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Report Contributors: Thea Aarrestad 6, Steffen Bähr 9, Jürgen Becker 9, Anne-Sophie Berthold 29,
Richard J. Bonventre 11, Tomás E. Müller Bravo 18, Markus Diefenthaler 41, Zhen Dong 19, Nick
Fritzsche 29, Amir Gholami 19, Ekaterina Govorkova 6, Kyle J Hazelwood 2, Christian Herwig 2, Babar
Khan 21, Sehoon Kim 19, Thomas Klijnsma 2, Yaling Liu 4, Kin Ho Lo 8, Tri Nguyen 15, Gianantonio
Pezzullo 10, Seyedramin Rasoulinezhad 22, Ryan A. Rivera 2, Kate Scholberg 13, Justin Selig 32 Sougata
Sen 16, Dmitri Strukov 20, William Tang 7, Savannah Thais 7, Kai Lukas Unger 9, Ricardo Vilalta 17, Belina
von Krosigk 14,9, Thomas K. Warburton 12

Community endorsers: Maria Acosta Flechas 2, Anthony Aportela 23, Thomas Calvet 31, Leonardo
Cristella 6, Daniel Diaz 23, Caterina Doglioni 37, Maria Domenica Galati 34, Elham E Khoda 24, Farah
Fahim 2, Davide Giri 27, Benjamin Hawks 2, Duc Hoang 15, Burt Holzman 2, Shih-Chieh Hsu 24, Sergo
Jindariani 2, Iris Johnson 2, Raghav Kansal 23, Ryan Kastner 23, Erik Katsavounidis 15, Jeffrey Krupa 15, Pan
Li 25, Sandeep Madireddy 40, Ethan Marx 15, Patrick McCormack 15 Andres Meza 23, Jovan Mitrevski 2,
Mohammed Attia Mohammed 36, Farouk Mokhtar 23, Eric Moreno 15, Srishti Nagu 35, Rohin Narayan 1,
Noah Palladino 15, Zhiqiang Que 38, Sang Eon Park15, Subramanian Ramamoorthy 28, Dylan Rankin 15,
Simon Rothman 15, Ashish Sharma 30, Sioni Summers 6, Pietro Vischia 33, Jean-Roch Vlimant 39, Olivia
Weng 23

1Southern Methodist University, Dallas, TX 75205, USA, 2Fermi National Accelerator Laboratory, Batavia, IL 60510, USA,
3Northwestern University, Evanston, IL 60208, USA, 4Lehigh University, University, Bethlehem, PA 18015, USA, 5Xilinx
Research, Dublin, D24 T683, Ireland, 6European Organization for Nuclear Research (CERN), Meyrin, Switzerland, 7Princeton
University, Princeton, NJ 08544, USA, 8University of Florida, Gainesville, FL 32611, USA, 9Karlsruhe Institute of Technology,
76131 Karlsruhe, Germany, 10Yale University, New Haven, CT 06520, USA, 11Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA, 12Iowa State University, Ames, IA 50011, USA, 13Duke University, Durham, NC 27708, USA,
14Universität Hamburg, 22761 Hamburg, Germany, 15Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
16Birla Institute of Technology and Science, Pilani, Goa 403726, India, 17University of Houston, Houston TX 77204, USA,
18University of Southampton, Southampton SO17 1BJ, United Kingdom, 19University of California Berkeley, Berkeley, CA
94720, USA, 20University of California Santa Barbara, Santa Barbara, CA 93106, USA, 21Technical University Darmstadt,
Darmstadt 64289, Germany, 22University of Sydney, Camperdown NSW 2006, Australia, 23University of California San Diego,
La Jolla, CA 92093, USA, 24University of Washington, Seattle WA 47907, USA, 25 Purdue University, West Lafayette IN
47907, USA, 26University of Illinois Urbana-Champaign, Champaign IL 61820, USA, 27Columbia University, New York, NY
10027, USA, 28University of Edinburgh, Edinburgh EH8 9YL, United Kingdom , 29Technische Universität Dresden, 01062
Dresden, Germany, 30Indian Institute of Technology Madras, Chennai 600 036, India, 31Centre de Physique des Particules de
Marseille, 13009 Marseille, France, 32Cerebras Systems, Sunnyvale CA 94085, USA , 33Université Catholique de Louvain,
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ABSTRACT
In this community review report, we discuss applications and techniques for fast machine learning
(ML) in science—the concept of integrating power ML methods into the real-time experimental
data processing loop to accelerate scientific discovery. The material for the report builds on two
workshops held by the Fast ML for Science community and covers three main areas: applications
for fast ML across a number of scientific domains; techniques for training and implementing
performant and resource-efficient ML algorithms; and computing architectures, platforms, and
technologies for deploying these algorithms. We also present overlapping challenges across
the multiple scientific domains where common solutions can be found. This community report
is intended to give plenty of examples and inspiration for scientific discovery through integrated
and accelerated ML solutions. This is followed by a high-level overview and organization of
technical advances, including an abundance of pointers to source material, which can enable
these breakthroughs.
Keywords: fast machine learning
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FOREWORD
Machine learning (ML) is making a huge impact on our society and daily lives through advancements
in computer vision, natural language processing, and autonomous vehicles, among others. ML is also
powering scientific advances which can lead to future paradigm shifts in a broad range of domains, including
particle physics, plasma physics, astronomy, neuroscience, chemistry, material science, and biomedical
engineering. Scientific discoveries come from groundbreaking ideas and the capability to validate those
ideas by testing nature at new scales—finer and more precise temporal and spatial resolution. This is
leading to an explosion of data that must be interpreted, and ML is proving a powerful approach. The more
efficiently we can test our hypotheses, the faster we can achieve discovery. To fully unleash the power of
ML and accelerate discoveries, it is necessary to embed it into our scientific process, into our instruments
and detectors.

It is in this spirit that the Fast Machine Learning for Science community1 has been built. Two workshops
have also been organized through this growing community and are the source for this report. The community
brings together an extremely wide-ranging group of domain experts who would rarely interact as a whole.
One of the underlying benefits of ML is the portability and general applicability of the techniques that can
enable experts from seemingly unrelated domains to find a common language. Scientists and engineers
from particle physicists to networking experts and biomedical engineers are represented and can interact
with experts in fundamental ML techniques and compute systems architects.

This report aims to summarize the progress in the community to understand how our scientific challenges
overlap and where there are potential commonalities in data representations, ML approaches, and
technology, including hardware and software platforms. Therefore, the content of the report includes
the following: descriptions of a number of different scientific domains including existing work and
applications for embedded ML; potential overlaps across scientific domains in data representation
or system constraints; and an overview of state-of-the-art techniques for efficient machine learning
and compute platforms, both cutting-edge and speculative technologies.

Necessarily, such a broad scope of topics cannot be comprehensive. For the scientific domains, we note
that the contributions are examples of how ML methods are currently being or planned to be deployed. We
hope that giving a glimpse into specific applications will inspire readers to find more novel use-cases and
potential overlaps. The summaries of state-of-the-art techniques we provide relate to rapidly developing
fields and, as such, may become out of date relatively quickly. The goal is to give non-experts an overview
and taxonomy of the different techniques and a starting point for further investigation. To be succinct, we
rely heavily on providing references to studies and other overviews while describing most modern methods.

We hope the reader finds this report both instructive and motivational. Feedback and input to this report,
and to the larger community, are welcome and appreciated.

Sincerely,
The Editors

1 fastmachinelearning.org
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1 INTRODUCTION
In pursuit of scientific advancement across many domains, experiments are becoming exceedingly
sophisticated in order to probe physical systems at increasingly smaller spatial resolutions and shorter
timescales. These order of magnitude advancements have lead to explosions in both data volumes and
richness leaving domain scientists to develop novel methods to handle growing data processing needs.

Simultaneously, machine learning (ML), or the use of algorithms that can learn directly from data, is
leading to rapid advancements across many scientific domains [1]. Recent advancements have demonstrated
that deep learning (DL) architectures based on structured deep neural networks are versatile and capable
of solving a broad range of complex problems. The proliferation of large datasets like ImageNet [2],
computing, and DL software has led to the exploration of many different DL approaches each with their
own advantages.

In this review paper, we will focus on the fusion of ML and experimental design to solve critical scientific
problems by accelerating and improving data processing and real-time decision-making. We will discuss
the myriad of scientific problems that require fast ML, and we will outline unifying themes across these
domains that can lead to general solutions. Furthermore, we will review the current technology needed to
make ML algorithms run fast, and we will present critical technological problems that, if solved, could lead
to major scientific advancements. An important requirement for such advancements in science is the need
for openness. It is vital for experts from domains that do not often interact to come together to develop
transferable solutions and work together to develop open-source solutions.

Much of the advancements within ML over the past few years have originated from the use of
heterogeneous computing hardware. In particular, the use of graphics processing units (GPUs) has enabled
the development of large DL algorithms [3–5]. The ability to train large artificial intelligence (AI) algorithms
on large datasets has enabled algorithms that are capable of performing sophisticated tasks. In parallel with
these developments, new types of DL algorithms have emerged that aim to reduce the number of operations
so as to enable fast and efficient AI algorithms.

Within this review paper, we refer to the concept of Fast Machine Learning in Science as the
integration of ML into the experimental data processing infrastructure to enable and accelerate
scientific discovery. Fusing powerful ML techniques with experimental design decreases the “time to
science” and can range from embedding real-time feature extraction to be as close as possible to the
sensor all the way to large-scale ML acceleration across distributed grid computing datacenters. The
overarching theme is to lower the barrier to advanced ML techniques and implementations to make
large strides in experimental capabilities across many seemingly different scientific applications.
Efficient solutions require collaboration between domain experts, machine learning researchers, and
computer architecture designers.

This paper is a review of the second annual Fast Machine Learning conference [6] and will build on the
materials presented at this conference. It brings together experts from multiple scientific domains ranging
from particle physicists to material scientists to health monitoring researchers with machine learning
experts and computer systems architects. Figure 1 illustrates the spirit of the workshop series on which this
paper is inspired and the topics covered in subsequent sections.
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Figure 1. The concept behind this review paper is to find the confluence of domain-specific challenges,
machine learning, and experiment and computer system architectures to accelerate science discovery.

As ML tools have become more sophisticated, much of the focus has turned to building very large
algorithms that solve complicated problems, such as language translation and voice recognition. However,
in the wake of these developments, a broad range of scientific applications have emerged that can benefit
greatly from the rapid developments underway. Furthermore, these applications have diversified as people
have to come to realize how to adapt their scientific approach so as to take advantage of the benefits
originating from the AI revolution. This can include the capability of AI to classify events in real time, such
as the identification of a collision of particles or a merger of gravitational waves. It can also include systems
control, such as the response control from feedback mechanisms in plasmas and particle accelerators. The
latency, bandwidth, and throughput restrictions and the reasons for such restrictions differ within each
system. However, in all cases, accelerating ML is a driver in the design goal.

The design of low latency algorithms differs from other AI implementations in that we must tailor
specific processing hardware to the task at hand to increase the overall algorithm performance. In particular,
certain processor cores have been configured for optimized sparse matrix multiplications. Others have been
optimized to maximize the total amount of compute. Processor design, and the design of algorithms around
processors, often referred to as hardware AI co-design, is the focus of the work in this review. For example,
in some cases, ultra-low latency inference times are needed to perform scientific measurements. One must
efficiently design the algorithm to optimally utilize the hardware constraints available while preserving
the algorithm performance within desired experimental requirements. This is the essence of hardware AI
co-design.

The contents of this review are laid out as follows. In the Section 2, we will explore a broad range
of scientific problems where Fast ML can act as a disruptive technology to the status quo and lead to a
significant change in how we process data. Domain experts from seemingly different domains are examined.

This is a provisional file, not the final typeset article 6
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In Section 3, we describe data representations and experimental platform choices are common to many
types of experiments. We will connect how Fast ML solutions can be generalized to low latency, highly
resource-efficient, and domain-specific deep learning inference for many scientific applications. Finally
in Section 4, to achieve this requires optimized hardware-ML co-design from the algorithm design to
the system architecture. We provide an overview of state-of-the-art techniques to train neural networks
optimized for both performance and speed, survey various compute architectures to meet the needs of the
experimental design and outline software solutions that optimize and enable the hardware deployment.

The goal of this paper is to bring together scientific opportunities, common solutions, and state-of-the-
art technology into one single narrative. We hope this can contribute to accelerating the deployment of
potentially transformative ML solutions to a broad range of scientific fields going forward.

Frontiers 7
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2 EXEMPLARS OF DOMAIN APPLICATIONS
As scientific ecosystems grow rapidly in their speed and scale, new paradigms for data processing and
reduction need to be integrated into system-level design. In this section, we explore requirements for
accelerated and sophisticated data processing. Implementations of fast machine learning can appear greatly
varied across domains and architectures but yet can have similar underlying data representations and
needs for integrating machine learning. We enumerate here a broad sampling of scientific domains across
seemingly unrelated tasks including their existing techniques and future needs. This will then lead to the
next section where we discuss overlaps and common tasks.

In this section, we first have a detailed description of examples of Fast ML techniques being deployed at
experiments for the Large Hadron Collider. Much rapid development has occurred for these experiments
recently and gives an exemplar for how broad advancements can be made across various aspects of a
specific domain. Then the following subsections will be briefer but lay out key challenges and areas of
existing and potential applications of Fast ML across a number of other scientific domains.

2.1 Large Hadron Collider
The Large Hadron Collider (LHC) at CERN is the world’s largest and highest-energy particle accelerator,

where collisions between bunches of protons occur every 25 ns. To study the products of these collisions,
several detectors are located along the ring at interaction points. The aim of these detectors is to measure
the properties of the Higgs boson [7, 8] with high precision and to search for new physics phenomena
beyond the standard model of particle physics. Due to the extremely high frequency of 40 MHz at which
proton bunches collide, the high multiplicity of secondary particles, and the large number of sensors, the
detectors have to process and store data at enormous rates. For the two multipurpose experiments, CMS [9]
and ATLAS [9], comprised of tens of millions of readout channels, these rates are of the order of 100
Tb/s. Processing and storing this data presents severe challenges that are among the most critical for the
execution of the LHC physics program.

The approach implemented by the detectors for data processing consists of an online processing stage,
where the event is selected from a buffer and analyzed in real time, and an offline processing stage, in
which data have been written to disk and are more thoroughly analyzed with sophisticated algorithms. The
online processing system, called the trigger, reduces the data rate to a manageable level of 10 Gb/s to be
recorded for offline processing. The trigger is typically divided into multiple tiers. Due to the limited size
of the on-detector buffers, the first tier (Level-1 or L1) utilizes FPGAs and ASICs capable of executing the
filtering process with a maximum latency of O(1) µs. At the second stage, the high-level trigger (HLT),
data are processed on a CPU-based computing farm located at the experimental site with a latency of up to
100 ms. Finally, the complete offline event processing is performed on a globally distributed CPU-based
computing grid.

Maintaining the capabilities of this system will become even more challenging in the near future. In
2027, the LHC will be upgraded to the so-called High-Luminosity LHC (HL-LHC) where each collision
will produce 5–7 times more particles, ultimately resulting in a total amount of accumulated data that
will be one order of magnitude higher than achieved with the present accelerator. At the same time, the
particle detectors will be made larger, more granular, and capable of processing data at ever-increasing
rates. Therefore, the physics that can be extracted from the experiments will be limited by the accuracy of
algorithms and computational resources.

This is a provisional file, not the final typeset article 8
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Machine learning technologies offer promising solutions and enhanced capabilities in both of these areas,
thanks to their capacity for extracting the most relevant information from high-dimensional data and to
their highly parallelizable implementation on suitable hardware. It is expected that a new generation of
algorithms, if deployed at all stages of data-processing systems at the LHC experiments, will play a crucial
part in maintaining, and hopefully improving, the physics performance. In the following sections, a few
examples of the application of machine learning models to physics tasks at the LHC are reviewed, together
with novel methods for their efficient deployment in both the real-time and offline data processing stages.
2.1.1 Event reconstruction

The reconstruction of proton-proton collision events in the LHC detectors involves challenging pattern
recognition tasks, given the large number (O(1000)) of secondary particles produced and the high detector
granularity. Specialized detector sub-systems and algorithms are used to reconstruct the different types
and properties of particles produced in collisions. For example, the trajectories of charged particles are
reconstructed from space point measurements in the inner silicon detectors, and the showers arising from
particles traversing the calorimeters are reconstructed from clusters of activated sensors.

Traditional algorithms are highly tuned for physics performance in the current LHC collision environment,
but are inherently sequential and scale poorly to the expected HL-LHC conditions. It is thus necessary to
revisit existing reconstruction algorithms and ensure that both the physics and computational performance
will be sufficient. Deep learning solutions are currently being explored for pattern recognition tasks,
as a significant speedup can be achieved when harnessing heterogeneous computing and parallelizable
and efficient ML that exploits AI-dedicated hardware. In particular, modern architectures such as graph
neural networks (GNNs) are being explored for the reconstruction of particle trajectories, showers in the
calorimeter as well as of the final individual particles in the event. Much of the following work has been
conducted using the TrackML dataset [10], which simulates a generalized detector under HL-LHC-like
pileup conditions. Quantifying the performance of these GNNs in actual experimental data is an ongoing
point of study.

