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Abstract— Classical mathematical models of information
sharing and updating in multi-agent networks use linear
operators. In the paradigmatic DeGroot model, for example,
agents update their states with linear combinations of their
neighbors’ current states. In prior work, an accelerated aver-
aging model employing the use of memory has been suggested
to accelerate convergence to a consensus state for undirected
networks. There, the DeGroot update on the current states is
followed by a linear combination with the previous states. We
propose a modification where the DeGroot update is applied
to the current and previous states and is then followed by a
linear combination step. We show that this simple modification
applied to undirected networks permits convergence even for
periodic networks. Further, it allows for faster convergence
than DeGroot and accelerated averaging models for suitable
networks and model parameters.

I. INTRODUCTION

Linear models for information sharing play a crucial
role in multi-agent systems and sensor networks. Among
these, distributed averaging algorithms have been intensively
studied as a way to reach global consensus with local
computations. One of the first such models was proposed
by DeGroot [1]. There, agents update their state by taking
the weighted average of their neighbours’ states at each time
step. Many variations have since accounted for real-world
phenomena (changing communication patterns or individu-
als’ stubbornness), and optimized convergence rates.

As a starting point for this paper, we consider an acceler-
ated averaging model first proposed by Muthukrishnan et
al. in [2]. Therein, authors suggest a modification of the
classic DeGroot scheme where agents update their states
by first taking a DeGroot update of the current states and
then performing a linear combination between this and their
previous states, as shown in Fig. 1a. In [2] they show that
this additional memory step allows for faster convergence in
networks where the original DeGroot model also converges.
In this paper, our modification of the Muthukrishnan et al.
averaging scheme involves the agents performing DeGroot
averaging on the current and previous states followed by
a linear combination step, as shown in Fig. 1b. Hereafter,
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Fig. 1: Representation of discrete-time averaging algorithms in a
two-dimensional state space (x1,x2). (a) In the accelerated averag-
ing model, a DeGroot update is performed on current state at k.
This is followed by a linear combination step to get the final state
at k + 1. (b) In MLA, we apply DeGroot update on the current
and past states. This is followed by a linear combination of the
intermediate states to obtain the final state at k+1.

we call this model the Memory of Local Averages (MLA)
model. Besides deriving convergence guarantees for this
modified scheme, our main objective is to show that this
simple modification leads to two important consequences:
First, we demonstrate conditions for undirected, connected
and periodic networks under which MLA achieves consensus
despite the DeGroot and the accelerated averaging models
failing to do so. Second, we give sufficient conditions under
which MLA achieves faster convergence than the DeGroot
model and the accelerated averaging algorithm.

Our work is part of a rich literature on opinion dynamics,
information sharing and consensus models. Besides classic
DeGroot dynamics, several modifications have been pro-
posed to include stubborn agents (e.g., [3], [4]) or dynamics
on random or state-dependent networks (e.g. in [5] [6])
among others. We refer to [7] and [8] for recent surveys.

Our work is most related to the literature that focuses on
capturing convergence rates while maintaining the original
DeGroot structure. In general, faster convergence can be
achieved either by tuning the network weights as suggested
e.g. in [9] [10] or by modifying the update dynamics as
suggested e.g. in [2]. Our work belongs to the latter class.
We note that whereas in [2] and our work, faster convergence
is obtained by introducing one step of memory, the use of a
prediction step has also been investigated (see [11], [12]).
Similar to these works, we retain linearity of the update
equation which permits for analysis using techniques of
linear algebra and Markov chains. We conclude by noting
that significant work focused also on deriving finite-time con-
sensus schemes [13], [14], [15]. Such schemes require non-
linear updates, which may carry additional computational
burden as compared to their linear counterparts.



II. THE MLA MODEL

A. Model formulation

Let n ≥ 2 agents be connected in a network with corre-
sponding weighted adjacency matrix, A = [ai j]n×n. Here, ai j
denotes the weight that agent i assigns to agent j. The state
of each agent, i, at time step, k ∈ Z≥0, is denoted by xi(k).
Throughout the paper, we use the following assumption.

Assumption 1: The weighted adjacency matrix An×n is
non-negative i.e. ai j ≥ 0 ∀ i, j ∈ {1, . . . ,n} and row-stochastic
i.e. ∑

n
j=1 ai j = 1 ∀ i ∈ {1, . . . ,n}.

