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Abstract—Deep learning models have demonstrated superior
performance in various healthcare applications. However, the
major limitation of these deep models is usually the lack of high-
quality training data due to the private and sensitive nature
of this field. In this study, we propose a novel textual data
augmentation method to generate artificial clinical notes in
patients’ Electronic Health Records (EHRs) that can be used
as additional training data for patient outcomes prediction.
Essentially, we fine-tune the generative language model GPT-2
to synthesize labeled text with the original training data. More
specifically, We propose a teacher-student framework where we
first pre-train a teacher model on the original data, and then
train a student model on the GPT-augmented data under the
guidance of the teacher. We evaluate our method on the most
common patient outcome, i.e., the 30-day readmission rate. The
experimental results show that deep models can improve their
predictive performance with the augmented data, indicating the
effectiveness of the proposed architecture.

Index Terms—data augmentation, GPT-2, readmission predic-
tion, EHR

I. INTRODUCTION

Patient outcomes, including patients’ readmission risk, mor-
tality rate, and length of stay (LOS), have been examined as
important measurements for evaluating the quality of hospital
care [1]. As the most commonly reported health outcome in
the United States, readmissions are estimated to cost Medicare
$15 billion annually, of which $12 billion is potentially
preventable, according to the Medicare Payment Advisory
Committee [2]. This highlights the importance of identifying
patients at high risk of readmission.

Over the past few years, there has been a surge of interest
in making predictions on patient outcomes using deep learn-
ing techniques, such as readmission prediction [3], mortality
prediction [4], length of stay prediction [5], etc. Most of
these studies heavily rely on feature engineering, where they
select statistically significant features from patients’ Electronic
Health Records (EHRs), and feed them into deep models like
a LSTM-CNN network [3].

A common theme among these studies is that they all rely on
numerical and time-series features of patients, while neglecting
the clinical notes of EHRs which prove to be informative in
such predictive tasks. This motivates recent studies to cast
this task as text classification, where the contextual content of
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EHRs are leveraged to make predictions. For example, Lu et
al. propose a graph-based method that converts clinical notes
to multi-view graphs and use them to predict ICU patients’
30-day unplanned readmission risk, surpassing state-of-the-art
numerical-based methods [6].

However, in real-world downstream applications, deep
learning models often suffer from data limitation as they
require large amounts of data for effective training. The
situation is even worse in the biomedical domain due to the
private and sensitive nature of this field. Despite data shortage,
data imbalance is also an issue for patient outcomes prediction,
e.g., only few patients are readmitted post-discharge. These
data issues make patient outcomes prediction more challenging
than general predictive tasks.

A natural solution to these problems is data augmentation,
where new data is synthesized based on existing training data.
This strategy has been actively applied in the field of computer
vision, where researchers alter the training images to create a
larger dataset by introducing random transformations such as
translation, mirroring, rotation, and more [7]. However, these
augmentation strategies that are successful in computer vision
cannot be easily applied to textual data due to the inherent
complexity of natural language [8], where the grammatical
or semantic consistency of text could hardly be preserved
after transformation [9]. As to the specific task of readmission
prediction, such issues, e.g., data imbalance, are either ignored
[10] or processed with sampling techniques [11], such as
SMOTE [12] or ROSE [13] that do not cope with textual data.

Recently, natural language generation (NLG) techniques
have been leveraged as a new means for textual data augmen-
tation. With the development of large pre-trained generative
language models like GPT-2 [14], researchers are able to gen-
erate high-quality and semantic-consistent textual data while
preserving the annotated labels. This augmentation strategy
has been applied in various NLP downstream tasks, such as
event detection [15], relation extraction [16], commonsense
reasoning [17], etc. However, in the biomedical field, leverag-
ing GPT-2 to facilitate clinically-relevant predictive models is
under-explored.

One main challenge of using GPT-2 for textual data aug-
mentation is noise control. Existing studies typically address



this issue in a isolated way, where they introduce heuristic
filtering mechanisms to eliminate low-quality samples [9] and
feed the rest to the downstream model. However, such filtering
strategies are prone to coverage errors and thus inevitably
make incorrect judgements on the generated samples [15],
which would cause false inclusion of good samples or false ex-
clusion of bad samples. Moreover, the combined data samples
are treated equally by the to-be-trained downstream model,
and this would negatively impact the model as a consequence.

