
BLOCH WAVES IN HIGH CONTRAST ELECTROMAGNETIC CRYSTALS
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Abstract. Analytic representation formulas and power series are developed describing the band
structure inside non-magnetic periodic photonic three-dimensional crystals made from high dielec-
tric contrast inclusions. Central to this approach is the identification and utilization of a resonance
spectrum for quasiperiodic source-free modes. These modes are used to represent solution oper-
ators associated with electromagnetic and acoustic waves inside periodic high contrast media. A
convergent power series for the Bloch wave spectrum is recovered from the representation formulas.
Explicit conditions on the contrast are found that provide lower bounds on the convergence radius.
These conditions are sufficient for the separation of spectral branches of the dispersion relation for
any fixed quasi-momentum.

1. Introduction

We are interested in photonic crystals, or photonic band-gap materials, and their use in control-
ling the propagation of light. A photonic crystal is an artificially created optical material, which
can be considered as the optical analog of a semiconductor, since it behaves with respect to photon
propagation in a similar fashion as the semiconductor behaves with respect to electron propagation.
Developments in optical materials provide benefits to a number of fields, including spectroscopy
and high-speed computing, for example. Several books and surveys have been written about the
subject; see, for instance, [15, 16, 22, 23, 30, 31].

A photonic crystal is a periodic lattice of inclusions surrounded by a connected phase with the
property that the contrast k between the dielectric properties of the inclusions and the connected
phase can be quite large. Understanding the propagation of electromagnetic waves in photonic
crystals is crucial since it might allow tailoring materials to obtain desired properties. The Maxwell
system is given by:

(1.1)

 ∇×E = −1
c
∂B
∂t , ∇ ·B = 0

∇×H = 1
c
∂D
∂t , ∇ ·D = 0,

where c is the speed of light in free space, the vector-valued functions E and H are the macro-
scopic electric and magnetic fields, and D and B are the displacement and magnetic induction
fields, respectively [14]. To complete the Maxwell system the constitutive relations describing the
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dependence of D and B on E and H are supplied. We apply the linear constitutive relations, given
by:

D = εE, B = µH,

where ε is the dielectric constant and µ is the magnetic permeability. In this treatment, it is
assumed that the media is isotropic, the material is non-magnetic (i.e. µ = 1), and the dielectric
constant ε(x) is periodic.

We consider the case of monochromatic waves E(x, t) = eiωtE(x), H(x, t) = eiωtH(x), where ω
is the time frequency, and the system (1.1) becomes: ∇×E = − iω

c
∂H
∂t , ∇ ·H = 0

∇×H = iω
c ε(x)∂E∂t , ∇ · εE = 0

,

which, after eliminating the electric field E, reduces to:

(1.2) ∇× 1

ε(x)
∇×H = ξH, ∇ ·H = 0, where ξ = (ω/c)2.

In a two-dimensional periodic medium (where ε(x) is periodic with respect to x and y and
homogeneous with respect to z, for example), problem (1.2) reduces to scalar equations −∆E =
λε(x)E and:

(1.3) −∇ · 1

ε(x)
∇H = ξH, where ξ = (ω/c)2.

One of the main goals of the photonic crystals theory is to choose ε(x) ≥ 1 such that the spectrum
of the corresponding problem, scalar (1.3) or vectorial (1.2), has a gap. Existence of a gap delivers
a frequency interval (band) over which electromagnetic waves cannot propagate in the material. A
complete band gap is a range of frequencies for which no Bloch wave of any wavelength or direction
can propagate through the crystal. Band gaps have many interesting and useful applications ranging
from efficient photovoltaic cells to power electronics and optical computers, see [15, 16].

Most of the state-of-the-art developments [3, 2, 7, 10, 11, 12, 13] have been restricted to the
asymptotic theory of band gaps at infinite contrast. For the scalar case (1.3), the authors exploited
structural resonances associated with the Neumann-Poincaré operator to develop new techniques
for complex operator valued functions, which delivered explicit formulas for band gaps at finite
contrast. This provides mathematically rigorous and explicit formulas for the size of band gaps
and pass bands, given in terms of the contrast, shape and configuration of scatters, and lattice
parameters, see [24, 25].

In this paper, we lay the foundation for the analytical methods to obtain the corresponding
results to the ones obtained in [24] for the fully three-dimensional electromagnetic photonic crystals
lattices, via the vector wave equation (1.2). In particular, we establish an analytic representation
for the periodic and quasiperiodic spectra of (1.2) in terms of the contrast between the dielectric
constants of the two material components, together with a radius of convergence described in terms
of the crystal geometry by way of the associated Neumann-Poincaré spectrum.

We consider a Bloch wave h(x), with Bloch eigenvalue ξ = (ω/c)2, propagating through a three-
dimensional photonic crystal, characterized by the periodic relative dielectric constant a−1(x) =
ε(x) = ε(x+ p), p ∈ Z3, with unit cell Y = (0, 1]3, defined by:

ε(x) =

{
1 inside the inclusion D

ε = 1/k in the host material H := Y \D.

The magnetic field h(x) inside “non-magnetic media” solves the vector Helmholtz equation:

(1.4) ∇× (a(x)∇× h(x)) = ξh(x), x ∈ R3,
2



together with the α-quasiperiodicity condition h(x + p) = h(x)eiα·p. Here, α lies in the first
Brillouin zone of the reciprocal lattice given by Y ∗ = (−π, π]3. Equation (1.4) describes time
harmonic wave propagation for the magnetic field in non-magnetic media, i.e., for heterogeneous
media with relative magnetic permeability µ = 1 everywhere.

We examine Bloch wave propagation through high contrast crystals made from periodic configu-
rations of two dielectric materials. The inclusion D contained within the interior of the period cell
Y and surrounded by the second “host” material, H := Y \D, see Figure 1.

Figure 1. Period cell

The coefficient a(x) is then specified on the unit cell by:

a(x) = kχH(x) + χD(x),

where χH and χD are the indicator functions for the sets H and D, and are extended by period-
icity to R3. In this paper, we consider periodic crystals made from finite collections of separated
inclusions, each with C1,γ boundary, where γ > 0.

For each α ∈ Y ?, the Bloch eigenvalues ξ are of finite multiplicity and denoted by λj(k, α), j ∈ N.
We develop power series expansions for each branch of the dispersion relation:

(1.5) λj(k, α) = ξ, j ∈ N

that are valid for k in a neighborhood of infinity.
To proceed, we complexify the problem and consider k ∈ C. Now a(x) takes on complex values

inside H and the operator −∇ × (kχH + χD)∇× is no longer uniformly elliptic. Our approach
develops an explicit representation formula for −∇× (kχH +χD)∇× that holds for complex values
of k. We identify the subset z = 1/k ∈ Ω0 of C where this operator is invertible. The explicit
formula shows that the solution operator (−∇×(kχH+χD)∇×)−1 may be regarded more generally
as a meromorphic operator valued function of z, for z ∈ Ω0 = C \ S, see Section 4 and Lemma 4.1.
Here, the set S is discrete and consists of poles lying on the negative real axis with only one
accumulation point at z = −1. For the problem treated here, we expand about z = 0, and the
distance between z = 0 and the set S is used to bound the radius of convergence for the power
series. The spectral representation for −∇×(kχH+χD)∇× follows from the existence of a complete
orthonormal set of α-quasiperiodic functions associated with the α-quasiperiodic resonances of the
crystal, i.e., α-quasiperiodic functions v and real eigenvalues λi(α), i ∈ N, for which:

−∇× (χD)∇× v = −λi(α)∆v.

The collection of these eigenvalues, for α ∈ Y ∗, comprises the structural spectrum of the crystal. The
structural spectrum encodes the geometry of the crystal and inclusions independently of dielectric
properties. These resonances are shown to be connected to the spectra of Neumann-Poincaré
operators associated with α-quasiperiodic double layer potentials. The formal definition of the
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structural spectrum given in terms of the Neumann-Poincaré eigenvalues, for α ∈ Y ∗, is provided
in Definition 2.11.

For α = 0, these eigenvalues are the well known electrostatic resonances identified in [6], [5],
[27], and [28]. Other electrostatic resonances for a vectorial Helmholtz equation are introduced and
explored in [9]. Both Neumann-Poincaré operators and the associated electrostatic resonances have
been the focus of theoretical investigations [17], [21] and applied in analysis of plasmonic excitations
for suspensions of noble metal particles [26] and electrostatic breakdown [4]. The explicit spectral
representation for the operator −∇ × (kχH + χD)∇× is crucial for elucidating the interaction
between the contrast k and the quasiperiodic resonances of the crystal, see Theorem 2.12.

The spectral representation is applied to analytically continue the band structure λj(k, α) = ξ,
j ∈ N, α ∈ Y ? for k ∈ N to C, see Theorem 3.1. On setting z = 1/k, the spectral representation for
the inverse operator written as Aα(z) = (−∇× (kχH + χD)∇×)−1 shows it to be a meromorphic
operator valued function of z = 1/k, see Section 4 and Lemma 4.1. Application of the contour
integral formula for spectral projections [32], [18], [19] delivers an analytic representation formula
for the band structure, see Section 4. We apply perturbation theory in Section 4, together with
a calculation provided in Section 10, to find an explicit formula for the radii of convergence for
the power series λj(k, α) about 1/k = 0. The formula shows that the radius of convergence and
the separation between different branches of the dispersion relation for any fixed α ∈ Y ∗ are
determined by: 1) the distance of the origin to the nearest pole z∗ of (−∇ × (kχH + χD)∇×)−1,
and 2) the separation between distinct eigenvalues in the z = 1/k → 0 limit, see Theorem 7.1 and
Theorem 7.2. These theorems provide conditions on the contrast guaranteeing the separation of
the j-th and j + 1-th eigenvalue groups that depend explicitly upon z∗, j ∈ N and α ∈ Y ?. Error
estimates for series truncated after N terms follow directly from the formulation.

The paper is organized as follows: In the next section, we introduce the Hilbert space formu-
lation of the problem and the variational formulation of the quasi-static resonance problem. The
completeness of the eigenfunctions associated with the quasi-static spectrum is established and a
spectral representation for the operator −∇ × (kχH + χD)∇× is obtained. These results are col-
lected and used to continue the frequency band structure into the complex plane, see Theorem 3.1
of Section 3. Spectral perturbation theory [20] is applied to recover the power series expansion for
Bloch spectra in Section 4. The leading order spectral theory is developed for quasiperiodic α 6= 0
and periodic α = 0 problems in Section 5 and Section 6, respectively. The main theorems on radius
of convergence and separation of spectra, given by Theorem 7.1 and Theorem 7.2, are presented in
Section 7. A large class of geometries for which an α-independent lower bound on the quasi-static
resonances is introduced in Section 8. Explicit formulas for each term of the power series expansion
is recovered and expressed in terms of layer potentials in Section 9. The explicit formulas for the
convergence radii are derived in Section 10 as well as hands-on proofs of Theorem 7.1, Theorem 7.2
and the explicit error estimates for N -th order truncations.

2. Hilbert space setting, quasiperiodic resonances and representation formulas

The space of all α-quasiperiodic complex vector valued functions belonging to L2
loc(R3,C3) is

denoted by L2
#(α, Y,C3) and the L2-inner product is defined by:

(2.1) (u,v) =

∫
Y

u · v dx.

For h ∈ L2
#(α, Y,C3), its Helmholtz decomposition is given by:

(2.2) h = ∇hpot +∇× hcurl,
4



where hpot is an α-quasiperiodic scalar field belonging to H1
loc(R3,C) and hcurl ∈ L2

#(α, Y,C3), with

∇× hcurl ∈ L2
#(α, Y,C3). The subspaces of gradients and curls are orthogonal with respect to the

L2-inner product (2.1). The Helmholtz decomposition (2.2) is shown in Appendix A.
For α 6= 0, the eigenfunctions h of (1.4) belong to the space J#(α, Y,C3) ⊂ L2

#(α, Y,C3) given
by:

(2.3) J#(α, Y,C3) = {h ∈ H1
loc(R3,C3) : h is α-quasiperiodic on Y , div h = 0 in Y }.

A simple calculation, found in Appendix B, shows that, for h ∈ J#(α, Y,C3), we have ∇hpot = 0
in (2.2). Hence, h = ∇× hcurl for h ∈ J#(α, Y,C3). Another straightforward calculation, given in
Appendix D, delivers the following result:

Theorem 2.1. For u ∈ J#(α, Y,C3), the null space of ∇×u, for α 6= 0, is {0} and the bilinear form
given by:

(2.4) 〈u,v〉 =

∫
Y
∇× u · ∇ × v dx

is an inner product on J#(α, Y,C3), with norm defined by ‖u‖2 = 〈u,u〉. The space J#(α, Y,C3)
is a Hilbert space under the inner product (2.4), with J#(α, Y,C3) ⊂W 1

#(α, Y,C3) and:∫
Y
∇× u · ∇ × v dx =

∫
Y
∇u : ∇v dx

for u, v ∈ J#(α, Y,C3), where “ :” represents the Frobenius inner product (see Appendix C).
Moreover, the null space corresponding to the operator on the left hand side of (1.4) is identically
zero.