For reconstructing showers in calorimeters, GNNs have been found to predict the properties of the
original incident particle with high accuracy starting from individual energy deposits. The work in [11]
proposes a graph formulation of pooling to dynamically learn the most important relationships between
data via an intermediate clustering, and therefore removing the need for a predetermined graph structure.
When applied to the CMS electromagnetic calorimeter, with single detector hits as inputs to predict the
energy of the original incident particle, a 10% improvement is found over the traditional boosted decision
tree (BDT) based approach.

GNNs have been explored for a similar calorimeter reconstruction task for the high-granularity
calorimeters that will replace the current design for HL-LHC. The task will become even more challenging
as such detectors will feature irregular sensor structure and shape (e.g. hexagonal sensor cells for CMS [12]),
high occupancy, and an unprecedented number of sensors. For this application, architectures such as
EDGECONV [13] and GRAVNET/GARNET [14] have shown promising performance in the determination
of the properties of single showers, yielding excellent energy resolution and high noise rejection [15].
While these preliminary studies were focused on scenarios with low particle multiplicities, the scalability
of the clustering performance to more realistic collision scenarios is still a subject of active development.

GNNs have also been extensively studied for charged particle tracking (the task of identifying and
reconstructing the trajectories of individual particles in the detector) [16–19]. The first approaches to this
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problem typically utilized edge-classification GNNs in a three-step process: graphs are constructed by
algorithmically constructing edges between tracker hits in a point cloud, the graphs are processed through a
GNN to predict edge weights (true edges that are part of true particle trajectories should be highly weighted
and false edges should be lowly rated), and finally, the selected edges are grouped together to generate
high-weight sub-graphs which form full track candidates, as shown in Figure 2.

Figure 2. High-level overview of the stages in a GNN-based tracking pipeline. Only a subset of the typical
edge weights are shown for illustration purposes.

There have been several studies building upon and optimizing this initial framework. The ExaTrkX
collaboration has demonstrated performance improvements by incorporating a recurrent GNN structure
[16] and re-embedding graphs prior to training the GNNs [20]. Other work has shown that using an
Interaction Network architecture [21] can substantially reduce the number of learnable parameters in the
GNN [22]; the authors also provide comprehensive comparisons between different graph construction and
track building algorithms. Recent work has also explored alternate approaches that combine graph building,
GNN inference, and track construction into a single algorithm that is trainable end-to-end; in particular,
instance segmentation architectures have generated promising results [23].

Finally, a novel approach based on GNNs [24] has been proposed as an alternative solution to the so-called
particle-flow algorithm that is used by LHC experiments to optimally reconstruct each individual particle
produced in a collision by combining information from the calorimeters and the tracking detectors [25].
The new GNN algorithm is found to offer comparable performance for charged and neutral hadrons to the
existing reconstruction algorithm. At the same time, the inference time is found to scale approximately
linearly with the particle multiplicity, which is promising for its ability to maintain computing costs within
budget for the HL-LHC. Further improvements to this original approach are currently under study, including
an event-based loss, such as the object condensation approach. Second, a complete assessment of the
physics performance remains to be evaluated, including reconstruction of rare particles and other corners
of the phase space. Finally, it remains to be understood how to optimize and coherently interface this with
the ML-based approach proposed for tasks downstream and upstream in the particle-level reconstruction.
2.1.2 Event simulation

The extraction of results from LHC data relies on a detailed and precise simulation of the physics
of proton-proton collisions and of the response of the detector. In fact, the collected data are typically
compared to a reference model, representing the current knowledge, in order to either confirm or disprove
it. Numerical models, based on Monte Carlo (MC) methods, are used to simulate the interaction between
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elementary particles and matter, while the Geant4 toolkit is employed to simulate the detectors. These
simulations are generally very CPU intensive and require roughly half of the experiment’s computing
resources, with this fraction expected to increase significantly for the HL-LHC.

Novel computational methods based on ML are being explored so as to perform precise modeling from
particle interactions to detector readouts and response while maintaining feasible computing budgets for
HL-LHC. In particular, numerous works have focused on the usage of generative adversarial networks or
other state-of-the-art generative models to replace computationally intensive fragments of MC simulation,
such as modeling of electromagnetic showers [26–28], reconstruction of jet images [29] or matrix element
calculations [30]. In addition, the usage of ML generative models on end-to-end analysis-specific fast
simulations have also been investigated in the context of Drell-Yan [31], dijet [32] and W+jets [33]
production. These case-by-case proposals serve as proof-of-principle examples for complementary data
augmentation strategy for LHC experiments.
2.1.3 Heterogeneous computing

State-of-the-art deep learning models are being explored for the compute-intensive reconstruction of
each collision event at the LHC. However, their efficient deployment within the experiments’ computing
paradigms is still a challenge, despite the potential speed-up when the inference is executed on suitable
AI-dedicated hardware. In order to gain from a parallelizable ML-based translation of traditional and
mostly sequential algorithms, a heterogeneous computing architecture needs to be implemented in the
experiment infrastructure. For this reason, comprehensive exploration of the use of CPU+GPU [34] and
CPU+FPGA [35, 36] heterogeneous architectures was made to achieve the desired acceleration of deep
learning inference within the data processing workflow of LHC experiments. These works demonstrated
that the acceleration of machine learning inference “as a service” represents a heterogeneous computing
solution for LHC experiments that potentially requires minimal modification to the current computing
model.

In this approach, the ML algorithms are transferred to a co-processor on an independent (local or remote)
server by reconfiguring the CPU node to communicate with it through asynchronous and non-blocking
inference requests. With the inference task offloaded on demand to the server, the CPU can be dedicated
to performing other necessary tasks within the event. As one server can serve many CPUs, this approach
has the advantage of increasing the hardware cost-effectiveness to achieve the same throughput when
comparing it to a direct-connection paradigm. It also facilitates the integration and scalability of different
types of co-processor devices, where the best one is chosen for each task.

Finally, existing open-source frameworks that have been optimized for fast DL on several different types
of hardware can be exploited for a quick adaptation to LHC computing. In particular, one could use the
Nvidia Triton Inference Server within a custom framework, so-called Services for Optimized Network
Inference on Co-processors (SONIC), to enable remote gRPC calls to either GPUs or FPGAs within the
experimental software, which then only has to handle the input and output conversion between event
data format and inference server format. The integration of this approach within the CMS reconstruction
software has been shown to lead to a significant overall reduction in the computing demands both at the
HLT and offline.
2.1.4 Real-time analysis at 40 MHz

Bringing deep learning algorithms to the Level-1 hardware trigger is an extremely challenging task
due to the strict latency requirement and the resource constraints imposed by the system. Depending
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on which part of the system an algorithm is designed to run on, a latency down to O(10) ns might be
required. With O(100) processors running large-capacity FPGAs, processing thousands of algorithms
in parallel, dedicated FPGA-implementations are needed to make ML algorithms as resource-efficient
and fast as possible. To facilitate the design process and subsequent deployment of highly parallel, highly
compressed ML algorithms on FPGAs, dedicated open-source libraries have been developed: hls4ml and
Conifer. The former, hls4ml, provides conversion tools for deep neural networks, while Conifer
aids the deployment of Boosted Decision Trees (BDTs) on FPGAs. Both libraries, as well as example LHC
applications, will be described in the following.

TensorFlow / TF Keras / PyTorch / ONNX

scikit-learn / XGBoost / TMVA 
 

  
HLS project: 

Xilinx Vivado HLS, Intel Quartus HLS,  
Mentor Catapult HLS

Figure 3. Two dedicated libraries for the conversion of Machine Learning algorithms into FPGA or
ASIC firmware: hls4ml for deep neural network architectures and Conifer for Boosted Decision Tree
architectures. Models from a wide range of open-source ML libraries are supported and may be converted
using three different high-level synthesis backends.

The hls4ml library [37–40] converts pre-trained ML models into ultra low-latency FPGA or ASIC
firmware with little overhead required. Integration with the Google QKeras library [41] allows users to
design aggressively quantized deep neural networks and train them quantization-aware [40] down to 1
or 2 bits for weights and activations [39]. This step results in highly resource-efficient equivalents of the
original model, sacrificing little to no accuracy in the process. The goal of this joint package is to provide a
simple two-step approach going from a pre-trained floating point model to FPGA firmware. The hls4ml
library currently provides support for several commonly used neural network layers like fully connected,
convolutional, batch normalization, pooling, as well as several activation functions. These implementations
are already sufficient to provide support for the most common architectures envisioned for deployment at
L1.

Some first examples of machine learning models designed for the L1 trigger are based on fully connected
layers, and they are proposed for tasks such as the reconstruction and calibration of final objects or lower-
level inputs like trajectories, vertices, and calorimeter clusters [42]. One example of a convolutional NN
(CNN) architecture targeting the L1 trigger is a dedicated algorithm for the identification of long-lived
particles [43]. Here, an attempt is made to efficiently identify showers from displaced particles in a
high-granularity forward calorimeter. The algorithm is demonstrated to be highly efficient down to low
energies while operating at a low trigger rate. Traditionally, cut-based selection algorithms have been used
for these purposes, in order to meet the limited latency- and resource budget. However, with the advent
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of tools like hls4ml and QKeras, ML alternatives are being explored to improve the sensitivity to such
physics processes while maintaining latency and resources in the available budget.

More recently, (variational) auto-encoders (VAEs or AEs) are being considered for the detection of
“anomalous” collision events, i.e. events that are not produced by standard physics processes but that could
be due instead to unexpected processes not yet explored at colliders. Such algorithms have been proposed
for both the incoming LHC run starting in 2022 as well as for the future high-luminosity runs where more
granular information will be available. The common approach uses global information about the event,
including a subset of individual produced particles or final objects such as jets as well as energy sums. The
algorithm trained on these inputs is then used to classify the event as anomalous if surpassing a threshold
on the degree of anomaly (typically the loss function), ultimately decided upon the available bandwidth.
Deploying a typical variational autoencoder is impossible in the L1-trigger since the bottleneck layer
involves Gaussian random sampling. The explored solution is therefore to only deploy the encoder part of
the network and do inference directly from the latent dimension. Another possibility is to deploy a simple
auto-encoder with the same architecture and do inference computing the difference between output and
input. However, this would require buffering a copy of the input for the duration it takes the auto-encoder
to process the input. For this reason, the two methods are being considered and compared in terms of
accuracy over a range of new physics processes, as well as latency and resources.

Finally, another interesting aspect of the hls4ml tool is the capability for users to easily add custom
layers that might serve a specific task not captured by the most common layers supported in the library. One
example of this is compressed distance-weighted graph networks [44], where a graph network block called
a GarNet layer takes as input a set of V vertices, each of which has Fin features, and returns the same set
of vertices with Fout features. To keep the dimensionality of the problem at a manageable level, the input
features of each vertex are encoded and aggregated at S aggregators. Message-passing is only performed
between vertices and a limited set of aggregators, and not between all vertices, significantly reducing the
network size. In Ref. [44], an example task of pion and electron identification and energy regression in a
3D calorimeter is studied. A total inference latency of O(100) ns is reported, satisfying the L1 requirement
of O(1) µs latency. The critical resource is digital signal processing (DSP) units, where 29% of the DSPs
are in use by the algorithm. This can be further reduced by taking advantage of quantization-aware training
with QKeras. Another example of a GNN architecture implemented on FPGA hardware using hls4ml
is presented in Ref. [45]. This work shows that a compressed GNN can be deployed on FPGA hardware
within the latency and resources required by L1 trigger system for the challenging task of reconstructing
the trajectory of charged particles.

In many cases, the task to be performed is simple enough that a boosted decision tree (BDT) architecture
suffices to solve the problem. As of today, BDTs are still the most commonly used ML algorithm for
LHC experiments. To simplify the deployment of these, the library Conifer [46] has been developed. In
Conifer, the BDT implementation targets extreme low latency inference by executing all trees, and all
decisions within each tree, in parallel. BDTs and random forests can be converted from scikit-learn [47],
XGBoost [48], and TMVA [49], with support for more BDT training libraries planned.

There are several ongoing projects at LHC which plan to deploy BDTs in the Level-1 trigger using
Conifer. One example is a BDT designed to provide an estimate of the track quality, by learning to
identify tracks that are reconstructed in error, and do not originate from a real particle [50]. While the
accuracy and resource usage are similar between a BDT and a DNN, the latency is significantly reduced
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for a BDT architecture. The algorithm is planned to be implemented in the CMS Experiment for the
data-taking period beginning in 2022.

Rather than relying on open source libraries such as hls4ml or Conifer, which are based on high-level
synthesis tools from FPGA vendors, other approaches are being considered based directly on hardware
description languages, such as VHDL [51, 52]. One example is the application of ML for the real-time
signal processing of the ATLAS Liquid Argon calorimeter [53]. It has been shown that with upgraded
capabilities for the HL-LHC collision environment the conventional signal processing, which applies an
optimal filtering algorithm [54], will lose its performance due to the increase of overlapping signals. More
sophisticated DL methods have been found to be more suitable to cope with these challenges being able to
maintain high signal detection efficiency and energy reconstruction. More specifically, studies based on
simulation [55] of dilated convolutional neural networks showed promising results. An implementation
of this architecture for FPGA is designed using VHDL [52] to meet the strict requirements on latency
and resources required by the L1 trigger system. The firmware runs with a multiple of the bunch crossing
frequency to reuse hardware resources by implementing time-division multiplexing while using pipeline
stages, the maximum frequency can be increased. Furthermore, DSPs are chained up to perform the MAC
operation in between two layers efficiently. In this way, a core frequency of more than 480 MHz could be
reached, corresponding to twelve times the bunch crossing frequency.
2.1.5 Bringing ML to detector front-end

While LHC detectors grow in complexity to meet the challenging conditions of higher-luminosity
environments, growing data rates prohibit transmission of full event images off-detector for analysis by
conventional FPGA-based trigger systems. As a consequence, event data must be compressed on-detector
in low-power, radiation-hard ASICs while sacrificing minimal physics information.

Traditionally this has been accomplished by simple algorithms, such as grouping nearby sensors together
so that only these summed “super-cells” are transmitted, sacrificing the fine segmentation of the detector.
Recently, an autoencoder-based approach has been proposed, relying instead on a set of machine-learned
radiation patterns to more efficiently encode the complete calorimeter image via a CNN. Targeting the
CMS high-granularity endcap calorimeter (HGCal) [12] at the HL-LHC, the algorithm aims to achieve
higher-fidelity electromagnetic and hadronic showers, critical for accurate particle identification.

The on-detector environment (the ECON-T concentrator ASIC [12]) demands a highly-efficient CNN
implementation; a compact design should be thoroughly optimized for limited-precision calculations via
quantization-aware training tools [56]. Further, to automate the design, optimization, and validation of the
complex NN circuit, HLS-based tool flows [37] may be adapted to target the ASIC form factor. Finally,
as the front-end ASIC cannot be completely reprogrammed in the manner of an FPGA, a mature NN
design is required from the time of initial fabrication. However, adaptability to changing run conditions and
experimental priorities over the lifetime of the experiment motivate the implementation of all NN weights
as configurable registers accessible via the chip’s slow-control interface.
2.2 High intensity accelerator experiments
2.2.1 ML-based Trigger System at the Belle II Experiment
Context:

The Belle II experiment in Japan is engaged in the search for physics phenomena that cannot be explained
by the Standard Model. Electrons and positrons are accelerated at the SuperKEKB particle accelerator
to collide at the interaction point located inside of the Belle II detector. The resulting decay products are
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continually measured by the detector’s heterogeneous sensor composition. The resulting data is then stored
offline for detailed analysis.

Challenges:
Due to the increasing luminosity (target luminosity is 8 × 1035cm−2s−1) most of the recorded data is

from unwanted but unavoidable background reactions, rather than electron-positron annihilation at the
interaction point. Not only is storing all the data inefficient due to the high background rates, but it is also
not feasible to build an infrastructure that stores all the generated data. A multilevel trigger system is used
as a solution to decide online which recorded events are to be stored.

Existing and Planned Work:
The Neural Network z-Vertex Trigger (NNT) described used at Belle II is a deadtime-free level 1 (L1)

trigger that identifies particles by estimating their origin along the beampipe. For the whole L1 trigger
process, from data readout to the decision, a real-time 5µs time budget is given to avoid dead-time [57].
Due to the time cost of data pre-processing and transmission, the NNT needs to provide a decision within
300 ns processing time.

The task of the NNT is to estimate the origin of a particle track so that it can be decided whether it
originates from the interaction point or not. For this purpose, a multilayer perceptron (MLP) implemented
on a Xilinx Virtex 6 XC6VHX380T FPGA is used. The MLP consists of three layers with 27 input neurons,
81 hidden layer neurons and two output neurons. Data from the Belle II’s central drift chamber (CDC) is
used for this task, since it is dedicated to the detection of particle tracks. Before being processed by the
network, the raw detector data is first combined into a 2D track based on so-called track segments, which
are groupings of adjacent active sense wires. The output of the NNT delivers the origin of the track in z,
along the beampipe, as well as the polar angle θ. With the help of the z-vertex, the downstream global
decision logic (GDL) can decide whether a track is from the interaction point or not. In addition, the
particle momentum can be detected using the polar angle θ [58].

The networks used in the NNT are trained offline. The first networks were trained with plain simulated
data because no experimental data were available. For more recent networks, reconstructed tracks from the
experimental data are used. For the training the iRPROP algorithm is used which is an extension of the
RPROP backpropagation algorithm. Current results show a good correlation between the NNT tracks and
reconstructed tracks. Since the event rate and the background noise are currently still tolerable, the z-cut,
i.e., the allowed estimated origin of a track origin in order to be kept, is chosen at ±40 cm. With increasing
luminosity and the associated increasing background, this z-cut can be tightened. Since the new Virtex
Ultrascale based universal trigger board (UT4) is available for the NNT this year, an extension of the data
preprocessing is planned. This will be done by a 3D Hough transformation for further efficiency increases.
It has already been shown in simulation that a more accurate resolution and larger solid angle coverage can
be achieved [59].

