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BLOCH WAVES IN HIGH CONTRAST ELECTROMAGNETIC CRYSTALS

ROBERT LIPTON, ROBERT VIATOR JR., SILVIA JIMENEZ BOLANOS, AND ABITI ADILI

ABSTRACT. Analytic representation formulas and power series are developed describing the band
structure inside non-magnetic periodic photonic three-dimensional crystals made from high dielec-
tric contrast inclusions. Central to this approach is the identification and utilization of a resonance
spectrum for quasiperiodic source-free modes. These modes are used to represent solution oper-
ators associated with electromagnetic and acoustic waves inside periodic high contrast media. A
convergent power series for the Bloch wave spectrum is recovered from the representation formulas.
Explicit conditions on the contrast are found that provide lower bounds on the convergence radius.
These conditions are sufficient for the separation of spectral branches of the dispersion relation for
any fixed quasi-momentum.

1. INTRODUCTION

We are interested in photonic crystals, or photonic band-gap materials, and their use in control-
ling the propagation of light. A photonic crystal is an artificially created optical material, which
can be considered as the optical analog of a semiconductor, since it behaves with respect to photon
propagation in a similar fashion as the semiconductor behaves with respect to electron propagation.
Developments in optical materials provide benefits to a number of fields, including spectroscopy
and high-speed computing, for example. Several books and surveys have been written about the
subject; see, for instance, [15, 16, 22, 23, 30, 31].

A photonic crystal is a periodic lattice of inclusions surrounded by a connected phase with the
property that the contrast k between the dielectric properties of the inclusions and the connected
phase can be quite large. Understanding the propagation of electromagnetic waves in photonic
crystals is crucial since it might allow tailoring materials to obtain desired properties. The Maxwell
system is given by:

VxE=-18"yv.B=(
(1.1)
VxH=19D ' v.D=0,

where ¢ is the speed of light in free space, the vector-valued functions E and H are the macro-
scopic electric and magnetic fields, and D and B are the displacement and magnetic induction
fields, respectively [14]. To complete the Maxwell system the constitutive relations describing the
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dependence of D and B on E and H are supplied. We apply the linear constitutive relations, given
by:
D =cE, B=_uH,

where € is the dielectric constant and p is the magnetic permeability. In this treatment, it is
assumed that the media is isotropic, the material is non-magnetic (i.e. p = 1), and the dielectric
constant €(z) is periodic.

We consider the case of monochromatic waves E(z,t) = ¢“'E(z), H(z,t) = ¢“'H(z), where w
is the time frequency, and the system (1.1) becomes:

VXE:—%%—I;I, V-H=0

)

VxH=%¢2)2E, V-eE=0
which, after eliminating the electric field E, reduces to:

1
(1.2) V x ﬁv x H=¢H, V-H=0, where¢=(w/c).
e(x
In a two-dimensional periodic medium (where €(z) is periodic with respect to = and y and
homogeneous with respect to z, for example), problem (1.2) reduces to scalar equations —AFE =
Aé(x)E and:

(1.3) _v.

e(x)

One of the main goals of the photonic crystals theory is to choose €(x) > 1 such that the spectrum
of the corresponding problem, scalar (1.3) or vectorial (1.2), has a gap. Existence of a gap delivers
a frequency interval (band) over which electromagnetic waves cannot propagate in the material. A
complete band gap is a range of frequencies for which no Bloch wave of any wavelength or direction
can propagate through the crystal. Band gaps have many interesting and useful applications ranging
from efficient photovoltaic cells to power electronics and optical computers, see [15, 16].

Most of the state-of-the-art developments [3, 2, 7, 10, 11, 12, 13] have been restricted to the
asymptotic theory of band gaps at infinite contrast. For the scalar case (1.3), the authors exploited
structural resonances associated with the Neumann-Poincaré operator to develop new techniques
for complex operator valued functions, which delivered explicit formulas for band gaps at finite
contrast. This provides mathematically rigorous and explicit formulas for the size of band gaps
and pass bands, given in terms of the contrast, shape and configuration of scatters, and lattice
parameters, see [24, 25].

In this paper, we lay the foundation for the analytical methods to obtain the corresponding
results to the ones obtained in [24] for the fully three-dimensional electromagnetic photonic crystals
lattices, via the vector wave equation (1.2). In particular, we establish an analytic representation
for the periodic and quasiperiodic spectra of (1.2) in terms of the contrast between the dielectric
constants of the two material components, together with a radius of convergence described in terms
of the crystal geometry by way of the associated Neumann-Poincaré spectrum.

We consider a Bloch wave h(z), with Bloch eigenvalue ¢ = (w/c)?, propagating through a three-
dimensional photonic crystal, characterized by the periodic relative dielectric constant a=!(x) =
e(x) = e(x + p), p € Z3, with unit cell Y = (0, 1], defined by:

VH =¢H, where € = (w/c)?.

() 1 inside the inclusion D
€ =
e=1/k in the host material H :=Y \ D.
The magnetic field h(z) inside “non-magnetic media” solves the vector Helmholtz equation:

(1.4) V x (a(z)V x h(z)) = ¢h(z), = e R,
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together with the a-quasiperiodicity condition h(z + p) = h(z)e!®P. Here, « lies in the first
Brillouin zone of the reciprocal lattice given by Y* = (—m, 7]>. Equation (1.4) describes time
harmonic wave propagation for the magnetic field in non-magnetic media, i.e., for heterogeneous
media with relative magnetic permeability p = 1 everywhere.

We examine Bloch wave propagation through high contrast crystals made from periodic configu-
rations of two dielectric materials. The inclusion D contained within the interior of the period cell
Y and surrounded by the second “host” material, H :=Y \ D, see Figure 1.

FiGURE 1. Period cell

The coefficient a(z) is then specified on the unit cell by:
a(x) = kxu(z) + xp(2),

where yg and xp are the indicator functions for the sets H and D, and are extended by period-
icity to R3. In this paper, we consider periodic crystals made from finite collections of separated
inclusions, each with C'7 boundary, where v > 0.

For each a € Y*, the Bloch eigenvalues ¢ are of finite multiplicity and denoted by \;(k, ), j € N.
We develop power series expansions for each branch of the dispersion relation:

(1.5) Nj(k,a) =¢, jeN

that are valid for k in a neighborhood of infinity.

To proceed, we complexify the problem and consider k € C. Now a(z) takes on complex values
inside H and the operator —V x (kxg + xp)V X is no longer uniformly elliptic. Our approach
develops an explicit representation formula for —V X (kx g + xp)V x that holds for complex values
of k. We identify the subset z = 1/k € Qg of C where this operator is invertible. The explicit
formula shows that the solution operator (—V x (kx g +xp)V x)~! may be regarded more generally
as a meromorphic operator valued function of z, for z € Qg = C\ 5, see Section 4 and Lemma 4.1.
Here, the set S is discrete and consists of poles lying on the negative real axis with only one
accumulation point at z = —1. For the problem treated here, we expand about z = 0, and the
distance between z = 0 and the set S is used to bound the radius of convergence for the power
series. The spectral representation for —V x (kx g+ xp)V x follows from the existence of a complete
orthonormal set of a-quasiperiodic functions associated with the a-quasiperiodic resonances of the
crystal, i.e., a-quasiperiodic functions v and real eigenvalues A;(«), i € N, for which:

-V x (xp)V x v==X\;(a)Av.

The collection of these eigenvalues, for a € Y*, comprises the structural spectrum of the crystal. The

structural spectrum encodes the geometry of the crystal and inclusions independently of dielectric

properties. These resonances are shown to be connected to the spectra of Neumann-Poincaré

operators associated with a-quasiperiodic double layer potentials. The formal definition of the
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structural spectrum given in terms of the Neumann-Poincaré eigenvalues, for o € Y*, is provided
in Definition 2.11.

For a@ = 0, these eigenvalues are the well known electrostatic resonances identified in [6], [5],
[27], and [28]. Other electrostatic resonances for a vectorial Helmholtz equation are introduced and
explored in [9]. Both Neumann-Poincaré operators and the associated electrostatic resonances have
been the focus of theoretical investigations [17], [21] and applied in analysis of plasmonic excitations
for suspensions of noble metal particles [26] and electrostatic breakdown [4]. The explicit spectral
representation for the operator —V x (kxm + xp)Vx is crucial for elucidating the interaction
between the contrast k£ and the quasiperiodic resonances of the crystal, see Theorem 2.12.

The spectral representation is applied to analytically continue the band structure \j(k,a) =&,
jeN,aeY*for k € NtoC, see Theorem 3.1. On setting z = 1/k, the spectral representation for
the inverse operator written as A, (z) = (=V X (kxyg + xp)Vx)~! shows it to be a meromorphic
operator valued function of z = 1/k, see Section 4 and Lemma 4.1. Application of the contour
integral formula for spectral projections [32], [18], [19] delivers an analytic representation formula
for the band structure, see Section 4. We apply perturbation theory in Section 4, together with
a calculation provided in Section 10, to find an explicit formula for the radii of convergence for
the power series Aj(k,a) about 1/k = 0. The formula shows that the radius of convergence and
the separation between different branches of the dispersion relation for any fixed a € Y* are
determined by: 1) the distance of the origin to the nearest pole z* of (—=V x (kxg + xp)Vx)7!,
and 2) the separation between distinct eigenvalues in the z = 1/k — 0 limit, see Theorem 7.1 and
Theorem 7.2. These theorems provide conditions on the contrast guaranteeing the separation of
the j-th and j + 1-th eigenvalue groups that depend explicitly upon z*, j € N and o € Y*. Error
estimates for series truncated after N terms follow directly from the formulation.

The paper is organized as follows: In the next section, we introduce the Hilbert space formu-
lation of the problem and the variational formulation of the quasi-static resonance problem. The
completeness of the eigenfunctions associated with the quasi-static spectrum is established and a
spectral representation for the operator —V x (kxmg + xp)V x is obtained. These results are col-
lected and used to continue the frequency band structure into the complex plane, see Theorem 3.1
of Section 3. Spectral perturbation theory [20] is applied to recover the power series expansion for
Bloch spectra in Section 4. The leading order spectral theory is developed for quasiperiodic a # 0
and periodic o = 0 problems in Section 5 and Section 6, respectively. The main theorems on radius
of convergence and separation of spectra, given by Theorem 7.1 and Theorem 7.2, are presented in
Section 7. A large class of geometries for which an a-independent lower bound on the quasi-static
resonances is introduced in Section 8. Explicit formulas for each term of the power series expansion
is recovered and expressed in terms of layer potentials in Section 9. The explicit formulas for the
convergence radii are derived in Section 10 as well as hands-on proofs of Theorem 7.1, Theorem 7.2
and the explicit error estimates for N-th order truncations.