To overcome this issue, we propose a conceptually different

strategy where all the generated samples are involved during
training. We preserve all the generated samples in the first
place, and then introduce a teacher-student framework to
regularize the representation learning of the generated samples
with knowledge transferred from the original data. More
specifically, we pre-train a teacher model on the original
data and then train a student model on the combined data
adaptively under the guidance of the teacher. The goal is to
transfer the knowledge learned in the teacher model into the
student model by enforcing a knowledge consistency between
them, and that eventually the student model can be improved.
We evaluate the framework with the state-of-the-art textual-
based readmission prediction model [6], the results of which
indicates the effectiveness of the method.

The contributions of this work can be summarized as

follows:

e We propose a novel architecture that leverages GPT-2
for Medical text Augmentation (MedAug) in the task
of patient outcomes prediction. Essentially, we introduce
a teacher-student framework that aims to control the
noise of the generated text by enforcing a knowledge
consistency across the original and artificial texts.

« Taking the readmission prediction task as a case study, we
specifically investigate the performance of MedAug with
the state-of-the-art readmission prediction model as well
as a baseline model. Extensive experiments demonstrate
that both models can improve their performance with
the augmented data, indicating the effectiveness of the
proposed architecture.

II. METHODOLOGY
A. Notations

In this study, we focus on textual-based readmission predic-
tion models where the prediction task is cast as a supervised
binary text classification problem. We refer to the original
training dataset as Dipain = {(z1,¥1), (T2,Y2)s -, (Tn,Yn)}
where x; is a clinical note and y; € {0,1} indicates whether
the patient is readmitted or not. Note that D,,.,;, is imbalanced
where negative samples are 3x more than the positive ones, as
only few patients are readmitted post-discharge. We similarly
denote the test set by D;.s; and the validation set by D,qii4-
which is generated by the fine-tuned GPT-2 model Gyyeq. We
also combine the original and generated training data together
to create a large training dataset D.ompined = Dirain U
Dgynthetic. Finally, we refer to the prediction method as M.

Algorithm 1: MedAug

Inpu‘:: Dtrairu g, M
OUtPUt: Mstudent
1 Fine-tune G on Dy,.q;p to obtain Giyned
2 Use Giunea to generate Dgypninetic and combine it with
Dtrain to obtain Dcombined
3 Pre-train a teacher model Mcqcher ON Diygin
4 Train the student model M iudent ON Deompined Under
the guidance of Mycacher
5 Return Mstudent

B. Data Generation

We fine-tune the GPT-2 model G on the original training
data Dy, so that it can synthesize reasonable textual data
that can be used for the training of M. To preserve the class
information, we prepend the class label y; to each note in
the training data, i.e., y;SEPx;EOS, where SEP and EOS are
the separation and ending token, respectively. We then fine-
tune GPT-2 on the processed training data with the objective
of predicting the next token, the same way it was pre-trained
[14]. The fine-tuned model is regarded as Giyned-

For generating new data, we use the class label along with
a short context as the prompt to Giyned, 1.€., prompt =
y1 SEPw; w2 where the first two tokens are included as context,
as suggested in [9]. Since in our case the negative samples are
3x more than the positive ones, we only focus on generating
positive samples to fulfill the gap, i.e., only the positive label
y1 is used for generation. We denote the generated training
data by Dsynthetic~

C. Data Integration

As mentioned in the introduction, noise control is one of the
main challenges for textual data augmentation. In this work,
we propose a teacher-student framework for data integration
so that all the generated samples are included for training.
We first pre-train a teacher prediction model Myegcher ON
Dyyqin to capture the inherent knowledge of the original clean
training data. Then we train the student model My gen: ON
the combined data D ompined in @ way that the teacher’s
knowledge can be used to guide the student learning. To
achieve this, we aim to enforce a knowledge consistency
between the student and the teacher, by incorporating a KL
divergence penalty to push the representations learned in the
student model close to that in the teacher. Essentially, we seek
to jointly minimize the KL divergence between the predicted
label probability distribution of the student and the teacher,
along with the original training objective of the student, i.e.,
L = Lgtudent + TLK - It’s also worth mentioning that in this
study we use the KL divergence to control noise in the labeled
data generated by GPT-2, which is different from knowledge
distillation on unlabeled data [18]. The architecture is defined
in Algorithm 1.