2.2.2 Mu2e
Context:

The Mu2e experiment at Fermilab will search for the charged lepton flavor violating process of neutrino-
less µ→ e coherent conversion in the field of an aluminum nucleus. About 7 · 1017 muons, provided by a
dedicated muon beamline in construction at Fermilab, will be stopped in 3 years in the aluminum target.
The corresponding single event sensitivity will be 2.5 · 10−17. To detect the signal e− (p = 105 MeV),
Mu2e uses a detector system made of a straw-tube tracker and a crystal electromagnetic calorimeter [60].
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Challenges:
The trigger system is based on detector Read Out Controllers (ROCs) which stream out continuously the

data, zero-suppressed, to the Data Transfer Controller units (DTCs). The proton pulses are delivered at a
rate of about 600 kHz and a duty cycle of about 30% (0.4 s out of 1.4 s of the booster-ring delivery period).
Each proton pulse is considered a single event, with the data from each event then grouped at a single
server using a 10 Gbps Ethernet switch. Then, the online reconstruction of the events starts and makes a
trigger decision. The trigger system needs to satisfy the following requirements: (1) provide efficiency
better than 90% for the signals; (2) keep the trigger rate below a few kHz – equivalent to 7 Pb/year; (3)
achieve a processing time < 5 ms/event. Our main physics triggers use the information of the reconstructed
tracks to make the final decision.

Existing and Planned Work:
The current strategy is to perform the helix pattern recognition and the track reconstruction with the

CPUs of the DAQ servers, but so far this design showed limitations in matching the required timing
performance [61]. Another idea that the collaboration started exploring is to perform the early stage of
the track reconstruction on the ROC and DTC FPGA using the High Level Synthesis tool (HLS) and the
hls4ml package. The Mu2e helix pattern-recognition algorithms [61] are a natural fit for these tools for
several reasons: they use neural-networks to clean up the recorded straw-hits from hits by low-momentum
electrons (p < 10 MeV) and they perform large combinatorics calculations when reconstructing the
helicoidal electron trajectory. This R&D is particularly important for the design of the trigger system of the
planned upgrade of Mu2e [62], where we expect to: (i) increase the beam intensity by at least a factor of
10, (ii) increase the duty cycle to at least 90%, and (iii) increase the number of detector’s channels to cope
with the increased occupancy.

2.3 Materials Discovery
2.3.1 Materials Synthesis
Context:

Advances in electronics, transportation, healthcare, and buildings require the synthesis of materials
with controlled synthesis-structure-property relationships. To achieve application-specific performance
metrics, it is common to design and engineer materials with highly ordered structures. This directive has
led to a boom in non-equilibrium materials synthesis techniques. Most exciting are additive synthesis
and manufacturing techniques, for example, 3d-printing[63–67] and thin film deposition[68–74], where
complex nanoscale architectures of materials can be fabricated. To glean insight into synthesis dynamics,
there has been a trend to include in situ diagnostics to observe synthesis dynamics[75–78]. There is less
emphasis on automating the downstream analysis to turn data into actionable information that can detect
anomalies in synthesis, guide experimentation, or enable closed-loop control. Part of the challenge with
automating analysis pipelines for in situ diagnostics is the highly variable nature and multimodality of the
measurements and the sensors. A system might measure many time-resolved state variables (time-series)
at various locations (e.g., temperature, pressure, energy, flow rate, etc.)[79]. Additionally, it is common
to measure time-resolved spectroscopic signals (spectrograms) that provide, for instance, information
about the dynamics of the chemistry and energetic distributions of the materials being synthesized[80–83].
Furthermore, there are a growing number of techniques that leverage high-speed temporally-resolved
imaging to observe synthesis dynamics[84, 85].
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Challenges:
Experimental synthesis tools and in situ diagnostic instrumentation are generally semi-custom instruments

provided by commercial vendors. Many of these vendors rely on proprietary software to differentiate
their products from their competition. In turn, the closed-nature of these tools and even data schemas
makes it hard to utilize these tools fully. The varied nature and suppliers for sensors compounds this
challenge. Integration and synchronization of multiple sensing modalities require a custom software
solution. However, there is a catch-22 because the software does not yet exist. Researchers cannot be
ensured that the development of analysis pipelines will contribute to their ultimate goal to discover new
materials or synthesize materials with increased fecundity. Furthermore, there are significant workforce
challenges as most curriculums emphasize Edisonian rather than computational methods in the design of
synthesis. There is an urgent need for multilingual trainees fluent in typically disparate fields.

Existing and Planned Work:
Recently, the materials science community has started to embrace machine learning to accelerate scientific

discovery[86–88]. However, there have been growing pains. The ability to create highly overparameterized
models to solve problems with limited data provides a false sense of efficacy without the generalization
required for science. Machine learning model architectures designed for natural time-series and images
are ill-posed for physical processes governed by equations. In this regard, there is a growing body of
work to embed physics in machine learning models, which serve as the ultimate regularizers. For instance,
rotational [89, 90] and Euclidean equivariance [91, 92] has been built into the model architectures, and
methods to learn sparse representations of underlying governing equations have been developed[93–95].

Another challenge is that real systems have system-specific discrepancies that need to be compensated[96].
For example, a precursor from a different batch might have a slightly different viscosity that needs to
be considered. There is an urgent need to develop these foundational methods for materials synthesis.
Complementing these foundational studies, there has been a growing body of literature emphasizing
post-mortem machine-learning-based analysis of in situ spectroscopies[97, 98]. As these concepts become
more mature, there will be an increasing emphasis on codesign of synthesis systems, machine learning
methods, and hardware for on-the-fly analysis and control. This effort towards self-driving laboratories is
already underway in wet-chemical synthesis where there are minimal dynamics, and thus, latencies are not
a factor[99, 100]. Future efforts will undoubtedly focus on controlling dynamic synthesis processes where
millisecond-to-nanosecond latencies are required.

2.3.2 Scanning Probe Microscopy
Context:

Touch is the first sense humans develop. Since the atomic force microscope’s (AFM) invention in
1985[101], humans have been able to “feel” surfaces with atomic level resolution with pN sensitivity. AFMs
rely on bringing an atomically sharp tip mounted on a cantilever into contact with a surface. By scanning
this tip nanometer-to-atomically resolved images can be constructed by measuring the angular deflection
of a laser bounced off the cantilever. This detection mechanism provides high-precision sub-angstrom
measures of displacement.

By adding functionality to the probe (e.g., electrical conductivity[102], resistive heaters[103], single-
molecule probes[104], and N-V centers[105]), scanning probe microscopy (SPM) can measure nanoscale
functional properties, including electrical conductivity[106, 107], piezoresponse[108], electrochemical
response[109], magnetic force[110], magnetometry[111], and much more. These techniques have been

Frontiers 17



McCarn Deiana, Tran, et al. Fast Machine Learning in Science

expanded to include dynamics measurements during a tip-induced perturbation that drives a structural
transformation. These methods have led to a boom in new AFM techniques, including fast-force
microscopy[112], current-voltage spectroscopies[113], band-excitation-based spectroscopies[114], and
full-acquisition mode spectroscopies[115]. What has emerged is a data deluge where these techniques are
either underutilized or under-analyzed.

Challenges:
The key practical challenge is that it takes on days-to-weeks to analyze data from a single measurement

properly. As a result, experimentalists have little information on how to design their experiments. There is
even minimal feedback on whether the experiments have artifacts (e.g., tip damage) that would render the
results unusable. The number of costly failed experiments is a strong deterrent to conducting advanced
scanning probe spectroscopies and developing even more sophisticated imaging techniques. There is a
significant challenge in both the acceleration and automation of analysis pipelines.

Existing and Planned Work:
In materials science, scanning probe microscopy has quickly adopted machine learning. Techniques for

linear and nonlinear spectral unmixing provide rapid visualization and extraction of information from these
datasets to discover and unravel physical mechanisms [116–119]. The ease of applying these techniques
has led to justified concerns about the overinterpretation of results and overextension of linear models [120]
to highly nonlinear systems. More recently, long-short term memory autoencoders were controlled to
have non-negative and sparse latent spaces for spectral unmixing. By traversing the learned latent space,
it has been possible to draw complex structure-property relationships [121, 113]. There are significant
opportunities to accelerate the computational pipeline such that information can be extracted on practically
relevant time scales by the experimentalist on the microscope.

Due to the high velocity of data, up to GB/s, with sample rates of 100,000 spectra, extracting even cursory
information will require the confluence of data-driven models, physics-informed machine learning, and
AI hardware. As a tangible example, in band-excitation piezoresponse force microscopy, the frequency-
dependent cantilever response is measured at rates up to 2,000 spectra-per-second. Extracting the parameters
from these measurements requires fitting the response to an empirical model. Using least-squares fitting
throughput is limited to ∼ 50-fits/core-minute, but neural networks provide an opportunity to accelerate
analysis and better handle noisy data [122]. There is an opportunity to deploy neural networks on GPU or
FPGA hardware accelerators to approximate and accelerate this pipeline by orders of magnitude.

2.4 Fermilab Accelerator Controls
Context:

The Fermi National Accelerator Laboratory (Fermilab) is dedicated to investigating matter, energy, space,
and time [123]. For over 50 years, Fermilab’s primary tool for probing the most elementary nature of matter
has been its vast accelerator complex. Spanning a number of miles of tunnels, the accelerator complex is
actually multiple accelerators and beam transport lines each representing different accelerator techniques
and eras of accelerator technologies. In its long history, Fermilab’s accelerator complex has had to adapt
to the mission, asking more of the accelerators than they were designed for and often for purposes they
were never intended. This often resulted in layering new controls on top of existing antiquated hardware.
Until recently, accelerator controls focused mainly on providing tools and data to the machine operators
and experts for tuning and optimization. Having recognized the future inadequacies of the current control
system and the promise of new technologies such as ML, the Fermilab accelerator control system will be
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largely overhauled in the coming years as part of the Accelerator Controls Operations Research Network
(ACORN) project [124].

Challenges:
The accelerator complex brings unique challenges for machine learning. Particle accelerators are

immensely complicated machines, each consisting of many thousands of variable components and even
larger data sources. Their large size and differing types, resolution, and frequency of data mean collecting
and synchronizing data is difficult. Also, as one might imagine, control and regulation of beams that travel
at near light speeds is always a challenge. Maintaining and upgrading the accelerator complex controls is
costly. For this reason, much of the accelerator complex is a mixture of obsolete, new and cutting edge
hardware.

Existing and Planned Work:
Traditional accelerator controls have focused on grouping like elements so that particular aspects of the

beam can be tuned independently. However, many elements are not always completely separable. Magnets,
for example, often have higher-order fields that affect the beam in different ways than is the primary intent.
Machine learning has made it finally possible to combine previously believed to be unrelated readings and
beam control elements into new novel control and regulation schemes.

One such novel regulation project is underway for the Booster Gradient Magnet Power Supply (GMPS).
GMPS controls the primary trajectory of the beam in the Booster [125]. The project hopes to increase
the regulation precision of GMPS ten-fold. When complete, GMPS would be the first FPGA online
ML-model-based regulation system in the Fermilab accelerator complex [126]. The promise of ML for
accelerator controls is so apparent to the Department of Energy that a call for accelerator controls using
ML was made to the national labs [127]. Of the two proposals submitted by Fermilab and approved by the
DOE is the Real-time Edge AI for Distributed Systems (READS) project. READS is actually two projects.
The first READS project will create a complimentary ML regulation system for slow extraction from the
Delivery Ring to the future Mu2e experiment [128]. The second READS project will tackle a long-standing
problem with de-blending beam losses in the Main Injector (MI) enclosure. The MI enclosure houses
two accelerators, the MI and the Recycler. During normal operation, high intensity beams exist in both
machines. One to use ML to help regulate slow spill in the Delivery ring to Mu2e, and another to develop a
real-time online model to de-blend losses coming from the Recycler and Main Injector accelerators which
share an enclosure. Both READS projects will make use of FPGA online ML models for inference and
will collect data at low latencies from distributed systems around the accelerator complex [129].

2.5 Neutrino and direct dark matter experiments
2.5.1 Accelerator Neutrino Experiments
Context:

Accelerator neutrino experiments detect neutrinos with energies ranging from a few tens of MeV up
to about 20 GeV. The detectors can be anywhere from tens of meters away from the neutrino production
source, to as far as away as 1500 km. For experiments with longer baselines it is common for experiments
to consist of both a near (∼1 km baseline) and a more distant far detector (100’s km baseline). Accelerator
neutrino experiments focused on long-baseline oscillations use highly pure muon neutrino beams, produced
by pion decays in flight. By using a system of magnetic horns it is possible to produce either a neutrino, or
antineutrino beam. This ability is particularly useful for CP-violation measurements. Other experiments
use pions decaying at rest, which produce both muon and electron flavors.
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The primary research goal of many accelerator neutrino experiments is to perform neutrino oscillation
measurements; the process by which neutrinos created in one flavor state are observed interacting as
different flavor states after traveling a given distance. Often this takes the form of measuring electron
neutrino appearance and muon neutrino disappearance. The rate of oscillation is energy-dependent, and so
highly accurate energy estimation is essential. Another key research goal for accelerator neutrinos is to
measure neutrino cross-sections, which in addition to accurate energy estimation requires the identification
of the particles produced by the neutrino interaction.

Challenges:
Accelerator neutrino experiments employ a variety of detector technologies. These range from scintillator

detectors such as NOvA (liquid), MINOS (solid), and MINERvA (solid), to water Cherenkov detectors
such as T2K, and finally liquid argon time projection chambers such as MicroBooNE, ICARUS, and
DUNE. Pion decay-at-rest experiments (COHERENT, JSNS2) use yet different technologies (liquid and
solid scintillators, as well as solid-state detectors). The individual challenges and solutions are unique to
each experiment, though common themes do emerge.

Neutrino interactions are fairly uncommon due to their low cross-section. Some experiments can see as
few as one neutrino interaction per day. This, combined with many detectors being close to the surface,
means that analyses have to be highly efficient whilst achieving excellent background rejection. This is
true both in online data taking and offline data analysis.

As experiments typically have very good temporal and/or spatial resolution it is often fairly trivial to
isolate entire neutrino interactions. This means that it is then possible to use image recognition tools
such as CNNs to perform classification tasks. As a result, many experiments initially utilized variants of
GoogLeNet, though many are now transitioning to use GNNs and networks better able to identify sparse
images.

Existing and Planned Work:
As discussed in Section 2.5.2, DUNE will use machine learning in its triggering framework to handle

its immense data rates and to identify candidate interactions, for both traditional neutrino oscillation
measurements and for candidate solar and supernova events. Accelerator neutrino experiments have
successfully implemented machine learning techniques for a number of years, the first such example being
in 2017 [130], where the network increased the effective exposure of the analysis by 30%. Networks aimed
at performing event classification are common across many experiments, with DUNE having recently
published a network capable of exceeding its design sensitivity on simulated data and which includes
outputs that count the numbers of final state particles from the interaction [131].

Experiments are becoming increasingly cognizant of the dangers of networks learning features of the
training data beyond what is intended. For this reason, it is essential to carefully construct training datasets
such that this risk is reduced. However, it is not possible to correct or quantify bias which is not yet known;
therefore the MINERvA experiment has explored the use of a domain adversarial neural network [132]
to reduce unknown biases from differences in simulated and real data. The network features a gradient
reversal layer in the domain network (trained on data), thus discouraging the classification network (trained
on simulation) to learn from any features that behave differently between the two domains. A more robust
exploration of the machine learning applied to accelerator neutrino experiments can be found here in
Ref. [133].
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2.5.2 Neutrino Astrophysics
Context:

Neutrino astrophysics spans a wide range of energies, with neutrinos emitted from both steady-state and
transient sources with energies from less than MeV to EeV scale. Observations of astrophysical neutrinos
are valuable both for the understanding of neutrino sources and for probing fundamental physics. Neutrino
detectors designed for observing these tend to be huge scale (kilotons to megatons). Existing detectors
involve a diverse range of materials and technologies for particle detection; they include Cherenkov
radiation detectors in water and ice, liquid scintillator detectors and, liquid argon time projection chambers.

Astrophysical neutrinos are one kind of messenger contributing to the thriving field of multimessenger
astronomy, in which signals from neutrinos, charged particles, gravitational waves, and photons spanning
the electromagnetic spectrum are observed in coincidence. This field has had some recent spectacular
successes [134–136]. For multimessenger transient astronomy, time is of the essence for sharing data and
locating sources. Directional information from the neutrinos is critically valuable, to allow prompt location
of the source by other messengers.

Potential interesting transient astrophysical sources include sources of ultra-high energy neutrinos, as
well as nearby stellar core collapses. Neutrinos in the multi-GeV and higher range are emitted from distant
cosmic sources, including kilonovae and blazars, and cubic-km-scale water-based Cherenkov detectors
such as IceCube at the South Pole can produce fast alerts from single neutrino observations.