2. HILBERT SPACE SETTING, QUASIPERIODIC RESONANCES AND REPRESENTATION FORMULAS

The space of all a-quasiperiodic complex vector valued functions belonging to L?OC(R?’,(CB) is
denoted by Li(a, Y,C3) and the L?-inner product is defined by:

(2.1) (u,v) = / u-vdz.
Y
For h € Li(a, Y, C?), its Helmholtz decomposition is given by:

(22) h= Vhpot +V x hcurla
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where hpot is an a-quasiperiodic scalar field belonging to H, lloc(]R?’ ,C) and heyy € Lié (o, Y, C3), with
V X heyrt € Li (o, Y, C3). The subspaces of gradients and curls are orthogonal with respect to the
L2-inner product (2.1). The Helmholtz decomposition (2.2) is shown in Appendix A.

For a # 0, the eigenfunctions h of (1.4) belong to the space Jg(a,Y,C?) C Li(a, Y,C3) given
by:
(2.3)  Jy(a,Y,C% = {h e H. (R? C?) : his a-quasiperiodic on Y, divh = 0 in Y}.

A simple calculation, found in Appendix B, shows that, for h € Jy(a,Y,C3), we have Vo = 0

n (2.2). Hence, h =V x heyy for h € Jg(a, Y, C3). Another straightforward calculation, given in
Appendix D, delivers the following result:

Theorem 2.1. For u € Jy(a,Y,C3), the null space of V x u, for a # 0, is {0} and the bilinear form
given by:

(2.4) (u,v}-/nyu-vadx

is an inner product on J4(a, Y, C?), with norm defined by [|ul|?> = (u,u). The space Jx(a,Y,C3)
is a Hilbert space under the inner product (2.4), with Ju(a,Y,C?) C W%E (o, Y,C3) and:

/qu-vadazz/ Vu: Vvdr
Y Y

for u, v € Jyu(a,Y,C?), where “ :” represents the Frobenius inner product (see Appendix C).
Moreover, the null space corresponding to the operator on the left hand side of (1.4) is identically
Zero.

For a = 0, one has that Li(O, Y, C3) is the space of periodic L2- vector fields on Y. For this
case, h € Li(o, Y, C?) has the Helmholtz decomposition into L?- orthogonal components given by:
(2.5) h = Vhpet +V X heyn + ¢,

where hpot is a periodic scalar field belonging to H, lloc(]R3, C), hey € Li(o, Y,C?), with V x hey €
Li(O, Y,C?), and c is a constant vector in C3, see Appendix A. For o = 0, the eigenfunctions h
for (1.4) belong to the space:

{h e H. (R? C?) :h periodicon Y, V-h=0in Y}.
A simple calculation, given in Appendix B, shows that Vh,; = 0 and h = V x hg,,; + ¢c. We
introduce the space J4(0,Y,C?) C Li&(o7 Y, C?) given by:

(2.6)  Jx(0,Y,C% = {h € H. . (R? C?): h is periodic, V-h=0inY, and / hdz = 0}.
Y

Theorem 2.2. For u € J4(0,Y,C?), the null space of V x u is {0} and the bilinear form:
(2.7) (u,v)z/ Vxu-Vxvdz,
Y

is an inner product on Jx(0,Y, C?), with norm defined by [|ul|? = (u,u). The space J4(0,Y,C3) C
W#(O, Y, C?) with inner product (2.7) is a Hilbert space and:

/ qu'vada::/ Vu: Vvdz
Y Y
for u, v e Jy(0,Y, C3). Moreover, the null space corresponding to the operator on the left hand

side of (1.4), for h € J(0,Y,C3), is {0}.
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This theorem follows from a calculation given in Appendix D. From now on, we will refer to
Jy(a,Y,C3) for all @ € Y*, with the special choice of Jy(a, Y, C3) for a = 0 defined as in (2.6).
The weak form of equation (1.4) is given by:

(2.8) el/H(th).(va) d:c+/D(V><h)~(V><w) dxzf/yh-wd:c,

for all w € Jyu(a,Y,C3). We set k = €1, and the left hand side of (2.8) is given by the sesquilinear
form By : Jy(a,Y,C3) x Jy(a,Y,C3) — C, defined as:

(2.9) Bi(u,w) :—k/(qu)-(wa) da:—i—/(qu)-(wa) dx.

H D
The linear operator Ty, associated with the sesquilinear form By, is defined by:
(2.10) (T¢a,w) := Bg(u,w),

for all u and w in Jx(a,Y,C3).

Our goal is to rewrite (1.4) in terms of a spectral representation formula for the differential
operator V x (kV x -). We will do this by developing the spectral representation of T}, which can
be directly linked to the following eigenvalue problem:

(2.11) A(u,w)—)\/Y(qu)-(VXw)dm—/D(qu)-(wa)d:c,

for all u,w € Jy(o,Y, C?); which will be shown to possess countably many real eigenvalues Ay,
with corresponding eigenfunctions v, € Ju(a,Y, C3), that satisfy:

/\n/(wan)-(wa)d:L‘:/(wan)-(wa)d:v, Yw € Ju(a,Y,CP).
Y D

The eigenspaces associated with different eigenvalues are easily seen to be orthogonal in the inner
product (2.4). We apply these eigenfunctions to introduce a different decomposition of J4(c,Y, C?)
that is orthogonal in the inner product (2.4). We introduce the three subspaces denoted by Wy,
Wg¥, W5 that are mutually orthogonal with respect to the inner product (2.4) and defined as:

(2.12) Wi ={ue€ Jy(a,Y,C?, Vxu=0in D},

(2.13) W ={ue Ju(a,Y,C?, Vxu=0in H},

and W C Jyu(a,Y,C3) is the subspace perpendicular to the direct sum (W & Ws).
The decomposition of Ju(a,Y,C?) is recorded in the following lemma.

Lemma 2.3. The space Jy(a, Y, C?) can be decomposed into orthogonal invariant subspaces spanned
by eigenfunctions of the eigenvalues of problem (2.11) and:

Jy(a,Y,C?) = WP o We @ Wy

It follows from the definitions of W{* and W3' that they are subspaces of the eigenspaces of
(2.11) associated with the eigenvalues 0 and 1, respectively. From (2.11), we easily deduce that the
eigenvalues A belong to [0, 1]. To proceed, we must provide the explicit characterization of functions
in W3 in terms of eigenspaces. To do this, we introduce the appropriate differential operators defined
on the surface of the dielectric inclusion 0D. We begin by defining the surface differential operators
for smooth functions. The surface divergence Divg for smooth complex-valued tangential vector
fields v is defined over the surface 9D by:

Di’USV = an(nzaj — njﬁi)vj,
j?i
6



where n;, i = 1,2, 3, are the components of the unit outward normal vector n to the surface. The
operator:

n-vVxv:= (n283 — n382,n3(91 — nlag,nlag — n281) Vv

is only composed of tangential derivatives and can be viewed as an operator defined on 9D. For
every vector field v in L2(0D)3, we have the relation between Divg and n -V x given by:

Divg(n xv)=—n-V x v,

see [29]. Also, see [29], for a scalar function f € W*2(9D) and a vector function g € W'=%2(9D)3,
for 0 < s <1, we have the identity:

(2.14) / g-nxVfds=— f(n-V xg)ds.
oD oD
To complete the set up, we introduce the spaces:
L{(0D)* = {p€ L*(0D)*| n-p=0 on 0D},
m(@D) {pe LZ(0D) ‘ Dzvsp =0 on 0D},
13(0D) = {pe L*@D)| (p.1)op =0},
Hy ' *(0D) = {p € HV*(0D >] < Dop =0},

where (p,1)sp :—/ pds.
oD

In order to relate W$' to the invariant subspaces of the eigenvalue problem (2.11), we will
introduce a representation of Ws' given by single layer potentials parameterized by densities on
0D. This is done in the next section.

2.1. Mapping Properties of the Single Layer Potential Operator. We start by introducing
the a-quasiperiodic Green’s function:

et(2mn+a)-(z—y)

(2.15) G(zy)=— ) P

neZ3

I3><37 for « # 07

and the periodic Green’s function:

ngg, for a = O,

(2.16) Clay)=— > 6711

|27n?
nez3\ {0}
where | - | is the usual norm of a vector in R3. For @ € Y* and p € LtQ,O(aD)?’, we define the
a-quasiperiodic single layer potential as:
(2.17) S*(p)(z) = /GD G*(z,y)p(y)dsy, x & 0D.
The single layer potential operator satisfies the continuity condition at x € dD:
+ —
(2.18) Sa(p)‘a[) = Sa(p)’aD,
(2.19) —AS%p)=0forze HUD,

and S%(p) € Wy (a,Y,C?) with So‘(p)‘aD in W1/22(9D)3. Let I'" () be a truncated circular cone

in the interior of D with vertex x and let It (x) be a truncated circular cone in the interior of H
7



with vertex . Now consider these cones with common vertex p on dD. The boundary trace of a
function [ at p, f(p)‘g[D, is given by:

lim  f@)=fP)5p.  lm f@)=F0)]p-
zel+(p) zel'~(p)

We introduce the magnetic dipole operator M< : L?ﬁo(aD)S — L?,O (OD)3 given by:

(2.20) M“(p) =n x (p.v. Vi X (G¥(z,y) p(y)) dsy) , x € 0D and o € Y™.

oD
We have the following jump conditions for x € dD:

1
(2.21) nx V, x 5%p)|5, = 50+ M (p).
For scalar densities p € L2(0D), we recall the jump conditions for 2 € dD:
+ 1 ok
n-VaS*(p)|op = F5o + (K7 (p),

where the Neumann—Poincaré operator (K ~%)* is defined by:

0G*(z,y)

K™*)*(p) =p.v. .
(K%)*(p) = p.v /8D on(z) p(y) dsy
Applying Lemma 4.2 of [29] we obtain:

div $*(p)(z) = - G*(z,y)(Divgp(y))dsy,
and:
(2.22) div S“(p)(z) = 0,

since p in L%O(@D)S. We may extend Lemma 4.4 of [29] to the periodic and a-quasiperiodic cases,
see Appendix E, to deliver a commutation relation between the surface divergence, the magnetic
dipole and the Neumann—Poincaré operator given by:

(2.23) DivgM“(p) = (K~ *)*(Divgp),
where equality holds as elements of W~1(9D). It is noted, for future reference, that:
(2.24) n-V x S8%p) : L},(0D)* — L§(0D),

is an isomorphism, see [29].
The following two lemmas are crucial for the parametrization of W3 by single layer potentials.

Lemma 2.4. Let the single layer potential operator S be defined as in (2.17). For every p €
L},(8D)?, we have that S%(p) € Wy".

Proof. First, recall that [So‘(p)Hng = 0 from (2.18), divS%(p) = 0 in Y from (2.22), and from
(2.19) it follows that:

(2.25) VXV xS p)=V(V-5%p)) —AS%(p) = -AS%(p) =0, forze HUD.