For α = 0, one has that L2
#(0, Y,C3) is the space of periodic L2- vector fields on Y . For this

case, h ∈ L2
#(0, Y,C3) has the Helmholtz decomposition into L2- orthogonal components given by:

(2.5) h = ∇hpot +∇× hcurl + c,

where hpot is a periodic scalar field belonging to H1
loc(R3,C), hcurl ∈ L2

#(0, Y,C3), with ∇×hcurl ∈
L2

#(0, Y,C3), and c is a constant vector in C3, see Appendix A. For α = 0, the eigenfunctions h

for (1.4) belong to the space:

{h ∈ H1
loc(R3,C3) : h periodic on Y , ∇ · h = 0 in Y }.

A simple calculation, given in Appendix B, shows that ∇hpot = 0 and h = ∇ × hcurl + c. We
introduce the space J#(0, Y,C3) ⊂ L2

#(0, Y,C3) given by:

(2.6) J#(0, Y,C3) = {h ∈ H1
loc(R3,C3) : h is periodic, ∇ · h = 0 in Y, and

∫
Y

h dx = 0}.

Theorem 2.2. For u ∈ J#(0, Y,C3), the null space of ∇× u is {0} and the bilinear form:

(2.7) 〈u,v〉 =

∫
Y
∇× u · ∇ × v dx,

is an inner product on J#(0, Y,C3), with norm defined by ‖u‖2 = 〈u,u〉. The space J#(0, Y,C3) ⊂
W 1

#(0, Y,C3) with inner product (2.7) is a Hilbert space and:∫
Y
∇× u · ∇ × v dx =

∫
Y
∇u : ∇v dx

for u, v ∈ J#(0, Y,C3). Moreover, the null space corresponding to the operator on the left hand
side of (1.4), for h ∈ J#(0, Y,C3), is {0}.
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This theorem follows from a calculation given in Appendix D. From now on, we will refer to
J#(α, Y,C3) for all α ∈ Y ∗, with the special choice of J#(α, Y,C3) for α = 0 defined as in (2.6).

The weak form of equation (1.4) is given by:

(2.8) ε−1

∫
H

(∇× h) · (∇×w) dx+

∫
D

(∇× h) · (∇×w) dx = ξ

∫
Y

h ·w dx,

for all w ∈ J#(α, Y,C3). We set k = ε−1, and the left hand side of (2.8) is given by the sesquilinear
form Bk : J#(α, Y,C3)× J#(α, Y,C3)→ C, defined as:

(2.9) Bk(u,w) := k

∫
H

(∇× u) · (∇×w) dx+

∫
D

(∇× u) · (∇×w) dx.

The linear operator Tαk , associated with the sesquilinear form Bk, is defined by:

(2.10) 〈Tαk u,w〉 := Bk(u,w),

for all u and w in J#(α, Y,C3).
Our goal is to rewrite (1.4) in terms of a spectral representation formula for the differential

operator ∇× (k∇× ·). We will do this by developing the spectral representation of Tαk , which can
be directly linked to the following eigenvalue problem:

(2.11) λ〈u,w〉 = λ

∫
Y

(∇× u) · (∇×w) dx =

∫
D

(∇× u) · (∇×w) dx,

for all u,w ∈ J#(α, Y,C3); which will be shown to possess countably many real eigenvalues λn,
with corresponding eigenfunctions ψn ∈ J#(α, Y,C3), that satisfy:

λn

∫
Y

(∇× ψn) · (∇×w) dx =

∫
D

(∇× ψn) · (∇×w) dx, ∀w ∈ J#(α, Y,C3).

The eigenspaces associated with different eigenvalues are easily seen to be orthogonal in the inner
product (2.4). We apply these eigenfunctions to introduce a different decomposition of J#(α, Y,C3)
that is orthogonal in the inner product (2.4). We introduce the three subspaces denoted by Wα

1 ,
Wα

2 , Wα
3 that are mutually orthogonal with respect to the inner product (2.4) and defined as:

(2.12) Wα
1 =

{
u ∈ J#(α, Y,C3), ∇× u = 0 in D

}
,

(2.13) Wα
2 =

{
u ∈ J#(α, Y,C3), ∇× u = 0 in H

}
,

and Wα
3 ⊂ J#(α, Y,C3) is the subspace perpendicular to the direct sum (W α

1 ⊕Wα
2 ).

The decomposition of J#(α, Y,C3) is recorded in the following lemma.

Lemma 2.3. The space J#(α, Y,C3) can be decomposed into orthogonal invariant subspaces spanned
by eigenfunctions of the eigenvalues of problem (2.11) and:

J#(α, Y,C3) = Wα
1 ⊕Wα

2 ⊕Wα
3 .

It follows from the definitions of Wα
1 and Wα

2 that they are subspaces of the eigenspaces of
(2.11) associated with the eigenvalues 0 and 1, respectively. From (2.11), we easily deduce that the
eigenvalues λ belong to [0, 1]. To proceed, we must provide the explicit characterization of functions
in W3 in terms of eigenspaces. To do this, we introduce the appropriate differential operators defined
on the surface of the dielectric inclusion ∂D. We begin by defining the surface differential operators
for smooth functions. The surface divergence DivS for smooth complex-valued tangential vector
fields v is defined over the surface ∂D by:

DivSv :=
∑
j,i

ni(ni∂j − nj∂i)vj ,

6



where ni, i = 1, 2, 3, are the components of the unit outward normal vector n to the surface. The
operator:

n · ∇ × v := (n2∂3 − n3∂2, n3∂1 − n1∂3, n1∂2 − n2∂1) · v

is only composed of tangential derivatives and can be viewed as an operator defined on ∂D. For
every vector field v in L2(∂D)3, we have the relation between DivS and n · ∇× given by:

DivS(n× v) = −n · ∇ × v,

see [29]. Also, see [29], for a scalar function f ∈W s,2(∂D) and a vector function g ∈W 1−s,2(∂D)3,
for 0 ≤ s ≤ 1, we have the identity:∫

∂D
g · n×∇f ds = −

∫
∂D

f(n · ∇ × g) ds.(2.14)

To complete the set up, we introduce the spaces:

L2
t (∂D)3 =

{
ρ ∈ L2(∂D)3

∣∣ n · ρ = 0 on ∂D
}
,

L2
t,0(∂D)3 =

{
ρ ∈ L2

t (∂D)3
∣∣ DivSρ = 0 on ∂D

}
,

L2
0(∂D) =

{
ρ ∈ L2(∂D)

∣∣ (ρ, 1)∂D = 0
}
,

H
−1/2
0 (∂D) =

{
ρ ∈ H−1/2(∂D)

∣∣∣ (ρ, 1)∂D = 0
}
,

where (ρ, 1)∂D :=

∫
∂D

ρ ds.

In order to relate Wα
3 to the invariant subspaces of the eigenvalue problem (2.11), we will

introduce a representation of Wα
3 given by single layer potentials parameterized by densities on

∂D. This is done in the next section.

2.1. Mapping Properties of the Single Layer Potential Operator. We start by introducing
the α-quasiperiodic Green’s function:

(2.15) Gα(x, y) = −
∑
n∈Z3

ei(2πn+α)·(x−y)

|α+ 2πn|2
I3×3, for α 6= 0,

and the periodic Green’s function:

(2.16) G0(x, y) = −
∑

n∈Z3\{0}

ei(2πn)·(x−y)

|2πn|2
I3×3, for α = 0,

where | · | is the usual norm of a vector in R3. For α ∈ Y ∗ and ρ ∈ L2
t,0(∂D)3, we define the

α-quasiperiodic single layer potential as:

Sα(ρ)(x) =

∫
∂D

Gα(x, y)ρ(y)dsy, x 6∈ ∂D.(2.17)

The single layer potential operator satisfies the continuity condition at x ∈ ∂D:

(2.18) Sα(ρ)
∣∣+
∂D

= Sα(ρ)
∣∣−
∂D
,

(2.19) −∆Sα(ρ) = 0 for x ∈ H ∪D,

and Sα(ρ) ∈W#(α, Y,C3) with Sα(ρ)
∣∣
∂D

in W 1/2,2(∂D)3. Let Γ−(x) be a truncated circular cone

in the interior of D with vertex x and let Γ+(x) be a truncated circular cone in the interior of H
7



with vertex x. Now consider these cones with common vertex p on ∂D. The boundary trace of a

function f at p, f(p)
∣∣±
∂D

, is given by:

lim
x→p

x∈Γ+(p)

f(x) = f(p)
∣∣+
∂D

, lim
x→p

x∈Γ−(p)

f(x) = f(p)
∣∣−
∂D

.

We introduce the magnetic dipole operator Mα : L2
t,0(∂D)3 → L2

t,0(∂D)3 given by:

(2.20) Mα(ρ) = n×
(

p.v.

∫
∂D
∇x × (Gα(x, y) ρ(y)) dsy

)
, x ∈ ∂D and α ∈ Y ∗.

We have the following jump conditions for x ∈ ∂D:

(2.21) n×∇x × Sα(ρ)
∣∣±
∂D

= ±1

2
ρ+Mα(ρ).

For scalar densities ρ ∈ L2(∂D), we recall the jump conditions for x ∈ ∂D:

n · ∇xSα(ρ)
∣∣±
∂D

= ∓1

2
ρ+ (K−α)∗(ρ),

where the Neumann–Poincaré operator (K−α)∗ is defined by:

(K−α)∗(ρ) = p.v.

∫
∂D

∂Gα(x, y)

∂n(x)
ρ(y) dsy.

Applying Lemma 4.2 of [29] we obtain:

divSα(ρ)(x) =

∫
∂D

Gα(x, y)(DivαSρ(y))dsy,

and:

(2.22) divSα(ρ)(x) = 0,

since ρ in L2
t,0(∂D)3. We may extend Lemma 4.4 of [29] to the periodic and α-quasiperiodic cases,

see Appendix E, to deliver a commutation relation between the surface divergence, the magnetic
dipole and the Neumann–Poincaré operator given by:

(2.23) DivSM
α(ρ) = (K−α)∗(DivSρ),

where equality holds as elements of W−1(∂D). It is noted, for future reference, that:

(2.24) n · ∇ × Sα(ρ) : L2
t,0(∂D)3 → L2

0(∂D),

is an isomorphism, see [29].
The following two lemmas are crucial for the parametrization of Wα

3 by single layer potentials.

Lemma 2.4. Let the single layer potential operator Sα be defined as in (2.17). For every ρ ∈
L2
t,0(∂D)3, we have that Sα(ρ) ∈Wα

3 .

Proof. First, recall that [Sα(ρ)]|±∂D = 0 from (2.18), divSα(ρ) = 0 in Y from (2.22), and from
(2.19) it follows that:

(2.25) ∇×∇× Sα(ρ) = ∇(∇ · Sα(ρ))−∆Sα(ρ) = −∆Sα(ρ) = 0, for x ∈ H ∪D.

Choosing a smooth w2 in Wα
2 , we get:

(2.26)

∫
Y
∇× Sα(ρ) · ∇ ×w2 dx =

∫
D
∇× Sα(ρ) · ∇ ×w2 dx.

8



Since w2 ∈ Wα
2 , we have that ∇×w2 = 0 in H and, since H is connected, we have w2 = ∇φ in

H, for some scalar potential φ, with w2|−∂D = w2|+∂D = ∇φ|+∂D. Integration by parts in (2.26), the

application of (2.25), and the fact that w2|−∂D = ∇φ|+∂D give:∫
D
∇× Sα(ρ) · ∇ ×w2 dx =

∫
D
∇×∇× Sα(ρ) ·w2 dx−

∫
∂D−

n×∇× Sα(ρ) ·w2 dsx

= −
∫
∂D−

n×∇× Sα(ρ) · ∇φdsx(2.27)

and, from (2.21), we see that:∫
∂D−

n×∇× Sα(ρ) · ∇φdsx =

∫
∂D−

(
−1

2
ρ+Mα(ρ)

)
· ∇φdsx

=

∫
∂D−

(
1

2
DivSρ−DivSMα(ρ)

)
φdsx.(2.28)

Since ρ ∈ L2
t,0(∂D)3, from (2.23) we obtain:

(2.29) DivSM
α(ρ) = (K−α)∗(DivαS(ρ) = 0.

It now follows immediately, from (2.26), (2.27), (2.28) and (2.29), that:

(2.30)

∫
Y
∇× Sα(ρ) · ∇ ×w2 dx = 0,

for a dense set of test fields w2 in Wα
2 , and we conclude that Sα(ρ) ⊥ Wα

2 . Identical arguments
can be made for w1 ∈Wα

1 , to find that:∫
Y
∇× Sα(ρ) · ∇ ×w1 dx = 0,

and the lemma follows. �

Define the Sobolev space:

V
− 1

2

t (∂D)3 :=
{

(n×∇)f : f ∈W 1/2,2(∂D)
}
,

with the norm ‖A‖
V
− 1

2
t (∂D)3

given by:

‖A‖
V
− 1

2
t (∂D)3

= inf
{
‖σ + f‖W 1/2,2(∂D) : σ ∈ C, f ∈W

1
2
,2(∂D), (n×∇)f = A

}
.

Moreover, from [29], we have:

L2
t,0(∂D)3 = V 0

t (∂D)3 =
{

(n×∇)f : f ∈W 1,2(∂D)
}
,

with:

n×∇ : W 1,2(∂D) \ C→ L2
t,0(∂D)3,(2.31)

n×∇ : W 1/2,2(∂D) \ C→ V
− 1

2

t (∂D)3,(2.32)

isomorphisms, and:

L2
t,0(∂D)3 ⊂ V

− 1
2

t (∂D)3 ⊂W−1/2,2(∂D)3.

We now present the mapping property of the single layer potential operator necessary for char-
acterizing the spectrum of the sesquilinear operator Tα = SαMα(Sα)−1.

