we scale down its weight as
w

(α,S)
v = (1 − α)w∗v/(1 − w∗S), where w∗S < α < 1 is

any arbitrary scaling factor. Note that the relative weights
within S and V \ S are unaffected by this change. If the
adversary corrupts only the edgesE∗(S, V \S) crossing the
cut (S, V \ S) to be consistent with the new weights w(α,S),
leaving all other edges untouched, then the resulting graph
is entirely consistent with w(α,S). (See Figure 1)

This example shows a coordinated corruption where the ad-
versary only needs to corrupt the edges in a single cut in the
graph to make the entire comparison graph consistent with
completely different BTL weights, leaving behind no evi-
dence of corruption. This also has an intuitive interpretation:
The set S consists of items of interest to the adversary, and
V \S consists of the rest of the items. By only corrupting the
comparison data between the items of interest and the rest
of the items, the adversary manipulates the relative ranking
between items of interest and the rest of the items, leaving
the internal ranking within both these sets unchanged.

This example provides the key intuition behind the condition
which we prove is both necessary and sufficient for unique
identifiability of the true weights w∗.

Theorem 1 (Informal). Given an arbitrary, connected, cor-
rupted input comparison graph G = (V,E), the true
weights are uniquely identifiable in the limit L → ∞ if
and only if every cut in G has strictly more uncorrupted
edges than corrupted edges crossing the cut.

The above theorem is essentially a majority condition for
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unique identifiability. In some sense, this demonstrates that
Example 1 is a canonical type of corruption that must be
guarded against. This also shows that in comparison graphs
with sparse cuts, even small amounts of carefully crafted
corruptions can make the true weights unidentifiable.

This naturally motivates the study of Erdős-Rényi compar-
ison graphs, a well-studied family of graphs in ranking,
as they are known to have dense cuts. In the following
Theorem, we show that if the initial truthful comparison
graph is drawn according to the Erdős-Rényi model, then
the global cut-based condition for identifiability reduces to
a local bound on the fraction of corrupted edges incident on
any vertex.
Theorem 2 (Informal). When the initial truthful compar-
ison graph G∗ is an Erdős-Rényi graph, with high proba-
bility, the true weights are uniquely identifiable in the limit
L → ∞ if the fraction of corrupted edges per vertex is at
most 1

4 − ε, and conversely are not uniquely identifiable if
the fraction of corrupted edges per vertex exceeds 1

4 + ε,
where ε is any arbitrarily small positive constant.

The above theorem shows that a corruption rate of 1/4-th
per vertex is a sharp threshold for unique identifiability.
The proof follows by exploiting the structural regularities
imposed by the Erdős-Rényi model, which imply that a
corruption rate of at most 1/4− ε per vertex is sufficient to
guarantee the majority condition described in Theorem 1 for
every cut in the graph, and contrarily, if the corruption rate
per vertex exceeds 1/4 + ε, then there exists a cut which
violates the majority condition. Due to the randomness in
the graph model, these claims hold with high probability.

Although these theorems characterize conditions for unique
identifiability, they do not imply an efficient algorithmic
procedure for recovering the true weights from a corrupted
comparison graph. Our final contribution is an efficient
algorithm with provable recovery guarantees when the initial
truthful comparison graph is an Erdős-Rényi graph.
Theorem 3 (Informal). When the initial truthful compar-
ison graph is an Erdős-Rényi graph and the fraction of
corrupted edges per vertex is at most O( log d

logn ) where d is
the average degree in the graph, there exists an algorithm
that recovers the true weights exactly in the limit L→∞,
and approximately (with low error) in case of finite L.

Our efficient recovery algorithm can provably tolerate an
inverse logarithmic corruption rate O(log log n/ log n) in
sparse graphs with O(n log n) edges, and a constant cor-
ruption rate in slightly denser graphs with O(n1+ε) edges
for any constant 0 < ε ≤ 1. Under this corruption rate
of O(log d/ log n), our recovery error in terms of L in this
adversarial setting matches the best known error rate for
Erdős-Rényi in the non-robust setting (Agarwal et al., 2018).

At the heart of this result lies a filtering algorithm that re-

moves every edge with significant deviation from the true
pairwise probability. This algorithm is based on the key idea
that the ratios of pairwise probabilities puv/pvu correspond
to ratios of weightswu/wv , and if the product of these ratios
over some cycle significantly deviates from 1, then there
must have been at least one significantly corrupted edge on
that cycle. Hence, this inconsistency in a cycle can be used
as a certificate of corruption for corrupted edges in the cycle.
The algorithm solves a linear program (LP) with a hitting
set constraint for all such inconsistent cycles and rounds
the LP solution identify the significantly corrupted edges in
these cycles.