Choosing a smooth wy in W3*, we get:

(2.26) /VxS“(p)-wagdx:/ V x 8%p) -V x wa dx.
Y D
8



Since wo € W3*, we have that V x we = 0 in H and, since H is connected, we have wy = V¢ in
H, for some scalar potential ¢, with ws|;, = 'w2|5rD = ng\gD. Integration by parts in (2.26), the
application of (2.25), and the fact that ws|;, = V¢|gD give:

/VxSa(p)-VXWde:/VxVxSo‘(p)-WQda;—/ n x V x S%p) - wadsy
D D oD~

(2.27) = —/ nx V x S%p)-Vods,
oD~

and, from (2.21), we see that:

/ nxVxSa(p)-V¢dsz:/ <—1p—|—M“(p)> -V dsy
oD~ ap- \ 2

1
(2.28) = / <Dz’vsp - DingO‘(p)> ¢ dsy.
oD~ \2
Since p € Lgo(aD)S, from (2.23) we obtain:
(2.29) DivgM“(p) = (K~ *)*(Divg(p) = 0.

It now follows immediately, from (2.26), (2.27), (2.28) and (2.29), that:
(2.30) / V x 5%p) -V xwadx =0,

for a dense set of test fields wo in W', and we conclude that S%(p) L W' Identical arguments
can be made for w; € W, to find that:

/ V x 8%p) -V xw;de =0,
Y

and the lemma follows. O

Define the Sobolev space:
_1
V, (D) = {(n X V)f : fe W1/272(8D)},

with the norm || Al given by:

_1
v, % (0D)?

. 1
1A vt oy mf{HJ—I—fHWl/z,z(aD) L 0eC, feW2(dD), (nxV)f:A}.

Moreover, from [29], we have:
Lo(0D)* = V(0D)* = {(n x V)f : fe W'*(dD)},

with:

(2.31) nx V:W"(@6D)\ C— L} (0D)?,
1

(2.32) nxV:WY22@D)\C -V, *(dD)3,

isomorphisms, and:
2 -1/2,2 3
Lt’o((?D) cV, (8D) cWw (0D)°.

We now present the mapping property of the single layer potential operator necessary for char-
acterizing the spectrum of the sesquilinear operator T® = S*M®(5*)~!

Theorem 2.5. The single layer potential operator can be extended as a bounded linear map from
1
V, *(0D)3 to Wg.



Proof. To prove this theorem, we first show the following lemma.

1
Lemma 2.6. The space of tangential vector fields L2 0(0D)3 is a dense subspace of V, *(9D)3.

Proof. Note that, from (2.32), for g € V, (8D) we can write g = n x Vf, for some f €
W1/22(dD) \ C. From the density of WH2(dD) in W'/22(9D), there exists a sequence {fiti2, €

Wh2(@D)?\ C < WY22(dD) \ C converging to f in W/%2(dD) \ C. From (2.31), there are
associated functions g, in L%O((‘?D)?’ such that g; = m x Vf;. By the continuity of the map

nxV:WY%2(0D) =V, ((‘)D) we have the existence of a positive constant C such that:

=|nxVf—-nx vfj”vj%(aD) <CO\f = fillwrez@pyc

and it follows that Lf’o (OD)3 is dense in V, (8D) O

lg — %Hfﬂa

With Lemma 2.6 in hand, we prove Theorem 2.5. Given p € L7((0D)? and S*(p) € Wy, we
have:

usa<p>u?=/Hvaa< )V x 59(p >dx+/DV><sa<p>-V><sa<p>dx

(2.33) - / In X V x S%(p)]; - 59(p) dsx
oD
= —/ p- S%p)dsy.
oD
Writing p =n x Vf, for f € WH2(9D) \ C, and using (2.14) in (2.33), we get:

—/ p ‘So‘(p)dsx:—/ nx Vf- S%p)dsx = fn-VxS5%p)dsy.
oD oD oD

_1
From (2.24), n-V x §%(p) € L3(dD), so it also belongs to W, 2’2(8D) = (W%’Q(aD) \C)’, where
the notation “’” is used to indicate the dual space. From (2.33) and the last equation above, for
f e Wh2(0D) \ C, we have:

« 2_ . o . . 107
15%(o)] —/ann VxS P dsw < b IF + 0l g 009 5 S O,y

m\»—A

(3D)

where inf,cc || f+0]| is the norm for W12(9D)\C. Since the map n-V xS : V, (8D)

Ww32(D)

_1
W, 2’2(6D) is bounded (see [29]), we have that ||n -V x S%(p)|| Cliell _3 and
Vi

w-t2py =
(D)3

also infyec || f + 0'||W%’2(8D = ||p||v_% oDy 5° it follows that:
S*(p)||I* < C inf < Clpl?
ISP < C L 17+l g 01, 3y, <€l
and, therefore:
2.34 S« <C
(2.34) 15%(p)l Hp”v{’ oDy

The inequality (2.34) implies that S*(p) is a bounded operator mapping into W' for the densely
1 1
defined subspace L%,o (0D)? of V;, *(0D)3. Then, we extend the densely defined map S to V;? (0D)3,
1
using the BLT theorem, to deduce that its extension S :V, *(0D)? — W§' is bounded. g

_1
Theorem 2.7. The single layer potential operator S : V, *(0D)? — W4 is a bijection.
10



1

Proof. We first show that S® is one-to-one. For a given p € V, *(9D)3, we have u = S%(p) € Wg.
Furthermore:

p:nxVxu‘aD+—nxqu!aD,—|—n><V><u‘aY—n><V><u’8Y

:nxqu‘aH—nxqu‘aD_—nxqu‘ay.

Given a bounded Lipschitz domain € R?, if f € L?(Q)% and V x f € L?(Q)3, then n x f €
W_%’Q((?Q)S. As a consequence, there is a C' > 0, depending only on 0f2, such that:

I £l 32 g0y < CUIENL2@)s + IV X £l 2(0)9)-

)

1

Set f =V x u and, since VxV xu=0in HUD, peV, *(0D)3 C W_%Q(@D)?’, one has:

Hp”Wf%’Q(BDP

=nxVxu|,,, —nxVx u\aD,HW,%,Q(aD)g

< nxVxul +|n x V x u +lnxVxull 4,

“32(9H)3 W~ 22(9D)3
< C(IV xullzzmys + IV x ullp2pys + IV x a2 (yys)
< Cllul = ClIS“(p)ll-

0())?

1
Now, for py,py €V, *(0D)3 C W_%’2(8D)3, we obtain:
0< o1~ Pl < 215" (1) — 5 (o)

_1 )
to conclude that S : V, *(9D)3 — W¢ is one-to-one.

To show the surjectivity of S%, assume that u € Wy is given. From the definition of W$' and
integration by parts, we have:

V-u=0, VxVxu=0, on HUD.

Writing w = V x u, we see that Vxw = 0in HUD sow = Vqy, for s € W2(H), and w = Vg,
for go € W2(D). Let I'"(z) be a truncated circular cone in the interior of D with vertex z and
let T (x) be a truncated circular cone in the interior of H with vertex . Now consider these cones
with common vertex p on 0D. Taking the cross product of w = V x u with the normal to the
surface 0D given by n(p), we get:

lim = n(p) x Vxu(z) =n(p) x Vai (p), lim  n(p) x V xu(r) = n(p) x Ve (p).
zeT+(p) zel'(p)

_1
From (2.32), we have that n x V : W%’Q(aD)/C — V, 2(dD)3 is an isomorphism, and we choose:

Pu=nxVq —nquz|3D_ GVfé(aD)?’.

o+
Setting v = S%(p,,) gives:

(2.35) VxVxv=0 in DUH, V.-v=0 in Y, nxVxv]"=p,,
and:
(2.36) /nxVX(v—u)-(v—u)ds:O, for v,u e Wy,

oY

Using integration by parts and applying (2.35) and (2.36), we discover:

|v —u| =0.
1



For « # 0, this implies v = u and, for a« = 0, we have u — v = ¢, where c is a constant vector.

But, for « = 0, we have 0 = / w dr = / u dx, to conclude ¢ = 0 and v = u. This shows that
Y Y

S is surjective. O

1
From Theorem 2.7, we see that the inverse map (S%)~! : W§ — V,2(0D)3 exists. Finally, we
apply the open mapping theorem to derive the following theorem.

1
Theorem 2.8. The inverse (S%)~1 : W& — V,2(0D)? is bounded.

2.2. Compactness of Magnetic Dipole Operator. In this section, we show that the magnetic
dipole operator M% is compact.

_1
2

Theorem 2.9. The operator M® : V, *(0D) — Vf% (OD)3 is compact and satisfies:

(237) oM V(D)) = o((K~)'; Hy*(9D),

where (K~®)* is the scalar valued Neumann-Poincaré operator defined on H,, %(8D) and where
o(M*; V[% (0D)3) and o ((K~%)*; H(;%((?D)) are the spectra of M“ and (K~%)*, respectively.

_1
Proof. We first establish that the magnetic dipole operator M is a bounded map of V;, *(9D)3.
To do this, we start with the following Plemelj-like identity, that can be derived as in[29]:

(2.38) (K)"(n-Vx8=n-VxS*M*, for pe L?70(8D)3,

_1
The scalar valued Neumann-Poincaré operator is bounded and compact on H, *(0D), see [21].

_1 _1
The map n-V x S%:V, *(0D)> — H, 2(8D) can be shown to be an isomorphism, as in [29]. The
boundedness of (K ~%)* and the boundedness of the operator n -V x S¢ imply that:

(230)  I(E™)"(n-¥ x 5%(p)) < Cln-V x $°(p)] <Clol__,

|| -3 _1 _ .
H, 2(8D) H, %2(8D) v, 2(8D)3

On the other hand, the boundedness of n -V x S§¢ also implies the following;:
(2.40) M), < Cln-V x $°M°(p)

v, % (o) i 4 ony
In view of (2.38), (2.39), and (2.40), we have:
M“ <C ,
M),y S ClRL g

_1
and we conclude that M*(p) is bounded, for p € Lg’o(ﬁD)3 C V, *(0D)3. Since L?’O(aD)S is dense
1

1 _
in V, *(0D)3, we can extend M® as a bounded linear map of V, *(9D)3.
1 _1
Next, observe that n-V x S : V, *(D)® — H, ?(dD) is an isomorphism, so for a bounded

1

sequence {p,} € V, *(0D)3, we have:

* V X SOL n — S C n — 9
In Oyt gy < 0l 3

_1
which shows that {n-V x S%(p,)},~, € H, 2(0D) is bounded. By the compactness of (K~ )*,
1
we have that the subsequence {(K~®)*(n-V x kS"“(pnk))}ZO:1 € H, ?(0D) is Cauchy, which in
_1
turn, by (2.38), implies that {n-V x S‘"(Mo‘(pnk))}zoz1 € H,?(0D) is also Cauchy. Because
12



_1 _1
n-VxS*:V, ?@D)> - H, ?(0D) is an isomorphism and (K®)* is a continuous map, we have
for {pnk JaiE:

1M (pr,,) = M ()l 1 <OV x SY M (p,,)) —n-V x SY(M*(p,,))]|

_ _1
”w % (D)3 Hy %(0D)’

1
and we conclude that the sequence {M a(pnk)}oo € V, ?(0D)? is Cauchy, and thus, M? is a

n=1
1
compact operator on V; *(0D)3. Finally, the identity (2.37) is the direct consequence of (2.38),
1 _1
and the isomorphic map n-V x S :V, *(dD)3 — H, 2(0D). O
It is noted that the spectrum of (K ~%)* lies in [—1/2,1/2] (see e.g., [21]) and, by the previous
theorem, we see that:

1

(2.41) a(M®; V, *(0D)®) C [-1/2,1/2].
2.3. Spectral Property of the operator 7% = S“M®(S%)~L.