Theorem 2.5. The single layer potential operator can be extended as a bounded linear map from

V
− 1

2

t (∂D)3 to Wα
3 .

9



Proof. To prove this theorem, we first show the following lemma.

Lemma 2.6. The space of tangential vector fields L2
t,0(∂D)3 is a dense subspace of V

− 1
2

t (∂D)3.

Proof. Note that, from (2.32), for g ∈ V
− 1

2

t (∂D)3 we can write g = n × ∇f , for some f ∈
W 1/2,2(∂D) \ C. From the density of W 1,2(∂D) in W 1/2,2(∂D), there exists a sequence {fj}∞j=1 ∈
W 1,2(∂D)2 \ C ⊂ W 1/2,2(∂D) \ C converging to f in W 1/2,2(∂D) \ C. From (2.31), there are
associated functions gj in L2

t,0(∂D)3 such that gj = n × ∇fj . By the continuity of the map

n×∇ : W 1/2,2(∂D)→ V
− 1

2

t (∂D)3, we have the existence of a positive constant C such that:

‖g − gj‖
V
− 1

2
t (∂D)

= ‖n×∇f − n×∇fj‖
V
− 1

2
t (∂D)

≤ C‖f − fj‖W 1/2,2(∂D)\C ,

and it follows that L2
t,0(∂D)3 is dense in V

− 1
2

t (∂D)3. �

With Lemma 2.6 in hand, we prove Theorem 2.5. Given ρ ∈ L2
t,0(∂D)3 and Sα(ρ) ∈ Wα

3 , we
have:

(2.33)

‖Sα(ρ)‖2 =

∫
H
∇× Sα(ρ) · ∇ × Sα(ρ) dx +

∫
D
∇× Sα(ρ) · ∇ × Sα(ρ) dx

=

∫
∂D

[n×∇× Sα(ρ)]−+ · Sα(ρ) dsx

= −
∫
∂D
ρ · Sα(ρ) dsx.

Writing ρ = n×∇f , for f ∈W 1,2(∂D) \ C, and using (2.14) in (2.33), we get:

−
∫
∂D
ρ · Sα(ρ) dsx = −

∫
∂D

n×∇f · Sα(ρ) dsx =

∫
∂D

f n · ∇ × Sα(ρ) dsx.

From (2.24), n ·∇×Sα(ρ) ∈ L2
0(∂D), so it also belongs to W

− 1
2
,2

0 (∂D) = (W
1
2
,2(∂D)\C)′, where

the notation “ ′ ” is used to indicate the dual space. From (2.33) and the last equation above, for
f ∈W 1,2(∂D) \ C, we have:

‖Sα(ρ)‖2 =

∫
∂D

f n · ∇ × Sα(ρ) dsx ≤ inf
σ∈C
‖f + σ‖

W
1
2 ,2(∂D)

‖n · ∇ × Sα(ρ)‖
W
− 1

2 ,2

0 (∂D)
,

where infσ∈C ‖f+σ‖
W

1
2 ,2(∂D)

is the norm for W 1,2(∂D)\C. Since the map n·∇×Sα : V
− 1

2

t (∂D)3 →

W
− 1

2
,2

0 (∂D) is bounded (see [29]), we have that ‖n · ∇ × Sα(ρ)‖
W−

1
2 ,2(∂D)

≤ C‖ρ‖
V
− 1

2
t (∂D)3

and

also infσ∈C ‖f + σ‖
W

1
2 ,2(∂D)

= ‖ρ‖
V −

1
2 (∂D)3

, so it follows that:

‖Sα(ρ)‖2 ≤ C inf
σ∈C
‖f + σ‖

W
1
2 ,2(∂D)

‖ρ‖
V
− 1

2
t (∂D)3

≤ C‖ρ‖2
V
− 1

2
t (∂D)3

and, therefore:

(2.34) ‖Sα(ρ)‖ ≤ C‖ρ‖
V
− 1

2
t (∂D)3

.

The inequality (2.34) implies that Sα(ρ) is a bounded operator mapping into Wα
3 for the densely

defined subspace L2
t,0(∂D)3 of V

− 1
2

t (∂D)3. Then, we extend the densely defined map Sα to V
1
2
t (∂D)3,

using the BLT theorem, to deduce that its extension Sα : V
− 1

2

t (∂D)3 →Wα
3 is bounded. �

Theorem 2.7. The single layer potential operator Sα : V
− 1

2

t (∂D)3 →Wα
3 is a bijection.
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Proof. We first show that Sα is one-to-one. For a given ρ ∈ V
− 1

2

t (∂D)3, we have u = Sα(ρ) ∈Wα
3 .

Furthermore:

ρ = n×∇× u
∣∣
∂D+ − n×∇× u

∣∣
∂D−

+ n×∇× u
∣∣
∂Y
− n×∇× u

∣∣
∂Y

= n×∇× u
∣∣
∂H
− n×∇× u

∣∣
∂D−
− n×∇× u

∣∣
∂Y
.

Given a bounded Lipschitz domain Ω ∈ R3, if f ∈ L2(Ω)3 and ∇ × f ∈ L2(Ω)3, then n × f ∈
W−

1
2
,2(∂Ω)3. As a consequence, there is a C > 0, depending only on ∂Ω, such that:

‖n× f‖
W−

1
2 ,2(∂Ω)3

≤ C(‖f‖L2(Ω)3 + ‖∇ × f‖L2(Ω)3).

Set f = ∇× u and, since ∇×∇× u = 0 in H ∪D, ρ ∈ V
− 1

2

t (∂D)3 ⊂W−
1
2
,2(∂D)3, one has:

‖ρ‖
W−

1
2 ,2(∂D)3

= ‖n×∇× u
∣∣
∂D+ − n×∇× u

∣∣
∂D−
‖
W−

1
2 ,2(∂D)3

≤ ‖n×∇× u‖
W−

1
2 ,2(∂H)3

+ ‖n×∇× u‖
W−

1
2 ,2(∂D)3

+ ‖n×∇× u‖
W−

1
2 ,2(∂(Y ))3

≤ C(‖∇ × u‖L2(H)3 + ‖∇ × u‖L2(D)3 + ‖∇ × u‖L2(Y )3)

≤ C‖u‖ = C‖Sα(ρ)‖.

Now, for ρ1,ρ2 ∈ V
− 1

2

t (∂D)3 ⊂W−
1
2
,2(∂D)3, we obtain:

0 ≤ ‖ρ1 − ρ2‖W− 1
2 ,2(∂D)3

≤ C2‖Sα(ρ1)− Sα(ρ2)‖,

to conclude that Sα : V
− 1

2

t (∂D)3 →Wα
3 is one-to-one.

To show the surjectivity of Sα, assume that u ∈ Wα
3 is given. From the definition of Wα

3 and
integration by parts, we have:

∇ · u = 0, ∇×∇× u = 0, on H ∪D.

Writing w = ∇×u, we see that ∇×w = 0 in H ∪D so w = ∇q1, for q1 ∈W 1,2(H), and w = ∇q2,
for q2 ∈ W 1,2(D). Let Γ−(x) be a truncated circular cone in the interior of D with vertex x and
let Γ+(x) be a truncated circular cone in the interior of H with vertex x. Now consider these cones
with common vertex p on ∂D. Taking the cross product of w = ∇ × u with the normal to the
surface ∂D given by n(p), we get:

lim
x→p

x∈Γ+(p)

n(p)×∇× u(x) = n(p)×∇q1(p), lim
x→p

x∈Γ−(p)

n(p)×∇× u(x) = n(p)×∇q2(p).

From (2.32), we have that n×∇ : W
1
2
,2(∂D)/C→ V

− 1
2

t (∂D)3 is an isomorphism, and we choose:

ρu = n×∇q1

∣∣
∂D+ − n×∇q2

∣∣
∂D−

∈ V −
1
2 (∂D)3.

Setting v = Sα(ρu) gives:

(2.35) ∇×∇× v = 0 in D ∪H, ∇ · v = 0 in Y, [n×∇× v]+− = ρu,

and:

(2.36)

∫
∂Y

n×∇× (v − u) · (v − u) ds = 0, for v,u ∈Wα
3 .

Using integration by parts and applying (2.35) and (2.36), we discover:

‖v − u‖ = 0.
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For α 6= 0, this implies v = u and, for α = 0, we have u − v = c, where c is a constant vector.

But, for α = 0, we have 0 =

∫
Y

w dx =

∫
Y

u dx, to conclude c = 0 and v = u. This shows that

Sα is surjective. �

From Theorem 2.7, we see that the inverse map (Sα)−1 : Wα
3 → V

1
2
t (∂D)3 exists. Finally, we

apply the open mapping theorem to derive the following theorem.

Theorem 2.8. The inverse (Sα)−1 : Wα
3 → V

1
2
t (∂D)3 is bounded.

2.2. Compactness of Magnetic Dipole Operator. In this section, we show that the magnetic
dipole operator Mα is compact.

Theorem 2.9. The operator Mα : V
− 1

2

t (∂D)3 → V
− 1

2

t (∂D)3 is compact and satisfies:

(2.37) σ(Mα; V
− 1

2

t (∂D)3) = σ((K−α)∗; H
− 1

2
0 (∂D)),

where (K−α)∗ is the scalar valued Neumann–Poincaré operator defined on H
− 1

2
0 (∂D) and where

σ(Mα; V
− 1

2

t (∂D)3) and σ((K−α)∗; H
− 1

2
0 (∂D)) are the spectra of Mα and (K−α)∗, respectively.

Proof. We first establish that the magnetic dipole operator Mα is a bounded map of V
− 1

2

t (∂D)3.
To do this, we start with the following Plemelj-like identity, that can be derived as in[29]:

(2.38) (K−α)∗(n · ∇ × Sα) = n · ∇ × SαMα, for ρ ∈ L2
t,0(∂D)3,

The scalar valued Neumann–Poincaré operator is bounded and compact on H
− 1

2
0 (∂D), see [21].

The map n · ∇×Sα : V
− 1

2

t (∂D)3 → H
− 1

2
0 (∂D) can be shown to be an isomorphism, as in [29]. The

boundedness of (K−α)∗ and the boundedness of the operator n · ∇ × Sα imply that:

‖(K−α)∗(n · ∇ × Sα(ρ))‖
H
− 1

2
0 (∂D)

≤ C‖n · ∇ × Sα(ρ)‖
H
− 1

2
0 (∂D)

≤ C‖ρ‖
V
− 1

2
t (∂D)3

.(2.39)

On the other hand, the boundedness of n · ∇ × Sα also implies the following:

(2.40) ‖Mα(ρ)‖
V
− 1

2
t (∂D)3

≤ C‖n · ∇ × SαMα(ρ)‖
H
− 1

2
0 (∂D)

.

In view of (2.38), (2.39), and (2.40), we have:

‖Mα(ρ)‖
V
− 1

2
t (∂D)3

≤ C‖ρ‖
V
− 1

2
t (∂D)3

,

and we conclude that Mα(ρ) is bounded, for ρ ∈ L2
t,0(∂D)3 ⊂ V

− 1
2

t (∂D)3. Since L2
t,0(∂D)3 is dense

in V
− 1

2

t (∂D)3, we can extend Mα as a bounded linear map of V
− 1

2

t (∂D)3.

Next, observe that n · ∇ × Sα : V
− 1

2

t (∂D)3 → H
− 1

2
0 (∂D) is an isomorphism, so for a bounded

sequence {ρn} ∈ V
− 1

2

t (∂D)3, we have:

‖n · ∇ × Sα(ρn)‖
H
− 1

2
0 (∂D)

≤ C‖ρn‖
V
− 1

2
t (∂D)3

,

which shows that {n · ∇ × Sα(ρn)}∞n=1 ∈ H
− 1

2
0 (∂D) is bounded. By the compactness of (K−α)∗,

we have that the subsequence
{

(K−α)∗(n · ∇ × Sα(ρnk
))
}∞
k=1
∈ H

− 1
2

0 (∂D) is Cauchy, which in

turn, by (2.38), implies that
{
n · ∇ × Sα(Mα(ρnk

))
}∞
k=1
∈ H

− 1
2

0 (∂D) is also Cauchy. Because
12



n · ∇ × Sα : V
− 1

2

t (∂D)3 → H
− 1

2
0 (∂D) is an isomorphism and (Kα)∗ is a continuous map, we have

for {ρnk
}∞k=1:

‖Mα(ρnk
)−Mα(ρnl

)‖
V
− 1

2
t (∂D)3

≤ C‖n · ∇ × Sα(Mα(ρnk
))− n · ∇ × Sα(Mα(ρnl

))‖
H
− 1

2
0 (∂D)

,

and we conclude that the sequence
{
Mα(ρnk

)
}∞
n=1
∈ V

− 1
2

t (∂D)3 is Cauchy, and thus, Mα is a

compact operator on V
− 1

2

t (∂D)3. Finally, the identity (2.37) is the direct consequence of (2.38),

and the isomorphic map n · ∇ × Sα : V
− 1

2

t (∂D)3 → H
− 1

2
0 (∂D). �

It is noted that the spectrum of (K−α)∗ lies in [−1/2, 1/2] (see e.g., [21]) and, by the previous
theorem, we see that:

(2.41) σ(Mα; V
− 1

2

t (∂D)3) ⊂ [−1/2, 1/2].