In the DeGroot model, each agent updates its state with the
weighted average of the current states of its local neighbors,

xi,DG(k+1) =
n

∑
j=1

ai jx j(k),

⇒ xDG(k+1) = Ax(k), (1)

where x(k) = [x1(k), . . . ,xn(k)]T ∈Rn.
In contrast, the MLA model is an averaging algorithm with

memory which takes into account each agent’s current and
previous states. In particular, given the current states of the
agents x(k), and the previous states x(k−1), we first apply
Degroot model to get intermediate states,

z(k) = Ax(k) and z(k−1) = Ax(k−1).

We then obtain the final state x(k + 1) by taking a linear
combination of z(k) and z(k−1) with weight γ

x(k+1) = γz(k)+(1− γ)z(k−1)
⇒ x(k+1) = γAx(k)+(1− γ)Ax(k−1), (2)

where the initial conditions are x(0) = x(−1). In MLA, each
agent only needs to store the local average at the previous
time step, z(k− 1), instead of the individual states of all
its neighbors. Note that for γ = 1, Eq. (2) reduces to the
DeGroot model.

B. Augmented system

To study convergence properties of the system given by
Eq. 2 we define an augmented state, x̂(k) ∈ R2n and an
augmented iteration matrix, Â ∈R2n×2n, as follows

x̂(k)≡

[
x(k)

x(k−1)

]
, (3)

⇒ x̂(k+1) =

[
γA (1− γ)A

In×n 0n×n

]
x̂(k)≡ Âx̂(k). (4)

Spectral properties of Â in relation to A are discussed in
the following lemma.

Lemma 1: If (λ ,v) denotes an eigenpair of A, then the
eigenpairs of Â are (λ̂±, v̂±) where,

λ̂
2− γλ λ̂ +(γ−1)λ = 0, (5)

⇒ λ̂± =
γλ ±

√
γ2λ 2−4(γ−1)λ

2
, (6)

v̂± =

[
λ̂±v

v

]
. (7)

Remark: Eqs. (6) and (7) are derived from an eigenanalysis
of Â as given in the companion arXiv paper [16].

III. CONVERGENCE GUARANTEES AND CONSENSUS
VALUE

A. Convergence guarantees for connected undirected net-
works

Convergence properties of (4) (and thus (2)) can be
connected to spectral properties of Â as stated in Lemma 2.

Lemma 2 (Theorem 2.7 in [7]): A square matrix, B ∈
Rn×n, is semi-convergent and not convergent i.e. limk→∞ Bk

exists different from 0n×n if and only if (i) 1 is an eigenvalue
of B and is semi-simple (ii) all other eigenvalues of B have
magnitude strictly less than 1.

Assumption 2: The weighted adjacency matrix A is sym-
metric i.e. ai j = a ji ∀ i, j ∈ {1,2, . . . ,n} and irreducible i.e.
∑

n−1
k=0 Ak > 0.
Remark: Assumption 2 is equivalent to the network being

undirected and connected. The spectrum of A is the set of
all eigenvalues of A i.e. spec(A) ≡ {λ1,λ2, . . . ,λn} with the
condition λ1≥ λ2≥ . . .≥ λn and the corresponding eigenvec-
tors to be {v1,v2, . . . ,vn}. By Perron-Frobenius theorem for
irreducible matrices, under Assumptions 1 and 2, (i) λ1 = 1
is a simple eigenvalue of A, (ii) |λi| ≤ 1 ∀ i ∈ {2,3, . . . ,n}.

Theorem 3: Suppose Assumptions 1 and 2 hold. Then Â
is semi-convergent if and only if:

(i) γ ∈ (0,2),
(ii) 2γλn−λn +1 > 0,

where λn is the smallest eigenvalue of A.
Proof: We proceed in three steps:

(1) Â is semi-convergent ⇒ γ ∈ (0,2)
We prove this by contradiction. Since λ1 = 1 is an eigen-

value of A, from Lemma 1, {1,γ − 1} are eigenvalues for
Â with corresponding eigenvectors {[v1;v1], [(γ−1)v1;v1]}.
Now if γ ∈R\ (0,2] then Â has an eigenvalue λ̂1− = γ−1 ∈
R\ (−1,1], which is absurd from Lemma 2 since Â is semi-
convergent.