Core-collapse supernovae are another promising use case for fast machine learning. These are copious
sources of few tens of MeV-scale neutrinos, which are emitted in a burst lasting a few tens of
seconds [137, 138]. The neutrinos are prompt after core collapse (as will be gravitational waves) but
observable electromagnetic radiation will not emerge for anywhere from tens to 106 s, depending on the
nature of the progenitor and its envelope [139]. Low-latency information is therefore immensely valuable.
Core-collapse supernovae are rare events within the distance range observable by current and near-future
neutrino detectors. They occur only every several decades, which makes prompt and robust detection
especially important. The SuperNova Early Warning System [140, 141] aims to provide a prompt alert
from a coincidence of burst detections. However, pointing information from neutrinos is relatively difficult
to extract promptly. Detectors with the capability for prompt pointing thanks to the anisotropy of neutrino
interactions (i.e. the interaction products that remember where the neutrino came from) offer the best
prospects, but these need to be able to select neutrino events from background and reconstruct their
directions with very low latency.

Presupernova neutrinos are another interesting possibility. In the final stages of stellar burning, one
expects a characteristic uptick in neutrino luminosity and average energy, producing observable events in
detectors for nearby progenitors. This could give a warning of hours or perhaps days before core collapse
for the nearest progenitors. For this case, fast selection of neutrino-like events and reconstruction of their
directional information for background reduction is needed.
Challenges:

The challenges, in general, are fast selection and reconstruction of neutrino event (interaction) information.
The specifics of the problem depend on the particular detector technology, but in general, the charged
particle products of a neutrino interaction will have a distinctive topology or other signature and must be
selected from a background of cosmic rays, radiologicals, or detector noise. Taking as an example a liquid
argon time projection chamber like the Deep Underground Neutrino Experiment (DUNE), neutrino-induced
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charged particles produce charge and light signals in liquid argon. Supernova neutrino interactions appear
as small (tens of cm spatial scale) stubs and blips [142, 143]. The recorded neutrino event information
from the burst can be used to reconstruct the supernova direction to ∼5–10◦ for core collapse at 10 kpc
distance [144, 143]. The neutrino events need to be selected from a background of radioactivity and
cosmogenics, as well as detector noise, requiring background reduction of many orders of magnitude.
Total data rate amounts to ∼40 Tb/s. The detector must take data for a decade or more at this rate, with
near-continuous uptime.

For steady-state signals such as solar neutrinos, triggering on individual events in the presence of large
backgrounds is a challenge that can be addressed with machine learning. For burst signals, the triggering
is a different problem: the general strategy is to read out all information on every channel within a tens-
of-seconds time window, for the case of a triggered burst. This leads to the subsequent problem of sifting
the signal events and reconstructing sufficient information on a very short timescale to point back to the
supernova. The required timescale is minutes, or preferably seconds. Both the event-by-event triggering
and fast directional reconstruction can be addressed with fast machine learning.

Existing and Planned Work:
There are a number of existing efforts towards the use of machine learning for particle reconstruction

in neutrino detectors including water Cherenkov, scintillator, and liquid argon detectors. These overlap
to some extent with the efforts described in Sec. 2.5.1. Efforts directed specifically towards real-time
event selection and reconstruction are ramping up. Some examples of ongoing efforts can be found in
Refs. [131, 145–149, 133].

2.5.3 Direct Detection Dark Matter Experiments
Context:

Direct dark matter (DM) search experiments take advantage of the vastly abundant DM in the universe
and are searching for direct interactions of DM particles with the detector target material. The various
target materials can be separated into two main categories, crystals and liquid noble gases, though other
material types are subject to ongoing detector R&D efforts [150, 151].

One of the most prominent particle DM candidates is the WIMP (weakly interacting massive particle),
a thermal, cold DM candidate with an expected mass and coupling to Standard Model particles at the
weak scale [152]. However, decades of intensive searches both at direct DM and at collider experiments
have not yet been able to discover2 the vanilla WIMP while excluding most of the parameter space of the
simplest WIMP hypothesis [151]. This instance has lead to a shift in paradigm for thermal DM towards
increasingly lower masses well below 1 GeV (and thus the weak scale) [154] and as low as a few keV, i.e.
the warm DM limit [155]. Thermal sub-GeV DM is also referred to as light dark matter (LDM). Other DM
candidates that are being considered include non-thermal, bosonic candidates like dark photons, axions and
axion-light particles (ALPs) [156–158].

The most common interactions direct DM experiments are trying to observe are thermal DM scattering
off either a nucleus or an electron and the absorption of dark bosons under the emission of an electron. The
corresponding signatures are either nuclear recoil or electron recoil signatures.

2 The DAMA/NaI and subsequent DAMA/LIBRA experiment, claim the direct observation of DM particles in the galactic halo [153], but the results are in
tension with negative results from similar experiments [151].
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Challenges:
In all mentioned interactions, and independent of the target material, a lower DM mass means a smaller

energy deposition in the detector and thus a signal amplitude closer to the baseline noise. Typically, the
baseline noise has non-Gaussian contributions that can fire a simple amplitude-over-threshold trigger even
if the duration of the amplitude above threshold is taken into account. The closer the trigger threshold is to
the baseline, the higher the rate of these spurious events. In experiments which cannot read out raw data
continuously and which have constraints on the data throughput, the hardware-level trigger threshold has
thus to be high enough to significantly suppress accidental noise triggers.

In the hunt for increasingly lower DM masses, however, an as-low-as-possible trigger threshold is highly
desirable, calling for a more sophisticated and extremely efficient event classification at the hardware trigger
level. Particle-induced events have a known, and generally constant, pulse-shape while non-physical noise
“events” (e.g. induced by the electronics) generally have a varying pulse-shape which is not necessarily
predictable. A promising approach in such a scenario is the use of machine learning techniques for most
efficient noise event rejection in real-time allowing to lower the hardware-level trigger threshold, and
thus the low mass reach in most to all direct DM searches, while remaining within the raw data read-out
limitations imposed by the experimental set-up.
Existing and Planned Work:

Machine learning is already applied by various direct DM search experiments [159–161], especially in
the context of offline data analyses. However, it is not yet used to its full potential within the direct DM
search community. Activities in this regard are still ramping up but with increasing interest, efforts, and
commitment. Typical offline applications to date are the reconstruction of the energy or position of an event
and the classification of events (e.g. signal against noise or single-scattering against multiple-scattering). In
parallel R&D has started on real-time event classification within the FPGA-level trigger architecture of the
SuperCDMS experiment [162] with the long-term goal of lowering the trigger threshold notably closer to
the baseline noise without triggering on spurious events. While these efforts are being conducted within the
context of SuperCDMS the goal is a modular trigger solution for easier adaption to other experiments.
2.6 Electron-Ion Collider
Context:

The Electron-Ion Collider (EIC) will support the exploration of nuclear physics over a wide range of
center-of-mass energies and ion species, using highly-polarized electrons to probe highly-polarized light
ions and unpolarized heavy ions. The frontier accelerator facility will be designed and constructed in the
U.S. over the next ten years. The requirements of the EIC are detailed in a white paper [163], the 2015
Nuclear Physics Long Range Plan [164], and an assessment of the science by the National Academies of
Science [165]. The EIC’s high luminosity and highly polarized beams will push the frontiers of particle
accelerator science and technology and will enable us to embark on a precision study of the nucleon and the
nucleus at the scale of sea quarks and gluons, over all of the kinematic range that is relevant as described in
the EIC Yellow Report [166].
Challenges:

While the event reconstruction at the EIC is likely easier than the same task at present LHC or RHIC
hadron machines, and much easier than for the High-Luminosity LHC, which will start operating two years
earlier than the EIC, possible contributions from machine backgrounds form a challenge. The expected
gain in CPU performance in the next ten years as well as the possible improvement in the reconstruction
software from the use of AI and ML techniques give a considerable margin to cope with higher event
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complexity that may come by higher background rates. Software design and development will constitute
an important ingredient for the future success of the experimental program at the EIC. Moreover, the cost
of the IT related components, from software development to storage systems and to distributed complex
e-Infrastructures can be raised considerably if a proper understanding and planning is not taken into account
from the beginning in the design of the EIC. The planning must include AI and ML techniques, in particular
for the compute-detector integration at the EIC, and training in these techniques.
Existing and Planned Work:

Accessing the EIC physics of interest requires an unprecedented integration of the interaction region
(IR) and detector designs. The triggerless DAQ scheme that is foreseen for the EIC will extend the highly
integrated IR-detector designs to analysis. A seamless data processing from DAQ to analysis at the EIC
would allow to streamline workflows, e.g., in a combined software effort for the DAQ, online, and offline
analysis, as well as to utilize emerging software technologies, in particular fast ML algorithms, at all levels
of data processing. This will provide an opportunity to further optimize the physics reach of the EIC. The
status and prospects for “AI for Nuclear Physics” have been discussed in a workshop in 2020 [167]. Topics
related to fast ML are intelligent decisions about data storage and (near) real-time analysis. Intelligent
decisions about data storage are required to ensure the relevant physics is captured. Fast ML algorithms can
improve the data taken through data compactification, sophisticated triggers, and fast online analysis. At
the EIC, this could include automated alignment and calibration of the detectors as well as automated data-
quality monitoring. A (near) real-time analysis and feedback enables quick diagnostics and optimization of
experimental setups as well as significantly faster access to physics results.
2.7 Gravitational Waves
Context:

As predicted by Einstein in 1916, gravitational waves are fluctuations in the gravitational field which
within the theory of general relativity manifest as a change in the spacetime metric. These ripples in
the fabric of spacetime travel at the speed of light and are generated by changes in the mass quadruple
moment, as, for example, in the case of two merging black holes [168]. To detect gravitational waves,
the LIGO/Virgo/KAGRA collaborations employ a network of kilometer-scale laser interferometers [169–
172]. An interferometer consists of two perpendicular arms; as the gravitational wave passes through
the instrument, it stretches one arm while compressing the other in an alternating pattern dictated by the
gravitational wave itself. Such length difference is then measured from the laser interference pattern.

Gravitational waves are providing a unique way to study fundamental physics, including testing the theory
of general relativity at the strong field regime, the speed of propagation and polarization of gravitational
waves, the state of matter at nuclear densities, formation of black holes, effects of quantum gravity and more.
They have also opened up a completely new window for observing the Universe and in a complementary
way to one enabled by electromagnetic and neutrino astronomy. This includes the study of populations,
including their formation and evolution, of compact objects such as binary black holes and neutron stars,
establish the origin of gamma-ray bursts (GRBs), measure the expansion of the Universe independently of
electromagnetic observations, and more [173].
Challenges:

In the next observing run in 2022, LIGO, Virgo, and KAGRA will detect an increasing number of
gravitational-wave candidates. This poses a computational challenge to the current detection framework,
which relies on matched-filtering techniques that match parameterized waveforms (templates) from
simulations into the gravitational-wave time series data [168, 174, 175]. Matched filtering scales poorly as
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the low-frequency sensitivity of the instrument improves and the search parameter space of the gravitational
wave expands to cover spin effects and low mass compact objects. To estimate the physical properties of the
gravitational wave, stochastic Bayesian posterior samplers, such as Markov-chain Monte Carlo and Nested
Sampling, have been used until now. Such analysis approaches can take up hours to days to complete [176].
The latency introduced by the current search and parameter estimation pipeline is non-negligible and can
hinder electromagnetic follow-ups of time-sensitive sources like binary neutron stars, supernovae, and
other, yet unknown, systems.

Observations of gravitational-wave transients are also susceptible to environmental and instrumental
noise. Transient noise artifacts can be misidentified as a potential source, especially when the gravitational-
wave transients have an unknown morphology (e.g. supernovae, neutron star glitches). Line noise in the
noise spectrum of the instruments can affect the search for continuous gravitational waves (e.g. spinning
neutron stars) and stochastic gravitational waves (e.g astrophysical background of gravitational waves
from unresolved compact binary systems). These noise sources are difficult to simulate, and current noise
subtraction techniques are insufficient to remove the more complex noise sources, such as non-linear and
non-stationary ones.
Existing and Planned Work:

In recent years, machine learning algorithms have been explored in different areas of gravitational-wave
physics [177]. CNNs have been applied to detect and categorize compact binary coalescence gravitational
waves [178–182], burst gravitational waves from core-collapse supernovae [183–185], and continuous
gravitational waves [186, 187]. Besides, recurrent neural networks (RNNs) based autoencoders have been
explored to detect gravitational wave using an unsupervised strategy [188]. FPGA-based RNNs are also
explored to show the potential in low-latency detection of gravitational wave [189]. Applications of ML
in searches of other types of gravitational waves, such as generic burst and stochastic background, are
currently being explored. Moreover, probabilistic and generative ML models can be used for posterior
sampling in gravitational-wave parameter estimation and achieve comparable performance to Bayesian
sampler on mock data while taking significantly less time to complete [190–192]. ML algorithms are also
being used to improve the gravitational-wave data quality and subtract noise. Transient noise artifacts can
be identified and categorized from their time-frequency transforms and constant-Q transforms [193, 194]
or through examining hundreds of thousands of LIGO’s auxiliary channels [195]. These auxiliary channels
can also be used to subtract quasi-periodic noise sources (e.g. spectral lines) [196, 197]. Although ML
algorithms have shown a lot of promise in gravitational-wave data analysis, many of these algorithms are
still at the proof-of-concept stage and have not yet been successfully applied in real-time analysis. Current
efforts seek to create a computational infrastructure for low-latency analysis, improve the quality of the
training data (e.g. expanding the parameter space, using a more realistic noise model), and better quantify
the performance of these algorithms on longer stretches of data.
2.8 Biomedical engineering
Context:

We have seen an explosion of biomedical data, such as biomedical images, genomic sequences, and
protein structures, due to the advances in high-resolution and high-throughput biomedical devices. AI-
augmented reality-based microscopy [198] enables automatic analysis of cellular images and real-time
characterization of cells. Machine learning is used in-silico prediction of fluorescent labels, label-free rare
cell classification, morphology characterization, and RNA sequencing [199–203]. For in-situ cell sorting,
real-time therapy response prediction, and augmented reality microscope-assisted diagnosis [198, 204, 205],
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it is important to standardize and optimize data structure in deep learning models to increase speed and
efficiency. Various machine-learning-based algorithms for detecting hemorrhage and lesions, accelerating
diagnosis, and enhancing medical video and image quality have also been proposed in biopsy analysis and
surgery assistance.

Challenges:
A major challenge for clinical application of ML is inadequate training and testing data. The medical data

annotation process is both time-consuming and expensive for large image and video datasets which require
expert knowledge. The latency of trained models’ inference also introduces computational difficulties in
performing real-time diagnosis and surgical operation. The quality of services for time-critical healthcare
requires less than 300 milliseconds as real-time video communication [206]. For reaching 60 frames per
second (FPS) high-quality medical video, the efficiency and performance of a deep learning model become
crucial.

Existing and Planned Work:
Many changes in ML algorithms have involved improvements to performance both in accuracy and

inference speed. Some state-of-art machine learning models can reach a high speed for inference. For
example, YOLOv3-tiny [207], an object detection model commonly used for medical imaging, can process
images at over 200 FPS on a standard dataset with producing reasonable accuracy. Currently both GPU- and
FPGA-based [208–210], distributed networks of wireless sensors connected to cloud ML (edge computing),
and 5G-high-speed-WiFi-based ML models are deployed in medical AI applications [211–213]. ML models
for fast diagnosis of stroke, thrombosis, colon polyps, cancer, and epilepsy have significantly reduced
the time in lesion detection and clinical decision [214–218]. Real-time AI-assisted surgery can improve
perioperative workflow, perform video segmentation [219], detection of surgical instruments [220], and
visualization of tissue deformation [221]. High-speed ML is playing a critical role in digital health, i.e.,
remote diagnosis, surgery, and monitoring [212].

2.9 Health Monitoring
Context:

Our habits and behaviors affect our health and wellness. Unhealthy behaviors such as smoking, consuming
excessive alcohol, or medication non-adherence often has an adverse effect on our health [222–225].
Traditional behavior monitoring approaches relied on self-reports, which were often biased and required
intense manual labor [226]. With the advent of mobile and wearable devices, it is gradually becoming
possible to monitor various human behaviors automatically and unobtrusively. Over the years, researchers
have either developed custom wearable hardware or have used off-the-shelf commercial devices for mobile
and wearable health (mHealth) monitoring [227–233]. The automatic and unobtrusive monitoring capability
of these devices makes it possible to detect, identify and monitor behaviors, including unhealthy behaviors
in a free-living setting.

Challenges:
There are various challenges associated with monitoring habits and behaviors using wearable devices.

Firstly, these devices should be capable of monitoring unhealthy behaviors accurately, and in real-time.
The occurrence of these unhealthy behaviors in a free-living setting is often sparse as compared to other
behaviors and thus it is important to spot them accurately, whenever they occur. Most existing systems
take an offline ML approach of detecting these unhealthy behaviors, where the ML algorithm identifies
these behaviors well after they have occurred. An offline approach prevents providing interventions that
can minimize unhealthy behaviors. Thus, it is necessary to develop ML approaches that can detect these
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behaviors online, and in real-time, so that interventions such as just-in-time adaptive interventions (JITAIs)
can be delivered. Secondly, since these devices capture sensitive information, it is necessary to ensure that
an individual’s privacy is preserved. Privacy-preserving approaches such as locally processing the data
on-device can be taken so that critical information does not leave the device. Finally, these behaviors can
occur in various heterogeneous environments and thus the health monitoring system should be agnostic to
where the behavior occurs. Such monitoring requires developing multiple machine learning models for
diverse environments.