2.3. Spectral Property of the operator Tα = SαMα(Sα)−1.

Theorem 2.10. The operator Tα = SαMα(Sα)−1 : Wα
3 →Wα

3 is Hermitian, compact, and satisfies:

(2.42) σ (Tα; Wα
3 ) = σ(Mα; V

− 1
2

t (∂D)3).

Proof. First, we show that Tα : Wα
3 →Wα

3 is Hermitian. For u, w ∈Wα
3 , we have:

〈Tαu,w〉 =

∫
Y

(∇× SαMα(Sα)−1u) · (∇×w) dx

=

∫
H

(∇× SαMα(Sα)−1u) · (∇×w) dx+

∫
D

(∇× SαMα(Sα)−1u) · (∇×w) dx.

Using integration by parts and since ∇×∇× SαMα(Sα)−1u) = 0 in H ∪D, we see that:∫
Y

(∇× SαMα(Sα)−1u) · (∇×w) dx =

∫
∂D

[
n×∇× SαMα(Sα)−1u

]+
− ·w dsx.

Then, using the jump condition (2.21), we obtain 〈Tαu,w〉 =
∫
∂DM

α(Sα)−1u · w dsx. We can

write u = Sαβ, for some β ∈ V
− 1

2

t (∂D)3, to get:

〈Tαu,w〉 =

∫
∂D

Mαβ ·w dsx

=
1

2

∫
∂D

[n×∇× Sαβ
∣∣
+
− n×∇× Sαβ

∣∣
−] ·w dsx.

Integration by parts gives:

1

2

∫
∂D

[n×∇× Sαβ
∣∣
+
− n×∇× Sαβ

∣∣
−] ·w dsx

=
1

2

∫
H

(∇× Sαβ) · (∇×w) dx− 1

2

∫
D

(∇× Sαβ) · (∇×w) dx.

Therefore:

(2.43) 〈Tαu,w〉 =
1

2

∫
H

(∇× u) · (∇×w) dx− 1

2

∫
D

(∇× u) · (∇×w) dx,

and Tα is seen to be Hermitian.
13



Now, the identity given by (2.42) is established. Consider the eigenvalue eigenvector pair (µ,ρ) ∈

σ

(
Mα; V

− 1
2

t (∂D)3

)
× V

− 1
2

t (∂D)3 of Mαρ = µρ. There exists u ∈ Wα
3 such that u = Sαρ, and

ρ = (Sα)−1u. Therefore, we have Mα(Sα)−1u = µS−1u. This implies that:

SαMα(Sα)−1u = µSα(Sα)−1u ⇒ Tαu = µu,

which shows that σ

(
Mα; V

− 1
2

t (∂D)3

)
⊂ σ (Tα; Wα

3 ).

On the other hand, if we have Tαu = µu, then SαMα(Sα)−1u = µu; therefore, multiplying both
sides by (Sα)−1 gives Mα(Sα)−1u = µ(Sα)−1u, and we obtain:

σ (Tα; Wα
3 ) ⊂ σ(Mα; V

− 1
2

t (∂D)3).

Finally, the compactness of Tα = SαMα(Sα)−1 easily follows from the compactness of Mα. �

It now follows from (2.43) that the eigenvalue problem Tαu = µu is equivalent to (2.11), so the
eigenfunctions form a complete orthonormal system that span Wα

3 .
It is clear from Theorems 2.9 and 2.10 that:

σ (Tα; Wα
3 ) = σ((K−α)∗; H

− 1
2

0 (∂D)),

and we denote dependence on α explicitly and write µi(α), i ∈ N, α ∈ Y ∗ and make the following
definition.

Definition 2.11. The structural spectra for the crystal is given by ∪α∈Y ∗{µi(α)}i∈N, where the
pairs µi(α), ui ∈Wα

2 satisfy:

Tαui = µi(α)ui.

2.4. Spectral Representation Theorem. We present a spectral representation of the differential
operator appearing in (1.4). With this in mind, by Theorem 2.10 and (2.41), the invariant subspace
associated with each eigenvalue µn(α) of Tα is denoted by En = {u ∈ Wα

3 : Tαu = µn(α)u} and
the orthogonal projection onto this subspace is denoted by Pαµn ; here, orthogonality is with respect
to the 〈·, ·〉 inner product. We write the projections onto Wα

1 and Wα
2 as Pα1 and Pα2 , respectively.

The differential operator appearing in (1.4) can be factored into the form given by the following
theorem.

Theorem 2.12. The vector Laplacian in a photonic crystal admits the representation:

∇× (a(x)∇× u(x)) = −∆αT
α
k u(x),

where ∆α is the α-quasiperiodic Laplace operator defined on Y and Tαk is the linear transform
associated with the bilinear form Bk defined for u(x) ∈ J#(α, Y,C3), see (2.9). The linear operator
Tαk (2.10) has the spectral representation, which separates the effect of the contrast k from the
underlying geometry of the photonic crystal, given by:

Tαk u = k Pα1 u + Pα2 u +
∑

−1
2
<µn(α)< 1

2

[
k

(
1

2
+ µn(α)

)
+

(
1

2
− µn(α)

)]
Pαµnu,

where {µn(α)} = σ (Tα; Wα
3 ), with Wα

3 ⊂ J#(α, Y,C3). If k ∈ C \ Z, where:

(2.44) Z =

{
µn(α)− 1/2

µn(α) + 1/2

}
−1/2≤µn(α)≤1/2

,
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then Tαk has an inverse and, for z = k−1, it is given by:

(2.45) (Tαk )−1u = z Pα1 u + Pα2 u +
∑

−1
2
<µn(α)< 1

2

z

[(
1

2
+ µn(α)

)
+ z

(
1

2
− µn(α)

)]−1

Pαµnu.

Proof. Let u ∈ J#(α, Y,C3). Note that:

(2.46) 〈u,v〉 = 〈
∞∑
i=1

Pαµiu,v〉 = 〈Pα1 u + Pα2 u +
∑

− 1
2
<µn(α)< 1

2

Pαµnu,v〉,

for all v ∈ J#(α, Y,C3), from where:

〈Tαu,v〉 = 〈
∞∑
i=1

µi(α)Pαµiu,v〉, ∀v ∈ J#(α, Y,C3).

Also, by (2.12), (2.13) and (2.43), for all v ∈ J#(α, Y,C3), we have:

〈Tαu1,v〉 =
1

2
〈u1,v〉, ∀u1 ∈Wα

1 ,

〈Tαu2,v〉 = −1

2
〈u2,v〉, ∀u2 ∈Wα

2 .

By (2.46), for u,v ∈ J#(α, Y,C3), we have:

(2.47) Bk(P
α
µnu,v) = k

∫
H

(∇× Pαµnu) · (∇× v) dx+

∫
D

(∇× Pαµnu) · (∇× v) dx.

On the other hand, by (2.43), we know that:

〈Tα Pαµnu,v〉 =
1

2

∫
H

(∇× Pαµnu) · (∇× v) dx− 1

2

∫
D

(∇× Pαµnu) · (∇× v) dx

= µn(α)

∫
H

(∇× Pαµnu) · (∇× v) dx+ µn(α)

∫
D

(∇× Pαµnu) · (∇× v) dx,

which implies that:

(2.48)

∫
H

(∇× Pαµnu) · (∇× v) dx =
1
2 + µn(α)
1
2 − µn(α)

∫
D

(∇× Pαµnu) · ∇ × v) dx.

We also have:

(2.49)

∫
D

(∇× Pαµnu) · (∇× v) dx =

(
1

2
− µn(α)

)∫
Y

(∇× Pαµnu) · (∇× v) dx,

from where (2.48) becomes:

(2.50)

∫
H

(∇× Pαµnu) · (∇× v) dx =

(
1

2
+ µn(α)

)∫
Y

(∇× Pαµnu) · (∇× v) dx.

Substituting (2.49) and (2.50) into (2.47), we get:

(2.51) Bk(P
α
µnu,v) =

[
k

(
1

2
+ µn(α)

)
+

(
1

2
− µn(α)

)]∫
Y

(∇× Pαµnu) · (∇× v) dx.

Noting that:

Bk(P
α
1 u,v) = k

∫
H

(∇× Pα1 u) · (∇× v) dx,(2.52)

Bk(P
α
2 u,v) =

∫
D

(∇× Pα2 u) · (∇× v) dx ,(2.53)

15



one concludes that:

Bk(u,v) = 〈Tαk u,v〉 = 〈kPα1 u +Pα2 u +
∑

−1/2<µn(α)<1/2

[
k

(
1

2
+ µn(α)

)
+

(
1

2
− µn(α)

)]
Pαµnu, v〉,

and Theorem 2.12 easily follows since −∆α is the operator related to the bilinear form 〈u,v〉. �

3. Band Structure for Complex Coupling Constant

We recall that a(x) = (ε(x))−1 and the operator representation is applied to write the Bloch
eigenvalue problem as:

(3.1) ∇× ((ε(x))−1∇× h) = −∆α T
α
k h = ξh.

We characterize the Bloch spectra by analyzing the operator:

(3.2) Bα(k) := (Tαk )−1(−∆α)−1,

where the operator (−∆α)−1 : L2
#(α, Y,C3)→ J#(α, Y,C3), defined for all α ∈ Y ∗, is given by:

(3.3) (−∆α)−1u(x) = −
∫
Y
Gα(x, y)u(y) dy.

Let us suppose α 6= 0. The operator Bα(k) : L2
#(α, Y,C3) −→ J#(α, Y,C3) is easily seen to

be bounded for k /∈ Z (2.44), see Theorem 10.5. Since H1
#(α, Y,C3) (and hence J#(α, Y,C3))

embeds compactly into L2
#(α, Y,C3), we find that Bα(k) is a bounded compact linear operator on

L2
#(α, Y,C3) (see Theorem 10.6) and, therefore, it has a discrete spectrum {γi(k, α)}i∈N, with a

possible accumulation point at 0. The corresponding eigenspaces are finite-dimensional and the
eigenfunctions pi ∈ L2

#(α, Y,C3) satisfy:

Bα(k)pi(x) = γi(k, α) pi(x), for x ∈ Y ,(3.4)

and also belong to J#(α, Y,C3). Observe that, for γi 6= 0, (3.4) holds if and only if (3.1) holds with

ξ = λi(k, α) = γ−1
i (k, α), and −∆αT

α
k pi = λi(k, α)pi. Collecting results, we have the following

theorem.

Theorem 3.1. The Bloch eigenvalue problem (1.4) for the operator −∇×(kχH+χD)∇×, associated
with the sesquilinear form (2.9), can be extended for values of the coupling constant k off the positive
real axis into C \ Z (Z given by (2.44)), i.e., for each α ∈ Y ?, the Bloch eigenvalues are of finite
multiplicity and denoted by λj(k, α) = γ−1

j (k, α), j ∈ N, and the band structure (1.5):

λj(k, α) = ξ, j ∈ N
extends to complex coupling constants k ∈ C \ Z.

4. Power Series Representation of Bloch Eigenvalues for High Contrast Periodic
Media

In what follows, we set γ = λ−1(k, α) and analyze the spectral problem:

(4.1) Bα(k)u = γ(k, α)u.

Henceforth, we will analyze the high contrast limit by developing a power series in z = 1/k, about
z = 0, for the spectrum of the family of operators (3.2) associated with (4.1):

Bα(k) = (Tαk )−1(−∆α)−1

= (zPα1 + Pα2 + z
∑

−1/2<µi(α)<1/2

[(1/2 + µi(α)) + z(1/2− µi(α))]−1Pαµi)(−∆α)−1

=: Aα(z).
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Here, we define the operator Aα(z) such that Aα(1/k) = Bα(k), and the associated eigenvalues
β(1/k, α) = γ(k, α). Then, the spectral problem becomes Aα(z)u = β(z, α)u, for u ∈ L2

#(α, Y,C3).

It is easily seen, from the above representation, that Aα(z) is self-adjoint for k ∈ R and is a
family of bounded operators taking L2

#(α, Y,C3) into itself. Also, we have the following lemma.

Lemma 4.1. Aα(z) is holomorphic on Ω0 := C \ S, where S = ∪i∈Nzi(α) is the collection of points
zi(α) = (µi(α) + 1/2)/(µi(α) − 1/2) on the negative real axis associated with the eigenvalues
{µi(α)}i∈N. The set S consists of poles of Aα(z) with only one accumulation point at z = −1.

The upper bound z∗(α) on S for fixed α ∈ Y ∗ is written:

max
i
{zi(α)} = z∗(α) < 0.(4.2)

In Section 8, we develop explicit lower bounds on the structural spectrum, i.e.:

−1/2 < µ− ≤ µi(α) ∈ ∪α∈Y ∗{µi(α)}i∈N
that holds for a generic class of inclusion domains D. The corresponding upper bound z+ is written:

max{z∗(α);α ∈ Y ∗} =
µ− + 1/2

µ− − 1/2
= z+ < 0,(4.3)

and z∗(α) ≤ z+.
Let βα0 ∈ σ(Aα(0)) with spectral projection P (0), and let Γ be a closed contour in C enclosing

βα0 , but no other β ∈ σ(Aα(0)). The spectral projection associated with βα(z) ∈ σ(Aα(z)), for
βα(z) ∈ int(Γ), is denoted by P (z). We write M(z) = P (z)L2

#(α, Y,C3) and suppose, for the

moment, that Γ lies in the resolvent of Aα(z) and dim(M(0)) = dim(M(z)) = m, realizing that

Theorems 7.1 and 7.2 provide explicit conditions for when this holds true. Now define β̂α(z) :=
1
mtr(Aα(z)P (z)), the weighted mean of the eigenvalue group {βα1 (z), . . . , βαm(z)} corresponding to
βα1 (0) = . . . = βαm(0) = βα0 . We write the weighted mean as:

β̂α(z) = βα0 +
1

m
tr[(Aα(z)− βα0 )P (z)].