A key structural property of Erdős-Rényi graph that makes
this approach feasible is the existence of short certificates
of corruption for every significantly corrupted edge in the
input graph. The main challenge here is proving that every
significantly corrupted edge would be pruned, and simulta-
neously, sufficiently many uncorrupted edges would survive
to allow weight recovery after rounding the fractional solu-
tion, which is non-trivial to prove. To this end, we prove
an adversarially robust structural property of Erdős-Rényi
graphs, that guarantees that if some significantly corrupted
edge survived the filtering, then some short certificate of
corruption for that edge must have also survived the filter-
ing, which would imply a violated constraint. Due to this
coupling between corruptions and corresponding certificates
of corruption, the corruption rate that can be provably han-
dled by the linear program is inherently tied to the lengths
of these certificates. Due to this, the corruption rates that
our algorithm can provably recover from increases as the
density of the underlying comparison graph increases, as
denser graphs admit shorter certificates.

1.3. Related Work

The general problem of rank aggregation using pairwise
comparisons under the BTL model has been well-studied,
and there are several consistent algorithms for recovering
the BTL parameters (Hunter, 2004; Negahban et al., 2017;
Hendrickx et al., 2019). Moreover, there are also consistent
algorithms for rank aggregation using multiway compar-
isons under the MNL model (Maystre & Grossglauser, 2015;
Agarwal et al., 2018), which is a generalization of the BTL
model. However, these algorithms were not designed with
robustness in mind, and as a consequence, have recovery
guarantees only when the comparison data is drawn stochas-
tically from the underlying model; unbiased noise due to
sampling is benign compared to the arbitrary adversarial
corruption we allow.

Another related line of work is parameter recovery under a
mixture of BTL models using pairwise comparisons, where
the goal is to recover parameters of all the components along
with the mixture weights (Oh & Shah, 2014; Chierichetti
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et al., 2018; Suh et al., 2017; Zhao & Xia, 2019). However,
these mixture models crucially differ from our adversarial
contamination model as the pairwise probability on any edge
in these models is a convex combination of the pairwise
probabilities defined by the individual BTL components,
whereas in our model the pairwise probability on an edge
is either consistent with the underlying true BTL model,
or is arbitrary. Hence, the identifiability and recoverability
results for these models do not apply to our setting. There
has been some effort in addressing adversarial mixtures
(Suh et al., 2017), but their model is in fact a mixture of 2
specific BTL models: the true BTL model and its inverse.
As a consequence, their mixture model is incomparable to
our adversarial contamination model.

An adversarial corruption model similar to ours has been
studied in the computer vision literature (Goldstein et al.,
2016; Hand et al., 2018) for a problem of recovering loca-
tions of objects given direction (unit) vectors between pairs
of locations. Although our problem is very different than
theirs, it is worth noting that their recovery results assume an
extremely dense Erdős-Rényi comparison graph over loca-
tions, whereas our recovery results hold for even very sparse
Erdős-Rényi comparison graphs. Moreover, our corruption
model is somewhat stronger than theirs as the adversary in
their model can only corrupt existing data points, while the
adversary in our model can even add or delete data points.

Our proposed framework is very closely related to robust
estimation theory in classical statistics, in particular, the
ε−contamination model of Huber (Huber, 1965; 1992) and
its generalizations (Diakonikolas et al., 2017). A canonical
problem in this literature is robust estimation of parameters
of a Gaussian distribution under a corruption model where
an ε fraction of the truthful Gaussian samples are arbitrarily
corrupted by an omniscient adversary. Until recently, all
known algorithms for this problem had an inherent tradeoff
between computational tractability and the quality of the
recovered estimates, and it was a long standing open prob-
lem of whether it was possible to have a computationally
efficient estimator that also had information theoretically
optimal error guarantees. This was resolved in Diakonikolas
et al. (2017). Also, see Chen et al. (2016); Diakonikolas
et al. (2019; 2018) for other interesting results.

2. A Cut-Based Characterization for
Identifiability in General Graphs

In this section, we study unique identifiability in the limit
that the number of samples per pair L goes to infinity, i.e.
the setting where uncorrupted edge labels are exactly equal
to the true pairwise probabilities under BTL. We show that
the true weights are uniquely identifiable if and only if the
comparison graph induced by the input data satisfies a cut-
based majority condition.