Theorem 2.10. The operator T% = S*M*(S*)~1 : W$ — W is Hermitian, compact, and satisfies:

_1
(2.42) o (T W§) = o(M V; * (9D)?),
Proof. First, we show that 7% : Wg* — W is Hermitian. For u, w € W', we have:
(T'*a,w) = / (V x S“M*(S) ") - (V x W) dz
Y
= / (V x S*M*(S*)tu) - (V x W) dz +/ (V x S*M*(S) ) - (V x W) da.
H D
Using integration by parts and since V x V x S*M%(S%)~lu) = 0 in H U D, we see that:
/ (V x S“M*(S) ) - (V x W) dx = / [0 x V x S*M(S%) "] " - W dsy.
Y oD
Then, using the jump condition (2.21), we obtain (Tu,w) = [, M*(S*)"'u-W dsx. We can
_1
write u = S¢3, for some B € V, * (D)3, to get:

(T%,w) = / M3 -W ds,
oD
1

—/ MmxVxSB|l, —nxVxS5B| ] W ds,.
2 Jop *

Integration by parts gives:

1
/ nxVxSB|, —nxVxSB| |-Wds,
oD

2

Zé/H(VXSaﬂ)-(VxW) dx—;/D(vxsaﬂ).(va) d.
Therefore:
@43 (T, w) = ;/H(V xu) - (Vxw) de - % /D(V xu) - (V x W) dr,

and T¢ is seen to be Hermitian.
13



Now, the identity given by (2.42) is established. Consider the eigenvalue eigenvector pair (u, p) €
o (MO‘; Vt_%(@D)3> X I/;_%(@D)?’ of M®p = pp. There exists u € Wy such that u = S%p, and
p = (S%)~tu. Therefore, we have M*(S%)~tu = ;S~1u. This implies that:
SOM(S*)lu = pS*(S*)lu = T = pu,

1
which shows that o <M°‘; v, 2 (8D)3> Co (T W$).

On the other hand, if we have T%u = pu, then S*M®(S*)~1u = pu; therefore, multiplying both
sides by (S%)~1 gives M*(S*)~tu = p(S*)~'u, and we obtain:

1
o (T W5) C a(M*; V, *(9D)).
Finally, the compactness of T% = S*M(S5%)~! easily follows from the compactness of M. U

It now follows from (2.43) that the eigenvalue problem T%u = pu is equivalent to (2.11), so the
eigenfunctions form a complete orthonormal system that span Ws*.
It is clear from Theorems 2.9 and 2.10 that:

o (T W) = o((K~°); H, *(0D)),

and we denote dependence on « explicitly and write p;(«), ¢ € N, @ € Y* and make the following
definition.

Definition 2.11. The structural spectra for the crystal is given by Uaey+{ui(a)}ien, where the
pairs p;(a), u; € Wit satisfy:
T = pi(@)u;.

2.4. Spectral Representation Theorem. We present a spectral representation of the differential
operator appearing in (1.4). With this in mind, by Theorem 2.10 and (2.41), the invariant subspace
associated with each eigenvalue p,(a) of T* is denoted by E, = {u € W§* : T%u = p,(a)u} and
the orthogonal projection onto this subspace is denoted by P7 ; here, orthogonality is with respect
to the (-, -) inner product. We write the projections onto Wi* and Ws* as Py* and Ps', respectively.
The differential operator appearing in (1.4) can be factored into the form given by the following
theorem.

Theorem 2.12. The vector Laplacian in a photonic crystal admits the representation:
V x (a(z)V x u(z)) = —AT{u(z),

where A, is the a-quasiperiodic Laplace operator defined on Y and T}' is the linear transform
associated with the bilinear form By, defined for u(z) € Jy(a, Y, C?), see (2.9). The linear operator
Ty (2.10) has the spectral representation, which separates the effect of the contrast k from the
underlying geometry of the photonic crystal, given by:

1 1
Toa=kPlu+ Piu+ Z {k (2 + ,un(a)> + (2 - ,un(oz)ﬂ Pp u,

_71<#n (a)<%

where {un (@)} = o (T W), with W C Ju(a,Y,C3). If k € C\ Z, where:

(2.44) 7z = {“"(a) — 1/2}
pn(a) +1/2 ] 4 oey a)<1/2
14
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then T}' has an inverse and, for z = k~1, it is given by:
1 1 -t
(2.45) (T2 'a = z PPu+ Psau + Z 2l 3 + pn (@) | + 2 3 pn () Py .
71<Nn(a)<%

Proof. Let u € Jy(a,Y,C3). Note that:

o0
(2.46) (w,v) = Pluv)=(Pfut+Pfu+ >  Pluyv),

. _%<:un(a)<%

for all v € Jy(a,Y,C3), from where:
Z,uz )Pru,v) Vv € Jy(a,Y,C3).

Also, by (2.12), (2.13) and (2.43), for all v € Ju(a,Y,C3), we have:
1

(T%uq,v) = §<u1,v), Yu; € W,
(T%ag,v) = —%(uz,v>, Yug € Wit
By (2.46), for u,v € Jy(a, Y, C?), we have:
(2.47) B(Py u,v) = k/H(V x Ppu)-(V x V) dr+ /D(V x Ppu) - (V xV) dz.

On the other hand, by (2.43), we know that:

1 1
<T0‘Pl‘j‘nu,v>:Q/H(VxPﬁ‘nu)-(va) dx—Q/Dwxpgnu)-(va) da

— in(c) /H(v x P2 ) (V x ) dz + n(a) /D(v x P2 ) (V x V) dr,

which implies that:

1
(2.48) / (V x P2 ) (V x¥) de = W/ (V x P2 ) -V x ¥) da.
H 5 — tn(a) Jp
We also have:
1
(2.49) / (VX Pru) (VxV)dr= <2 — un(a)) / (Vx Plu)-(VxV)dz,
D Y
from where (2.48) becomes:
1
(2.50) / (V x P2 ) (V x ) dz = <2 + un(a)> / (V x P2 u) - (V x ) da.
H Y
Substituting (2.49) and (2.50) into (2.47), we get:

(2.51) By(PS u,v) = [k <2 + un(a)) + <; - un(a)>] /Y(v x P& ) - (V x V) da.

Noting that:

(2.52) Be(Pou,v) = k /H (V x Pr) - (V x ¥) d,

(2.53) By(Psu,v) = /D(V x Pyu) - (V x¥) dz,

15



one concludes that:
1 1
Bi(u,v) = (Tf'u, v) = (kP{*u+ Ps'u+ Z [kz <2 + un(oz)> + <2 — un(a)>] Py u, v),
—1/2< n () <1/2
and Theorem 2.12 easily follows since —A, is the operator related to the bilinear form (u,v). O
3. BAND STRUCTURE FOR COMPLEX COUPLING CONSTANT

We recall that a(z) = (e(x))~! and the operator representation is applied to write the Bloch
eigenvalue problem as:

(3.1) V x ((e(x))"'V x h) = —A, Tfh = ¢h.

We characterize the Bloch spectra by analyzing the operator:

(3-2) B(k) = (Ti) ™ (=Aa) 7

where the operator (—A4)~ ! : Li(a, Y,C3) = Ju(a,Y,C3), defined for all o € Y*, is given by:
(33) (~80) (o) = = [ G (auts)dy.

Let us suppose a # 0. The operator B*(k) : Li(a,Y,CS) — Ju(a,Y,C3) is easily seen to
be bounded for k ¢ Z (2.44), see Theorem 10.5. Since Hj#(a,Y, C3) (and hence Jy(a,Y,C3))
embeds compactly into L%é(a, Y, C3), we find that B%(k) is a bounded compact linear operator on
Li(a,Y, C3) (see Theorem 10.6) and, therefore, it has a discrete spectrum {v;(k, @) }ien, with a
possible accumulation point at 0. The corresponding eigenspaces are finite-dimensional and the
eigenfunctions p; € Li(a, Y, C?) satisfy:

(3.4) BY(k)pi(x) = vi(k,a) pi(z), for x €Y,

and also belong to Jy(a, Y, C3). Observe that, for v; # 0, (3.4) holds if and only if (3.1) holds with
€ = Ni(k,) = 7, (k, @), and —A,T2p; = A\i(k,a)p;. Collecting results, we have the following
theorem.

Theorem 3.1. The Bloch eigenvalue problem (1.4) for the operator —V X (kx g+ xp)V X, associated
with the sesquilinear form (2.9), can be extended for values of the coupling constant k off the positive
real axis into C\ Z (Z given by (2.44)), i.e., for each o € Y*, the Bloch eigenvalues are of finite
multiplicity and denoted by \;(k, ) = ’yj_l(k, a), j € N, and the band structure (1.5):

Aj(k,a) =¢, jEN
extends to complex coupling constants k € C\ Z.
4. POWER SERIES REPRESENTATION OF BLOCH EIGENVALUES FOR HIGH CONTRAST PERIODIC
MEDIA
In what follows, we set v = A™!(k, a) and analyze the spectral problem:
(4.1) B*(k)u = y(k, a)u.

Henceforth, we will analyze the high contrast limit by developing a power series in z = 1/k, about
z = 0, for the spectrum of the family of operators (3.2) associated with (4.1):

B(k) = (Tp)H(=Aa)™!
= (P + P+ 2 [(1/2 + pi(e)) + 2(1/2 — pi(@))] 7 P2 ) (—Aa) ™
_ Aa(z) —1/2<p;(a)<1/2

16



Here, we define the operator A%(z) such that A*(1/k) = B“(k), and the associated eigenvalues

B(1/k,a) = v(k,a). Then, the spectral problem becomes A%(z)u = f(z, a)u, for u € Lg%(a, Y, C3).
It is easily seen, from the above representation, that A%(z) is self-adjoint for £ € R and is a

family of bounded operators taking Li(a, Y, C?) into itself. Also, we have the following lemma.

Lemma 4.1. A%(z) is holomorphic on Qg := C\ S, where S = Ujenz;(a) is the collection of points
zi(a) = (pi(a) + 1/2)/(ni(a) — 1/2) on the negative real axis associated with the eigenvalues
{pi(a) }ien. The set S consists of poles of A%(z) with only one accumulation point at z = —1.

The upper bound z*(«) on S for fixed o € Y* is written:
(4.2) m?x{zi(oz)} =2z"(a) < 0.
In Section 8, we develop explicit lower bounds on the structural spectrum, i.e.:

—1/2 <p” < pi(a) € Uaey+{pi(a) tien
that holds for a generic class of inclusion domains D. The corresponding upper bound 2™ is written:
po+1/2 "

(4.3) max{z*(a); € Y*} = ey A

<0,

and z*(a) < zt.