Existing and Planned Work:
While existing work has ventured in various directions, there is a growing need for sensing health

biomarkers correctly and developing ML approaches that are fast and can accurately identify these
biomarkers. Researchers have focused on developing novel sensing systems that can sense various health
behaviors and biomarkers [234–240]. Historically, most of these novel sensing techniques were tested in
controlled settings, but more recently researchers are ensuring that these systems can work seamlessly in
free-living settings as well. This often requires developing multiple ML models, each catering to a specific
context and environment. A new trend in this field has started relying on implementing models that can
be implemented on-device and are both quick and accurate in detecting these behaviors. In addition to
providing real-time interventions [241, 242], on-device monitoring of these behaviors can reduce privacy
concerns [243]. However, since wearable devices themselves might not be capable of processing the data,
federated machine learning approaches are also being explored recently by several researchers [244].

2.10 Cosmology
Context:

Cosmology is the study of the Universe’s origin (big bang), evolution, and future (ultimate fate). The large-
scale dynamics of the universe are governed by gravity, where dark matter plays an important role, and the
accelerating expansion rate of the universe itself, caused by the so-called dark energy. A non-exhaustive list
of cosmological probes includes type Ia supernovae [245–249], cosmic microwave background [250–254],
large-scale structures (including baryon acoustic oscillation) [255–258], gravitational lensing [259–263]
and 21 cm cosmology [264–267].

Challenges:
As astronomy is approaching the big data era with next-generation facilities, such as the Nancy Grace

Roman Space telescope, Vera C. Rubin Observatory, and Euclid telescope, the uncertainty budget in the
estimation of cosmological parameters is no longer expected to be dominated by statistical uncertainties,
but rather by systematic ones; understanding such uncertainties can lead to attaining sub-percent precision.
On the other hand, the immense stream of astronomical images will be impossible to analyze in a
standard fashion (by human interaction); new automated methods are needed to extract valuable pieces of
cosmological data.

Existing and future work:
Current efforts are focused on applying ML techniques to study the influence of systematic biases on

available analysis methods (e.g., for purposes of fitting or modeling) or on developing new methods to
overcome present limitations; for example CNNs can be adapted to spherical surfaces to generate more
accurate models when producing weak lensing maps [268], or to remove noise from cosmic microwave
background maps [269]. In addition, discovery and classification engines are being developed to extract
useful cosmological data from next-generation facilities [270–273]. Furthermore, ML is also being used in
cosmological simulations to test new analyses and methods and to set the foundations for the first operation
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of such new facilities [274–276]. An extensive list of published ML applications in cosmology can be
found in https://github.com/georgestein/ml-in-cosmology.
2.11 Plasma Physics
Context:

The focus of this description is on the Plasma Physics/Fusion Energy Science domain with regard to
the major system constraints encountered for existing and expected algorithms and data representations
when dealing with the challenge of delivering accelerated progress in AI—enabled deep machine learning
prediction and control of magnetically-confined thermonuclear plasmas. Associated techniques have
enabled new avenues of data-driven discovery in the quest to deliver fusion energy—identified by the 2015
CNN “Moonshots for the 21st Century” televised series as one of 5 prominent grand challenges for the
world today.
Challenges:

An especially time-urgent and challenging problem is the need to reliably predict and avoid large-scale
major disruptions in “tokamak systems” such as the EUROFUSION Joint European Torus (JET) today
and the burning plasma ITER device in the near future—a ground-breaking $25B international burning
plasma experiment with the potential capability to exceed “breakeven” fusion power by a factor of 10 or
more with “first plasma” targeted for 2026 in France. The associated requirement is for real-time plasma
forecasting with control capabilities operative during the temporal evolution of the plasma state well before
the arrival of damaging disruptive events. High-level supervisory control of many lower-level control loops
via actuators (analogous to advanced robotics operations) will be essential for ITER and future burning
plasmas to protect the facility and to avoid operational limits (for magnets, walls, plasma position, stability,
etc.) while optimizing performance.
Existing and Planned Work:

In short, an overarching goal here involves developing realistic predictive plasma models of disruptions
integrated with a modern plasma control system to deliver the capability to design experiments before
they are performed. The associated novel AI-enabled integrated modeling tool would clearly be of great
value for the most efficient and safe planning of the expensive discharges in ITER and future burning
plasmas. Verification, validation, and uncertainty quantification of associated components would include:
(1) development of predictive neural net models of the plasma and actuators that can be extrapolated
to burning plasma scales via advanced Bayesian reinforcement learning methods that incorporate prior
information into efficient inference algorithms; (2) systematic well-diagnosed experimental validation
studies of components in the integrated plasma forecasting models involving massive amounts of data from
major tokamak experiments worldwide (e.g., DIII-D in the US, KSTAR & EAST in Asia, JET in Europe,
followed by JT60 SA—the large superconducting device in Japan that will precede ITER). This would
ideally lead to a mature AI-enabled comprehensive control system for ITER and future reactors that feature
integration with full pilot-plant system models.

At present, a key challenge is to deliver significantly improved methods of prediction with better than
95% predictive accuracy to provide advanced warning for disruption avoidance/mitigation strategies to be
effectively applied before critical damage can be done to ITER. Significant advances in the deployment of
deep learning recurrent and CNNs are well illustrated in Princeton’s Deep Learning Code—“FRNN”—
that have enabled the rapid analysis of large complex datasets on supercomputing systems. Associated
acceleration of progress in predicting tokamak disruptions with unprecedented accuracy and speed is
described in [277]. Included in this paper (and extensive references cited therein) are descriptions of FES
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data representation for physics features (density, temperature, current, radiation, fluctuations, etc.) and
the nature of key plasma experiments featuring detectors/diagnostics with frame (event-based) level of
accuracy accounting for required “zero-D” (scalar) and higher-dimension signals and real-time resolution
recorded at manageable data rates. Rough future estimates indicate that ITER will likely require dealing
with the challenge of processing and interpreting exabytes of complex spatial and temporal data.

Since simulation is another vital aspect of ITER data analysis, dealing with the associated major
computational expenses will demand the introduction of advanced compressional methods. More generally,
real-time predictions based on actual first-principles simulations are important for providing insights into
instability properties and particle-phase space dynamics. This motivates the development of an AI-based
“surrogate model”—for example, of the well-established HPC “gyrokinetic” particle-in-cell simulation
code GTC [278] that would be capable of accurately simulating plasma instabilities in real-time. Data
preparation and training a surrogate model – e.g., “SGTC”—provides a clear example of the modern task
of integration/connection between modern High Performance Computing (HPC) predictive simulations
with AI-enabled Deep Learning/Machine Learning campaigns. These considerations also serve to further
illustrate/motivate the need to integrate HPC & Big Data ML approaches to expedite the delivery of
scientific discovery.

As a final note, the cited paper [277] represents the first adaptable predictive DL software trained on
leadership class supercomputing systems to deliver accurate predictions for disruptions across different
tokamak devices (DIII-D in the US and JET in the UK). It features the unique statistical capability to carry
out efficient “transfer learning” via training on a large database from one experiment (i.e., DIII-D) and be
able to accurately predict disruption onset on an unseen device (i.e., JET). In more recent advances, the
FRNN inference engine has been deployed in a real-time plasma control system on the DIII-D tokamak
facility in San Diego, CA. As illustrated in slides 18 through 20 of the attached invited presentation slide
deck, this opens up exciting avenues for moving from passive disruption prediction to active real-time
control with subsequent optimization for reactor scenarios.

2.12 ML for Wireless Networking and Edge Computing
Context:

Wireless devices and services have become a crucial tool for collecting and relaying big data in many
scientific studies. Moreover, mobility information has proven to be extremely useful in understanding
human activities and their impact on the environment and public health. The exponential growth of data
traffic is placing significant pressure on the wireless infrastructure. In particular, inter-cell interference
causes large variability in reliability and latency. To meet user demands for data communication and
value-added AI/ML services, wireless providers must 1) develop more intelligent learning algorithms for
radio resource management that adapt to complicated and ever-changing traffic and interference conditions;
and 2) realize many ML/AI computations and functionalities in edge devices to achieve lower latency and
higher communication efficiency.

Challenges:
Conventional implementations of ML models, especially deep learning algorithms, lag far behind the

packet-level dynamics for utility. Moreover, existing ML/AI services are often performed in the cloud for
efficiency at the expense of communication overhead and higher latency. A major challenge in the wireless
networking and edge computing context is to build a computing platform that can execute complex ML
models at relevant timescales (< 10 ms) within small cell access points.
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Existing and planned work:
Researchers have proposed a variety of learning algorithms to perform specific radio resource management

tasks using artificial neural networks [279–282]. Some of the first proposals to train a NN to perform
transmit power control adopts supervised learning [283, 284]. More recent proposals adopt deep
reinforcement learning approaches that work better with channel and network uncertainties and require little
training data a priori [285–288]. A number of works are focused on the convergence of edge computing
and deep learning [289–291]. A specific set of work is on federated learning where participants jointly
train their models in lieu of sending all their data to a central controller for training purposes [292–295].
All of the preceding work basically ends at the simulation stage for the lack of practical ML/AI solutions
that are fast and computationally efficient at the same time. More specifically, the research challenge is
to develop a computing platform that can execute complex ML models at a very fast timescale (< 10 ms)
and can also be equipped in small cell access points. One project with a potentially very high impact is
to map intelligent radio resource management algorithms (such as that of [285]) onto an FPGA device
suitable for deployment in a large network of connected and interfering access points. Another interesting
project is to build a federated learning system to conduct time-sensitive ML for Internet-of-Things (IoT)
devices where transferring data to centralized computing facilities is latency-prohibitive. This opens up
entirely new possibilities for low-cost closed-loop IoT devices in healthcare, smart buildings, agriculture,
and transportation.

This is a provisional file, not the final typeset article 30



McCarn Deiana, Tran, et al. Fast Machine Learning in Science

3 KEY AREAS OF OVERLAP
Real-time, accelerated AI inference show promises in improving the discovery potential at current and
planned scientific instruments across the domains as detailed in Sec. 2. Design of high performant specialty
systems for real-time/accelerated AI applications requires particular attention to the figure-of-merit of the
target domain’s ML algorithm. It might be dominated by its latency per inference, computational cost (e.g.,
power consumption), reliability, security, and ability to operate in extreme environments (e.g., radiation).
For instance, ML might need to: trigger acquisition systems for rare events with ∼100 ns latency on the
Large Hadron Collider [37]; analyze multi-channel ambulatory health monitors at kilohertz frequencies
where wireless transfer of data is not possible due to power limitations (∼50 iPhone batteries/day for data
transfer) or security requirements; or to keep pace with materials spectroscopy data streams on the order
of terabits per second [296]. Furthermore, real-time analysis of advanced scientific instrumentation must
have an uninterrupted allocation of computing resources and patient sensitive information processed by
wireless health devices must be secured. Such features and characteristics create quantifiable guidelines
for understanding distinctions and commonalities among domains and applications. Thereby, we can
coordinate efforts towards creating fundamental design principles and tools, which may address needs
across seemingly disparate domains. Appropriate data representation is an essential first step of the design
process as it determines the choice of NN architecture to be implemented in real-time systems that need
to meet the performance targets outlined above. Prominent data representations of different scientific
instruments are summarized below. Other areas of overlap across domains such as NN and hardware
co-design tools and workflows, NN complexity reduction with quantization and pruning are also recent
technology advancements in real-time/accelerated AI and therefore are outlined in Section 4.

3.1 Data representations
Data representation used in a particular domain influences both the computation system and data storage.

One global classification for data representations across domains can be considered as being into raw
versus reconstructed data. The data representation often varies depending on the stage of the reconstruction
and the upstream steps in the data processing pipeline. Existing applications include fully connected NNs
that often take pre-processed expert feature variables as inputs or CNNs when the data is of image nature.
On-going development of domain knowledge-inspired NN algorithms could further take advantage of the
expert features in the accuracy and efficiency as detailed below. To fully exploit the power of advanced
NNs and bring it closer to data creation for minimum information loss, a more suitable representation
of the raw data, e.g as point clouds, needs to be employed. Prominent representations for raw data from
different experimental and measurement systems are:

• Spatial Data: Used for describing physical objects in geometric space. There are two main types,
called vector and raster data. Vector data, in turn, can be comprised of points, lines, or polygons. Raster
data refers to a grid of pixels, such as images, but pixels can also represent other measurements such
as intensity, charge, field strength, etc.

• Point Clouds: Can be considered a type of spatial data. This data representation is created by collating
a set of spatial data, i.e., points in a 3D space, that usually form an object in space collectively.

• Temporal Data: Used to represent the state of a system/experiment at a particular time. Data collected
across time, in a specific order, is classified in this manner. Time-series data is a subset of this
representation, where data is sampled at regular time intervals. An example of time-series data can be
seen in Fig. 4, for the specific case of supernova classification.
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• Spatio-Temporal Data: Measurements and observations of a system can be collected across both the
space and time dimensions. In that case, the data can be considered spatio-temporal.

• Multispectral Data: Used to represent outputs of multiple sensors that capture measurements from
multiple bands of the electromagnetic spectrum. Multispectral representation is commonly used in the
context of imaging, involving sensors that are sensitive to different wavelengths of light. This usually
involves in the order of a few to 10s of spectra.

• Hyperspectral Data: Used to represent measurements from a high number of spectra, e.g., in the
order of 100s. These images collected from different narrow-band spectra are combined into a so-called
hyperspectral cube with three main dimensions. The first two reference the 2D spatial placement (e.g.,
earth’s surface) while the third dimension represents the complete spectrum content at each “pixel”
location.
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Figure 4. Simulated type Ia supernova light-curve and classification. Top: calibrated flux evolution in
different DES band-passes as a function of normalized time (the first photometric measurement is set to
time equals zero). Bottom: Baseline RNN classification probability evolution with respect of time, no
host-galaxy redshift information was provided. At each photometric measurement, classification probability
is obtained. The maximum light of the simulated supernova is shown in a gray dashed line and the simulated
redshift of the supernovae is shown on the top z = 0.466. We highlight that redshift is not used for this
classification but can improve results. Our baseline RNN classifies this light-curve as type Ia SN with great
accuracy before maximum light, it only requires a handful of photometric epochs. [297].

In Table 1, we match these data representations to scientific application domains and give a brief
description. We highlight the data representations which are particularly important for a specific domain.
We will give more detailed examples below.

Cost of data communication (in terms of latency) and data storage (in terms of the cost of acquiring and
managing the physical storage resources) present important challenges. Particularly, application domains,
which require real-time analysis and/or real-time feedback demand highly optimized data analytics solutions.
Applications that rely on hyper-spectral data are faced with an ever-increasing rate of data input across
the electromagnetic spectrum. High-speed data reduction is required in these domains. Applications that
generate large-scale point clouds similarly demand efficient compression on their spatial data. Application
domains that handle multi-spectral data with limited spatial resolution require ultra-fast reconstruction in
order to enable real-time control feedback. Another challenge is posed by applications that rely on accurate
analysis of streaming time-series data, yet they are forced to perform under highly limited storage and
communication resources, either due to privacy and security concerns or limitations of the associated edge
devices.

Some current efforts in developing ML solutions to data processing front-ends focus on developing
autoencoder based compression engines [298, 39]. ML-based dimensionality reduction for hyper-spectral
data is another direction which has drawn attention [299]. Deep learning-based approaches are investigated
for image reconstruction; the field of material sciences being one of the most active fields in that
regards [300].
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Domain Spatial Point Cloud Temporal Spatio- Multi/Hyper- Examples
Temporal spectral

LHC XX XX X X – detector reconstruction
Belle-II/Mu2e XX XX – – – track reconstruction

Material Synthesis X – X XX XX high-speed plasma imaging
Accelerator Controls X – XX – – beam sensors
Accelerator neutrino XX XX X X – detector reconstruction
Direct detection DM XX XX X X – energy signatures

EIC XX XX X X – detector reconstruction
Gravitational Waves X – XX – – laser inference patterns

Biomedical engineering XX – – XX – cell and tissue images
Health Monitoring X – XX X X physiological sensor data

Cosmology XX XX XX X XX lensing/radiation maps
Plasma Physics X – XX X – detector actuator signals

Wireless networking – – XX – – electromagnetic spectrum

Table 1. Types of data representations and their relevance for the scientific domains discussed in this
paper; XX= Particularly important for domain, X= Relevant for domain

3.1.1 Expert Feature DNNs
One straightforward approach to building powerful domain-specific ML algorithms is to start with expert

domain features and combine them in a neural network or other multivariate analysis technique. This
embedded expertise has inherent advantages because the input features are interpretable, and correlations
between features can yield insight into a particular task while optimizing performance. Furthermore,
depending on the computational complexity of the domain features, the computation efficiency of such a
machine learning approach can be greater than the direct use of raw features. However, the downside is
that, by using expert features, we rely entirely on the informativeness of such new features.

Therefore, there is a lot of interest in automating the process of building informative new features from
raw features. In image classification tasks, for example, a lot of progress has been made in extracting
high-level data representations through deep neural networks DNNs [301]. In DNNs, layers of neurons
above the original input signal are built to ensure that each new layer captures a more abstract representation
of the data. Each layer constructs new features by forming nonlinear combinations of the features in the
layer below. This hierarchical approach to feature construction has been effective in disentangling factors
of variation in the data [302, 303, 301], and has been useful to construct informative and meaningful
representations. In astronomical images, for example, a DNN starts with low-level pixel information,
gradually capturing at upper layers edges, motifs, and eventually entire objects (e.g., galaxies) to provide a
broad view of the Universe [304, 305]. The same applies to other fields of science. For example, detecting
particles in large accelerators requires transforming low-level signals into dynamic patterns that can be
ascribed to specific particles [306]. In medical imaging, there is a need to quickly identify abnormal tissue
from low-level pixel information by gradually capturing global tissue patterns [307]. The importance of
transforming the initial input data into meaningful abstract representations cannot be overstated: it remains
one of the most powerful properties of modern neural network architectures.