Theorem 1. Given any arbitrary comparison graph G =
(V,E) as input, it is possible to uniquely identify the true
weights w∗ in the limit L→∞, if and only if for every cut
(S, V \ S)

|Eu(S, V \ S)| > |Ea(S, V \ S)| ,

where Eu ⊆ E is the set of uncorrupted edges, and Ea =
E \ Eu is the set of adversarially corrupted edges.

The above theorem exactly characterizes the extent of adver-
sarial corruption that one can recover from in any corrupted
comparison graph G based on a cut-majority condition. The
above theorem also provides a verification algorithm which,
given a comparison graph G and a candidate solution w,
can identify whether w is the true weight vector. Before
discussing this verification algorithm, we will first give a
basic notion of an edge being consistent with a solution w.

Definition 1 (Consistent-Edge). Given an input comparison
graph G = (V,E), we say that an edge (u, v) ∈ E is
consistent with a solution w, and vice-versa, if and only if
puv = wu/(wu + wv).

Note that any uncorrupted edge is always consistent with the
true weights w∗. Given that the cut-majority condition is
satisfied for G, the following simple corollary to Theorem 1
gives a way to verify whether a solution w is correct or not.

Corollary 1. If a input comparison graph G = (V,E)
satisfies the recoverability condition in Theorem 1 then in
the limit L→∞, w∗ is the unique solution that, for every
cut (S, V \ S), is consistent with a strict majority of the
edges crossing the cut.

Although, this characterization works for all graphs, it might
be computationally infeasible to check all possible cuts in
order to verify if a solution is correct.

A key implication of this theorem is that the structure of
the comparison graph induced by pairwise comparison data
plays a crucial role in determining tolerance to corruption.
While it is clear to see that true weights are unidentifiable if
a majority of the edges incident on any vertex get corrupted,
even restricting the fraction of corrupted edges incident on
any vertex is not enough to guarantee unique identifiability.

Figure 2. Sparse cuts across dense subgraphs can easily be ex-
ploited, even by a limited budget adversary.

Figure 2 demonstrates why: An adversary merely needs
to corrupt a majority of the edges crossing a sparse cut to
obfuscate the true weights. In an extreme case, where the
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true comparison graph is a regular graph consisting of dense
subgraphs with Ω(n2) edges separated by a sparse cut with
O(n) edges, even restricting the fraction of corrupted edges
incident on any vertex to as low asO(1/n) cannot guarantee
identifiability, which is a trivial bound as Ω(1/n) is needed
to allow even one corrupted edge in the comparison graph.

3. Results for Erdős-Rényi Comparison
Graphs

From the discussion in the previous section, we can con-
clude that for a comparison graph to be resilient to cor-
ruption, the number of edges crossing any cut should be
comparable to the number of edges on one side of the cut
(the smaller side), also known as edge expansion. A natural
candidate for graphs having this property are Erdős-Rényi
graphs, which are random graphs that have constant edge ex-
pansion with high probability. Given a parameter p ∈ [0, 1],
an Erdős-Rényi graph Gn,p is a random graph over n ver-
tices where each edge (u, v) is sampled independently with
probability p. These graphs have been widely studied in var-
ious domains, including ranking from pairwise comparisons
(Chen & Suh, 2015; Jang et al., 2016; Chen et al., 2017).

These graphs have another very interesting property: the
global cut-majority condition for unique identifiability of
the true weights effectively reduces to a much simpler lo-
cal vertex-majority condition. This is attractive for several
reasons, the foremost being that verifying this condition is
extremely efficient, making it usable in practice. Before
elaborating on these observations, we will first formalize
the contamination model for Erdős-Rényi graphs.

3.1. Adversarial Contamination Model

Given a parameter p ≥ (k log n)/n for any k larger than
some sufficiently large constant, the comparison graph
G∗ = (V,E∗) generated by nature is a random Gn,p graph.

Given a corruption rate parameter γ > 0, the adversary can
introduce arbitrary contaminations into the realized compar-
ison graph G∗, resulting in a corrupted comparison graph
G = (V,E), albeit subject to the constraint

|Er(u) ∪ Ea(u)| ≤ γ|E∗(u)|, ∀u ∈ V (1)

where for any vertex u ∈ V , E∗(u) is the initial set of
uncorrupted edges incident on u in G∗, Ea(u) := {(u, v) ∈
E : puv 6= p̂uv} is the set of corrupted edges incident on u
in G, and Er(u) := E∗(u) \ E(u) is the set of edges that
were incident on u in G∗ but were later deleted in G.