If γ = 2, Â has an eigenvalue λ̂ = 1 with algebraic
multiplicity 2 (from Lemma 1). The associated eigenspace
is E1 = {v̂| Âv̂ = v̂}. Note that for γ = 2,

Âv̂ =

[
2A −A

In×n 0n×n

][
v̂1

v̂2

]
=

[
v̂1

v̂2

]
, (8)

which implies v̂1 = v̂2 = v. Thus, 2Av̂1−Av̂2 = Av = v̂1 = v.
Here v is an eigenvector of A. Since by assumption, the
geometric multiplicity of λ = 1 in A is 1, the geometric
multiplicity of λ̂ = 1 in Â is also 1. This is absurd since
Â semi-convergent implies λ̂ = 1 has same algebraic and
geometric multiplicity.

(2) Â is semi-convergent ⇒ 2γλn−λn +1 > 0
By Eq. (5) spec(Â) = {λ̂i±| λi ∈ spec(A)}. Since Â is

semi-convergent |λ̂i±| ≤ 1 ∀ i. Moreover, since λ̂ = 1 has
geometric multiplicity 1 and Â is semi-convergent, it must
be that λ̂1 has geometric multiplicity 1. Given that λ̂1+ = 1,
we conclude that |λ̂i±|< 1 ∀ i ∈ {2,3, . . . ,n}.



Lemma 4 (Lemma 8.5 in [17]): The polynomial z2+az+
b = 0, where a,b∈C, has roots |z1,2|< 1 if and only if roots
s1 and s2 of (1+a+b)s2 +2(1−b)s+b−a+1 = 0 satisfy
Re(s1)< 0 and Re(s2)< 0.

Applying Lemma 4 to Eq. (5), |λ̂i±|< 1 if and only if the
following Eq. (9) has roots with strictly negative real parts.

(1− γλi +(γ−1)λi)s2 +2(1− (γ−1)λi)s+ . . .

. . .+((γ−1)λi + γλi +1) = 0,

⇒ (1−λi)s2 +2(1− γλi +λi)s+(2γλi−λi +1) = 0, (9)

For fixed i∈{2,3, . . . ,n}, let the roots of Eq. (9) be s1,s2 ∈
C. We have the sum of roots of Eq. (9),

s1 + s2 =
−2(1− γλi +λi)

1−λi
∈R. (10)

Since the sum of roots is real, s1 and s2 are of the form,
s1 = a1 + bi and s2 = a2− bi, where a1,a2,b ∈ R. We then
note that,

a1 < 0, a2 < 0⇔ c1 : a1 +a2 < 0, c2 : a1a2 > 0. (11)

We study conditions c1 and c2 independently. Note that for
condition c1,

a1 +a2 = s1 + s2 =
−2(1− (γ−1)λi)

1−λi
< 0⇔ (γ−1)λi < 1.

(12)

Since, as proved above, semi-convergence implies γ ∈ (0,2)
and |λi| ≤ 1, condition c1 is automatically satisfied ∀ i ∈
{2,3, . . . ,n}. For condition c2, when b = 0, using the product
of roots of Eq. (9), we can write,

a1a2 = s1s2 =
2γλi−λi +1

1−λi
> 0,

⇔ 2γλi−λi +1 > 0, ∀ i ∈ {2, . . . ,n}.

Specifically, for λn, we get,

2γλn−λn +1 > 0. (13)

When b 6= 0, a1 = a2 ⇒ a1a2 = a2
1 ≥ 0. Since, a1 +a2 < 0

from condition c1, a1 6= 0. Hence, a1a2 > 0.
(3) The conditions (i) γ ∈ (0,2) and (ii) 2γλn−λn+1 > 0

⇒ Â is semi-convergent.
Recall that from Lemma 1, the eigenvalue λ of A gets

mapped to eigenvalues λ̂± in Â. Then λ = 1 is mapped to
{1,γ−1}, where γ ∈ (0,2).

We next show that all the other eigenvalues of Â are
mapped inside a unit disk, which is enough to prove that
Â is semi-convergent by Lemma 2. Again, applying Lemma
4 to Eq. (5), we know that λ̂i± lies within the unit-disk if
and only if the roots of Eq. (9) lie in the open left half plane.
As before, the roots of Eq. (9) are in the left half plane if
and only if,

c1 :−2(1− (γ−1)λi)< 0, (14)
c2 : (2γ−1)λi +1 > 0. (15)

Recall that λi ∈ [−1,1) for i ∈ {2, . . . ,n}, hence for γ ∈
(0,2), criterion c1 holds. For proving c2, consider two cases:
(a) γ ∈ (0,1) and (b) γ ∈ [1,2).