Let 8§ € 0(A%(0)) with spectral projection P(0), and let I" be a closed contour in C enclosing
B¢, but no other 5 € o(A%(0)). The spectral projection associated with *(z) € o(A“%(2)), for
B*(z) € int(I'), is denoted by P(z). We write M(z) = P(z)LZ#(oz,Y, C3) and suppose, for the
moment, that I' lies in the resolvent of A%(z) and dim(M(0)) = dim(M(z)) = m, realizing that
Theorems 7.1 and 7.2 provide explicit conditions for when this holds true. Now define Ba(z) =
Ltr(A%(2)P(2)), the weighted mean of the eigenvalue group {3 (z),...,3%(2)} corresponding to
B(0) = ... = B%(0) = B§. We write the weighted mean as:

po o 1 o o
B(2) = By + —tr[(A%(2) = B5) P(2)].
Since A%(z) is analytic in a neighborhood of the origin, we write:
A%(z) = A%(0) + ) 2" A
n=1

The explicit form of the sequence {A% },en is given in Section 7. Define the resolvent of A%(z) by:

R(C,2) = (A%(2) = ()7
and expanding successively in Neumann series and power series, we have the identity:

R(C,z) = R(C,0)[] + (A%(2) — A*(0))R(¢,0)]

(4.4) = R(¢,0) + ) _[(A%(z) = A*(0))R((, 0)
p=1

— R(C,0)+ 3 2" Ra(C),
n=1

where:

R, (¢) = > (1)PR(C,0)A% R(C,0)AF, ... R(C,0)Af, forn > 1.
kit kp=n,k;>1
17



Application of the contour integral formula for spectral projections [32], [18], [19], delivers the
expansion for the spectral projection:

1
4.5 P(z) = —— ¢ R(¢,2)d¢ = P(0 2" P,
where P, = —27” fr R, (¢)d¢. Now, we develop the series for the Weighted mean of the eigenvalue

group. Start with:
(A%(z) = B5)R(C, 2) = I + (¢ — B7)R(C, 2),

and we have:

(4°(:) = B)P(:) = 5 (€= ARG,
(16) Be) = B5 = —gmmite § (= ARG, 2)dc

Equation (4.6) delivers an analytic representation formula for a Bloch eigenvalue or, more generally,
the eigenvalue group when 3§ is not a simple eigenvalue. Substituting the third line of (4.4) into
(4.6) yields:

(4.7) B(z) =B85+ > _ "B
n=1
where
o 1 (_1)]) o a o .
I A § A8 RC0) AL, . RIGOLAL RGO 0> 1

5. SPECTRUM IN THE HIGH CONTRAST LIMIT, o # 0

We investigate the spectrum of the limiting operator A%*(0), for o # 0. Using the representation:
A%(z) = PP+ P4z ) 112+ @) + 2(1/2 = (@) T P ) (=A)

—%<#¢(a)<%

we see that A%(0) = P§'(—A4)~!; and, from Theorem 10.6, we get that P$'(—A,)~! is a bounded
compact operator and has a discrete spectrum. Denote the spectrum of A*(0) by o(A%(0)). Since
A%(0) is clearly self-adjoint and compact, it follows that o(A%(0)) C R is discrete, with only one
possible cluster point at zero. Next, we show that it is strictly positive as well.

We now consider the eigenvalue problem:

(5.1) PS(—Ag) tu = Bu,

with 8 € o(A%(0)) and eigenfunction u € Li(a, Y,C3). This eigenvalue problem is equivalent to
finding 8 and u € W' for which:

(5.2) (u,v)r2(v,cay = B{u,v), for all v € Ju(a,Y,C?).
Indeed, to see the equivalence, note that we have P§'(—A,)~! : Li(a,Y,(CS) — W§' and, for
v € Jyu(a,Y,C3), it holds:
(Pg(=Aq) 'u,v) = B(u,v) = f(Ps'u, v);
hence:

(5.3) (—An) " tu, P&v) = Blu, P§v).



Since ((—As)'u,v) = [ u-Vdr = (,v)2(y,cs), for any u € Li(a,Y, C3) and v € Jy(a,Y,C3),
equation (5.3) becomes:

(u7 P2OIV)L2(Y,(C3) = B<uv P2av>7
and the equivalence follows by noticing that P§' is the projection of Jy(a, Y, C?) onto W

Rewriting (5.2) as:
/ qu-vadxzﬁ_l/ u-vde,
D Y

we define the sesquilinear form bg(-,-) : W§' x W — C by:
bo(u,v) := / Vxu-Vxvdzr.
D

Clearly bg is bounded and we wish to show that the spectrum is positive. To this end we introduce
the following lemma.

Lemma 5.1. For all u € Wg', there exists C' > 0 such that:
(5.4) bo(u,u) > C/ lu|® da.
Y

Proof. Suppose (5.4) does not hold. Note that, for each n = 1,2, ..., there exists u, € W', for
which:

n/Vun:Vundx—n/qun'qundw < /\un2daﬁ.
D D Y

Then, on normalizing u,, with respect to the L2-norm, there exists a sequence {v,} C W, with
[Vallz2(v,c3) = 1 and Vv, — 0 strongly in L%ﬁ(a, Y, C3). After possibly passing to a subsequence,
we apply standard arguments to conclude that v,, — v strongly in Jy(a,Y, C3), such that v is
constant in Y and ||v|[ 2(y,csy = 1. But the only constant function in Jy(a,Y,C?), for a # 0, is
the zero function; which leads to a contradiction. ]

In light of Lemma 5.1, we conclude that the problem (5.1) has a positive, decreasing sequence of
eigenvalues, with a possible cluster point only at zero.

6. SPECTRUM IN THE HiGH CONTRAST LIMIT: PERIODIC CASE, a =0

We describe the spectrum of the limiting operator A°(0), which is written as A°(0) = P(—A¢) 7},
where P20 is the projection onto WQO. Here, the operator (—Ag)~! is compact and self-adjoint on
Li(O, Y, C3), and given by (3.3) for @ = 0. Denote the spectrum of A°(0) by o(A%(0)). In this case
we see, as in the case a # 0 of the previous section, that o(A°(0)) C Ry is discrete, with only one
possible cluster point at zero.

As in [7], one can define:

Definition 6.1. The geometric average is a path integral with components defined by:

(%u)-ei ::/Fiu-eidf,

where I'; is any curve in H connecting two opposite points on the faces of Y orthogonal to e’ and
dl is an element of arc-length.

The goal is to precisely identify o(A°(0)) C R;. With that in mind, we introduce the spaces:
F(Y)={ue H} (R*C? : uperiodicon Y, V-u=0inY, Vxu=0in H}

ng:{ueF(Y): %u:()}.
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A characterization of the space WY is given by the following lemma.

Lemma 6.2. Let xy be the characteristic function of Y. We have:

(6.1) WQ:sz{u:ﬁ</ ﬁdx>xyzﬁexg“’}.
Y

Proof. Consider the space F(Y). The curl-free condition in H, together with the Y-periodicity
condition, implies that u = Vi + ¢ in H, where ¢ € W;FLQ(H) and § u = ¢ € C3. From this, we
can conclude that 3 @ C3 = F(Y) and that:

WQ:{F(Y):/ud:czo}:{uexgi”@c?’:/udzzo}.
Y Y

To see that W3 = W, we introduce the orthonormal system {u;} jey in Li(O, Y, C3) that is dense in

x&" with respect to the W12(Y, C?)-norm, and is given by the eigenvectors of (6.2), see Theorem 6.3
below. Then:

FY)= {u € span {uj}; . & span {e',e? e’ }} ,
and an element u of F(Y') is written:
o
u= Z c;ju; + a1e1 + CL262 + a3e3.
j=1

From this, we see that the condition fY udx = 0 is equivalent to:

o0
ap = —ek . Z / cjujdx, for k=1,2,3.
j=1 7Y

We define:
[e.e]
a= chuj € xgw,
j=1
to discover u =1 — [}, udz, so W3 = Wy and the lemma follows. O

Next, we identify all the eigenfunctions and eigenvalues of the following auxiliary eigenvalue
problem. Find all eigen-pairs (u, 3) in x& x R, for which:

div

(6.2) (0, V) r2(y,c8) = B(u,v), for all v € x§
This eigenvalue problem is analyzed in [7]. Following the results in [7], we get the following theorem.

Theorem 6.3. The eigenvalues 3 of (6.2) are positive and form a sequence {3,}5°; converging to
0. The eigenvectors of (6.2) deliver a orthonormal system in Li (0,Y, C3) that is dense in g with

respect to the W12(Y, C3)-norm.

We now provide a precise characterization of the spectrum o(A%(0)) of the limit operator A%(0).
In preparation, we consider the countably dense in Lf% (0,Y,C3), subset of Xgi”, orthonormal family
of eigenfunctions {u,}5° ; associated with the eigenvalues 3, \, 0 of (6.2). Here, orthonormality
is considered with respect to the L?(Y, C3)-inner product.

We have that o(A%(0)) consists of all »~! such that there exists a pair u and v, with u € W3

and v > 0, such that:

6.3 u,v)p = v (u,v)2ycsy, forallve W,
(v,C3) 2
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where (u,v)p = [, Vxu-V xvdz. By (6.1), u=1tu-— [, adz, with a € x§". Hence, there exists
a sequence {c,}-~; C C such that:

(6.4) i cpuy, and u= i cny, + C.
n=1 n=1

where ¢ = — [, udz.
First, suppose u € x4 and ¢ = — [, udz = 0. By (6.3), for v =v — [, Vdz, with v € x§
we obtaln

dw

(u, {7>D =V (u, v — /Y {’dx)LQ(Y,(CS) =V (u, {,)LQ(Y,(C3)7

(u,/ {’dx)Lz(y7c3):/U'/ vdxdy =0
Y Y Y

So u solves (u, V)p = v (u, V) 2(ycs), for all v € x3»

since:

, and is, therefore, an eigenfunction of (6.3)

v

o0
belonging & with Jyudz = 0. So all eigenvalues v are eigenvalues {6,; 1,} ) C {5; 1}2011
n=

corresponding to mean zero eigenfunctions. To summarize, a component of the spectrum o (A°(0))
of the limit operator A°(0) is given by {5 1/} .

Next we identify the remaining component of o(A%(0)). Now, suppose that ¢ = — / adx # 0,

Y
and that u is an eigenfunction of (6.3) with eigenvalue v. We normalize so that |c| = 1. We have
u=1u-— [, udrand for all v=v — [, Vdz, we get:
(6.5) (W, V)p = v (0, V)r2y,cs), for all v € xdiv,

Using (6.4) in (6.5), we have:

(6.6) Z CpUpn,V)p =V Z cpu, + ¢ V)L2(YC3), for all v € de

n=1 n=1

Now, pick v = u,,, m € N* in (6.6), to get:
emBt =vem +v(c, W) 12(v,c3)
— cmﬁ;Ll =veym +ve: / u,, dx
Y

ve- | u,,dx
L _vefym

(B’ —v)
Then (6.4) becomes:
nd “ve- [, u,d
_ Z ve: fy ve yWdr . and u=3 YOl e
n=1 ) n=1 (’Bn _V)
Since we require fy udx = 0, we obtain:
> nd u,d
(6.7) c=-v Z Jyu ffi) Jyu e

We introduce the effective magnetic permeability tensor:

( ) ([3X3+V2fyundl‘®fyundx>’

Bn_)

n=1
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and (6.7) gives the homogeneous system for the vector ¢ in C3 given by:

(6.8) p(v)e =0.