This condition effectively limits the adversary to contam-
inating at most a γ fraction of the incident edges on any
vertex in the graph. Observe that this condition further im-
plies that at most a γ fraction of the edges incident on any

vertex in the corrupted graph can have spurious labels, i.e.
|Ea(u)| ≤ γ|E(u)|, which we will crucially use later.

3.2. A Sharp Threshold Condition for Identifiability

Given the contamination model from above, we show that
there is a sharp threshold on the per-vertex corruption rate
for unique identifiability of the true weights; if the corrup-
tion rate γ is smaller than this threshold, then w∗ is uniquely
identifiable with high probability for any choice of adversar-
ial corruption. Contrarily, if the corruption rate γ is larger
than this threshold, then with high probability, there exists a
choice of corruption such that the w∗ is unidentifiable. The
proof of this claim crucially exploits the following strong
edge expansion property of Erdős-Rényi graphs.

Fact 1. Given any arbitrarily small constant ε > 0, there
exists a sufficiently large constant k, such that given a graph
G = (V,E) ∼ Gn,p with parameter p ≥ (k log n)/n, we
have for every cut (S, V \ S)

(1− ε) |S||V \S|p < |E(S, V \S)| < (1 + ε) |S||V \S|p

This claim holds with probability at least 1− 1/poly(n).

This fact roughly guarantees that with high probability, the
number of edges crossing any cut in an Erdős-Rényi graph
will not deviate from its expected value by a large amount.

Theorem 2. Given any arbitrarily small constant ε > 0,
there exists a sufficiently large constant k, such that given
a input comparison graph G = (V,E) conforming to the
contamination model in Section 3.1 with Erdős-Rényi graph
parameter p ≥ (k log n)/n, if the corruption rate γ ≤ 1

4−ε,
then with probability at least 1−1/poly(n), the cut-majority
condition described in Theorem 1 is satisfied for every cut in
G, and as a consequence, the true weights w∗ are uniquely
identifiable as the number of samples per pair L → ∞.
Conversely, if the corruption rate γ ≥ 1

4 + ε, then with
probability at least 1− 1/poly(n), there exists a choice of
adversarial corruption such that the cut-majority condition
described in Theorem 1 is violated for at least one cut in G,
rendering the true weights unidentifiable, even as L→∞

Given that the vertex-majority condition holds, the follow-
ing simple corollary to the above lemma shows that there is a
linear time algorithm to verify whether a candidate solution
w is in fact correct solution w∗.

Corollary 2. In the setting of Theorem 2, if γ ≤ 1/4 − ε,
then w∗ is the unique solution such that for every vertex
v ∈ V , at least 3/4 + ε fraction of its incident edges in G
are consistent with w∗, where consistency of an edge with a
solution is defined in Definition 1.

Hence, a candidate solution w is the true solution w∗ if and
only if for every vertex v ∈ V , at least 3/4+ε fraction of its
incident edges are consistent with w. Note that unlike the
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cut-majority condition where a simple majority is enough,
here we necessarily need a majority of a little over 3/4, as
even incorrect weights can achieve close to 3/4 majority.
Note that checking this condition just requires knowledge
of a lower bound on ε, and not the exact value of γ.

Although this vertex-majority condition makes verification
of a candidate set of weights easy, it does not directly imply
a polynomial time algorithm for recovering the true weights.
In the next section we will design such a recovery algorithm.

3.3. An Algorithm for Weight Recovery

The following theorem gives the main result of this section.

Theorem 3. Given an input comparison graph G = (V,E)
conforming to the contamination model in Section 3.1 with
Erdős-Rényi graph parameter p ≥ (k log n)/n for any
k larger than some sufficiently large constant, true BTL
weights w∗, and number of samples per pair L; if the
corruption rate per vertex γ ≤ log(np)/(125 log n), then
there is an efficient algorithm that, with probability at least
1− 1/poly(n), recovers an estimate w ∈ ∆n such that

||w∗ −w||1 ≤ cb2 log b
√

log n/L ,

for an absolute constant c, where b is an upper bound on
the skew in item quality maxi,j∈[n] w

∗
i /w

∗
j .