For case (a), |2γ−1|< 1, and since |λi| ≤ 1, the condition
(2γ − 1)λi + 1 > 0, holds ∀ i ∈ {2, . . . ,n}. For case (b),
2γ − 1 > 0 and f (λi) ≡ (2γ − 1)λi + 1 is a monotonically
increasing function. Since, λi ≥ λn ∀ i ∈ {2, . . . ,n} and
f (λn) > 0, we infer that f (λi) = (2γ − 1)λi + 1 ≥ f (λn) >
0 ∀ i ∈ {2, . . . ,n}.

Overall, the eigenvalues of Â are {1,γ − 1, λ̂i±}, with
λ̂1+ = 1 simple and (γ − 1), λ̂i± inside the unit disk ∀ i ∈
{2, . . . ,n}. From Lemma 2 Â is semi-convergent.

B. Special case of periodic networks

Note that Theorem 3 does not require the network to
be aperiodic. If the network is periodic, then λn = −1 and
convergence can be guaranteed by Theorem 3 for γ ∈ (0,1).
This is in sharp contrast with the DeGroot model where,
if the network is periodic, we can always find an initial
condition that causes persistent oscillations.

For comparison, we next discuss the accelerated averaging
model by Muthukrishnan et al. [2]. Similar to our model, it
also takes into account agents’ current and previous states,
however the update equation in [2] is given by,

x(k+1) = βAx(k)+(1−β )x(k−1), (16)

where k ∈ Z≥0,β ∈R and initial states x(0) = x(−1) = x0.
Lemma 5: Under Assumptions 1 and 2, if the network

associated with A is periodic, there exist initial conditions
x0 s.t. the accelerated averaging model given by Eq. (16)
does not converge.

Proof: The augmented iteration matrix for the model
in Eq. (16) is Aβ ∈R2n×2n,

Aβ =

[
βA (1−β )In×n

In×n 0n×n

]
∈R2n×2n. (17)

Denote the eigenvalues of Aβ by µi±, for i ∈ {1,2, . . . ,n}.
As illustrated by Eq. (11.13) in [7], µi± can be obtained by
performing eigenanalysis on Aβ :

µi± =
βλi±

√
β 2λ 2

i −4β +4

2
. (18)

The eigenvalues induced by λn =−1 are µn±= {−1, 1−β}.
Thus, by Lemma 2, the model does not converge; selecting
an x0 along the eigenvector corresponding to −1 leads to
persistent oscillations.

We next numerically compare convergence properties of
the MLA model with the DeGroot model and the accelerated
averaging model. To do so, we consider a periodic ring
network with four nodes, shown in Fig. 2, and numerically
simulate the system starting from 1000 randomly chosen
initial conditions and plot the time series of the envelope
of oscillations relative to the mean. It can be seen that for
the chosen undirected, symmetric and periodic network, the
DeGroot model as well as the accelerated averaging model
oscillate whereas the MLA model reaches a consensus steady
state.
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Fig. 2: Comparison of convergence in three averaging models for
a periodic network. The plot shows the envelope enclosed between
the maximum and minimum deviation from the mean state and is
simulated using 1000 randomly chosen initial conditions. In contrast
to others, the MLA model converges to consensus.

C. Value of convergence

Lemma 6: Under Assumptions 1 and 2, if the convergence
criteria given in Theorem 3 are satisfied, the MLA model
given by Eq. (2), with initial conditions x̂(0) = [x(0);x(0)],
converges to an average consensus value given by 1T

n x(0)/n.
Proof: The final value of the states, x̂final, is,

x̂final = lim
k→∞

x̂(k) = lim
k→∞

Âkx̂(0). (19)