III. EXPERIMENTS

In this section, we evaluate the proposed framework on the
task of ICU patients readmission prediction where we aim to
show the effectiveness of MedAug. Essentially, we take as
input the clinical note of patients’ EHRs, and predict whether
or not the patient will be readmitted within 30 days after
discharge or transfer.

A. Dataset

The experiment is conducted based on the MIMIC-III
Critical Care (Medical Information Mart for Intensive Care III)
Database, which is a large, freely-available database composed
of de-identified EHR data [19]. Following prior work [20],
we extract the Discharge Summaries from EHRs as
the data. For a fair comparison, we use the same data split
with the baseline [6] where 48,393 generated documents
are split into training (80%), validation (10%), and testing
(10%). Specifically, the original training set Dy,q;, consists
of 7555 positive samples and 30247 negative samples which
are denoted by Dyy4in,1 and Dypqin o, Tespectively.

B. Evaluation Metrics

We follow the prior work [6] and use the area under the
receiver operating characteristics curve (AUROC), the area
under the precision recall curve (AUPRC), and the recall at
precision of 80% (RP80) for evaluation.

C. Prediction Models

We consider the following two prediction models for eval-
uation in this experiment. We evaluate with two prediction
models to investigate how MedAug performs when equipped
with a base model and an advanced model.

o ClinicalBERT. ClinicalBERT is a domain-specific BERT
variant initialized from BioBERT v1.0 [21] and pre-
trained on MIMIC notes [22]. In this study, we add a
linear classification head on top of it and use it as a
baseline.

o MedText. MedText is a textual-based readmission pre-
diction model and reports state-of-the-art performance on
this task [6].

D. Augmentation Baselines
We consider two augmentation baselines for comparison.

o base. The base strategy is a baseline that all generated
samples are included while no noise control is applied.

« LAMBADA. LAMBADA is an augmentation method
specified for text classification [9]. Basically, they pre-
train a classifier on the clean data and use it to select
confident samples.

E. Results

Table I shows the test performance of the two readmission
prediction models, along with three augmentation strategies.
We observe that without controlling the noise, i.e., base, both
models demonstrate inferior performance, indicating the non-
negligible level of noise in the generated samples. On the

TABLE I: Test performance on 30-day unplanned ICU patient
readmission prediction.

Method AUROC AUPRC RPS80
Clinical BERT 0.782 0.549 0.201
ClinicalBERT-base 0.779 0.550 0.221
Clinical BERT-LAMBADA 0.782 0.543 0.196
Clinical BERT-MedAug 0.791 0.565 0.234
MedText 0.823 0.632 0.319
MedText-base 0.803 0.599 0.290
MedText-LAMBADA 0.806 0.604 0.266
MedText-MedAug 0.822 0.633 0.328

TABLE II: Influence of |Dyyninetic| by MedAug.

|Daymtnetic| Method AUROC AUPRC RPS80
3k ClinicalBERT  0.777 0.550  0.220
9k ClinicalBERT  0.784 0.567  0.246
12k ClinicalBERT  0.784 0.569  0.245
24k ClinicalBERT  0.783 0.566  0.251
3k MedText 0.812 0621 0329
9k MedText 0.811 0623 0337
12k MedText 0.806 0611 0311
24k MedText 0.809 0618 0331

other hand, with MedAug, both models demonstrate better
performance, and the improvement is significant comparing
with the other two baselines, indicating the effectiveness of
this framework.

IV. ANALYSIS

In this section, we investigate three potential issues that
might have influenced the performance of MedAug, i.e., the
number of synthesized samples |Dsymhen~c|, the fine-tuning
and generation strategy for GPT-2, and the version of GPT-2.