Since Aα(z) is analytic in a neighborhood of the origin, we write:

Aα(z) = Aα(0) +
∞∑
n=1

znAαn.

The explicit form of the sequence {Aαn}n∈N is given in Section 7. Define the resolvent of Aα(z) by:

R(ζ, z) = (Aα(z)− ζ)−1;

and expanding successively in Neumann series and power series, we have the identity:

R(ζ, z) = R(ζ, 0)[I + (Aα(z)−Aα(0))R(ζ, 0)]−1

= R(ζ, 0) +

∞∑
p=1

[−(Aα(z)−Aα(0))R(ζ, 0)]p(4.4)

= R(ζ, 0) +
∞∑
n=1

znRn(ζ),

where:

Rn(ζ) =
∑

k1+...kp=n,kj≥1

(−1)pR(ζ, 0)Aαk1R(ζ, 0)Aαk2 . . . R(ζ, 0)Aαkp , for n ≥ 1.
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Application of the contour integral formula for spectral projections [32], [18], [19], delivers the
expansion for the spectral projection:

(4.5) P (z) = − 1

2πi

∮
Γ
R(ζ, z)dζ = P (0) +

∞∑
n=1

znPn,

where Pn = − 1
2πi

∮
ΓRn(ζ)dζ. Now, we develop the series for the weighted mean of the eigenvalue

group. Start with:

(Aα(z)− βα0 )R(ζ, z) = I + (ζ − βα0 )R(ζ, z),

and we have:

(Aα(z)− βα0 )P (z) = − 1

2πi

∮
Γ
(ζ − βα0 )R(ζ, z)dζ,

so:

(4.6) β̂(z)− βα0 = − 1

2mπi
tr

∮
Γ
(ζ − βα0 )R(ζ, z)dζ.

Equation (4.6) delivers an analytic representation formula for a Bloch eigenvalue or, more generally,
the eigenvalue group when βα0 is not a simple eigenvalue. Substituting the third line of (4.4) into
(4.6) yields:

(4.7) β̂α(z) = βα0 +

∞∑
n=1

znβαn ,

where:

(4.8) βαn = − 1

2mπi
tr

∑
k1+···+kp=n

(−1)p

p

∮
Γ
Aαk1R(ζ, 0)Aαk2 . . . R(ζ, 0)AαkpR(ζ, 0)dζ; n ≥ 1.

5. Spectrum in the High Contrast Limit, α 6= 0

We investigate the spectrum of the limiting operator Aα(0), for α 6= 0. Using the representation:

Aα(z) = (zPα1 + Pα2 + z
∑

− 1
2
<µi(α)< 1

2

[(1/2 + µi(α)) + z(1/2− µi(α))]−1Pαµi)(−∆α)−1,

we see that Aα(0) = Pα2 (−∆α)−1; and, from Theorem 10.6, we get that Pα2 (−∆α)−1 is a bounded
compact operator and has a discrete spectrum. Denote the spectrum of Aα(0) by σ(Aα(0)). Since
Aα(0) is clearly self-adjoint and compact, it follows that σ(Aα(0)) ⊂ R is discrete, with only one
possible cluster point at zero. Next, we show that it is strictly positive as well.

We now consider the eigenvalue problem:

(5.1) Pα2 (−∆α)−1u = βu,

with β ∈ σ(Aα(0)) and eigenfunction u ∈ L2
#(α, Y,C3). This eigenvalue problem is equivalent to

finding β and u ∈Wα
2 for which:

(5.2) (u,v)L2(Y,C3) = β〈u,v〉, for all v ∈ J#(α, Y,C3).

Indeed, to see the equivalence, note that we have Pα2 (−∆α)−1 : L2
#(α, Y,C3) → Wα

2 and, for

v ∈ J#(α, Y,C3), it holds:

〈Pα2 (−∆α)−1u,v〉 = β〈u,v〉 = β〈Pα2 u,v〉;
hence:

(5.3) 〈(−∆α)−1u, Pα2 v〉 = β〈u, Pα2 v〉.
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Since 〈(−∆α)−1u,v〉 =
∫
Y u · v dx = (u,v)L2(Y,C3), for any u ∈ L2

#(α, Y,C3) and v ∈ J#(α, Y,C3),

equation (5.3) becomes:
(u, Pα2 v)L2(Y,C3) = β〈u, Pα2 v〉,

and the equivalence follows by noticing that Pα2 is the projection of J#(α, Y,C3) onto Wα
2 .

Rewriting (5.2) as: ∫
D
∇× u · ∇ × v dx = β−1

∫
Y

u · v dx,

we define the sesquilinear form b0(·, ·) : Wα
2 ×Wα

2 → C by:

b0(u,v) :=

∫
D
∇× u · ∇ × v dx.

Clearly b0 is bounded and we wish to show that the spectrum is positive. To this end we introduce
the following lemma.

Lemma 5.1. For all u ∈Wα
2 , there exists C > 0 such that:

(5.4) b0(u,u) ≥ C
∫
Y
|u|2 dx.

Proof. Suppose (5.4) does not hold. Note that, for each n = 1, 2, . . ., there exists un ∈ Wα
2 , for

which:

n

∫
D
∇un : ∇un dx = n

∫
D
∇× un · ∇ × un dx <

∫
Y
|un|2 dx.

Then, on normalizing un with respect to the L2-norm, there exists a sequence {vn} ⊂ Wα
2 , with

‖vn‖L2(Y,C3) = 1 and ∇vn → 0 strongly in L2
#(α, Y,C3). After possibly passing to a subsequence,

we apply standard arguments to conclude that vn → v strongly in J#(α, Y,C3), such that v is
constant in Y and ‖v‖L2(Y,C3) = 1. But the only constant function in J#(α, Y,C3), for α 6= 0, is
the zero function; which leads to a contradiction. �

In light of Lemma 5.1, we conclude that the problem (5.1) has a positive, decreasing sequence of
eigenvalues, with a possible cluster point only at zero.

6. Spectrum in the High Contrast Limit: Periodic Case, α = 0

We describe the spectrum of the limiting operator A0(0), which is written as A0(0) = P 0
2 (−∆0)−1,

where P 0
2 is the projection onto W 0

2 . Here, the operator (−∆0)−1 is compact and self-adjoint on
L2

#(0, Y,C3), and given by (3.3) for α = 0. Denote the spectrum of A0(0) by σ(A0(0)). In this case

we see, as in the case α 6= 0 of the previous section, that σ(A0(0)) ⊂ R+ is discrete, with only one
possible cluster point at zero.

As in [7], one can define:

Definition 6.1. The geometric average is a path integral with components defined by:

(

∮
u) · ei :=

∫
Γi

u · ei d`,

where Γi is any curve in H connecting two opposite points on the faces of ∂Y orthogonal to ei and
d` is an element of arc-length.

The goal is to precisely identify σ(A0(0)) ⊂ R+. With that in mind, we introduce the spaces:

F (Y ) =
{
u ∈ H1

loc(R3,C3) : u periodic on Y , ∇ · u = 0 inY, ∇× u = 0 in H
}

χdiv0 =

{
u ∈ F (Y ) :

∮
u = 0

}
.
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A characterization of the space W 0
2 is given by the following lemma.

Lemma 6.2. Let χY be the characteristic function of Y . We have:

(6.1) W 0
2 = W̃2 =

{
u = ũ−

(∫
Y

ũ dx

)
χY : ũ ∈ χdiv0

}
.

Proof. Consider the space F (Y ). The curl-free condition in H, together with the Y -periodicity

condition, implies that u = ∇ϕ + c in H, where ϕ ∈ W 1,2
# (H) and

∮
u = c ∈ C3. From this, we

can conclude that χdiv0 ⊕ C3 = F (Y ) and that:

W 0
2 =

{
F (Y ) :

∫
Y

u dx = 0

}
=

{
u ∈ χdiv0 ⊕ C3 :

∫
Y

u dx = 0

}
.

To see that W 0
2 = W̃2, we introduce the orthonormal system {uj}j∈N in L2

#(0, Y,C3) that is dense in

χdiv0 with respect to the W 1,2(Y,C3)-norm, and is given by the eigenvectors of (6.2), see Theorem 6.3
below. Then:

F (Y ) =
{

u ∈ span {uj}j∈N ⊕ span
{
e1, e2, e3

}}
,

and an element u of F (Y ) is written:

u =
∞∑
j=1

cjuj + a1e
1 + a2e

2 + a3e
3.

From this, we see that the condition
∫
Y u dx = 0 is equivalent to:

ak = −ek ·
∞∑
j=1

∫
Y
cjuj dx, for k = 1, 2, 3.

We define:

ũ =
∞∑
j=1

cjuj ∈ χdiv0 ,

to discover u = ũ−
∫
Y ũ dx, so W 0

2 = W̃2 and the lemma follows. �

Next, we identify all the eigenfunctions and eigenvalues of the following auxiliary eigenvalue
problem. Find all eigen-pairs (u, β) in χdiv0 × R+ for which:

(6.2) (u,v)L2(Y,C3) = β〈u,v〉, for all v ∈ χdiv0 .

This eigenvalue problem is analyzed in [7]. Following the results in [7], we get the following theorem.

Theorem 6.3. The eigenvalues β of (6.2) are positive and form a sequence {βn}∞n=1 converging to
0. The eigenvectors of (6.2) deliver a orthonormal system in L2

#(0, Y,C3) that is dense in χdiv0 with

respect to the W 1,2(Y,C3)-norm.

We now provide a precise characterization of the spectrum σ(A0(0)) of the limit operator A0(0).
In preparation, we consider the countably dense in L2

#(0, Y,C3), subset of χdiv0 , orthonormal family

of eigenfunctions {un}∞n=1 associated with the eigenvalues βn ↘ 0 of (6.2). Here, orthonormality
is considered with respect to the L2(Y,C3)-inner product.

We have that σ(A0(0)) consists of all ν−1 such that there exists a pair u and ν, with u ∈ W 0
2

and ν > 0, such that:

(6.3) 〈u,v〉D = ν (u,v)L2(Y,C3), for all v ∈W 0
2 ,
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where 〈u,v〉D =
∫
D∇×u ·∇×v dx. By (6.1), u = ũ−

∫
Y ũ dx, with ũ ∈ χdiv0 . Hence, there exists

a sequence {cn}∞n=1 ⊂ C such that:

(6.4) ũ =

∞∑
n=1

cnun, and u =

∞∑
n=1

cnun + c.

where c = −
∫
Y ũ dx.

First, suppose u ∈ χdiv0 and c = −
∫
Y u dx = 0. By (6.3), for v = ṽ −

∫
Y ṽ dx, with ṽ ∈ χdiv0 ,

we obtain:

〈u, ṽ〉D = ν (u, ṽ −
∫
Y

ṽ dx)L2(Y,C3) = ν (u, ṽ)L2(Y,C3),

since:

(u,

∫
Y

ṽ dx)L2(Y,C3) =

∫
Y

u ·
∫
Y

ṽ dx dy = 0.

So u solves 〈u, ṽ〉D = ν (u, ṽ)L2(Y,C3), for all ṽ ∈ χdiv0 , and is, therefore, an eigenfunction of (6.3)

belonging χdiv0 with
∫
Y u dx = 0. So all eigenvalues ν are eigenvalues

{
β−1
n
′
}∞
n=1
⊂
{
β−1
n

}∞
n=1

corresponding to mean zero eigenfunctions. To summarize, a component of the spectrum σ(A0(0))

of the limit operator A0(0) is given by
{
β−1
n
′
}∞
n=1

.

Next we identify the remaining component of σ(A0(0)). Now, suppose that c = −
∫
Y

ũ dx 6= 0,

and that u is an eigenfunction of (6.3) with eigenvalue ν. We normalize so that |c| = 1. We have
u = ũ−

∫
Y ũ dx and for all v = ṽ −

∫
Y ṽ dx, we get:

(6.5) 〈ũ, ṽ〉D = ν (u, ṽ)L2(Y,C3), for all ṽ ∈ χdiv0 .

Using (6.4) in (6.5), we have:

(6.6) 〈
∞∑
n=1

cnun, ṽ〉D = ν (
∞∑
n=1

cnun + c, ṽ)L2(Y,C3), for all ṽ ∈ χdiv0 .

Now, pick ṽ = um, m ∈ N+, in (6.6), to get:

cmβ
−1
m = νcm + ν (c,um)L2(Y,C3)

=⇒ cmβ
−1
m = νcm + ν c ·

∫
Y

um dx

=⇒ cm =
ν c ·

∫
Y um dx

(β−1
m − ν)

.

Then (6.4) becomes:

ũ =
∞∑
n=1

ν c ·
∫
Y un dx

(β−1
n − ν)

un(x), and u =
∞∑
n=1

ν c ·
∫
Y un dx

(β−1
n − ν)

un(x) + c.

Since we require
∫
Y u dx = 0, we obtain:

(6.7) c = −ν
∞∑
n=1

∫
Y un dx⊗

∫
Y un dx

(β−1
n − ν)

c.

We introduce the effective magnetic permeability tensor :

µ(ν) =

(
I3×3 + ν

∞∑
n=1

∫
Y un dx⊗

∫
Y un dx

(β−1
n − ν)

)
,
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and (6.7) gives the homogeneous system for the vector c in C3 given by:

(6.8) µ(ν)c = 0.