Since A has a simple eigenvalue at λ1 = 1 and Â is
semi-convergent, Eq. (5) implies that λ̂1 = 1 is a simple
eigenvalue for Â (see proof of Theorem 3). Using the Jordan
decomposition, we can write,

lim
k→∞

Âk = lim
k→∞

T

[
1 01×2n−1

02n−1×1 B2n−1×2n−1

]k

T−1, (20)

where, T = [v̂1±, . . . , v̂n±], T−1 = [ŵT
1±; . . . ; ŵT

n±], and
ˆvi±, ŵi± denote the right and left eigenvectors of Â ∀ i ∈
{1, . . . ,n}, such that ŵT

i±v̂i± = 1, ∀ i ∈ {1,2, . . . ,n}. B
consists of Jordan blocks corresponding to eigenvalues, λ̂i±,
satisfying |λ̂i±| < 1, ∀ i ∈ {2,3 . . . ,n} and |λi−| < 1. Thus,
we get,

lim
k→∞

Âk = lim
k→∞

T

[
1 01×2n−1

02n−1×1 02n−1×2n−1

]
T−1. (21)

Combining Eqs. (19) and (21), we get:

x̂final = v̂1+ŵT
1+x̂(0) = (ŵT

1+x̂(0))v̂1+. (22)

Since Â is a row-stochastic matrix, v̂1+ = 12n, proving that
the agents reach consensus. Define ŵT

1+ = [wT
1,1,w

T
1,2] . Thus,

we get the following eigenvalue problem:[
wT

1, 1,w
T
1, 2
][ γA (1− γ)A

In×n 0n×n

]
= 1

[
wT

1, 1,w
T
1, 2
]
. (23)

Solving this system of equations yields:

wT
1, 1A = wT

1, 1. (24)

Thus, w1, 1 is a scaled dominant right eigenvector of A i.e.
w1, 1 = ζ w1 for some ζ ∈ R \ {0}. Combining this with

Eq. (23) yields w1, 2 = (1− γ)w1, 1 = ζ (1− γ)w1. Addition-
ally, by imposing the constraint ŵT

1 12n×1 = 1, we get:

ŵT
1 =

[(
1

2−γ

)
wT

1 ,
(

1−γ

2−γ

)
wT

1

]
. (25)

Hence, the final consensus states attained by agents is:

x̂final =
[(

1
2−γ

)
wT

1 ,
(

1−γ

2−γ

)
wT

1

] [x(0)
x(0)

]
12n = wT

1 x(0)12n.

(26)

Since A is symmetric, w1 = (1/n)1n and MLA reaches a
consensus to the average of the initial states of the agents.

IV. AN ACCELERATED ROUTE TO CONSENSUS

In the previous section we showed that under certain
conditions the MLA algorithm converges while the models
by DeGroot and Muthukrishnan et al. do not. In this section
we show networks and model parameters for which all
three models converge but the MLA algorithm leads to
faster convergence. To this end we consider a refinement of
Assumption 2 that guarantees convergence for the DeGroot
and the accelerated averaging models, as given below.

Assumption 3: The weighted adjacency matrix A is sym-
metric and primitive, that is ∃ k ∈N such that Ak is positive.

The essential spectral radius of a row-stochastic matrix A,
denoted by ρess(A), is defined as follows [7]

ρess(A)≡

{
0, if spec(A) = {1,1, . . . ,1},
max{|λ | | λ ∈ spec(A)\{1}}, otherwise.

The essential spectral radius determines the rate of conver-
gence for linear discrete models. The lower the essential
spectral radius the higher the rate of convergence [7].

A. Comparison with the DeGroot model

Lemma 7: Under Assumptions 1 and 3, and if λ2 +λn 6=
0, ∃ γ ∈R such that ρess(Â)< ρess(A). This implies that the
MLA model given by Eq. (4) converges to consensus faster
than the DeGroot model given by Eq. (1).

Proof: Due to Perron-Frobenius theorem for primitive
matrices, (i) λ1 = 1 is a simple eigenvalue of A, (ii) |λi| <
1 ∀ i∈ {2,3, . . . ,n}, with the convention 1 = λ1 > λ2 ≥ . . .≥
λn >−1. For γ = 1+∆ such that ∆≈ 0, the discriminant in
Eq. (6) is approximately equal to λ 2, and is non-negative.
Thus, all eigenvalues of Â are real i.e. λ̂i± ∈ R ∀ i ∈
{1,2, ..,n}. Additionally, for γ ≈ 1, the convergence criteria
given by Theorem 3 are satisfied i.e. A is row-stochastic,
symmetric, irreducible, γ ∈ (0,2), and 2γλn − λn + 1 > 0.
Thus Â is semi-convergent and reaches consensus. From
Eq. (6), we get for λ 6= 0,