Several challenges exist in the construction of increasingly abstract representations using DNNs. One
challenge is to incorporate domain knowledge (e.g., physical constraints) into the neural network model.
This is important to address the need for excessive amounts of data when training a DNN and narrow
the gap in representational bias between the model and target concept. Under scarce data but abundant
domain expertise, adding domain knowledge can expedite the training process [308], as well as improving
the model generalization performance. Another challenge is to develop tools for model interpretability by
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explaining the semantics of the representations embedded at each layer [309]. This is challenging due to
the distributed representation of information in the network architecture.

Despite the lack of a formal mechanism to attain a seamless integration between a statistical model
and domain knowledge, current approaches point to interesting directions, e.g., using knowledge to add
training data or to change the loss function [310]. Model interpretability in DNNs has seen an upsurge in
research over the past years [309]. Commonly, studies look at individual units and their activation patterns
to elucidate what is learned across layers of neurons.
3.1.2 Frame-based images

Frame-based images are a suitable representation of the experimental data in multiple domains such as
neutrino detection with time projection chambers in particle physics. An example of this data representation
can be seen in Fig. 5 for an electron deposition in the ProtoDUNE neutrino detector. A spatial frame
is shown by plotting the time coordinate “Tick” and wire position in space. Recent developments in
neural network architectures exploit the sparsity of the images to reduce the computation complexity for
real-time/accelerated ML applications. Other types of experimental data in HEP and many other domains
can also be processed to be represented as frame-based images, although often not without information
loss.

0 100 200 300 400
Wire Number

3800

4000

4200

4400

4600

4800

5000

5200

Ti
ck

50 cm

DUNE:ProtoDUNE-SP Run 5770 Event 59001

2

0

2

4

6

8

10

Ch
ar

ge
/ti

ck
/c

ha
nn

el
 (k

e)

Figure 5. A 6 GeV/c electron event in the ProtoDUNE detector. The x-axis shows the wire number. The
y-axis shows the time tick in the unit of 0.5µs. The color scale represents the charge deposition.[]

3.1.3 Point clouds
Point cloud data representation is often used in HEP, where multiple frames of event-based measurements

collected by a large number of detectors are combined into a data set. Across many HEP applications
point clouds commonly help to represent particle jets with data sizes exceeding Pb/s. More broadly, point
clouds can be used to capture any 3D space event and interactions of moving parts in space. A point cloud
visualization of the CMS detector at the LHC is shown in Fig. 6. Remnants of proton-proton collisions
create sensors signals in a customized and optimized detector geometry and points are illustrated in space.
Various types of scan-based imaging data can be represented as point clouds. Other domains such as CT
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and PET scanning in biomedical engineering and virtual reality also utilize this representation for imaging.
3D scanners used for product design, solid object modeling, architecture, and infrastructure design leverage
point clouds as well. Many of these imaging tasks generate point clouds of sizes in the order of several GB
to TB. Domains sharing point cloud representation (e.g., HEP and biomedical imaging) also commonly
involve spatial characteristics.

Figure 6. Visualization of particle tracking hits in 3D space from the TrackML Kaggle dataset [311]

3.1.4 Multi-/Hyperspectral Data
Multispectral data is common between wireless health monitoring and wireless communication systems.

A set of physiological sensors, often representing different modalities, are combined into a multispectral
data set for health monitoring and intervention systems. For wireless communication, signal interference
and network traffic conditions are captured via multispectral data. Both domains capture this data across
the time domain, so also exhibit temporal features. Furthermore, in both domains generated data size can
be considered relatively smaller (ranging from 100s of Mb/s to 10s of Gb/s), compared to the rest of the
domains discussed in this article. Hyperspectral data is used across many astronomy applications, medical
imaging, and electron microscopy, which is used to drive many materials science design and discovery
applications. An example of hyperspectral data in electron microscopy is shown in Fig. 7. An electron
probe is rastered over a sample under study and diffraction patterns are captured on a pixelated detector.
The pixelated detector captures many images as the electron probe is scanned across the sample. Emerging
multimessenger astronomy applications further emphasize the utility of hyperspectral data representations
combining observations from a wide array of detectors and telescopes.
3.1.5 Time-series data

Time-series data is common in experiments that observe dynamically evolving systems in processes
such as synthesis for material discoveries or the temporal evolution of the plasma state in nuclear fusion
experiments. It can be a measurement of high-speed temporally resolved imaging in material science or
physics features (density, temperature, current, radiation, fluctuations, etc.) or spatial features of evolving
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example in Jarausch et al. (2009), Florea et al. (2012), Goris et al.
(2014), and Midgley & Thomas (2014). Related terms for images
of STEM diffraction patterns in common use from the literature
include “convergent beam electron diffraction” (CBED), “micro-
diffraction,” “nanodiffraction,” “diffraction imaging,” and “diffrac-
togram,” all of which refer to diffraction images of a converged
electron probe. The term “ronchigram” is named for the
“Ronchi test” for measuring aberrations of telescope mirrors and
other optical elements, developed by Ronchi (1964). STEM
probe diffraction measurements of aberrations using periodic
objects were introduced by Cowley & Spence (1979) and were
referred to as ronchigrams by Cowley (1986). Today the term usu-
ally refers to a diffraction image that is nearly in focus, typically
recorded from an amorphous material.

Some of the earliest experiments that could be classified as
4D-STEM in the sense of this paper were those performed by
Zaluzec (2002) to measure the Lorentz deflection. Zaluzec referred
to this method as “position resolved diffraction” (PRD) in accor-
dance with earlier work where 2D diffraction patterns were
recorded over a line scan. The term PRD is more often found in
the X-ray diffraction literature, but can still be found in the TEM
literature, for example in Chen et al. (2016). The similar term “spa-
tially resolved diffractometry” was also used by Kimoto & Ishizuka
(2011), which they used to refer to virtual imaging in 4D-STEM.
The term “momentum-resolved STEM” is also used by some
authors, for example Müller-Caspary et al. (2018a).

Perhaps the most common alternative name for a 4D-STEM
measurement in diffraction space is “scanning electron nanodiffrac-
tion”, used by Tao et al. (2009), Liu et al. (2013), Gallagher-Jones
et al. (2019), and many others. A similar descriptor used in many
studies is “nanobeam electron diffraction” (NBED), used for example
by Clément et al. (2004), Hirata et al. (2011), and Ozdol et al. (2015).
The term “pixelated STEM” can also be found in the literature, for
example in MacArthur et al. (2013). In addition to referring to pix-
elated STEM, Hachtel et al. (2018) also introduced the term “univer-
sal detector” to refer to virtual imaging in 4D-STEM.

One 4D-STEM application discussed extensively below is crys-
tal orientation mapping. When using computer image processing
methods to classify the crystal orientations automatically, this

method is called “automated crystal orientation mapping”
(ACOM), for example in Schwarzer & Sukkau (1998), Seyring
et al. (2011), Kobler et al. (2013), Izadi et al. (2017), and others.

Conventional STEM detectors record one value per pixel and
usually have an annular (ring or circular) geometry. Common
imaging modes include bright field (BF) where the detector is
aligned with all or part of the unscattered probe, annular bright
field (ABF) where a circle is removed from the center of the detec-
tor, and annular dark field (ADF) which selects an angular range
of electrons scattered outside of the initial STEM probe. A very
common STEM imaging mode is high-angle ADF (HAADF),
which records only the incoherent signal of the thermal diffuse
scattering (TDS) electrons, due to its easy interpretation
(Pennycook & Nellist, 2011).

In this manuscript, we have chosen to use the general term of
4D-STEM in order to include imaging methodologies where the
probe is recorded in real space, for example in (Nellist et al.,
2006; Zaluzec, 2007; Etheridge et al., 2011).

Detector Development

The rise of popularity for 4D-STEM measurements is directly
linked to the availability of high performance electron detector tech-
nology. Conventional STEM detectors for BF, ABF, ADF, and
HAADF record only a single value per STEM probe position, and
segmented detectors with 4–16 channels are used for differential
measurements (Haider et al., 1994). Currently, the most common
detector configuration recording full images in TEM is a charge
coupled device (CCD) with digital readout, coupled with a scintil-
lator, such as in Fan & Ellisman (1993) and De Ruijter (1995).
These detectors have good electron sensitivity, but typically have
readout speeds limited to video rate (≤60 frames/s) and limited
dynamic range. This makes CCDs ill-suited to 4D-STEM diffraction
imaging, which requires readout speeds comparable with the STEM
probe scanning rate (μs to ms timescales) and the ability to measure
high-intensity signals such as the BF disk and low-intensity signals
such as the high-angle scattered electrons simultaneously.

There are two primary routes to building detectors more
suitable for 4D-STEM applications. The first detector type is
monolithic active pixel sensors (APS), which are complementary
metal–oxide–semiconductor (CMOS) chips with a sensitive doped
epitaxial layer. When high energy electrons pass through this
layer, many low energy electrons are generated, which diffuse
toward sensor diodes where they are collected and read out
using CMOS electronics, as described in Mendis et al. (1997),
Dierickx et al. (1997), and Milazzo et al. (2005). APS direct
electron detectors have seen widespread deployment after being
commercialized by several companies, for example in Ryll et al.
(2016). See McMullan et al. (2014) for a performance compari-
son. APS detectors have very high sensitivities and fast readout
speed, but relatively poor dynamic range. For high efficiency
imaging, single “electron counting” is typically applied to images
recorded with APS detectors (Li et al., 2013). This requires many
pixels and relatively low electron doses in order to reduce the
electron density recorded in each image to roughly less than 0.1
electrons per pixel per frame, since high densities prevent locali-
zation of individual electron strikes. If these conditions are met,
electron counting can maximize the efficiency of 4D-STEM
experiments, see Gallagher-Jones et al. (2019) for example. Note
that because the design of APS detector pixels is relatively simple,
these detectors typically contain a large number of pixels which
decreases the electron density in each pixel.

Fig. 1. Experimental 4D-STEM measurement of a dichalcogenide 2D material. Atomic
map is inferred from the data, each diffraction pattern represents an average of 7 × 7
experimental images, green STEM probes are labeled for regions of the sample with
one layer, vacuum, and two layers.
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Figure 7. Experimental 4D-STEM measurement of a dichalcogenide 2D material. Atomic map is inferred
from the data, each diffraction pattern represents an average of 7× 7 experimental images, green STEM
probes are labeled for regions of the sample with one layer, vacuum, and two layers [312].

plasma state, as a function of time. In-situ diagnostics of the time-series data can either provide alerts to
terminate an experiment early that indicates undesired outcome in material science without performing
the entire experiment and offline analysis that is time-consuming and computationally expensive, thus
improves the experiment operation efficiency and accelerates discoveries of material of desired properties.
This is illustrated in Fig. 8 for accelerator controls at the Fermilab Booster accelerator. In this application,
magnet voltages that steer proton beams around a synchrotron are recorded at 15 Hz time samples. This
study builds a digital twin which is used to simulate the Booster data. Furthermore, to reliably predict and
avoid large-scale major disruptions in nuclear fusion experiments, real-time analysis of the time-series data
is crucial in guiding the action needed in experimental prediction and control.

3.2 System constraints
In this section, we present an overview of desired system properties and constraints that are prevalent

across a number of application domains. Unique challenges are arising from each scientific application
based on sensing technology, the physical processes, and the timescales and data rates, and bandwidth.
These system constraints result in specific choices of data processing platforms, often with multiple
compute architectures across the data continuum, such as the choice of FPGA-based systems versus
embedded processors, GPUs, or custom ASICs. Table 2 summarizes several scientific application domains
along with their event rates, system latency constraints and performance requirements, and deployment
characteristics. We broadly define platforms for integration fast machine learning techniques into “soft”,
software programmable coprocessors, and “custom”, custom embedded computing devices. Software-
programmable systems are often preferred because they are less complex to implement while custom
embedded solutions are required when software programmable systems cannot satisfy experimental
throughput, bandwidth, or latency constraints. We will describe in further detail this distinction below.
Examples of these system design choices are the trigger systems for HEP include LHC reconstruction of
collision events, the Belle-II experiment, the Mu2e experiment which deploy custom embedded systems.
Meanwhile, experiments like the Electron-Ion Collider have data rates that may not require custom hardware
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Figure 8. Selected test data (blue) versus prediction values (orange) from the Booster LSTM surrogate
model for the Booster proton synchrotron complex [313].

Table 2. Domains and practical constraints: systems are broadly classified as soft (software-programmable
computing devices: CPUs, GPUs, and TPUs) and custom (custom embedded computing devices: FPGAs
and ASICs)

Domain Event Rate Latency Systems Energy-constrained
Detection and Event Reconstruction No

LHC & intensity frontier HEP 10s Mhz ns-ms Soft/custom
Nuclear physics 10s kHz ms soft

Dark matter & neutrino physics 10s MHz µs Soft/custom
Image Processing
Material synthesis 10s kHz ms Soft/custom

Scanning probe microscopy kHz ms Soft/custom
Electron microscopy MHz µs Soft/custom

Biomedical engineering kHz ms Soft/custom Yes (mobile settings)
Cosmology Hz s soft

Astrophysics kHz–MHz ms-us Soft Yes (remote locations)
Signal Processing

Gravitational waves kHz ms Soft
Health monitoring kHz ms Custom Yes
Communications kHz ms Soft Yes (mobile settings)
Control Systems

Accelerator controls kHz ms–µs Soft/custom
Plasma physics kHz ms Soft

solutions and could deploy only software programmable solutions for event reconstruction and real-time
processing experiments. One final distinction worth discussing concerns the nature of real-time processing
and the in-situ versus post-mortem nature of the inference and analysis tasks. Examples that we consider in
classifying tasks that have different requirements are: data reduction which primarily focuses on limiting
data collection rates of experiments for offline analysis; real-time processing and data analysis which is
required to extract real-time domain features of the data for tasks like filtering/triggering; and closed-loop
controls where data processing provides direct feedback to the operation and continuous control of an
experiment. These distinctions and their consequences on the computing systems is illustrated in Table 3
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Table 3. Classification of domains and their system requirements with respect to real-time needs.
Domain Real-time data reduction Real-time analysis Closed-loop Control

Detection/Event Reconstruction
LHC Yes Yes No

Nuclear Physics Yes No No
Dark Matter - Neutrino Yes No No

Image Processing
Material Synthesis Yes Yes Yes

Scanning Probe Microscopy Yes
Electron Microscopy Yes

Biomedical Engineering Yes
Cosmology Yes No No

Astrophysics Yes No No
Signal Processing

Gravitational Waves Yes No No
Health Monitoring Yes Yes Yes
Communications Yes Yes Yes
Control Systems

Accelerator Controls Yes Yes Yes
Plasma Physics Yes Yes Yes

3.2.1 Software programmable coprocessors
Historically, the first attempts at addressing the computational needs of the problems reviewed in this

article have been through software-programmable systems. CPU-based local clusters or cloud services
as well as cloud computing resources utilizing GPU or TPU-based hardware accelerators are utilized in
different applications. One particular concept explored by the HEP community is the GPU as a Service
(GPUaaS) model [314]. This can further be expanded into the Machine Learning as a Service concept,
similarly explored within HEP [315]. These paradigms involve the implementation of machine learning
modules to solve a set of physics problems, which are then transferred to GPU or TPU accelerators and
accessed by the local CPU “client” of the native experimental system.

One of the major system constraints is the computational capacity, which can be defined in terms of a
number of floating point operations as far as neural network implementations are concerned. Real-time
machine learning methods require an ever-increasing rate of computational capacity as it directly impacts
the latency per task. The task could be a trigger for LHC, reconstruction of an event in accelerator
experiments or astrophysics, material synthesis, reconstruction of an image captured by an electron
microscope, etc. Extreme parallelism would be desired to provide the highest capacity possible to minimize
latency and maximize throughput. In a processor-based system, this can be addressed by increasing the
size of the compute cluster. Naturally, facility costs impose a limit on the scale of these clusters. Another
constraint is the available amount of storage coupled with the cost of data movement across the memory
hierarchy. In the majority of the use cases, the latency involved with moving data from the front-end
(detectors, microscopes, sensors, etc.) dominates the total latency. One of the prominent performance
constraints is related to the utilization and subsequent latency of the network that links the front-end with
the back-end. Current limitations on the speed of data movement renders the CPU/GPU cluster-based
systems unable to meet the real-time requirements.
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3.2.2 Custom embedded computing devices
As the latency and throughput constraints are coupled with challenging practical energy constraints,

efforts have been directed towards specialized computing systems to address the hard real-time needs.
An increasingly attractive paradigm is to design components that are finely optimized for specific steps
in the data capture workflow. These components can be mapped onto FPGA devices or they can be
designed and manufactured as an application-specific integrated circuit (ASIC). In the LHC and accelerator
domains, there is a rich set of FPGA-based demonstrations of front-end data processing systems, which
meet microsecond latencies. These systems are in charge of tasks such as triggering, event reconstruction,
and anomaly detection. Direct and naive implementations of neural networks to perform inference for
these tasks can fail to meet the latency requirements since they often incur significant resource utilization.
The highest achievable FPGA clock frequency and inference latency is correlated with the resource
utilization and percentage occupancy of the device. Co-design techniques developed for these applications
particularly specialize in extreme quantization and pruning (with an awareness of accuracy) so that resource
requirements can be controlled aggressively to ensure inference latency targets. These optimizations push
the resource usage envelope as far as down as 10s of percent of the FPGA device in order to meet the
system constraints and yet demonstrate implementations with high inference accuracy.