The effective permeability tensor agrees with the one given by the high contrast homogenization of
Maxwell’s equations in [7]. We form the spectral function given by:

(6.9) S(v) = det[u(v)],

and, clearly, we have a nontrivial solution of (6.8) when S(v) = 0. The roots of the spectral function
form a countable non-decreasing sequence of positive numbers {1, }5° ; tending to infinity. We set
Bn = v, ! and the complete characterization of o(A%(0)) given by:

Theorem 6.4. i
a(A°(0)) = {8, 1oy U{Bn}is-

When the inclusion shape is invariant under the cubic group of rotations, the effective perme-
ability tensor is a multiple of the identity, i.e., p(v) = Isx3A\(v), where \(v) is a scalar function of
v. Here, det {u(v)} = A3(v), so v; are the roots of the equation A\(v) = 0. For any constant vector
v in R3 we have:

(v v 2
6.10 M) =22 0 1 - —n_
(610 V=" ey
neN
where a2 = | || p Uy dz - v|2/|v|> > 0 and B} are only associated with nonzero mean eigenfunctions.

For 8! _, < v < 8}, calculation shows —oco < A(v) < oo, with X'(v) > 0. From this, we conclude
By < wv; < B, and we have the interlacing v, 1 < 3, < vy.

7. RADIUS OF CONVERGENCE AND SEPARATION OF SPECTRA

Fix an inclusion geometry specified by the domain D. Suppose first & € Y* and a # 0. Take
I'j to be a closed contour in C containing an eigenvalue 35(0) € 0(A%(0)), but no other element of
o(A%(0)), i.e, for a # 0 € Y™ fixed, B;?“(O) is separated from other components of the spectrum, see
Figure 2. Define d to be the distance between I'; and o(A%(0)), i.e.:

(7.1) d = dist(T, 7(4°(0)) = inf {dist(C,0(A"(0)))-

The component of the spectrum of A%(0) inside I'; is precisely 8§(0), and we denote this by
¥/(0). The part of the spectrum of A%*(0) in the domain exterior to I'; is denoted by ¥”(0), and
¥7(0) = 0(A%(0)) \ B5(0). The invariant subspace of A%(0) associated with 3'(0) is denoted by
M'(0) with M'(0) = P(0)L3,(a, Y, C?).

L'j
| ) d d |

> 1(0) 55(0) 2 (0)

FIGURE 2. Schematic of T';, d, ¥/(0), and X"(0).

Suppose the lowest a-quasiperiodic resonance eigenvalue for the domain D lies inside —1/2 <

u~ () < 0. Tt is noted that, in the sequel, a large and generic class of domains are identified for
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which —1/2 < p~(a). The corresponding upper bound on the set z € S, for which A%(z) is not
invertible, is given by:

ey B () +1/2
(7.2) 2" (a) = —(0)—1/2 <0,
see (4.2). Now set:
. _ |a!2d12*( )|
(7.3) = T aPd

1/2— u
Theorem 7.1. Separation of spectra and radius of convergence for a € Y*, a # 0.
The following properties hold for inclusions with domains D that satisfy (7.2):

(1) If |z] < r*, then I'; lies in the resolvent of both A*(0) and A®(z) and, thus, separates the
spectrum of A%(z) into two parts given by the component of spectrum of A%(z) inside I';,
denoted by ¥'(z), and the component exterior to I';, denoted by ¥”(z). The invariant sub-
space of A%(z) associated with ¥/(z) is denoted by M'(2), with M’(z) = P(z)Li(a, Y, C3).

(2) The projection P(z) is holomorphic for |z| < r* and P(z) is given by:

P(2) = ‘174 R(C, 2) dC.

21

(3) The spaces M'(z) and M’(0) are isomorphic for |z| < r*.
(4) The power series (4.7) converges uniformly for z € C inside any disk centered at the origin
contained within |z| < r*.

Suppose now o = 0. For this case, take I'; to be the closed contour in C containing an eigenvalue
ﬂ?(O) € d(A%(0)), but no other element of o(A°(0)), i.e., I'; separates f35(0) from other components
of the spectrum, and define:

d= Ciélrfj{dist((, a(A%(0)}.

Suppose that the lowest a-quasiperiodic resonance eigenvalue for the domain D lies inside —1/2 <
1~ (0) < 0 and the corresponding upper bound on S is given by:

ey o B (0)+1/2
Set:
] 47r2d12*( )|
7.5 rt =
( ) W + 47T2d

Theorem 7.2. Separation of spectra and radius of convergence for o = 0.
The following properties hold for inclusions with domains D that satisfy (7.4):

(1) If |2| < r*, then I'; lies in the resolvent of both A°(0) and A°(z) and, thus, separates the
spectrum of A%(z) into two parts given by the component of spectrum of A%(z) inside T';,
denoted by ¥'(z), and the component exterior to I';, denoted by ¥”(z). The invariant sub-
space of AY(2) associated with ¥/(z) is denoted by M'(z), with M'(z) = P(z)L%E(a, Y, C3).

(2) The projection P(z) is holomorphic for |z| < r* and P(z) is given by:

—1
P(z) = .
()= g . RG2)C

(3) The spaces M'(z) and M’(0) are isomorphic for |z| < r*.

(4) The power series (4.7) converges uniformly for z € C inside any disk centered at the origin
contained within |z| < r*.
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Next, we provide an explicit representation of the integral operators appearing in the series
expansion for the eigenvalue group.

Theorem 7.3. Representation of integral operators in the series expansion for eigenvalues

Let Pg* be the projection onto the orthogonal complement of W* @ W3*, and let I denote the
identity on L?(dD)3, then the explicit representation for for the operators A% in the expansion
(4.7), (4.8) is given by:

A =[SO (M + %i)—l(sa)—lpg + PO (=An) ! and
1= 1- 1-
AS = SO + L1 (5% 5P - LD + 2 s P (- a0,

We have a corollary to Theorems 7.1 and 7.2 regarding the error incurred when only finitely
many terms of the series (4.7) are calculated.

Theorem 7.4. Error estimates for the eigenvalue expansion.

(1) Let a # 0, and suppose D, z*(«), and r* are as in Theorem 7.1. Then, the following error
estimate for the series (4.7) holds for |z| < r*:

p
B (z) =Y 2"y

n=0

d|z|p+1
<=
(r*)P(r* —|z|)

(2) Let a = 0, and suppose D, z*(0), and r* are as in Theorem 7.2. Then, the following error
estimate for the series (4.7) holds for |z| < r*:

p
Bz) =D 2"B)

n=0

d‘z‘erl

(r)P(r* — [2])°

<

We summarize results in the following theorem.

Theorem 7.5. The Bloch eigenvalue problem (1.4) is defined for the coupling constant k extended
into the complex plane and the operator —V x (kx g +xp)V x with domain J4(«, Y, C?) is holomor-
phic for k € C\ Z. The associated Bloch spectra is given by the eigenvalues \;(k, o) = (Bf(l/k))*l,
for j € N. For a € Y* fixed, the eigenvalues are of finite multiplicity. Moreover for each j and
«a € Y*, the eigenvalue group is analytic within any neighborhood of infinity contained within the
disk |k| > (r*)~! where r* is given by (7.3) for a # 0 and by (7.5) for a = 0.

The proofs of Theorems 7.1, 7.2 and 7.4 are given in Section 10. The proof of Theorem 7.3 is
given in Section 9.

8. RADIUS OF CONVERGENCE AND SEPARATION OF SPECTRA FOR PERIODIC SCATTERERS OF
GENERAL SHAPE

In this section, we identify an explicit condition on the inclusion geometry that guarantees a
lower bound p~ on the structural spectrum.

Let D be a simply connected set, compactly contained in Y, with C*7 boundary, v > 0. Recall
that, by Theorem 2.9, we have that the eigenvalues of the magnetic dipole operator are precisely
those of the Neumann-Poincaré operator, that is:

_1 1
a(M®; V, *(0D)%) = o((K~%)"; H, (D).
_1
Moreover, a criteria for an a-independent lower bound for o ((K )% Hy ? (8D)> was already

established in [24], in a theorem which we restate below.
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Theorem 8.1. Let p~ be the infimum of the structural spectrum. Suppose there is a constant 6 > 0
such that, for all u € H}(Y') that are harmonic in D and Y \ D, we have:

(8.1) HVUH%Q(Y\D) > 0||Vul 72 py-
Let p = min{Z, 2} Then p~ + > p.

Clearly, the parameter 0 is a geometric descriptor for D. The class of inclusions for which
Theorem (8.1) holds, for a fixed positive value of 6, is denoted by Py, and we have the following
corollary.

Corollary 8.2. For every inclusion domain D belonging to Py, Theorems 7.2 through 7.5 hold with
2*(a) replaced with 2t given by:

+_ kb1 /2 0
SRS V5 R

1

where =~ = mln{Q, 5F— 3.

In [24], the authors also introduce a wide class of inclusion shapes with 6 > 0 that satisfy (8.1).
Consider a buffered inclusion geometry, which consists of an inclusion domain D surrounded by
a buffer layer R, see Figure 3. Denote the Dirichlet-to-Neumann map on the boundary of the
inclusion by DN : H'/2(dD) — H~'/2(dD), denote its norm by |[DN||, and denote the Poincaré
constant for the buffer layer by Cr; we have the following theorem, also from [24].

Theorem 8.3. The buffered inclusion geometry satisfies (8.1) with:
0~' >/1+C%|DN]|

provided this maximum is finite.

We now take D; = B,(z;), a sphere with center z; and radius a, and observe that D} = By(z;) D
D; if a < b. Following Appendix A.3 of [8], we see that 6~ will satisfy:

0~ = max Ci(a, b),
where:
2+ (1 + 1)a?
(l + 1)(b2H‘1 _ CL2l-i—1)'
Adding and subtracting b**! in the numerator yields:
2+ | g2+l p2l+1
PR — 2HT ([ 4 1) (b1 — g2+
2041 | 2041
< ey = Ci(a.b).
Note that Cj(a,b) is decreasing in I:

C’l(a, b) =

Ci(a,b) =

d 2(ab)?*1(In(a) — In(b))
dl 5 G (a:b) = (b2H1 — g2+1)2 <0,
for all { > 1. So:
b +a?
—1 * _
b7 < maxCi(e.b) = 55— 5
Thus:
b3
IVull L2\ py = ¥ a 3HVUHL2(D)

Observe that this bound is not sharp.
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FiGURE 3. Buffered inclusion.