The corruption rate that can be tolerated by our recovery
algorithm varies depending on the density of the under-
lying comparison graph. When the initial graph is very
sparse, i.e. when the average degree is O(log n), then our
algorithm can tolerate a corruption rate of approximately
(log log n)/ log n, which is lower than the theoretical limit
of identifiability described in Theorem 2. However, for
slightly denser graphs, i.e. when the average degree is
O(nε) for any constant 0 < ε ≤ 1, then our algorithm can
handle a constant corruption rate.

To contrast the above guarantee with the results in the usual
non-adversarial BTL setting, in (Negahban et al., 2017;
Agarwal et al., 2018) the recovery error is O(

√
log n/L),

and hence, L = ω(log(n)) is enough to ensure consistency.
It is surprising to see that our result matches this bound ex-
actly (up to constants), implying there is no additional statis-
tical cost for achieving consistency even under completely
adversarial corruptions in the input pairwise comparison
data when the corruption rate is O(log(np)/ log n).

In the case where we receive exact pairwise probabilities for
every uncorrupted edge in the input, i.e. L→∞, we have

Corollary 3. Let G = (V,E) be any input comparison
graph conforming to the contamination model in Section 3.1
with Erdős-Rényi graph parameter p ≥ (k log n)/n for any
k larger than some sufficiently large constant, and true BTL
weights w∗, where for every uncorrupted edge (u, v) ∈ Eu,

we have puv = p∗uv; if the corruption rate per vertex γ ≤
log(np)/(125 log n), there exists an efficient algorithm that
with probability at least 1− 1/poly(n) recovers w∗ exactly.

3.3.1. ALGORITHM

Our algorithm is based on solving a linear programming
relaxation, and rounding the solution to remove all edges
that deviate significantly from the true probability values.
In the process, we might remove some uncorrupted edges
as well, but the graph would still remain connected with
high probability which will be enough to obtain a consistent
estimate ŵ of the true weights. When we are given the true
pairwise probabilities for all uncorrupted edges, then our
algorithm in fact removes all corrupted edges from the input,
and subsequently returns the true weights w∗.

Before describing our algorithm, we will formalize the no-
tions of significant deviation from the true probability value,
and approximate consistency within a cycle.

Definition 2 (Significant Deviation). Given an input com-
parison graph G = (V,E) with pairwise probabilities
{puv}(u,v)∈E , conforming to the contamination model in
Section 3.1 with Erdős-Rényi graph parameter p, number of
comparisons per edge L, and true BTL weights w∗; we use
EA ⊂ E to refer to the set of edges that deviate significantly
from their true probability value, where

EA :=

{
(u, v) ∈ E : |puv − p∗uv| > 4

(
4 +

log n

log(np)

)
εL

}
where εL = (1 + b)

√
log n/L.

From Hoeffding’s inequality, we have with probability at
least 1−1/poly(n), that |puv−p∗uv| ≤ εL/(1+b) for every
uncorrupted edge (u, v) ∈ Eu, due to which no uncorrupted
edge would be included in this setEA. Thus,EA ⊆ Ea with
EA = Ea when εL = 0, i.e. puv = p∗uv for all (u, v) ∈ Eu.

Definition 3 (Approximate Consistency). Given an input
comparison graph G = (V,E) with pairwise probabilities
{puv}(u,v)∈E , conforming to the contamination model in
Section 3.1, with number of comparisons per edge L; given
a simple cycle C = (v1, · · · , vl, v1) of length l in G, we
call C approximately consistent if

1− (2l − 1)εL
1 + εL

≤
l∏
i=1

pvcivci+1

pvci+1
vci

≤ 1 + εL
1− (2l − 1)εL

,

and inconsistent otherwise.

The underlying intuition becomes clear when εL = 0, i.e.
we receive exact probabilities for every uncorrupted edge
in the input. For any pair of vertices (u, v), we have that
puv/pvu = wu/wv if the pairwise probabilities were de-
fined according to the BTL model with weights w. In this
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Minimize
∑
e∈E

x(e)

Subject to
∑
e∈C

x(e) ≥ 1 ∀C ∈ C∑
e∈E(u)

x(e) ≤ γLP|E(u)| ∀u ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

Figure 3. The LP for identifying corrupted edges; C is the set of
inconsistent cycles in G of length at most 4+ logn/ log(np); γLP

= log(np)/(125 logn) is the maximum tolerable corruption rate.

case, a simple cycle being consistent intuitively means that
there exists some set of BTL weights consistent with the
pairwise probabilities on all the edges in the simple cycle.
While, a consistent cycle does not guarantee every edge
in the cycle is uncorrupted as the adversary can introduce
self-consistent corruptions, every inconsistent cycle must
necessarily contain at least one corrupted edge. The con-
straints in our LP essentially capture this condition. For
finite L, we need to allow some slack due to noise from
sampling, due to which we have the slightly weaker guar-
antee that every inconsistent cycle must necessarily contain
some edge that deviates significantly from its true probabil-
ity value (i.e. from EA).