Some other applications (e.g., accelerator controls, biomedical and health applications) impose less
stringent latency expectations, in the order of ms, where the urgency for resource minimization is alleviated.
Hence, the focus of the system design can shift from extreme resource economy to enhanced sophistication
in the algorithms that are being mapped to the device. Inference models can now include deep(er) learning
models coupled with advanced video and signal processing engines, as well as local privacy-preserving
processing tasks (applicable particularly to mobile health and networking and communication applications).

For mobile and IoT-based deployment of the edge devices, resource efficiency emerges as an important
factor as it impacts energy consumption. However, in these applications, energy efficiency can also be
achieved by alternative means. One option would be selective powering, i.e., creating a resource-rich
full-featured baseline implementation, which still comfortably meets latency constraints if energy was not
an issue, and introducing power gating or standby features to modulate energy consumption during periods
of low/no activity.

There are system constraints, which point the designers to a custom ASIC solution in addition to or in
place of FPGA devices. ASICs can address extreme form factor considerations, integration of computation
with sensing (e.g., smart photon detectors) into compact front-end devices, tight integration with other
mixed-signal or analog functionalities, radiation hardening requirements, and ultra-low energy budgets.
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4 TECHNOLOGY STATE-OF-THE-ART
In this section, we aim to give an overview of technologies and techniques for building fast ML algorithms.
This requires codesign: building algorithms with hardware in mind and providing efficient platforms for
programming the hardware. Section 4.1 and Section 4.2 focus on neural network design and training
for efficient implementation in hardware. In Section 4.3 and Section 4.5, we classify our discussion of
ML hardware compute platforms into two categories: “Conventional CMOS Hardware” and “Emerging
Beyond CMOS Hardware.” The former will address nearer-term hardware solutions, while the latter will
focus on the speculative end of the spectrum. Meanwhile, because the area of programming new hardware
is rapidly moving, we lay out an example of the options and challenges for one device family: FPGAs.
This is presented in Sec. 4.4, and from the details for FPGAs we hope the reader also gets a sense of the
fundamental approaches for designing software for emerging hardware.

4.1 Systematic Methods for the Efficient Deployment of ML Models
As discussed in Section 2, many ML problems in science require low latency, often with constrained

resources. However, most of the current state-of-the-art NN models have prohibitively high latency with a
large memory footprint and energy consumption. For this reason, practitioners have been forced to use
sub-optimal models (e.g. shallow NNs) with non-ideal accuracy to avoid this latency problem. There is a
large body of literature that has focused on solving this problem by making NN models more efficient (in
terms of latency, memory footprint, and energy consumption). These efforts could be broadly categorized
as follows: (i) Designing new efficient NN architectures; (ii) NN and hardware co-design; (iii) Quantization
(low precision inference); (iv) Pruning and sparse inference; and (v) Knowledge distillation. Here we
briefly discuss each of these approaches.

Designing new efficient NN architectures
One line of research has been focused on finding new NN models that are efficient by design. A notable

early work is SqueezeNet [316], a new NN model without any expensive Fully Connected layers, along
with a new lightweight Fire module, that resulted in a 50× smaller model as compared to AlexNet, but with
the same accuracy. Later on, several new innovations were made in efficient NN architecture design. One
focus has been to find efficient layers/operators. Notable works are group convolutions [317], depthwise
convolutions [318], spatial separable convolutions [319], shuffle layers [320], and shift convolutions [321],
to name a few.

Another focus has been to find similar substitutes to Fire module that are more efficient and result in
better accuracy/generalization. Notable works include residual networks [322] (originally designed to
solve issues with vanishing gradients, but these structures are generally more efficient than non-residual
architectures), densely connected networks [323], squeeze-and-excite modules [324], and inverted residual
blocks [325].

These classical techniques mostly found new architecture modules through a manual design search. This
is not scalable, and as such recent approaches have proposed automated methods that use neural architecture
search (NAS). NAS methods automatically find the right NN architecture for a given constraint of model
size, depth/width, and/or latency. The high-level approach here is to train a probabilistic SuperNet that
includes all possible combinations of NN architectures within the prescribed constraints, but with learnable
probabilities. After this SuperNet is trained, one can sample an architecture from its learned probability
distribution. Notable works include RL based methods [326], efficient NAS [327], MNasNet [328],
DARTS [329], and Differentiable NAS [330].
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NN and hardware co-design
Another promising line of work has been to tailor the NN architecture for a specific hardware platform,

and/or co-design them together. This is quite promising for configurable hardware such as FPGAs. The
importance of hardware-aware NN design is that the cost of performing different types of operations
varies for different hardware. For example, hardware that has a dedicated cache hierarchy can execute
bandwidth bound operations much more efficiently than hardware without a cache hierarchy. Notable
works in this area include SqueezeNext [331], where both the NN and the hardware accelerator were
co-designed with a manual tuning approach. More recent works have proposed to automate hardware-aware
design through NAS. Notable works include ProxylessNAS [332], OnceForAll [333], FBNet [330], and
MobileNetV3 [334].
Quantization (low precision inference)

A common solution is to compress NN models with quantization [335–348], where low bit-precision is
used for weights/activations. A notable work here is Deep Compression [349], which used quantization to
compress the model footprint of the SqueezeNet model discussed above, bringing its size to 500x smaller
than AlexNet. In quantization, the model size is reduced without changing the original network architecture,
and it could potentially permit the use of low-precision matrix multiplication or convolution. Therefore,
both the memory footprint and the latency could be improved.

The quantization methods can be broadly classified into two categories of Post-Training Quantization
(PTQ), and Quantization-Aware Training (QAT). In PTQ, a pre-trained model in single precision is
quantized to low precision without any fine-tuning or re-training [350–357, 347, 358]. As such, these
quantization methods are typically very fast, and, in some cases, do not even require any training data [347,
359, 357]. However, PTQ often leads to high accuracy degradation, especially for low precision quantization.
To address this, some quantization methods adopt QAT to re-train the model after the quantization, so that
the parameters can get adjusted. This approach often results in higher accuracy, but at the cost of longer
time associated with re-training the model [360, 361, 336, 337, 339, 362, 340, 363–366].

Another differentiator is the use of simulated quantization (aka fake quantization), versus integer-only
quantization [341, 367–369]. In the former, the weights/activations are stored in low precision, but they are
cast to higher precision during inference. In the latter, there is no casting involved, and the multiplication
and accumulation also happen in low precision. Using integer-only quantization has the advantage that one
can speed up inference by using low-precision logic for multiplication and addition, besides reducing the
memory footprint of the model.

Another distinction is hardware-aware quantization. Similar to NN architecture design, quantization
can also be tailored for specific hardware platforms. This becomes important for mixed-precision
quantization [370–376, 367]. The reason is that certain operations in the NN model may benefit more from
low precision quantization than others, based on whether they are bandwidth bound or compute-bound. As
such, as schematically illustrated in Figure 9, one must determine the best precision setting based on the
tradeoff between the potential footprint/latency gain and the sensitivity to accuracy degradation.
Pruning and sparse inference

Another approach reducing the memory footprint and computational cost of NNs is to apply pruning,
which could be thought of as quantization to 0-bits. In pruning, neurons with small saliency (sensitivity) are
removed, which results in a sparse computational graph [377]. Here, neurons with small saliency are those
whose removal should minimally affect the model output/loss function. Pruning methods can be broadly
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Figure 9. The illustration of hardware-aware quantization and pruning. A given NN model can be
compressed by using low precision quantization instead of single precision. The extreme case is to use 0-bit
quantization which is equivalent to removing/pruning the corresponding neurons. The goal of compression
is to find the best bit-precision setting for quantization/pruning to reduce model footprint/latency on a
target hardware with minimal generalization loss.

categorized into unstructured pruning [377–382], and structured pruning [383–388]. Unstructured pruning
removes neurons without any structure. With this approach, one can remove most of the NN parameters
with little impact on the generalization performance of the model. However, this approach leads to sparse
matrix operations which are hard to accelerate and are typically memory-bounded [389–392]. This can
be addressed with structured pruning, where a group of parameters (e.g., an output channel) is removed.
However, the challenge here is that high degrees of structured pruning often lead to significant accuracy
degradation.

In both approaches, the key question is to find which parameters to prune. A simple and popular approach
is magnitude-based pruning [393–400]. In this approach, the magnitude of parameters is used as the
pruning metric. The assumption here is that small parameters are not important and can be removed.

An important problem with magnitude-based pruning methods is that parameters with small magnitudes
can actually be quite sensitive. It is easy to see this through a second-order Taylor series expansion, where
the perturbation is dependent on not just the weight magnitude but also the Hessian [377]. As such there
are several works that use second-order based pruning [377, 401, 378, 402, 403].

Finally, we should mention that it is possible to combine pruning and quantization together to compress
the NN model. In fact, pruning could be viewed as quantization to 0-bits. The recent work of [358]
proposes a quantization-aware pruning method and applies to high energy physics problems; It reports
better results than pruning or quantization alone.
Knowledge distillation

Model distillation [404–411] trains a large model and then uses it as a teacher to train a compact model.
Instead of using class labels during the training of the student model, the key idea of model distillation is to
leverage the soft probabilities produced by the teacher, which can guide/help the student training.

Frontiers 43



McCarn Deiana, Tran, et al. Fast Machine Learning in Science

Previous methods of knowledge distillation focus on exploring different knowledge sources. Refs. [405,
407, 412] use logits (the soft probabilities) as the source of knowledge, while Refs. [404, 408, 410] try to
leverage the knowledge from intermediate layers. The choices of teacher models are also well studied, where
Refs. [413, 414] use multiple teacher models to jointly supervise the student model, while Refs. [415, 416]
apply self-distillation without an extra teacher model. Other previous efforts apply knowledge distillation
with different settings on different applications. Refs. [417, 418, 411] study data-free knowledge distillation,
and Refs. [419, 420] combine knowledge distillation with GANs.

A major challenge of knowledge distillation methods is to achieve a high compression ratio. Compared to
quantization and pruning which can usually maintain accuracy at 4× compression, knowledge distillation
methods tend to have non-negligible accuracy degradation at those compression levels. But these two
approaches are orthogonal, and recent works have shown that their combination can result in high
accuracy/compression [409, 406, 367, 421]. It should be mentioned that current distillation methods
are mostly applied to classical ML problems, and few works have looked into their application in Science
AI problems.
4.2 Systematic Neural Network Design and Training

There is currently no analytical approach to find the right NN architecture for a given task and training
dataset. Originally, designing the NN architecture was mostly a manual task with intuitions that were often
ad-hoc. However, in recent years there has been a lot of innovations in automating the NN architecture
design process, which is referred to as Neural Architecture Search [326–330, 332, 333].

NAS could be viewed as a hyperparameter tuning problem, where the hyperparameters are the design
choices for a NN architecture. This could include width, depth, types of operations, etc. The main challenge
is that the search space for the operation types scales exponentially with the number of layers. As such, one
has to still include some high-level intuition about the NN architecture to limit the search space.

After limiting the search space, the general NAS process is as follows: A candidate architecture is
sampled from the set of all possible architectures and is then trained for a number of epochs on the training
dataset. The accuracy is then used as the metric to evaluate how good that candidate architecture is. Then
based on this reward, the probability distribution of sampling architectures is updated. This process needs
to be repeated for many different candidate architectures (sometimes exceeding hundreds of thousands).
Inherently, this leads to another problem related to tuning the optimization hyper-parameters for each
candidate architecture. For example, if a good architecture is sampled from the NAS but is trained with
sub-optimal hyperparamters, then the error will be high and the NAS algorithm will reduce the likelihood
of sampling that architecture which is not the desired property.

As a result, scalability has become an integral concern for any procedure in the presence of “big data.”
One main class of procedures for which scalability has become indispensable is in numerical optimization
algorithms, which are the core of training methods. There is a large body of literature on designing efficient
numerical optimization/training methods [422–424, 382, 425–430] as well as efficient NAS algorithms to
search for the right NN architecture [326–330].

For the optimization, the goal is to design new methods that require fewer iterations to converge and are
more robust to hyper-parameter tuning. One notable advancement here is the ability to apply second-order
methods without the need for forming the second-order operator [428, 431, 430, 422]. It has been shown
that the performance and robustness of these methods are higher than first-order optimization methods
on classical ML problems (e.g. in computer vision or natural language processing). Interestingly, some
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recent results for Physics Informed Neural Networks (PINN) [432] have found that first-order methods
work significantly sub-par to (quasi) second-order methods. This could potentially provide opportunities to
adapt or redesign some of the second-order algorithms for Science problems.

For the NAS algorithms, the goal is similar, which is to find methods that require evaluating fewer
candidate architectures, with less manual restriction or tuning of the search space. Another goal is to design
transferable NAS algorithms that can be trained on a small problem and then transferred to larger problems
that are more expensive [332, 333].

In summary, the core of designing NN architecture is to have a fast method of sampling architectures
(through NAS), and the fast training of the sampled architectures (through fast and robust optimization
algorithms).
4.3 Hardware Architectures: Conventional CMOS

As the prevalence and demands for machine learning rapidly continue to grow, it is increasingly important
that we design machine learning algorithms efficiently and simultaneously deploy them on complementary
and powerful hardware platforms. The compute and memory demands of NN deployments are huge and
growing beyond the limits to where standard silicon-based semiconductors can scale. The reasons behind
the scalability challenges in the semiconductor industry are as follows: Firstly, as we approach the End of
Moore’s Law, transistor cost has been exponentially rising due to rising chip design costs with shrinking
technology nodes (as published by Xilinx and Gartner in 2011 already [433]). Furthermore, with the end of
Dennard scaling, we’ve encountered considerable thermal challenges as power density no longer remains
constant between node generations. To mitigate the challenges of increasing thermal density, chips are now
designed to conditionally deliver power to groups of transistors, effectively throttling or ”turning off” parts
of a chip. This technique has come to be known as creating dark silicon [434].

To overcome these challenges and provide sufficient compute capabilities, many disruptive approaches
have been proposed. For example, Cerebras Systems [435] has brought to market the first computer
system which employs wafer scale integration. where chips are built from complete wafers rather than
individual dies. Such a technique brought with it substantial engineering challenges in regards to power
delivery, packaging, and cooling. Exploring the other dimension, foundries are investigating true 3D
chip stacking as was presented at HotChips’2019 by TSMC [436]. Even analog computing [437, 438],
quantum computing [439] and in-memory computing [440, 441] are investigated as well.

Less risky approaches focus on moving away from traditional von Neumann architectures, using
specialization of compute architectures to provide the necessary performance scaling and energy efficiency.
Due to the specialization, the devices become increasingly heterogeneous. A huge range of devices has
emerged that all try to address this problem in different ways, whereby the key challenge is: How do we
loop transform and unfold the algorithms best to maximize data reuse and compute efficiency, minimize
memory bottlenecks, and limit power consumption while meeting real-time requirements?

The choice of hardware type and quantity often boils down to a set of constraints imposed by compute
environment (datacenter, cloud, on-premise, edge, mobile), workload type (inference, training), data type
(Language, Time Series, Vision, Graph, etc), ML model, usage model (online inference, batch jobs),
and user-centric Service-Level Agreements (encryption level, request latency, etc). For large datacenter
deployments handling various types of workloads, it is often the case that several platforms must be
combined to reduce Total Cost of Ownership (ToC) across all their hardware platforms. It has therefore
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Figure 10. Taxonomy of compute architectures, differentiating CPUs, GPUs and DPUs

become increasingly necessary for owners of heterogeneous platforms to think of their systems as large-
scale multi-processor computers, a trend sometimes termed Warehouse Scale Computing [442]. For Deep
Learning hardware accelerators, these new computers generally take the form of CPU co-processors: a host
CPU communicates with other entities in the datacenter, interfaces with disk memory, and formats input
data which is then offloaded to the accelerator responsible for executing a user-defined compute graph, or
Neural Network.

We begin with a taxonomy of these hardware architectures and discuss their relevant characteristics
when it comes to the acceleration of machine learning workloads. This is essential to understand how they
will differ in their execution behavior, what it takes to leverage their unique features and how they can
potentially benefit from previously introduced optimization techniques.

Taxonomy of Compute Architectures for Deep Learning
A broad range of hardware architectures to deploy machine learning algorithms exists today. We can

broadly classify them by the following criteria:

1. Basic type of compute operation

2. Inherent support for specific numerical representations

3. External memory capacity (which is mostly relevant for training workloads) 3

4. External memory access bandwidth

5. Power consumption in the form of thermal design power (TDP)

6. Level of parallelism in the architecture and the degree of specialization

As is shown in Figure 10, we classify the compute architectures into scalar processors (CPUs), vector-
based processors (GPUs), and so-called deep learning processing units (DPUs), although realistically
these categories blend to some degree. DPUs are specialized for this application domain whereby we
distinguish the more generic matrix- or tensor-based processor and a spatial processing approach. DPUs
can be implemented with either ASICs or FPGAs. All of these architectures will be discussed individually
below.