The effective permeability tensor agrees with the one given by the high contrast homogenization of
Maxwell’s equations in [7]. We form the spectral function given by:

S(ν) = det[µ(ν)],(6.9)

and, clearly, we have a nontrivial solution of (6.8) when S(ν) = 0. The roots of the spectral function
form a countable non-decreasing sequence of positive numbers {νn}∞n=1 tending to infinity. We set

β̃n = ν−1
n and the complete characterization of σ(A0(0)) given by:

Theorem 6.4.

σ(A0(0)) = {β′n}∞n=1 ∪ {β̃n}∞n=1.

When the inclusion shape is invariant under the cubic group of rotations, the effective perme-
ability tensor is a multiple of the identity, i.e., µ(ν) = I3×3λ(ν), where λ(ν) is a scalar function of
ν. Here, det {µ(ν)} = λ3(ν), so νj are the roots of the equation λ(ν) = 0. For any constant vector
v in R3 we have:

(6.10) λ(ν) =
µ(ν)v · v
|v|2

= 1− ν
∑
n∈N

a2
n

ν − β∗n
,

where a2
n = |

∫
D un dx · v|2/|v|2 > 0 and β∗n are only associated with nonzero mean eigenfunctions.

For β∗n−1 < ν < β∗n, calculation shows −∞ < λ(ν) < ∞, with λ′(ν) > 0. From this, we conclude
β∗n < νj < β∗n+1 and we have the interlacing νn−1 < β∗n < νn.

7. Radius of Convergence and Separation of Spectra

Fix an inclusion geometry specified by the domain D. Suppose first α ∈ Y ? and α 6= 0. Take
Γj to be a closed contour in C containing an eigenvalue βαj (0) ∈ σ(Aα(0)), but no other element of

σ(Aα(0)), i.e, for α 6= 0 ∈ Y ∗ fixed, βαj (0) is separated from other components of the spectrum, see

Figure 2. Define d to be the distance between Γj and σ(Aα(0)), i.e.:

(7.1) d = dist(Γj , σ(Aα(0)) = inf
ζ∈Γj

{dist(ζ, σ(Aα(0))}.

The component of the spectrum of Aα(0) inside Γj is precisely βαj (0), and we denote this by

Σ′(0). The part of the spectrum of Aα(0) in the domain exterior to Γj is denoted by Σ′′(0), and
Σ′′(0) = σ(Aα(0)) \ βαj (0). The invariant subspace of Aα(0) associated with Σ′(0) is denoted by

M′(0) with M′(0) = P (0)L2
#(α, Y,C3).

d d

βαj−1(0) βαj (0) βαj+1(0)

Γj

Figure 2. Schematic of Γj , d, Σ′(0), and Σ′′(0).

Suppose the lowest α-quasiperiodic resonance eigenvalue for the domain D lies inside −1/2 <
µ−(α) < 0. It is noted that, in the sequel, a large and generic class of domains are identified for
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which −1/2 < µ−(α). The corresponding upper bound on the set z ∈ S, for which Aα(z) is not
invertible, is given by:

z∗(α) =
µ−(α) + 1/2

µ−(α)− 1/2
< 0,(7.2)

see (4.2). Now set:

(7.3) r∗ =
|α|2d|z∗(α)|

1
1/2−µ−(α)

+ |α|2d
.

Theorem 7.1. Separation of spectra and radius of convergence for α ∈ Y ?, α 6= 0.
The following properties hold for inclusions with domains D that satisfy (7.2):

(1) If |z| < r∗, then Γj lies in the resolvent of both Aα(0) and Aα(z) and, thus, separates the
spectrum of Aα(z) into two parts given by the component of spectrum of Aα(z) inside Γj ,
denoted by Σ′(z), and the component exterior to Γj , denoted by Σ′′(z). The invariant sub-
space of Aα(z) associated with Σ′(z) is denoted byM′(z), withM′(z) = P (z)L2

#(α, Y,C3).

(2) The projection P (z) is holomorphic for |z| < r∗ and P (z) is given by:

P (z) =
−1

2πi

∮
Γj

R(ζ, z) dζ.

(3) The spaces M′(z) and M′(0) are isomorphic for |z| < r∗.
(4) The power series (4.7) converges uniformly for z ∈ C inside any disk centered at the origin

contained within |z| < r∗.

Suppose now α = 0. For this case, take Γj to be the closed contour in C containing an eigenvalue
β0
j (0) ∈ σ(A0(0)), but no other element of σ(A0(0)), i.e., Γj separates βαj (0) from other components

of the spectrum, and define:
d = inf

ζ∈Γj

{dist(ζ, σ(A0(0)))}.

Suppose that the lowest α-quasiperiodic resonance eigenvalue for the domain D lies inside −1/2 <
µ−(0) < 0 and the corresponding upper bound on S is given by:

(7.4) z∗(0) =
µ−(0) + 1/2

µ−(0)− 1/2
< 0.

Set:

(7.5) r∗ =
4π2d|z∗(0)|

1
1/2−µ−(0)

+ 4π2d
.

Theorem 7.2. Separation of spectra and radius of convergence for α = 0.
The following properties hold for inclusions with domains D that satisfy (7.4):

(1) If |z| < r∗, then Γj lies in the resolvent of both A0(0) and A0(z) and, thus, separates the
spectrum of A0(z) into two parts given by the component of spectrum of A0(z) inside Γj ,
denoted by Σ′(z), and the component exterior to Γj , denoted by Σ′′(z). The invariant sub-
space of A0(z) associated with Σ′(z) is denoted byM′(z), withM′(z) = P (z)L2

#(α, Y,C3).

(2) The projection P (z) is holomorphic for |z| < r∗ and P (z) is given by:

P (z) =
−1

2πi

∮
Γj

R(ζ, z) dζ.

(3) The spaces M′(z) and M′(0) are isomorphic for |z| < r∗.
(4) The power series (4.7) converges uniformly for z ∈ C inside any disk centered at the origin

contained within |z| < r∗.
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Next, we provide an explicit representation of the integral operators appearing in the series
expansion for the eigenvalue group.

Theorem 7.3. Representation of integral operators in the series expansion for eigenvalues
Let Pα3 be the projection onto the orthogonal complement of Wα

1 ⊕ Wα
2 , and let Ĩ denote the

identity on L2(∂D)3, then the explicit representation for for the operators Aαn in the expansion
(4.7), (4.8) is given by:

Aα1 = [Sα(Mα +
1

2
Ĩ)−1(Sα)−1Pα3 + Pα1 ](−∆α)−1 and

Aαn = Sα(Mα +
1

2
Ĩ)−1(Sα)−1[Sα(Mα − 1

2
Ĩ)(Mα +

1

2
Ĩ)−1(Sα)−1]n−1Pα3 (−∆α)−1.

We have a corollary to Theorems 7.1 and 7.2 regarding the error incurred when only finitely
many terms of the series (4.7) are calculated.

Theorem 7.4. Error estimates for the eigenvalue expansion.

(1) Let α 6= 0, and suppose D, z∗(α), and r∗ are as in Theorem 7.1. Then, the following error
estimate for the series (4.7) holds for |z| < r∗:∣∣∣∣∣β̂α(z)−

p∑
n=0

znβαn

∣∣∣∣∣ ≤ d|z|p+1

(r∗)p(r∗ − |z|)
.

(2) Let α = 0, and suppose D, z∗(0), and r∗ are as in Theorem 7.2. Then, the following error
estimate for the series (4.7) holds for |z| < r∗:∣∣∣∣∣β̂0(z)−

p∑
n=0

znβ0
n

∣∣∣∣∣ ≤ d|z|p+1

(r∗)p(r∗ − |z|)
.

We summarize results in the following theorem.

Theorem 7.5. The Bloch eigenvalue problem (1.4) is defined for the coupling constant k extended
into the complex plane and the operator −∇×(kχH+χD)∇× with domain J#(α, Y,C3) is holomor-
phic for k ∈ C\Z. The associated Bloch spectra is given by the eigenvalues λj(k, α) = (βαj (1/k))−1,
for j ∈ N. For α ∈ Y ? fixed, the eigenvalues are of finite multiplicity. Moreover for each j and
α ∈ Y ?, the eigenvalue group is analytic within any neighborhood of infinity contained within the
disk |k| > (r∗)−1 where r∗ is given by (7.3) for α 6= 0 and by (7.5) for α = 0.

The proofs of Theorems 7.1, 7.2 and 7.4 are given in Section 10. The proof of Theorem 7.3 is
given in Section 9.

8. Radius of Convergence and Separation of Spectra for Periodic Scatterers of
General Shape

In this section, we identify an explicit condition on the inclusion geometry that guarantees a
lower bound µ− on the structural spectrum.

Let D be a simply connected set, compactly contained in Y , with C1,γ boundary, γ > 0. Recall
that, by Theorem 2.9, we have that the eigenvalues of the magnetic dipole operator are precisely
those of the Neumann-Poincaré operator, that is:

σ(Mα; V
− 1

2

t (∂D)3) = σ((K−α)∗; H
− 1

2
0 (∂D)).

Moreover, a criteria for an α-independent lower bound for σ

(
(K−α)∗; H

− 1
2

0 (∂D)

)
was already

established in [24], in a theorem which we restate below.
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Theorem 8.1. Let µ− be the infimum of the structural spectrum. Suppose there is a constant θ > 0
such that, for all u ∈ H1

α(Y ) that are harmonic in D and Y \D, we have:

(8.1) ‖∇u‖2L2(Y \D) ≥ θ‖∇u‖
2
L2(D).

Let ρ = min{1
2 ,

θ
2}. Then µ− + 1

2 > ρ.

Clearly, the parameter θ is a geometric descriptor for D. The class of inclusions for which
Theorem (8.1) holds, for a fixed positive value of θ, is denoted by Pθ, and we have the following
corollary.

Corollary 8.2. For every inclusion domain D belonging to Pθ, Theorems 7.2 through 7.5 hold with
z∗(α) replaced with z+ given by:

z+ =
µ− + 1/2

µ− − 1/2
< 0,

where µ− = min{1
2 ,

θ
2} −

1
2 .

In [24], the authors also introduce a wide class of inclusion shapes with θ > 0 that satisfy (8.1).
Consider a buffered inclusion geometry, which consists of an inclusion domain D surrounded by
a buffer layer R, see Figure 3. Denote the Dirichlet-to-Neumann map on the boundary of the
inclusion by DN : H1/2(∂D) → H−1/2(∂D), denote its norm by ‖DN‖, and denote the Poincaré
constant for the buffer layer by CR; we have the following theorem, also from [24].

Theorem 8.3. The buffered inclusion geometry satisfies (8.1) with:

θ−1 ≥
√

1 + C2
R ‖DN‖

provided this maximum is finite.

We now take Di = Ba(xi), a sphere with center xi and radius a, and observe that D′i = Bb(xi) ⊃
Di if a < b. Following Appendix A.3 of [8], we see that θ−1 will satisfy:

θ−1 = max
l≥1

Cl(a, b),

where:

Cl(a, b) =
lb2l+1 + (l + 1)a2l+1

(l + 1)(b2l+1 − a2l+1)
.

Adding and subtracting b2l+1 in the numerator yields:

Cl(a, b) =
b2l+1 + a2l+1

b2l+1 − a2l+1
− b2l+1

(l + 1)(b2l+1 − a2l+1)

≤ b2l+1 + a2l+1

b2l+1 − a2l+1
=: C∗l (a, b).

Note that C∗l (a, b) is decreasing in l:

d

dl
C∗l (a, b) =

2(ab)2l+1(ln(a)− ln(b))

(b2l+1 − a2l+1)2
< 0,

for all l ≥ 1. So:

θ−1 ≤ max
l≥1

C∗l (a, b) =
b3 + a3

b3 − a3
.

Thus:

‖∇u‖L2(Y \D) ≥
b3 − a3

b3 + a3
‖∇u‖L2(D).

Observe that this bound is not sharp.
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Figure 3. Buffered inclusion.

9. Layer Potential Representation of Operators in Power Series

In this section, we obtain explicit formulas for the operators Aαn appearing in the power series
(4.8). It is shown that Aαn, n 6= 0, can be expressed in terms of integral operators associated with
layer potentials, and we establish Theorem 7.3.

Recall that Aα(z)−Aα(0) is given by:(
z Pα1 +

∑
− 1

2
<µi(α)< 1

2

z [(1/2 + µi(α)) + z(1/2− µi(α))]−1 Pαµi
)
(−∆−1

α ).

Factoring (1/2 + µi(α))−1 and expanding in power series the term:

[(1/2 + µi(α)) + z(1/2− µi(α))]−1 = (1/2 + µi(α))−1
∞∑
n=0

zn
(
µi(α)− 1/2

µi(α) + 1/2

)n
,

we obtain:

Aα(z)−Aα(0) = (zPα1 +
∞∑
n=1

zn
∑

− 1
2
<µi(α)< 1

2

(µi(α) + 1/2)−1

(
µi(α)− 1/2

µi(α) + 1/2

)n−1

PαµiP
α
3 )(−∆−1

α ).