Linear Program. We formulate a LP (Figure 3) with de-
cision variables x(e) for each edge e ∈ E, which indicate
whether an edge is corrupted; a higher mass on x(e) intu-
itively corresponds to a higher confidence of the LP solution
in e being a corrupted edge. The LP has two types of con-
straints: Firstly, for each inconsistent cycle of length at most
4 + log n/ log(np), we have a constraint requiring the total
mass of all edges in the cycle be at least 1, reflecting the fact
that each inconsistent cycle contains at least one corrupted
edge. Secondly, for each vertex u ∈ V , we have a constraint
requiring the total mass of all edges incident on u be at
most2 a γLP = log(np)/125 log n fraction of the degree of
u, reflecting the fact that the number of corrupted edges
incident on any vertex are bounded.

Lemma 1.The LP in Fig 3 is solvable inO(n2+o(1)d6) time
where d is the average degree in the input graph.

The proof leverages the Multiplicative Weight Update
method (Plotkin et al., 1995) for approximately solving
Linear Programs. We defer a detailed proof to the appendix.

Observation 1. A solution that assigns x(e) = 1 to every
edge e ∈ Ea, the set of adversarially corrupted edges, and
x(e) = 0 to every edge e ∈ Eu, the set of uncorrupted
edges is a feasible solution to the above LP.

2The LP is oblivious to the exact corruption rate γ, and will
work for any γ ≤ γLP, which is an upper bound on the corruption
rate that the LP can provably recover from.

Algorithm 1 Adversarially Robust Recovery
1: Input: items [n], graph G = (V,E), parameters p and εL.
2: x← Solution of LP in Figure 3.
3: ∀(u, v) ∈ E, x̂(u, v)← 1[x(u, v) ≥ log(np)/(5 logn)].
4: If x̂(u, v) = 1 then delete data point corresponding to (u, v)
5: Return the output of Accelerated Spectral Ranking (Agarwal

et al., 2018) algorithm on this pruned dataset.

The proof follows by showing that no cycle consisting of
only uncorrupted edges can be inconsistent. Thus, every
inconsistent cycle must contain at least one corrupted edge,
due to which every inconsistent cycle constraint is satisfied.
Furthermore, the constraint for each vertex is satisfied due
to the corruption condition in Equation 1. This shows that
the feasible set of the above linear program is not empty.

Observation 2. For any edge (u, v) ∈ EA, any path from
u to v consisting of edges only from Eu of length at most
4 + log n/ log(np) will induce an inconsistent cycle.

Threshold Pruning. Given any feasible solution x to the
above LP, let Elpr := {e ∈ E : x(e) ≥ log(np)/(5 log n)}
be the set of edges with large x(e) values. We subsequently
delete all edges from Elpr from the input, producing a
cleaned comparison graph G̃ = (V, Ẽ = E \ Elpr).

The key idea is to show that for every edge with signifi-
cant corruption (u, v) ∈ EA, there exists a short path from
u to v consisting of only uncorrupted edges, which along
with (u, v) would induce an inconsistent cycle (Obs 2), and
hence, would be captured by our LP as a constraint. The
harder challenge is in showing that every such edge in EA
would be removed by our threshold pruning scheme. The
proof of this essentially involves showing that the residual
comparison graph G̃ still contains short paths consisting
of only uncorrupted edges between every pair of vertices
(which automatically implies connectedness), and thus, if
some edge with significant corruption (u, v) ∈ EA survived,
this would induce an inconsistent cycle. Furthermore, since
G̃ consists of only edges with small x(e) values, this in-
consistent cycle must have cumulative mass less than 1,
implying a violated constraint, contradicting the assumption
that we were given a feasible solution to the LP.

Lemma 2. In the setting of Theorem 3, with probability at
least 1− 1/poly(n), we have that the residual graph G̃ is
connected, and furthermore, contains no edges from EA.