9. LAYER POTENTIAL REPRESENTATION OF OPERATORS IN POWER SERIES

In this section, we obtain explicit formulas for the operators A appearing in the power series
(4.8). It is shown that A%, n # 0, can be expressed in terms of integral operators associated with

layer potentials, and we establish Theorem 7.3.
Recall that A%(z) — A%(0) is given by:

(Pr+ Y 2l/2+ pi() + 2(1/2 — ()] 7 B ) (ALY,

1 1
—5<pi(a)<3

Factoring (1/2 + p;(a))~! and expanding in power series the term:

(@) + 2(1/2 = pi(ex Sy (pil@) —1/2
(172 o)) #0172 =) = 12 e 3o (2 )
we obtain:

« _p — (2P% Oozn (o -1 Ml(a)_l/Z et « 1
RO-HO=CRALS T 1 (Mle i) PamCa)

It follows that:
(9.1) C=(Pr Y (124 pla) ' PE P (—ALY

1 1
—5<pi(a)<3

N pi(e) —1/2\"' .
(9.2) AS = E: (pi(a) +1/2)7 4 [ 22— PoP§ ) (—ALh.
(é%(a)% <u (o) + 1/2> )

We also that we have the resolution of the identity given by:

I'=15,(aycs) =P+ P+ Py,

with P = > Pj, and the spectral representation:
f%<u¢(a)<%
1 1
(T™a,v) = ((S*M*(S*) 1) P¢u + in‘u — §P2°‘u,v)
1 1
= Z i) Ppia + in‘u — §P2°‘u, V).
—3<pi(a)<j
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Adding %I to both sides of the above equation, we obtain:

(T4 oDy = {3 (ula) +5)PE + PPu,v)

—3<ni(@)<3
(9.3) = (((S° M5 4 SPRIPS + PP)uv)
= (S (M + 5 D)(S*) PE + P, v),
where I is the identity on H~/2(dD)3. Now, from (9.3), we see that:

1 — a po o o 1s_ o\ — [e%
(94) ST (o) PR = (50 4 1D ) PR
—i<pi(a)<3
Combining (9.1) and (9.4), we obtain:
a « (e 1~ a\— o o _
T = [SUME + SIS TR 4 PR (= a)

We now turn to the higher-order terms. By the mutual orthogonality of the projections P, for
n > 1, we have that:

(9.5)
i\ -1 M e o
1<§Q)<l(uz( ) +1/2) <M(a) - 1/2> P

(Y aetm@ B (Y w@-y2E) (Y ue) +1/2)P8)

—d<pi(e)<3 —d<pi(e)<3 —1<pi(o)<3
As above, we have that:
1-
> (/24 pi) T PEPY = SU(M+ 51)’1(56“)*13?,
—3<pi(a)<3
a po o e 1= a\—1 pa
(96) >, 2+ pm(a)PLpy = SU(M® + S D)(S%) 7Py,
—%<m(o¢)<%
1-
S Gula) ~ /2B = SUM® — JD)(5%) P
—1<pi(o)<3
Combining (9.6), (9.5), and (9.2), we obtain the layer-potential representation for A%, concluding
the proof of Theorem 7.3:

A7 = $% (M4 DTS TS M — S 4+ LD TS T P (-Aw)

10. DERIVATION OF THE CONVERGENCE RADIUS AND SEPARATION OF SPECTRA

In this section, we present the proof of Theorem 7.1 and the proof of Theorem 7.2. To begin, we
suppose « # 0 and recall that the Neumann series (4.4), and consequently (4.5) and (4.7), converge
provided that:

(10.1) [(A%(2) — A%(0))R(C, 0)H,/;[L2#(Q,Y,C3);Li(a,Y,(C3)] <L
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With this in mind, we will compute an explicit upper bound B(«, z) and identify a neighborhood
of the origin on the complex plane for which:

1(A%(2) = A(0)R(C, 0)ll 2122, (0, v, 22 (a,vieey) < Blas2) <1,

holds for ¢ € T'j. The inequality B(«, z) < 1 will be used first to derive a lower bound on the radius
of convergence of the power series expansion of the eigenvalue group about z = 0. Then, it will
be used to provide a lower bound on the neighborhood of z = 0 where properties 1 through 3 of
Theorem 7.1 hold.

We have the basic estimate given by:

(10.2) 1(A%(2) = A(O) R(C, 0)l| 2122, (0, vic2)i 22, (a,vi02))

< [[(A%(2) = A%ODl 222, (@, vic2);23, (0, v, RGOl 222, (0,v702): 22, (0, v, 03
Here ¢ € I'j, as defined in Theorem 7.1, and elementary arguments deliver the estimate:
(10.3) I R(C, 0)HE[Li(a,Y,C?’);Li(a,Y,(@)} <d,

where d is given by (7.1). Next, we estimate [|[(A%(z) — Aa(O))||L[Li(a,y’c3);[/2#(a’yy(csn.
Denote the energy seminorm of u by:

[ul| =V x ul|p2(v,cs)-
To proceed, we introduce the following Poincaré estimate:
Lemma 10.1. Poincaré estimate for functions u belonging to Ju(a, Y, C?), for a # 0:

(10.4) lallz2v.cs) < lof " lull.

Proof. First, we obtain that:

eAjmmmm@fi//FG%%mmm@rmwm
(10.5) = e

nezs

Observe that, for o € Y*, the following holds:

—i(2m n+a)- dy‘z

|2 n + 04|2

la|? < |]27n| — |o|* < 270 + af?,
and using this in (10.5), we have:

(27 nta)- 2
(10.6) (A w ) iy < 3 e ru(y) dy|

nez3

|of?
Now, write u(y) = @(y)e’®¥ and observe that:

/ e_i(27rn+a).yu(y) dy — / e—i(QWN)'yﬁ(y) dy = ﬁ(n)’
Y

Y

where 1 is the Fourier transform of @, so we can rewrite (10.6) as

(10.7) (A7, w) 2 qycn) < P/hl ? dy = o2 [ulZa y.co)



Also, we have the Cauchy inequality:

[ Py = [ V(-a:"u) : Futydy
Y Y
(10.8) < ([ 1vxaztuwla) ([ 19 uwia) "

Applying (10.7), we get:

_ 2 1/2 _ _  \1/2
([ 19 xatuwlPar) " = ([ Vi-a5tut) : T-A5Ta()dy)
Y Y
(10.9) < laf ™l g2(vcs)
and the Poincaré inequality follows from (10.8) and (10.9). O

For any u € Li(a, Y, C3), we apply (10.4) to find:
[(A°(2) — A°(0)) ull sy < ol IV x (4°(2) — A°(0)) ul2qric)
(10.10) < ol (T = P) gy ooy e | — Al
Applying (10.9) and (10.10) delivers the upper bound:
« « -2 -1
[A%(z) — A (0)”ﬁ[Li(a,Y,C3);L2#(a,Y,(C3)] < e ™7l ((Tl?) - P2a) HE[J#(a,Y,C3);J#(a,Y,(C3)]'
The next step is to obtain an upper bound on || ((T)~! — Py) HE[J#(a Y.C3)1 T (,Y,C3)] By (2.45),

for all u € Jy(a,Y,C?), we have:

(fy IV x ((T2)™* = Pg) ul? dy)l/Q

[[ul]

(fy 1V % (2 PPut 1yt 2 [(1/2 4 i) 4 2(1/2 — pi(@))] " P w)]? dy) v

[[ul?
— |Z’(’UJ0+ Z |(1/2—|—#i(a))+Z(1/2—Mi(a))|_2wi>1/2v
—3<pni(@)<3

where w, = ||Pfu?/||ul|?, w; = ||Piu||2/\|u||2, and w, + Y w; = ¢ < 1, ¢ > 0. Hence, maximizing
the right hand side is equivalent to calculating:

max  fwo+ Y wil(1/2 4 pi(e) + 2(1/2 — pi(a))| 7}
wo+y, w;=c<1 7l<u'(a)<l
2 g 2

= sup{L, |(1/2 + i(c)) + 2(1/2 — pi())| 2}72.
Thus, we maximize the function:
! +x+z L x
2 2

over z € [u~ (a), " (a)], for z in a neighborhood about the origin. Let Re(z) = u, Im(z) = v, and

we write:
-2 1 1 -2
< <2 +z+u <2 - x)) =: g(Re(z),x)
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to get the bound:
(10.11) (1)~ = P < Jelsup {1 ( )}1/2
. i ; oy peyesy] < s {1, s gua)
L[T4(0,Y,C3)i T (a,Y,C)] @€ [um ()t (o))

We now examine the poles of g(u, :L') and the sign of its partial derivative d;g(u,x) when |u| < 1.
If Re(z) = u is fixed, then g(u,z) = ((3 +2) +u(3 — 2)) 2 has a pole when (3 +z) +u(3 —z) = 0.
For wu fixed, this occurs when = = Z, given by:

. 1 /1+u
xzx(u)zi 1)

On the other hand, if x is fixed, g has a pole at:
z+1/2

x—1/2
The sign of 0,¢ is determined by the formula:
—2(1 —u) C2(1—w)Pr — (1 —u?)

BretuG-2)]° [Rt+etu(ld-—2)]"
Observe that the denominator on the right hand side of (10.12) is positive. A calculation shows
that 0,9 < 0 for > z, i.e. g is decreasing on (&,00). Similarly, we have d,g > 0 for z < & and ¢
is increasing on (—oo, ).

Now, we identify all u = Re(z) for which & = Z(u)
the function g(u,z) will be decreasing on [u™ (), u™

(10.12) Org(u, ) =

satisfies £ < p~ (a) < 0. Indeed, for such w,

(a)], so that, for all x € [u~ (), 1], we have
g(u, n~ () > g(u, x), yielding an upper bound for (10.11).
Lemma 10.2. The set U of u € R for which —% < #(u) < g~ () < 0 is given by U := [z*, 1], where:
1< 2= M(ai? <0.
p (@) =3

Proof. Note first that u~ () = inf;en{p;} < 0 follows from the fact that zero is an accumulation
point for the sequence {pu;}ien, so it follows that:

i (0) € —p(a) = 1/2+p(a) < (~1)(u(a) — 1/2) = = > —1.

1 r+1/2
vt , we invert and write u = T+l

Observe that & = Z(u) = We now show that z* < wu <1,

2(u—1) F-1/2°
. _ T4+1/2 R -1 . .

for < pu~(a). Set h(z) = P12 then b/ (&) = @ < 0, and so, h is decreasing on (—oo, 3).
Since p~ (@) < 3, h attains a minimum over (—oo, ™ (@)] at @ = p~(a). Thus Z(u) < p~(a)
implies:

1 (fu+1 _ . M (a)+1/2

— < =— < u<l1

2<u—1> sule) = 2= =i
as desired. 0

Combining Lemma 10.2 with the inequality (10.11), noting that —|z| < Re(z) < |z|, and on
rearranging terms, we obtain the following corollary.