λ̂± =
(1+∆)λ ±|λ |

√
1+2∆+∆2− 4∆

λ

2
Since ∆2 � 1, we ignore this term and use the binomial
approximation to get,

λ̂± ≈
(1+∆)λ ±|λ |

(
1+∆− 2∆

λ

)
2

. (27)



We then have,

λ̂i± ≈ {λi +∆(λi−1), ∆} . (28)

Since λ2 +λn 6= 0 there exists a unique eigenvalue λess such
that ρess(A) = |λess| ∈ (0,1). From Eq. (28) for ∆ ≈ 0, we
have ρess(Â) = |λess +∆(λess−1)|.

λess ∈ (0,1)⇒ ∃ ∆ > 0 s.t. 0 < λess +∆(λess−1)< λess,

λess ∈ (−1,0)⇒ ∃ ∆ < 0 s.t. 0 > λess +∆(λess−1)> λess.

Overall, ∃ ∆ ∈R s.t. ρess(Â)< ρess(A). (29)

The technical assumption λ2 +λn 6= 0 is generic and besides
pathological cases, holds for almost all networks.

B. Comparison with the accelerated averaging model

Theorem 8: Under Assumptions 1, 3, if λn < 0 and λ2 ≤
|λn|/3, for γ∗ = 2

ρess(A)

(√
1+ρess(A)−1

)
, the essential

spectral radius of Â in the MLA model given by Eq. (4)
is ρess(Â) =

√
1+ρess(A) − 1. In this case, the system

converges to consensus faster than both the DeGroot model
and the accelerated averaging model for any value of the
parameter β .

Proof: We will prove this in two parts: first, we show
that γ∗ satisfies the convergence criteria in Theorem 3.
Second, we compute the convergence rate of the MLA
model.

Part 1: Under the given assumption, the essential spectral
radius of A, denoted by ρess(A), is given by,

ρess(A) =−λn ∈ (0,1). (30)

We need to verify that γ∗ ∈ (0,2).√
1+ρess(A)−1 > 0⇒ γ

∗ =
2

ρess(A)

(√
1+ρess(A)−1

)
> 0

(31)

Additionally,

γ
∗ =

2
ρess(A)

(√
1+ρess(A)−1

)
< 1,

⇔ 1+ρess(A)< 1+
ρess(A)2

4
+ρess(A),

⇔ ρess(A)2 > 0. (32)

Hence γ∗ ∈ (0,1)⊂ (0,2)
To show that γ∗ satisfies Theorem 3 (ii) we start noting

that γ∗ ∈ (0,1), as proven before and ρess(A)> 0, hence

0 < γ
∗ < 1⇒ 2ρess(A)> 2ρess(A)(1− γ

∗)> 0,
⇒ ρess(A)+1 > 2ρess(A)(1− γ

∗)−ρess(A)+1 > .. .

. . . >−ρess(A)+1 > 0. (33)

Thus, λn =−ρess(A)⇒ 2γ∗λn−λn +1 > 0, as desired for
convergence. Note that the value of γ∗ is obtained by setting
the discriminant in Eq. (6) to zero i.e. D(λn,γ

∗) = 0. From
this expression we also get,

λn =
4(γ∗−1)

γ∗2
, since λn < 0. (34)

An explanation for setting D(λn,γ
∗) = 0 is given in the

companion arXiv paper [16].
Part 2: For the convergence rate, we evaluate the essential

spectral radius of Â, denoted by ρess(Â), corresponding to
γ = γ∗. Note that for γ∗ ∈ (0,1),

D(λn,γ
∗) = 0⇒

{
D(λi,γ

∗)≤ 0 ∀ λi ∈ [λn,0],
D(λi,γ

∗)> 0 ∀ λi ∈ (0,1].
(35)

We examine the ordering in modulus of eigenvalues of Â.
For γ = γ∗, and for some a and b, consider two scenarios: (i)
1≥ λa > λb > 0 (ii) λn ≤ λa < λb ≤ 0. In (i), the expression
for λ̂+, given in Eq. (6) is monotonically increasing which
implies λ̂a+ > λ̂b+ > 0. In (ii), the modulus of complex roots
of Eq. (5), is |(γ∗− 1)λ | which implies |λ̂a±| > |λ̂b±| > 0.
Thus, for the essential spectral radius of Â, we then have,