Since the residual graph G̃ = (V, Ẽ) is free from edges
that deviate significantly from their true probability value,
the next step is to use an algorithm for recovery in the
usual non-adversarial setting on G̃. We use the Accelerated
Spectral Ranking (ASR) algorithm (Agarwal et al., 2018),
which defines a lazy random walk over G̃ with probability
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of transition P̃uv from vertex u to vertex v given by

P̃uv =


1

d̃u
pvu if u 6= v, (u, v) ∈ Ẽ,

1

d̃u

∑
v∈δẼ(u) puv if u = v,

0 otherwise.

where d̃u is the degree |δẼ(u)| of vertex u in the graph G̃ =

(V, Ẽ). Let P̃ := [P̃uv] be the corresponding transition
probability matrix, with transition probabilities as defined
above. The solution w̃ returned by the ASR algorithm is a
linear transformation w̃ = D̃−1π, where π = P̃>π is the
stationary distribution of this Markov chain, and D̃ is the
diagonal matrix of degrees D̃uu = d̃u.

The recovery guarantees for the ASR algorithm (and other
existing algorithms) are only known in a setting where the
estimates of pairwise probabilities are unbiased, which is
not the case here as the residual graph may contain edges
with biased probabilities. Nevertheless we show that the
analysis of this algorithm can be extended to allow for biased
pairwise probabilities satisfying a uniform deviation bound.

Lemma 3. In the setting of Theorem 3, let w∗ be the set of
true BTL weights, and let w be the estimate returned by the
ASR algorithm with input G̃ = (V, Ẽ). Then we have that

||w −w∗||1 ≤ (Cb log b)εL

where C is an absolute constant.

This, along with Lemma 1 gives us the claim of Theorem 3.

4. Experiments
In this section, we validate our theoretical guarantees with
experiments on both synthetic and real data. In the interest
of space, we show just one type of experiment here, where
we compare the performance of our algorithm against ex-
isting non-robust algorithms when the input data has been
contaminated according to the single cut corruption method
as described in Example 1. We encourage the interested
reader to refer to the Appendix for an additional type of
experiment, where the contamination in the input data is
semi-random in nature. The results obtained in that case are
fairly similar to the ones reported in this section.

4.1. Synthetic Data

We fix n = 50, and generate a set of uniformly at ran-
dom weights w∗ normalized to sum to 1. We generate an
Erdős-Rényi random comparison graph G∗ ∼ Gn,p with
parameter p = (2 log n)/n. We choose a uniformly at ran-
dom partition (S, V \S) of n/2 vertices each, and construct
the adversarial vector w(α,S) as described in Example 1, for
a fixed value of the scaling factor α set to 0.02. For every

vertex u ∈ S, we pick a uniformly at random 2γ fraction3

of its incident edges crossing the cut (u, V \ S) to corrupt.
We generate two datasets: (1) For every uncorrupted edge
(u, v), we report the exact pairwise probability p∗uv accord-
ing to w∗, and for every corrupted edge (u, v), we report the
exact pairwise probability p(α,S)uv according to w(α,S), and
(2) For every uncorrupted edge (u, v), we generate a random
sample Xuv ∼ Binomial(L, p∗uv) and report puv = Xuv/L,
pvu = 1 − puv, and for every corrupted edge (u, v), we
generate a random sample Yuv ∼ Binomial(L, p(α,S)uv ) and
report puv = Yuv/L, pvu = 1 − puv. In our experiments,
we set L = log n/ε2, where ε = 5% is the chosen accuracy
parameter. We test all algorithms on both datasets.

4.2. Real Data

Experimentation with real datasets is challenging, primarily
due to scarcity of datasets that are structurally robust to
contamination. The datasets (GIF,Youtube) studied in
(Agarwal et al., 2018; Maystre & Grossglauser, 2015) are
found to be particularly vulnerable to manipulation; they
contain cuts where corrupting just one edge is sufficient
to completely fail the cut-majority condition (Thm 1) re-
quired for identifiability of the true weights. We circumvent
this topology-dependent limitation by identifying datasets
(Sushi,Irish) that come with full rankings. For these
datasets, we extract pairwise comparisons from the com-
plete orderings, giving us empirically observed pairwise
probabilities puv for every pair of items (u, v) in the dataset
(effectively inducing a complete comparison graph). An-
other difficulty with real data is that the true weights w∗ are
undefined. We resolve this issue by passing the datasets to
a standard algorithm for parameter estimation in the BTL
model (we choose the algorithm of (Agarwal et al., 2018)),
and treating the returned estimates for each dataset as their
corresponding ground truth weights.