A. Number of Synthesized Samples

Table II shows the validation performance of different
|Dsynihetic|, demonstrating the influence of the size of the
synthetic training set. With the increasing of synthesized
samples, the general performance appears to have reached a
peak and then begin to drop slightly. We conjecture that there
is a trade-off between the size and the performance, and it is
determined by the augmentation strategy.

B. GPT-2 Fine-tuning Strategy

It is common that patient outcomes demonstrate an imbal-
anced distribution, e.g., only few patients are readmitted after
discharge. In our case, negative samples are 3x more than the
positive ones, i.e., Dirgin,0 = 4 X Dirgin,1. Therefore, when
fine-tuning GPT-2 using the original training data, we explic-
itly make it balanced to prevent the negative samples from
misleading GPT-2, by performing random under-sampling
over Diyqin. As to the prompt to GPT-2 in generating new
samples, we compare two options, i.e., w/ and w/o context,
where context refers to the first two tokens of the text.

We investigate the two issues and show the comparison
results on the validation set in Table III. Note that to avoid



TABLE III: Influence of GPT-2 fine-tuning/generation strate-
gies.

Prompt  Balanced Method AUROC AUPRC RPS80
w/o ctx N ClinicalBERT 0.771 0.535 0.205
w/o ctx Y ClinicalBERT 0.773 0.536 0.216
w/ ctx N ClinicalBERT 0.767 0.531 0.198
w/ ctx Y ClinicalBERT 0.775 0.551 0.226
w/o ctx N MedText 0.791 0.589 0.296
w/o ctx Y MedText 0.791 0.595 0.313
w/ ctx N MedText 0.791 0.593 0.296
w/ ctx Y MedText 0.795 0.602 0.318

TABLE 1V: Influence of the version of GPT-2.

GPT-2 version Method AUROC AUPRC RP80
small Clinical BERT 0.784 0.567 0.246
medium ClinicalBERT 0.783 0.568 0.252
small MedText 0.811 0.623 0.337
medium MedText 0.811 0.623 0.339

the impact from augmentation strategies, we use the base
method, i.e., simply include all the samples, in this experiment.
Generally, a balanced training set and a prompt with context
are the best options for fine-tuning and generation with GPT-2
in this task.

C. GPT-2 Version

Finally, we investigate the version of GPT-2 and its influence
over the quality of synthesized samples. We test with GPT-2-
small and GPT-2-medium and show the results in Table IV.
Generally, we observe that GPT-2-medium has a minor ad-
vantage over GPT-2-small. However, considering the training
cost and efficiency, we choose to use GPT-2-small for all the
experiments in this study.

V. RELATED WORK

Readmission prediction is challenging task and has attracted
a lot of attention over the years. Lin et al. select numerical
chart event features over a 48-hour time window and feed
them to a deep LSTM-CNN network [3] and achieve much
better performance than traditional methods. Zhang er al.
propose CC-LSTM that encodes external knowledge into text
representations and outperforms Lin’s work [20]. Afterwards
Lu et al. propose to convert clinical notes to multi-view graphs
and process them with graph convolution networks [6]. These
studies demonstrate the value of textual content in EHRs and
motivate us to apply textual data augmentation to this task.

Recently, using GPT-2 for augmenting textual training data
has been studied for a variety of tasks in the NLP field,
such as such as event detection [15], relation extraction [16],
commonsense reasoning [17], spoken language understanding
[23], extreme multi-label classification [24], etc. However,
none of these works has leveraged GPT-2 for patient outcomes
prediction. This highlights the importance of this study and
motivates us to explore more of this direction.

VI. CONCLUSION

In this paper, we propose MedAug, a framework that
leverages GPT-2 to synthesize artificial training data for patient
outcomes prediction. We evaluate the method on task of
ICU patients readmission prediction, the results of which
demonstrate that either a baseline or an advanced prediction
model can benefit from the synthesized training data, under
the framework of MedAug. Essentially, to control the noise in
the synthesized data, we propose a teacher-student architecture
that enforces a knowledge consistency across the original
and artificial texts. We introduce a mechanism for knowledge
consistency enforcement to mitigate noises from generated
data based on KL divergence.

On the other hand, as a preliminary exploration of this
direction, we do observe that the improvement for the ad-
vanced model is less significant than the baseline model, which
motivates us to investigate further in the future work.
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