ρess(Â) = max{|λ̂1−|, |λ̂n±|, |λ̂2+|}, (36)

where |λ̂1−| = 1− γ∗, |λ̂n±| =
√

(γ∗−1)λn = −γ∗λn/2 and

|λ̂2+| =
(

γ∗λ2 +
√

γ∗2λ 2
2 −4(γ∗−1)λ2

)
/2. We show that

|λ̂n±| > |λ̂1−|. In fact, for γ∗ ∈ (0,1) and using the value
of λn from Eq. (34), we arrive at the following statements,√

(γ∗−1)λn > |γ∗−1|

⇔

√
(γ∗−1)

(
4(γ∗−1)

γ∗2

)
> |γ∗−1| ⇔ −2 < γ

∗ < 2.

which clearly holds ∀ γ∗ ∈ (0,1). Thus, ρess(Â) =
max{|λ̂n±|, |λ̂2+|}. We next show that ρess(Â) = |λ̂n±| if and
only if

|λ̂n±| ≥ |λ̂2+|,

⇔−γ∗λn

2
≥

γ∗λ2 +
√

γ∗2λ 2
2 −4(γ∗−1)λ2

2
,

⇔−λn−λ2 ≥
√

λ 2
2 −λnλ2,

⇔ c1 : λn +λ2 ≤ 0 and c2 : |λn +λ2| ≥
√

λ 2
2 −λnλ2. (37)

Condition c1 holds for λn < 0 and |λn| ≥ |λ2|. Condition c2
in Eq. (37) can be further simplified as shown below:

c2⇔ (λn +λ2)
2 ≥ λ

2
2 −λnλ2,

⇔ λn(λn +3λ2)≥ 0,
⇔ λn ≤−3λ2, since λn < 0,

⇔ λ2 ≤
|λn|

3
. (38)

Overall, the expression for the spectral radius of Â is then
given by,

ρess(Â) = |λ̂n±|=−γ
∗
λn/2. (39)

Substituting Eq. (30) and γ∗ from Theorem 8 in Eq. (39),
we get:

ρess(Â) =
√

1+ρess(A)−1. (40)



The optimized essential spectral radius of the accelerated
averaging model given by Eq. (16) is given by [7],

min
β∈(0,2)

ρess(Aβ ) = ρess(Aβ ∗) =
ρess(A)

1+
√

1−ρ2
ess(A)

< ρess(A),

(41)

for ρess(A) ∈ (0,1). Using further algebraic manipulations it
can then be shown that, for ρess(A) ∈ (0,1), MLA converges
faster than the accelerated averaging model and DeGroot
since,

ρess(Â) =
√

1+ρess(A)−1 < ρess(Aβ ∗)< ρess(A). (42)
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Fig. 3: Comparison of essential spectral radii and the optimal rates
of convergence of the three models of network dynamics; DeGroot
model, accelerated averaging model, and the MLA model under the
criteria given in Theorem 8. MLA model yields faster convergence.

Eq. (42) is plotted in Fig. 3. It can be noted that for
a network that satisfies the criteria given in Theorem 8
with an essential spectral radius close to unity, the MLA
model reaches consensus significantly faster than the classic
DeGroot model and the accelerated averaging model. Good
candidates for such matrices are perturbations of a periodic
network. One such perturbation is shown in Fig. 4 which is
obtained by adding self-loops of low weight in the 4-node
ring network. The corresponding time series for the three
models with optimized parameters are also shown.

V. CONCLUSION

We propose a simple modification to the accelerated
averaging scheme introduced in [2]. In the proposed model
(MLA), we apply the DeGroot update to the the current
and past states of neighboring nodes followed by a linear
combination step. The MLA model is applicable to networks
that are symmetric, primitive and row-stochastic. We find
the optimal model parameter, γ∗, for which MLA converges
faster than both the DeGroot and accelerated averaging algo-
rithms under certain network constraints. Another important
contribution is that unlike the other two algorithms, MLA
converges even for periodic networks. Future work could
involve extending the results presented to a larger class of
matrices such as asymmetric matrices.
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Fig. 4: Comparison of rates of convergence in three averaging
models for a ring network with self-loops. The plot shows the
envelope enclosed between the maximum and minimum deviation
from the mean state and is simulated using 1000 randomly chosen
initial conditions. MLA converges faster.
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