It follows that:

Aα1 = (Pα1 +
∑

− 1
2
<µi(α)< 1

2

(1/2 + µi(α))−1PαµiP
α
3 )(−∆−1

α )(9.1)

Aαn =
( ∑
− 1

2
<µi(α)< 1

2

(µi(α) + 1/2)−1

(
µi(α)− 1/2

µi(α) + 1/2

)n−1

PαµiP
α
3

)
(−∆−1

α ).(9.2)

We also that we have the resolution of the identity given by:

I = IJ#(α,Y,C3) = Pα1 + Pα2 + Pα3 ,

with Pα3 =
∑

− 1
2
<µi(α)< 1

2

Pαµi , and the spectral representation:

〈Tαu,v〉 = 〈(SαMα(Sα)−1)Pα3 u +
1

2
Pα1 u− 1

2
Pα2 u,v〉

= 〈
∑

− 1
2
<µi(α)< 1

2

µi(α)Pαµiu +
1

2
Pα1 u− 1

2
Pα2 u,v〉.
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Adding 1
2I to both sides of the above equation, we obtain:

〈(Tα +
1

2
I)u,v〉 = 〈(

∑
− 1

2
<µi(α)< 1

2

(µi(α) +
1

2
)Pαµi + Pα1 )u,v〉

= 〈((SαMα(Sα)−1 +
1

2
Pα3 )Pα3 + Pα1 )u,v〉(9.3)

= 〈((Sα(Mα +
1

2
Ĩ)(Sα)−1)Pα3 + Pα1 )u,v〉,

where Ĩ is the identity on H−1/2(∂D)3. Now, from (9.3), we see that:

(9.4)
∑

− 1
2
<µi(α)< 1

2

(
1

2
+ µi(α))−1PαµiP

α
3 = (Sα(Mα +

1

2
Ĩ)−1(Sα)−1)Pα3 .

Combining (9.1) and (9.4), we obtain:

Aα1 = [Sα(Mα +
1

2
Ĩ)−1(Sα)−1Pα3 + Pα1 ](−∆α)−1.

We now turn to the higher-order terms. By the mutual orthogonality of the projections Pαµi , for
n > 1, we have that:

∑
− 1

2
<µi(α)< 1

2

(µi(α) + 1/2)−1

(
µi(α)− 1/2

µi(α) + 1/2

)n−1

Pαµi

(9.5)

=
( ∑
− 1

2
<µi(α)< 1

2

(1/2 + µi(α))−1Pαµi

)( ∑
− 1

2
<µi(α)< 1

2

(µi(α)− 1/2)Pαµi

)n−1( ∑
− 1

2
<µi(α)< 1

2

(µi(α) + 1/2)Pαµi

)1−n
.

As above, we have that:∑
− 1

2
<µi(α)< 1

2

(1/2 + µi(α))−1PαµiP
α
3 = Sα(Mα +

1

2
Ĩ)−1(Sα)−1Pα3 ,

∑
− 1

2
<µi(α)< 1

2

(1/2 + µi(α))PαµiP
α
3 = Sα(Mα +

1

2
Ĩ)(Sα)−1Pα3 ,(9.6)

∑
− 1

2
<µi(α)< 1

2

(µi(α)− 1/2)PαµiP
α
3 = Sα(Mα − 1

2
Ĩ)(Sα)−1Pα3 .

Combining (9.6), (9.5), and (9.2), we obtain the layer-potential representation for Aαn, concluding
the proof of Theorem 7.3:

Aαn = Sα(Mα +
1

2
Ĩ)−1(Sα)−1[Sα(Mα − 1

2
Ĩ)(Mα +

1

2
Ĩ)−1(Sα)−1]n−1Pα3 (−∆α)−1.

10. Derivation of the Convergence Radius and Separation of Spectra

In this section, we present the proof of Theorem 7.1 and the proof of Theorem 7.2. To begin, we
suppose α 6= 0 and recall that the Neumann series (4.4), and consequently (4.5) and (4.7), converge
provided that:

(10.1) ‖(Aα(z)−Aα(0))R(ζ, 0)‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)] < 1.
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With this in mind, we will compute an explicit upper bound B(α, z) and identify a neighborhood
of the origin on the complex plane for which:

‖(Aα(z)−Aα(0))R(ζ, 0)‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)] < B(α, z) < 1,

holds for ζ ∈ Γj . The inequality B(α, z) < 1 will be used first to derive a lower bound on the radius
of convergence of the power series expansion of the eigenvalue group about z = 0. Then, it will
be used to provide a lower bound on the neighborhood of z = 0 where properties 1 through 3 of
Theorem 7.1 hold.

We have the basic estimate given by:

‖(Aα(z)−Aα(0))R(ζ, 0)‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)](10.2)

≤ ‖(Aα(z)−Aα(0))‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)]‖R(ζ, 0)‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)].

Here ζ ∈ Γj , as defined in Theorem 7.1, and elementary arguments deliver the estimate:

‖R(ζ, 0)‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)] ≤ d−1,(10.3)

where d is given by (7.1). Next, we estimate ‖(Aα(z)−Aα(0))‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)].

Denote the energy seminorm of u by:

‖u‖ = ‖∇ × u‖L2(Y,C3).

To proceed, we introduce the following Poincaré estimate:

Lemma 10.1. Poincaré estimate for functions u belonging to J#(α, Y,C3), for α 6= 0:

(10.4) ‖u‖L2(Y,C3) ≤ |α|−1‖u‖.

Proof. First, we obtain that:

(−∆−1
α u,u)L2(Y,C3) =

∫
Y

∫
Y
−Gα(x, y)u(y) dy · u(x) dx

=
∑
n∈Z3

∣∣∫
Y e
−i(2π n+α)·yu(y) dy

∣∣2
|2π n+ α|2

.(10.5)

Observe that, for α ∈ Y ∗, the following holds:

|α|2 ≤ ||2πn| − |α||2 ≤ |2πn+ α|2 ,

and using this in (10.5), we have:

(10.6) (−∆−1
α u,u)L2(Y,C3) ≤

∑
n∈Z3

∣∣∫
Y e
−i(2π n+α)·yu(y) dy

∣∣2
|α|2

.

Now, write u(y) = ũ(y)eiα·y and observe that:∫
Y
e−i(2π n+α)·yu(y) dy =

∫
Y
e−i(2π n)·yũ(y) dy = ˆ̃u(n),

where ˆ̃u is the Fourier transform of ũ, so we can rewrite (10.6) as:

(10.7) (−∆−1
α u,u)L2(Y,C3) ≤

1

|α|2

∫
Y
|ũ(y)|2 dy = |α|−2‖u‖2L2(Y,C3).
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Also, we have the Cauchy inequality:∫
Y
|u(y)|2 dy =

∫
Y
∇(−∆−1

α u(y)) : ∇u(y) dy

≤
(∫

Y

∣∣∇× (−∆−1
α u(y))

∣∣2 dy)1/2(∫
Y
|∇ × u(y)|2 dy

)1/2
.(10.8)

Applying (10.7), we get:(∫
Y

∣∣∇× (−∆−1
α u(y))

∣∣2 dy)1/2
=
(∫

Y
∇(−∆−1

α u(y)) : ∇(−∆−1
α u(y)) dy

)1/2

≤ |α|−1‖u‖L2(Y,C3)(10.9)

and the Poincaré inequality follows from (10.8) and (10.9). �

For any u ∈ L2
#(α, Y,C3), we apply (10.4) to find:

‖ (Aα(z)−Aα(0)) u‖L2(Y,C3) ≤ |α|−1‖∇ × (Aα(z)−Aα(0)) u‖L2(Y,C3)

≤ |α|−1‖
(
(Tαk )−1 − Pα2

)
‖L[J#(α,Y,C3);J#(α,Y,C3)]‖ −∆−1

α u‖(10.10)

Applying (10.9) and (10.10) delivers the upper bound:

‖Aα(z)−Aα(0)‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)] ≤ |α|
−2‖

(
(Tαk )−1 − Pα2

)
‖L[J#(α,Y,C3);J#(α,Y,C3)].

The next step is to obtain an upper bound on ‖
(
(Tαk )−1 − Pα2

)
‖L[J#(α,Y,C3);J#(α,Y,C3)]. By (2.45),

for all u ∈ J#(α, Y,C3), we have:( ∫
Y

∣∣∇× ((Tαk )−1 − Pα2
)
u
∣∣2 dy)1/2

‖u‖

=

∫Y |∇ × (z Pα1 u +
∑
− 1

2
<µi(α)< 1

2
z [(1/2 + µi(α)) + z(1/2− µi(α))]−1 Pαµiu)|2 dy

‖u‖2

1/2

= |z|
(
wo +

∑
− 1

2
<µi(α)< 1

2

|(1/2 + µi(α)) + z(1/2− µi(α))|−2wi

)1/2
,

where wo = ‖Pα1 u‖2/‖u‖2, wi = ‖Pαµiu‖
2/‖u‖2, and wo +

∑
wi = c ≤ 1, c > 0. Hence, maximizing

the right hand side is equivalent to calculating:

max
w0+

∑
wi=c≤1

{w0 +
∑

− 1
2
<µi(α)< 1

2

wi|(1/2 + µi(α)) + z(1/2− µi(α))|−2}1/2

= sup{1, |(1/2 + µi(α)) + z(1/2− µi(α))|−2}1/2.

Thus, we maximize the function:

f(x) =

∣∣∣∣12 + x+ z

(
1

2
− x
)∣∣∣∣−2

over x ∈ [µ−(α), µ+(α)], for z in a neighborhood about the origin. Let Re(z) = u, Im(z) = v, and
we write:

f(x) =

∣∣∣∣12 + x+ (u+ iv)

(
1

2
− x
)∣∣∣∣−2

≤
(

1

2
+ x+ u

(
1

2
− x
))−2

=: g(Re(z), x)
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to get the bound:

(10.11) ‖((Tαk )−1 − Pα2 )‖L[J#(α,Y,C3);J#(α,Y,C3)] ≤ |z| sup
{

1, sup
x∈ [µ−(α),µ+(α)]

g(u, x)
}1/2

.

We now examine the poles of g(u, x) and the sign of its partial derivative ∂xg(u, x) when |u| < 1.
If Re(z) = u is fixed, then g(u, x) = ((1

2 +x) +u(1
2 −x))−2 has a pole when (1

2 +x) +u(1
2 −x) = 0.

For u fixed, this occurs when x = x̂, given by:

x̂ = x̂(u) =
1

2

(
1 + u

u− 1

)
.

On the other hand, if x is fixed, g has a pole at:

u =
x+ 1/2

x− 1/2
.

The sign of ∂xg is determined by the formula:

(10.12) ∂xg(u, x) =
−2(1− u)[

1
2 + x+ u

(
1
2 − x

)]3 =
−2(1− u)2x− (1− u2)[

1
2 + x+ u

(
1
2 − x

)]4 .

Observe that the denominator on the right hand side of (10.12) is positive. A calculation shows
that ∂xg < 0 for x > x̂, i.e. g is decreasing on (x̂,∞). Similarly, we have ∂xg > 0 for x < x̂ and g
is increasing on (−∞, x̂).

Now, we identify all u = Re(z) for which x̂ = x̂(u) satisfies x̂ < µ−(α) < 0. Indeed, for such u,
the function g(u, x) will be decreasing on [µ−(α), µ+(α)], so that, for all x ∈ [µ−(α), µ̄], we have
g(u, µ−(α)) ≥ g(u, x), yielding an upper bound for (10.11).

Lemma 10.2. The set U of u ∈ R for which −1
2 < x̂(u) < µ−(α) < 0 is given by U := [z∗, 1], where:

−1 ≤ z∗ :=
µ−(α) + 1

2

µ−(α)− 1
2

< 0.

Proof. Note first that µ−(α) = inf i∈N{µi} ≤ 0 follows from the fact that zero is an accumulation
point for the sequence {µi}i∈N, so it follows that:

µ−(α) ≤ −µ−(α) =⇒ 1/2 + µ−(α) ≤ (−1)(µ−(α)− 1/2) =⇒ z∗ ≥ −1.

Observe that x̂ = x̂(u) =
u+ 1

2(u− 1)
, we invert and write u =

x̂+ 1/2

x̂− 1/2
. We now show that z∗ ≤ u ≤ 1,

for x̂ ≤ µ−(α). Set h(x̂) =
x̂+ 1/2

x̂− 1/2
, then h′(x̂) =

−1

(x̂− 1
2)2

< 0, and so, h is decreasing on (−∞, 1
2).

Since µ−(α) < 1
2 , h attains a minimum over (−∞, µ−(α)] at x = µ−(α). Thus x̂(u) ≤ µ−(α)

implies:

1

2

(
u+ 1

u− 1

)
≤ µ−(α) =⇒ z∗ =

µ−(α) + 1/2

µ−(α)− 1/2
≤ u ≤ 1

as desired. �

Combining Lemma 10.2 with the inequality (10.11), noting that −|z| ≤ Re(z) ≤ |z|, and on
rearranging terms, we obtain the following corollary.

Corollary 10.3. For |z| < |z∗|, the following holds:

‖(Aα(z)−Aα(0))‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)] ≤ |α|−2|z|(−|z| − z∗)−1
(1

2
− µ−(α)

)−1
.
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Proof. Observe that:

‖Aα(z)−Aα(0)‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)] ≤ |α|
−2‖

(
(Tαk )−1 − Pα2

)
‖L[J#(α,Y,C3;J#(α,Y,C3]

≤ |α|−2|z| sup
{

1, sup
x∈ [µ−(α),µ+(α)]

g(Re(z), x)
}1/2

≤ |α|−2|z| (−|z| − z∗)−1
(1

2
− µ−(α)

)−1
.