Corollary 10.3. For |z| < |z*|, the following holds:

a « — *\ — 1 — -1
1A% (2) = A Ol 123 (o vz ovicny < ol 2ll(=l2l = =) 71 (5 1 (@)
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Proof. Observe that:

||Aa(2) — Aa(o)HE[Li(a,Y7C3);Li(Oé7Y7C3)] < |Oé‘_2|| ((Tl?)_l - PQOC) ||,C[J#(a,Y,C3;J#(a,Y,(C3]

1/2
<la[?z|sup {1, sup  g(Re(z),2)}
z € [u~(a),ut(a)]

_ o1 (1 -1
<lal 2zl (<lel == (-1 (@)
From Corollary 10.3, (10.2) and (10.3), it follows that:
1(A%(2) = A%(O) RS, O)ll (22, (a,v.c2):22 (0, v7C2)
_ o1/l -1
< ol eIzl - =) (5 - a (@) a7t = Blay2).
A straightforward calculation shows that B(a,z) < 1, for:
|of?d|2* (o)

1 277
53—k (@) +laf*d

|z| < r* =

and property 4 of Theorem 7.1 is established, since r* < |z*|.

Now we establish properties 1 through 3 of Theorem 7.1. Inspection of (4.4) shows that, if (10.1)
holds and if ¢ € C belongs to the resolvent of A%(0), then it also belongs to the resolvent of A%(z).
Since (10.1) holds for ¢ € I'; and |z| < r*, property 1 of Theorem 7.1 follows. Formula (4.5) shows
that P(z) is analytic in a neighborhood of z = 0, determined by the condition that (10.1) holds
for ¢ € I'j. The set |z| < r* lies inside this neighborhood and property 2 of Theorem 7.1 is proved.
The isomorphism expressed in property 3 of Theorem 7.1 follows directly from Lemma 4.10 of [20]
(Chapter I, § 4), which is also valid in a Banach space.

To prove Theorem 7.2, we need the following Poincaré inequality for Jx(0,Y, C3).

Lemma 10.4. The following inequality holds:

1
(10.13) IVliz2 oves) < 5 lIvI-

This inequality is established proceeding as in the proof of Lemma 10.1, with (2.16). Using
(10.13) in place of (10.4), we argue, as in the proof of Theorem 7.1, to show that:

H(AO(Z) - AO(O))R(C7O)”ﬁ[(Li(O,Y,C3);Li(O,Y,<C3)] <1

holds provided |z| < r*, where 7* is given by (7.5). This establishes Theorem 7.2.

The error estimates presented in Theorem 7.4 are easily recovered from the arguments in [20)]
(Chapter II, § 3); for completeness, we restate them here. We begin with the following application
of Cauchy inequalities to the coefficients 85 of (4.7), from [20] (Chapter II, § 3, pg 88):

Bl < d(r™)™".

It follows immediately that, for |z| < r*, we have:

o0
d|Z|P+1
< S B < e
s ()P (r = J2)

p
Bz) =) "B

n=0

completing the proof.
For completeness, we establish the boundedness and compactness of the operator B(k) in (3.2).
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Theorem 10.5. The operator B(k) : L2 #(a,Y, C3) — Jx(a,Y,C?) is bounded for k & Z.
Proof. For a # 0 and for v € L2 2(a,Y, C?), we have:
IB(k)vIl = I(TE) " (=Aa) " vl
<ITE) Ml 2pr (v, v,y — AoV
<ol T M iy oy.cyg@y.canllvilLzecs),

where the last inequality follows from (10.9). The upper estimate on || ((7}) " | 2174 (0,Y,C3); 7 (a,Y,C3)]
is obtained from:

Te 71V 1/2
WS < Lt 40413 w172 4+ ) +20/2- 2}
i=1
where @ = [|PPv|?/ ||| @ = [|[Psv|?/||v[? and w; = |[Bgv]*/|[v|]*. Since w + @ + 3772, w; =
c < 1, one recovers the upper bound:
1@l _
vl
where:
M = max {1,]2], sup {|(1/2+ ) + 2(1/2 = )| '} .
7
A similar argument can be carried out for a = 0. O

Theorem 10.6. For k ¢ Z, B*(k) : Li(a,Y, C3?) — LQ#(a,Y, C3) is a bounded compact operator
mapping Li(a, Y, C3) into itself.

Proof. The Poincaré inequalities (10.4) and (10.13), together with Theorem 10.5, show that B*(k) :
Li(a,Y, c? — Li(a,Y,(Cg’) is a bounded linear operator mapping Li(a,Y,(C?’) into itself.
The compact embedding of Jy(a,Y,C?) into Li(a,Y,(C?’) shows the operator is compact on
Li(a,Y, C?). O

11. CONCLUSIONS

In this paper, analytic representation formulas and power series describing the band structure
inside non-magnetic periodic photonic crystals, made from high dielectric contrast inclusions, are
developed. The spectral representation for the operator —V X (kxmg + xp)Vx is derived, as well
as a power series representation of Bloch eigenfunctions. The radius of convergence for the power
series, together with explicit formulas for each of its terms, in terms of layer potentials, is obtained.
The spectrum in the high contrast limit is completely characterized for the a-quasiperiodic and
periodic (o = 0) cases. Explicit conditions on the contrast are found that provide lower bounds on
the convergence radius. These conditions are sufficient for the separation of spectral branches of
the dispersion relation for any fixed quasi-momentum.

APPENDIX A. HELMHOLTZ DECOMPOSITION FOR PERIODIC AND QUASIPERIODIC VECTOR
FIELDS.

Here, we show how to obtain the Helmholtz decomposition (2.2). First, consider a € Y*, a # 0.
For h(x) € Li(a, Y, C3), we have h(z) = hpe (2, @)e?™*®, where:

hper(z, ) = Z hper (k, a)e?™ ke,
kez?
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In other words: A ‘
x) — Z hper(ku O[)627rz(k+a)-z'
kez3

Now, define the following:

- i (k+a)- hper(k,a)

hpot (K, )
P t( a) 271' ’k+()é|2

. i (k4 a) x hpe(k, )

hey(k,a) = — )
C 1( a) ot ’k‘—l—Oé|2

By the vector triple product formula, we observe that:
2mi(a 4 k) hpot(k, @) + 27i(a 4 k) X hewn (k, @)
(a4 ) [ (@ + k) - Bper(k, )|
- Ik + o2
= hper (K, ).
It follows that h(z) = Vhpot(x) + V X heyn(z), where:

hpot (x) _ Z ilpot(k; a)€27ri(k+a).x’
kez3

hcurl Z hcurl k a) 2mik+a): x
kez3

(a+k)l(a+k) - hper(k, )]  Bper(k,@)[(a + k) - (@ + k)]
|k +af? |k + af?

This is the Helmholtz decomposition for a-quasiperiodic fields, for o € Y*, o # 0.
When « = 0, we have h(x) = Z h(k)e?™ ™ or equivalently:

kez3
2m k- a:
)+ > h(k

kez3
E#£0

with h(0) = / h(z). Then, the Helmholtz decomposition for h € Li (0,Y,C3) is given by:
Y

h(z) = Vhpot(2) + V X heyn(z) + ¢, c€ C3,

where:

ik i 2mik-x
hpot(z) = E —%W-h(k)e )

kez3

k#0
hpou(2) = 3 - x h(k)e2mika
pot 2 | k|2 '

kez3

k#0

APPENDIX B. FOR h € Ju(a,Y,C3), Vhpe =0 IN (2.2):

If & # 0, from Appendix A, we have h(z) = Vhpot () +V X heyn(z). Taking divergence on both
sides, and since h € Jy(a,Y, C3), we obtain that Ahpot = 01in Y and, since hpot is a-quasiperiodic,

we have:
/ ’v}7/po‘n‘2 / potanhpot =0.

A similar argument works for to the case a =
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APPENDIX C. NECESSARY LEMMAS

Lemma C.1. For u and v in Jy(a,Y, C?), we have:
/ qu-vadx—/ Vu: Vvdzr.
Y Y

Proof. Let us write:
u(y) — Z eZﬂ'i(k+a)-yﬁk and v(y) — Z 627ri(k+a)-y‘7k.
kez3 kez3

Then:

/ Vxu-Vxvde= / > 2w T Y (o) x k- Y 2mie2milmte)y(m + o) x VR de
Y Y

keZ3 meZ3
=47[Y] Y (k+a) x 0 (k+ o) x ¥
keZ3
—4nY| Y (|k+a|2ﬁk-\7k —(k+a)- ﬁk(k+a)-\7k)
kez3

:/ Vu:Vvdac—/(V-u)(V-v)dx:/ Vu: Vvdz.
Y Y Y
(I

Lemma C.2. (See [7], Lemma 4.7 for proof.) Let u € L%E(Y, C3) such that curlu € Li(Y, C?) and
divu € L2,(Y). Then u € W,*(Y,C?) and:

/\Vu|2dx:/ |curlu|2dx+/ |div u|? dx.
Y Y Y

Lemma C.3. Let u € L (a,Y,C?) such that curlu € Li(a,Y,(C?’) and divu € Lf{#(a,Y). Then
ue W;&’Q(a, Y,C3) and:

(C.1) /|Vu]2dX:/ ]curlu]zdx—i—/ |div u)? dx.
Y Y Y

Proof. Let us write:
u(y) _ Z ezm(kqta)-yck‘
kez3
We then have that:
curlu = Z 27 i 2™ )Y (B 4 ) x ek,
kez3

diva = Z 20 2™ )Y (k4 o) . ek,
kez3

Since ’(k‘ +a) x ck|2+|(k +a) - ck|2 = |k +a }ck}z, we infer that ), ;s |k + of? ’ck’2 < 00, thus

ue W;gz(a,Y)S. Moreover, (C.1) follows. O
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APPENDIX D. FOR u € J4(a,Y,C3), THE NULL SPACE OF V x u 1s {0}:

Let u € J4(a,Y,C3) such that V x u = 0. Then, from Lemma C.1, we have:

/ |Vul? :/ |curlul? = 0.
Y Y

Then u must be a constant in Y. If o # 0, since u is a-quasiperiodic, we conclude it must be zero.
If a = 0, since fy udx = 0, then we can also conclude that u = 0.

APPENDIX E. PERIODIC AND a-QUASIPERIODIC GREEN’S FUNCTIONS AND THEIR RELATION TO
THE FREE SPACE GREEN’S FUNCTION

Consider G and G, defined in (2.16) and (2.15), respectively, and the free-space Green’s func-
tion given by:
1

T =

Observe that, in the unit cell Y, we have:

A (z,y) - G(z,y)) =d(z —y) — Oz —y) - 1) =1
and, from the regularity of the elliptic problem, we have that R%(z) = I'(z,y) — G%(z,y) is smooth
inY, see [1]. A similar argument works for G%, a # 0. In that case:

AG*(x,y) = Z 6(x —y —n)e*™ in R,
nezs

which implies that, in the unit cell Y, we have:
A (z,y) — G%(z,y)) =0,

from where R*(z) = I'(z,y) — G*(z,y) is smooth in Y. The generalization of Lemma 4.4 of [29] to
the periodic and a-quasiperiodic cases follows from the above.
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