For each real dataset, we create an artificially contaminated
dataset as follows: given the complete comparison graph
(Sushi n = 16, Irish n = 12) and the assumed ground
truth weights w∗, we first generate a Erdős-Rényi random
comparison graph G∗ ∼ Gn,p with parameter p = 0.3 by
subsampling edges from the complete comparison graph.
We choose a uniformly at random partition (S, V \S) of n/2
vertices each, and construct the adversarial vector w(α,S)

as described in Example 1, for a fixed value of the scal-
ing factor α set to 0.02. For every vertex u ∈ S, we pick
γ|E∗(u)| vertices in V \ S uniformly at random, and insert
corrupted edges between u and each of these vertices. For
every uncorrupted edge (u, v), we report the empirically
observed pairwise probability puv , and for every corrupted
edge (u, v), we report the pairwise probability p(α,S)uv accord-

3since we corrupt only the cut edges, this is an effective corrup-
tion rate of γ



Rank Aggregation from Pairwise Comparisons with Adversarial Corruptions

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Corruption Rate γ

0.0

0.1

0.2

0.3

0.4

L 1
 e

rro
r i

n 
th

e 
es

tim
at

es

Perfect Data
ASR

HMM

LP Pruning

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Corruption Rate γ

Sampled Data
ASR

HMM

LP Pruning

Figure 4. (Synthetic data) L1 error in the recovered weights vs
corruption rate γ

ing to the adversarial vector w(α,S). We use this resulting
contaminated comparison graph as input to all algorithms.

4.3. Algorithm Details

We implement our algorithm 1 in Python, and use the default
LP solver in the cvxpy package to solve the LP described
in Figure 3. We compare the performance of our algorithm
against two standard algorithms for parameter estimation
in the BTL model: Hunters minorization-maximization al-
gorithm (Hunter, 2004) (abbr. HMM), and Accelerated
Spectral Ranking (Agarwal et al., 2018) (abbr. ASR).

4.4. Experimental Results

In our experiments, we vary γ in the range 5%-25% in
increments of 2.5%, and plot the average L1 error in the
returned weight vectors across 50 random trials. The results
observed for synthetic data essentially verify our theoreti-
cal guarantees: the error in the estimates returned by our
algorithm does not depend on the corruption rate up until
the corruption rate becomes too large, after which a few cor-
rupted edges pass through our filtering subroutine, whereas
for existing algorithms, the error monotonically increases
with increasing corruption rate. The results obtained for
real data provide compelling evidence for the practical ap-
plicability of our approach. Despite the possibility that the
observed pairwise preference probabilities in practice might
not adhere to the BTL model, our filtering subroutine is still
able to identify and eliminate corrupted comparisons, while
retaining enough of the uncorrupted comparisons to return
weight estimates that are very close to the estimates that
would have been received given purely uncontaminated data.
This strongly contrasts the performance of the existing non-
robust algorithms, which return significantly erroneous esti-
mates even for small corruption rates. The results are also
promising as they seem to suggest the applicability of our
linear programming based pruning approach for corruption
rates well beyond what we were able to prove theoretical
guarantees for.
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Figure 5. (Real data) L1 error in the recovered weights vs corrup-
tion rate γ

5. Conclusion and Discussion
We initiate the study of robustness in rank aggregation under
the BTL model by introducing a powerful adversarial con-
tamination model. Within this model, we characterize the
exact necessary and sufficient condition for structural iden-
tifiability of the true BTL weights in arbitrary comparison
graphs. For the family of Erdős-Rényi comparison graphs,
we prove a simpler necessary and sufficient condition for
identifiability. We also design a linear-programming based
recovery algorithm for Erdős-Rényi graphs, which for sparse
graphs, has nearly a quadratic runtime, and can tolerate a
corruption rate of O(log log n/ log n). For denser graphs, it
can tolerate a constant corruption rate albeit with a worse
runtime. Our work motivates several open problems. Firstly,
can we have an efficient recovery algorithm for sparse Erdős-
Rényi comparison graphs that improves upon the corruption
rate tolerable by our algorithm. Even more generally, can
we have a polynomial time recovery algorithm for arbitrary
comparison graphs that satisfy the sufficient condition for
identifiability, or are there intractability barriers precluding
either of these possibilities. Aside from these algorithmic
questions, this paper also opens the possibility of consid-
ering more restricted contamination models such as ones
with oblivious or semi-random adversaries, which could
potentially allow us to handle even higher corruption rates.
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