�

From Corollary 10.3, (10.2) and (10.3), it follows that:

‖(Aα(z)−Aα(0))R(ζ, 0)‖L[L2
#(α,Y,C3);L2

#(α,Y,C3)]

≤ |α|−2|z|(−|z| − z∗)−1
(1

2
− µ−(α)

)−1
d−1 =: B(α, z).

A straightforward calculation shows that B(α, z) < 1, for:

|z| < r∗ :=
|α|2d|z∗(α)|

1
1
2
−µ−(α)

+ |α|2d
,

and property 4 of Theorem 7.1 is established, since r∗ < |z∗|.
Now we establish properties 1 through 3 of Theorem 7.1. Inspection of (4.4) shows that, if (10.1)

holds and if ζ ∈ C belongs to the resolvent of Aα(0), then it also belongs to the resolvent of Aα(z).
Since (10.1) holds for ζ ∈ Γj and |z| < r∗, property 1 of Theorem 7.1 follows. Formula (4.5) shows
that P (z) is analytic in a neighborhood of z = 0, determined by the condition that (10.1) holds
for ζ ∈ Γj . The set |z| < r∗ lies inside this neighborhood and property 2 of Theorem 7.1 is proved.
The isomorphism expressed in property 3 of Theorem 7.1 follows directly from Lemma 4.10 of [20]
(Chapter I, § 4), which is also valid in a Banach space.

To prove Theorem 7.2, we need the following Poincaré inequality for J#(0, Y,C3).

Lemma 10.4. The following inequality holds:

(10.13) ‖v‖L2
#(0,Y,C3) ≤

1

2π
‖v‖.

This inequality is established proceeding as in the proof of Lemma 10.1, with (2.16). Using
(10.13) in place of (10.4), we argue, as in the proof of Theorem 7.1, to show that:

‖(A0(z)−A0(0))R(ζ, 0)‖L[(L2
#(0,Y,C3);L2

#(0,Y,C3)] < 1

holds provided |z| < r∗, where r∗ is given by (7.5). This establishes Theorem 7.2.
The error estimates presented in Theorem 7.4 are easily recovered from the arguments in [20]

(Chapter II, § 3); for completeness, we restate them here. We begin with the following application
of Cauchy inequalities to the coefficients βαn of (4.7), from [20] (Chapter II, § 3, pg 88):

|βαn | ≤ d(r∗)−n.

It follows immediately that, for |z| < r∗, we have:∣∣∣∣∣β̂α(z)−
p∑

n=0

znβαn

∣∣∣∣∣ ≤
∞∑

n=p+1

|z|n|βαn | ≤
d|z|p+1

(r∗)p(r∗ − |z|)
,

completing the proof.
For completeness, we establish the boundedness and compactness of the operator Bα(k) in (3.2).

31



Theorem 10.5. The operator Bα(k) : L2
#(α, Y,C3) −→ J#(α, Y,C3) is bounded for k 6∈ Z.

Proof. For α 6= 0 and for v ∈ L2
#(α, Y,C3), we have:

‖Bα(k)v‖ = ‖(Tαk )−1(−∆α)−1v‖
≤ ‖(Tαk )−1‖L[J#(α,Y,C3);J#(α,Y,C3)]‖ −∆−1

α v‖

≤ |α|−1‖((Tαk )−1‖L[J#(α,Y,C3);J#(α,Y,C3)]‖v‖L2(Y,C3),

where the last inequality follows from (10.9). The upper estimate on ‖((Tαk )−1‖L[J#(α,Y,C3);J#(α,Y,C3)]

is obtained from:

‖(Tαk )−1v‖
‖v‖

≤
{
|z|ŵ + w̃ + |

∞∑
i=1

wi|(1/2 + µi) + z(1/2− µi)|−2
}1/2

,

where ŵ = ‖Pα1 v‖2/‖v‖2, w̃ = ‖Pα2 v‖2/‖v‖2, and wi = ‖Pαµiv‖
2/‖v‖2. Since ŵ + w̃ +

∑∞
i=1wi =

c ≤ 1, one recovers the upper bound:

‖(Tαk )−1v‖
‖v‖

≤ M̄,

where:

M̄ = max
{

1, |z|, sup
i

{
|(1/2 + µi) + z(1/2− µi)|−1

}}
.

A similar argument can be carried out for α = 0. �

Theorem 10.6. For k 6∈ Z, Bα(k) : L2
#(α, Y,C3) −→ L2

#(α, Y,C3) is a bounded compact operator

mapping L2
#(α, Y,C3) into itself.

Proof. The Poincaré inequalities (10.4) and (10.13), together with Theorem 10.5, show that Bα(k) :
L2

#(α, Y,C3) −→ L2
#(α, Y,C3) is a bounded linear operator mapping L2

#(α, Y,C3) into itself.

The compact embedding of J#(α, Y,C3) into L2
#(α, Y,C3) shows the operator is compact on

L2
#(α, Y,C3). �

11. Conclusions

In this paper, analytic representation formulas and power series describing the band structure
inside non-magnetic periodic photonic crystals, made from high dielectric contrast inclusions, are
developed. The spectral representation for the operator −∇ × (kχH + χD)∇× is derived, as well
as a power series representation of Bloch eigenfunctions. The radius of convergence for the power
series, together with explicit formulas for each of its terms, in terms of layer potentials, is obtained.
The spectrum in the high contrast limit is completely characterized for the α-quasiperiodic and
periodic (α = 0) cases. Explicit conditions on the contrast are found that provide lower bounds on
the convergence radius. These conditions are sufficient for the separation of spectral branches of
the dispersion relation for any fixed quasi-momentum.

Appendix A. Helmholtz decomposition for periodic and quasiperiodic vector
fields.

Here, we show how to obtain the Helmholtz decomposition (2.2). First, consider α ∈ Y ∗, α 6= 0.
For h(x) ∈ L2

#(α, Y,C3), we have h(x) = hper(x, α)e2πiα·x, where:

hper(x, α) =
∑
k∈Z3

ĥper(k, α)e2πi k·x.
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In other words:
h(x) =

∑
k∈Z3

ĥper(k, α)e2πi(k+α)·x.

Now, define the following:

ĥpot(k, α) = − i

2π

(k + α) · ĥper(k, α)

|k + α|2
,

ĥcurl(k, α) =
i

2π

(k + α)× ĥper(k, α)

|k + α|2
.

By the vector triple product formula, we observe that:

2πi(α+ k) ĥpot(k, α) + 2πi(α+ k)× ĥcurl(k, α)

=
(α+ k)

[
(α+ k) · ĥper(k, α)

]
|k + α|2

−

[
(α+ k)[(α+ k) · ĥper(k, α)]

|k + α|2
− ĥper(k, α)[(α+ k) · (α+ k)]

|k + α|2

]
= ĥper(k, α).

It follows that h(x) = ∇hpot(x) +∇× hcurl(x), where:

hpot(x) =
∑
k∈Z3

ĥpot(k, α)e2πi(k+α)·x,

hcurl(x) =
∑
k∈Z3

ĥcurl(k, α)e2πi(k+α)·x.

This is the Helmholtz decomposition for α-quasiperiodic fields, for α ∈ Y ∗, α 6= 0.

When α = 0, we have h(x) =
∑
k∈Z3

ĥ(k)e2πik·x, or equivalently:

h(x) = ĥ(0) +
∑
k∈Z3

k 6=0

ĥ(k)e2πi k·x,

with ĥ(0) =

∫
Y

h(x). Then, the Helmholtz decomposition for h ∈ L2
#(0, Y,C3) is given by:

h(x) = ∇hpot(x) +∇× hcurl(x) + c, c ∈ C3,

where:

hpot(x) =
∑
k∈Z3

k 6=0

− i

2π

k

|k|2
· ĥ(k)e2πik·x,

hpot(x) =
∑
k∈Z3

k 6=0

i

2π

k

|k|2
× ĥ(k)e2πik·x.

Appendix B. For h ∈ J#(α, Y,C3), ∇hpot = 0 in (2.2):

If α 6= 0, from Appendix A, we have h(x) = ∇hpot(x) +∇×hcurl(x). Taking divergence on both
sides, and since h ∈ J#(α, Y,C3), we obtain that ∆hpot = 0 in Y and, since hpot is α-quasiperiodic,
we have: ∫

Y
|∇hpot|2 =

∫
∂Y
hpot∂nhpot = 0.

A similar argument works for to the case α = 0.
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Appendix C. Necessary Lemmas

Lemma C.1. For u and v in J#(α, Y,C3), we have:∫
Y
∇× u · ∇ × v dx =

∫
Y
∇u : ∇v dx.

Proof. Let us write:

u(y) =
∑
k∈Z3

e2π i(k+α)·yûk and v(y) =
∑
k∈Z3

e2π i(k+α)·yv̂k.

Then:∫
Y
∇× u · ∇ × v dx =

∫
Y

∑
k∈Z3

2π i e2π i(k+α)·y(k + α)× ûk ·
∑
m∈Z3

2π i e2π i(m+α)·y(m+ α)× v̂k dx

= 4π|Y |
∑
k∈Z3

(k + α)× ûk · (k + α)× v̂k

= 4π|Y |
∑
k∈Z3

(
|k + α|2 ûk · v̂k − (k + α) · ûk(k + α) · v̂k

)
=

∫
Y
∇u : ∇v dx−

∫
Y

(∇ · u)(∇ · v) dx =

∫
Y
∇u : ∇v dx.

�

Lemma C.2. (See [7], Lemma 4.7 for proof.) Let u ∈ L2
#(Y,C3) such that curl u ∈ L2

#(Y,C3) and

div u ∈ L2
#(Y ). Then u ∈W 1,2

# (Y,C3) and:∫
Y
|∇u|2 dx =

∫
Y
|curl u|2 dx +

∫
Y
|div u|2 dx.

Lemma C.3. Let u ∈ L2
#(α, Y,C3) such that curl u ∈ L2

#(α, Y,C3) and div u ∈ L2
#(α, Y ). Then

u ∈W 1,2
# (α, Y,C3) and:

(C.1)

∫
Y
|∇u|2 dx =

∫
Y
|curl u|2 dx +

∫
Y
|div u|2 dx.

Proof. Let us write:

u(y) =
∑
k∈Z3

e2π i(k+α)·yck.

We then have that:

curl u =
∑
k∈Z3

2π i e2π i(k+α)·y(k + α)× ck,

div u =
∑
k∈Z3

2π i e2π i(k+α)·y(k + α) · ck.

Since
∣∣(k + α)× ck

∣∣2+
∣∣(k + α) · ck

∣∣2 = |k + α|2
∣∣ck∣∣2, we infer that

∑
k∈Z3 |k + α|2

∣∣ck∣∣2 <∞, thus

u ∈W 1,2
# (α, Y )

3
. Moreover, (C.1) follows. �
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Appendix D. For u ∈ J#(α, Y,C3), the null space of ∇× u is {0}:

Let u ∈ J#(α, Y,C3) such that ∇× u = 0. Then, from Lemma C.1, we have:∫
Y
|∇u|2 =

∫
Y
|curl u|2 = 0.

Then u must be a constant in Y . If α 6= 0, since u is α-quasiperiodic, we conclude it must be zero.
If α = 0, since

∫
Y u dx = 0, then we can also conclude that u = 0.

Appendix E. Periodic and α-quasiperiodic Green’s functions and their relation to
the free space Green’s function

Consider G0 and Gα, defined in (2.16) and (2.15), respectively, and the free-space Green’s func-
tion given by:

Γ(x, y) = − 1

4π|x− y|
.

Observe that, in the unit cell Y , we have:

∆(Γ(x, y)−G0(x, y)) = δ(x− y)− (δ(x− y)− 1) = 1

and, from the regularity of the elliptic problem, we have that R0(x) = Γ(x, y)−G0(x, y) is smooth
in Y , see [1]. A similar argument works for Gα, α 6= 0. In that case:

∆Gα(x, y) =
∑
n∈Z3

δ(x− y − n)eiα·n in R3,

which implies that, in the unit cell Y , we have:

∆(Γ(x, y)−Gα(x, y)) = 0,

from where Rα(x) = Γ(x, y)−Gα(x, y) is smooth in Y . The generalization of Lemma 4.4 of [29] to
the periodic and α-quasiperiodic cases follows from the above.

Acknowledgements

This research work is supported in part by NSF Grants DMS-1813698, DMREF-1921707, and
DMS-2110036.

References

[1] H. Ammari, H. Kang, and K. Kim. Polarization tensors and effective properties of anisotropic composite mate-
rials. Journal of Differential Equations, 215(2):401–428, 2005.

[2] H. Ammari, H. Kang, and H. Lee. Layer Potential Techniques in Spectral Analysis. American Mathematical
Society, 201 Charles Street, Providence, RI, 2009.

[3] H. Ammari, H. Kang, S. Soussi, and H. Zribi. Layer potential techniques in spectral analysis. part 2: Sensitivity
analysis of spectral properties of high contrast band-gap materials. Multiscale Model. Simul., 5:646–663, 2006.

[4] B.C. Aslan, W.W. Hager, and S. Moskow. A generalized eigenproblem for the laplacian which arises in lightning.
J. Math. Anal. Appl., 341:1028–1041, 2008.

[5] D.J. Bergman. The dielectric constant of a composite material - a problem in classical physics. Physics Reports,
43:377–407, 1978.

[6] D.J. Bergman. The dielectric constant of a simple cubic array of identical spheres. J. Phys. C., 12:4947–4960,
1979.
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