3 In these comparisons, we treat HBM and HBM2 as external memory as it is used in the same way as DDR4 or GDDR memory.
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CPUs
CPUs are widely used for ML applications and are viewed as largely serial or scalar compute engines

(even though high-end variants for cloud deployment may have up to 10s of cores). They are optimized for
single-thread performance, with implicitly managed memory hierarchies (with multiple levels of caches),
and support floating point operations (FP64 and FP32) as well as 8bit and 16bit integer formats with
dedicated vector units in most recent variants. Theoretical peak performance tops at 6.8TOPs for FP64
assuming boost clock speed (Cascade lake, 56 cores, 3.8GHz). External memory is currently primarily
leveraging DDR4 memory banks with large capacities: Intel’s Cascade Lake offers up to 4.5 TebiByte (240

Bytes) which is beyond what any of the other device categories can offer. Access is at maximum speed
through high-end hardened memory controllers, offering 282 Gbps bandwidth (for example Cascade Lake
with 12 DDR4 channels). Compared to GPUs and other HBM-enabled devices, the memory bandwidth
of CPUs is lower. However, for many use cases, this can be compensated through their sophisticated
cache hierarchies, combined with mature compiler tools. Regarding power consumption, CPUs are at the
upper end of the spectrum with high-end devices range up to 400 W [443]. In the embedded space, ARM
processors provide generally popular solutions, in particular when performance requirements are very low
and when functionality is required that is not supported by the specialized device variants. In particular, the
Ethos [444] family of processing cores is specialized for CNN workloads and as such is considered under
the DPU category below. The advantages of CPUs are the generality of the hardware, as well as the ease of
programming where design environments have matured over decades. As expected this comes at the cost
of lower peak performance and less efficiency compared to the more specialized device families. In regards
to quantization, CPUs can only leverage this optimization technique for INT8 and INT16 if supported.

GPUs
GPUs are SIMD-based (Single Instruction, Multiple Data) vector processors that support smaller floating

point formats (FP16) natively, as well as fixed point 8-bit and 4-bit integer formats more recently, and
have a mix of implicitly and explicitly managed memory. NVIDIA GPUs are some of the most popular
hardware targets for machine learning, and newer families of chips have been introduced to specifically
accelerate this workload, with AMD not far behind. The latest devices in NVIDIA’s Volta and Turing
architecture families, introduced in 2018 and 2019 respectively, offer up 130TOPs in FP16, which is
beyond the capabilities of the latest CPU generations. As such they are amongst the highest performant
devices in the market for the acceleration of DNNs as they can exploit the high degree of parallelism
inherent in this application via increasingly specialized architectural features. For example, NVIDIA’s
Volta is the first generation to incorporate tensor cores as a new feature, as well as improved FP32 and FP64
support for training in a data center setting [445], and also introduced a deep learning accelerator (DLA)
in their embedded devices to further reduce power consumption. This specialization brings additional
challenges for their usage; there are up to 3 distinct execution units now, namely CUDA cores, tensor cores,
and the DLA, which don’t operate on the workload simultaneously (at least not easily or by default). We,
therefore, don’t sum up the peak performance of different execution units, but use only the maximum.
AMD announced the Vega GPU [446] with new deep learning instruction set operations, with the goal of
obtaining parity with NVIDIA’s high-end Tesla V100 datacenter GPUs. Also, AMD’s most recent EPYC
family supports customized instructions for deep learning [447]. Both companies offer also low power
GPUs for the embedded space, namely the AMD Vega mobile GPU [448] and NVIDIA Jetson TX2 [449]
and AGX family [450].
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In regards to memory, GPUs leverage specialized and highly pipelined GDDR memory, which reduces
capacity, but offers much higher bandwidth (up to 732GBps). With NVIDIA’s Turing family the latest
devices include HBM2 DDR memory stacks [451], which scales the memory access bandwidth to 1TBps
and beyond. Again this is particularly important to address the needs of training workloads. For the same
reason, some of the DPUs introduce HBM2 as well, as discussed below. In regards to power consumption,
GPUs are high, up to 345 W.

One general challenge for GPUs is that they need to leverage input parallelism to achieve high utilization
of their large compute arrays. Therefore before execution inputs need to be grouped into batches, which
has adverse effects on end latency. Further, GPUs are relatively high in power consumption. Regarding
quantization, support is limited to the inherent datatypes, which are INT4 at smallest in the context
of NVIDIA’s Turing family, and INT8 for many of the others. Finally, the corresponding software
environments for GPUs, while not on the same level as CPUs, have matured significantly and provide
increased ease of use.

FPGAs and ASICs
FPGA and ASIC customize hardware architectures to the specifics of a given application. They can be

adapted in all aspects to suit a use case’s specific requirements. This includes their IO capability, their
functionality, or even to suit specific performance or efficiency targets. FPGAs can be reprogrammed
whereas ASICs are fully hardened. This flexibility allows for amortizing the design costs of the circuit
across many applications but comes at the expense of hardware resource cost and performance.

FPGAs are a popular choice for the acceleration of CNNs. Traditionally, an FPGA compute fabric
consist of a sea of lookup tables (LUTs) which are interconnected through a programmable interconnect.
The latest generations host millions of LUTs. Furthermore, the fabric is interspersed with specialized
hardened compute blocks (DSPs) which accelerate n-bit multiply accumulate operations (MACs), as well
as SRAM blocks. The latter are referred to as block RAMs (BRAMs), which hold 36 kbits, and Ultra
RAMs (URAMs) which store 288 kbits. More recent FPGA generations combine multiple FPGA dies,
referred to as super logic regions (SLRs), and leverage a silicon interposer to provide connectivity between
SLRs. This technology is referred to as stacked silicon interconnect (SSIT) and helps scale device capacity.

DPUs
As mentioned at the beginning, the term DPU (short for deep learning processing unit) refers to a

new type of compute architecture, specialized for the acceleration of CNNs. DPUs are customized for
these types of applications in a number of ways: types of operations supported, direct support of tensors
or matrices, inherent data types and supported numerical representations, macro-architecture, explicitly
managed and specialized memory hierarchies, and which levels of parallelism they exploit (input, output
pixel, IFM, OFM, bit, and layer and branch parallelism) as was introduced in the first part of this chapter.
We differentiate two types of DPUs, which can be implemented with both ASIC technology and FPGAs.

Matrix of Processing Elements (MPE)
The first type, as shown on the left side of Figure 11, consists of an MPE that operates on matrices or

higher dimensional tensors. The processing engines can be simple MACs, vector processors, or more
complex VLIW (Very Long Instruction Word) cores that can support concurrent execution of different
instructions. A popular example in this category is Google’s Tensor Processing Unit (TPU). Introduced in
2016 [452], it was originally designed to accelerate Google’s TensorFlow framework. The first generation
supported integer arithmetic with a massively parallel INT8 matrix-multiply engine. The second generation
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Figure 11. DPU architectures: Matrix of Processing Engines (MPE) on the left, and spatial architecture
on the right

TPU was announced in May 2017 [453], and the third generation in May 2018 [454]. These newer chips
boast improved memory performance as well as support for floating point specifically aimed at training.
There are a number of startups introducing custom hardware that fall into this category. Within the cloud ,
there are Graphcore, Groq, and Wave Computing. Within the embedded space, where the design constraints
are even more stringent, we find even more solutions. Most are secretive about the details of their designs.
Intel is investigating several custom accelerators and has for that purpose acquired a number of startups,
namely Nervana, Habana, and Movidius. Fathom [455] is Movidius’ ultra low power Neural Compute
Stick (NCS) which operates at about 1 W. Also, ARM offers specialized CNN processors in the form of
their Ethos family, boosting performance up to 4TOPs with support for INT8 and INT16 datatypes.

As mentioned above, DPUs provide specialized datatypes to execute heavily quantized, reduced precision
CNN implementations. At the extreme, binarized neural networks (which are very high throughput at
extremely low power) are exploited in the following ASICs: BinarEye [456], BNN Custom Fabric [457],
and IBM AI Accelerator [458]. Also, Lattice has announced binarized neural network libraries targeting
low power FPGA and achieving 1 TOPs/W [459]. Custom floating point representations are also considered.
For example, Microsoft’s Brainwave project [460] uses this approach with the aim of applying FPGAs
to CNNs at datacenter scale. However, typically the hardened versions in ASICs only support INT8, as
lower precisions could potentially limit their application scope. FPGA-based MPE implementations such
as Xilinx’s xDNN are less constrained and in principle can be customized as needed.

Similar to the GPU, but perhaps to a lesser degree, DPUs leverage input, IFM (input feature map) and
OFM (output feature map) parallelism, which requires buffering of inputs and may have adverse effects
on latency as well. A particular challenge arises in the context of software environments, which differ
for all vendors and are less mature than what we have observed for CPUs and GPUs. Typically, they are
limited to support execution of very specific layer types (sometimes even restricted in regards to parameter
ranges) and neural networks, whereby the range of layer types and neural network models is continuously
expanding.

In summary, through their specialization, these implementations minimize hardware cost, maximize
performance and optimize efficiency by exploiting specific precision arithmetic with a specialized
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instruction set and customized memory system. However, in order to gain a performance advantage,
the algorithms need to be adapted to leverage these features.
Spatial DPUs.

The second type of DPU leverages spatial acceleration and exploits layer and branch parallelism. Popular
examples are hls4ml [461] and FINN [462, 463]. To that extent, the hardware architecture is even further
specialized to the specifics of a given deep learning topology. This is visualized on the right side of
Figure 11. The hardware architecture actually mimics the given deep learning topology and the inputs are
streamed through the architecture. Every layer is instantiated with a dedicated compute datapath. Each
layer has a dedicated weight buffer, and activation buffers in-between layers are FIFOs of minimal size.
They buffer just enough data to feed the next set of convolutions in the next layer. This is substantially
more efficient compared to the first type of DPUs or GPUs and yields reduced latency.

DPUs and GPUs generally perform a layer-by-layer compute, where a sequence of images has to be
buffered in order to extract maximum compute out of the platform (input, IFM and OFM parallelism).
For this, the device buffers a batch of images before computing the first layer of all images. Then all
intermediate results are buffered, and then the next layer is computed, and so on. Hence the latency is
heavily dependent on the size of the input batch.

As a result, spatial DPUs have an advantage in regard to latency. This level of customization is only
possible with programmable hardware architectures such as FPGAs, as they can adapt the hardware
architecture for different use cases. This generally wouldn’t make sense in the context of an ASIC
accelerator, as that would yield an ASIC only capable of accelerating one specific topology, which would
be far too restrictive in scope. The limitation in spatial architectures is the scalability in the numbers of
layers. Each layer comes at a resource cost overhead and there is a maximum number of layers that can be
created within a single device. As a result, some extremely deep CNNs might not be able to fit into a single
device. Microsoft’s Brainwave project leverages spatial computing and overcomes this limitation with a
distributed approach [460].

Once a spatial DPU has been leveraged and the architecture is specialized for a very specific CNN,
the architecture can be further customized in regards to minimum precision. By supporting only the
bits as needed per layer of the CNN they can achieve even higher performance and efficiency, while
in an MPE, the hardware will support the maximum precision that is required over the whole network.
In regards to customized precisions and spatial architectures, FINN has pioneered the first binarized
neural network accelerators [462, 464] and provided many proof points for customized reduced precision
implementations [463]. This flexibility comes at a cost, in the form of programming complexity, and they
are extremely difficult to characterize in general, as the performance characteristics depend on the specifics
of the hardware architecture that has been implemented.
Further Variants of DPUs

Beyond the previously discussed spatial DPUs and MPEs, there are many more variants. Some
exploit sparse computing engines for example, such as EIE and its successor ESE [465], SCNN [466],
Cnvlutin [467], Cambricon-S and Cambricon-X [468]. These are the only architectures that can benefit
from irregular sparsity. Finally, another dimension for customization of precision is to optimize over
the execution- or run-time of a CNN. In other words, beyond using statically fixed reduced precision,
where the hardware operates with a fixed precision for all variables, some approaches explore run-time
configurable bit precision which allows for the exploitation of bit-parallelism in the arithmetic. On the
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hardware implementation side, this can be exploited with run-time programmable precision and is effective
with bit-serial implementations. For example Umuroglu et al. [469] demonstrate with BISMO that bit-
serial can provide highly attractive performance with minimal overhead on FPGAs, while Judd et al. show
the same is true for ASICs with their prototype ASIC called Stripes [470]. While this concept can be
applied to both MPE and spatial architectures, it makes the most sense for MPEs.

Server-class Throughput Latency Power Ext. Mem. Bandwidth HW specialization Ease of Use Training/Inference
Conventional

CPU Medium High High Medium Low High Both
DPU-MPE High Medium-High Medium High Medium Low-Medium Inference

DPU-Spatial High Low Medium High High Low Inference
GPU (NVIDIA A100) High High High High Medium High Both

Speculative
Cerebras CS-1 Very High Medium High Very High Medium Medium Both

Table 4. Characterization of types of hardware based on important metrics.

Summary of Conventional CMOS Hardware Architectures
We analyzed three categories of hardware architectures that are leveraged for CNN inference, namely

common CPUs, SIMD-based vector processors such as GPUs, and DPUs which are specialized architectures
for the acceleration of deep learning workloads. An overview of the architectures is visualized in Table 4.
Please note, ”Ease of Use” includes compute kernel programmability as well as general ease of use. The
degree of specialization includes operators, precision support, and customization towards topologies. In
summary, for DPUs, we distinguish between tensor processors which leverage a matrix of processing
engines and spatial architectures which can be further specialized for specific topologies using FPGAs.
CPUs are the most general solution but high in power. GPUs and DPUs offer the highest performance,
though GPU are more expensive in energy cost. Spatial DPU architectures excel at low latency and
provide the highest compute efficiency through maximized customization. CPUs, GPUs, and DPUs (MPE)
use a sequential layer-by-layer compute model whereas spatial DPUs execute all layers of the network
concurrently. Hardened topologies in form of ASICs, CPU and GPU offer a fixed set of native dataypes,
whereas FPGAs can adopt any precision and numerical representation, which provides the utmost flexibility
and leverages optimization with quantization to the maximum, whereas hardened approaches need to
default to the next higher supported precision into which the reduced precision variable can be embedded.
However, the programmability in the FPGA fabric also comes at a speed and energy cost. All architectures
can benefit from coarse-grained pruning optimization techniques. Only sparse execution engines can benefit
from irregular pruning, such as synaptic pruning. We also discussed the various deployment options. Many
devices offer different power and operating modes as different compromises between throughput and power
consumption to adapt to the potentially very different optimization targets of different application settings.
Similarly, batch sizes, thread counts and stream sizes offer another compromise in regards to throughput
versus latency. Again this is to facilitate a spectrum of different use cases. Finally, the table shows that
speculative approaches such as Cerebras can bring fundamental performance scalability. Overall, each
approach comes with its own advantages and disadvantages and the best solution greatly depends on the
specifics of a given use case.
4.4 Hardware/Software Codesign Example: FPGA-based Systems

In the last decade, we have observed the rise of two significant paradigms that have come to scientific
applications: heterogeneous-computing systems and machine learning. Heterogeneous computing can
overcome the decline of Moore’s Law and Dennard Scaling and achieve the desired computational cost
and performance by executing portions of the applications on the best-matched hardware, e.g., CPU, GPU,
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ASIC, and FPGA. On the other hand, machine learning is an automatic process that creates programs that
can solve classes of problems. As with traditional programming, machine learning can significantly benefit
from heterogeneous computing; in addition, designers can tailor specialized but reprogrammable hardware
to fit ever-changing machine learning requirements. This section examines tools and methodologies that can
automatically deploy and orchestrate machine learning on FPGA systems in larger scientific applications.
FPGAs are a particularly compelling example to explore because the efficiency of the hardware coupled
with their programmability makes for an interesting case study in hardware/software codesign.

Traditional software programming is complicated, and parallel high-performance programming is even
more challenging. Programming heterogeneous systems that integrate FPGAs bring the challenge to the
next level: the programmer must deal with a multi-objective optimization problem that involves performance
and costs, i.e., hardware resources. For machine learning applications, a common practice is to profile
the application on CPU (or GPU) to identify the bottlenecks to be offloaded onto the reprogrammable
logic to improve latency, throughput, or energy efficiency of the application as a whole. Then, part of the
application can remain on the CPUs to control the execution and interact with the rest of the scientific
setup.

FPGA Programming
FPGA are configurable integrated circuits that provide a good trade-off in terms of performance, power

consumption, and flexibility with respect to other hardware paradigms. However, it is a challenging and
lengthy task to program FPGAs. FPGA programming has traditionally been a job for hardware designers
familiar with digital design and computer architecture. These requirements lead to a steep learning curve
for software developers and other domain experts. In order to lower the entry barrier, there has been a
growing focus on designing FPGA hardware at a higher level of abstraction. As a result, various approaches
have brought FPGA development into the mainstream by allowing developers to design for FPGAs at a
higher level using familiar languages such as C, C++, OpenCL, and in some cases, even C# [471]. Here an
important question arises: what are the additional advantages of designing the hardware at a higher level of
abstraction? High-level languages (HLLs) include various constructs and design patterns that are more
functionally expressive. Furthermore, the amount of time spent in the verification of the design is also a
crucial factor. Hardware-description languages such as Verilog or VHDL focus on the final implementation
details and, because of that, are more verbose. Bigger code repositories are not easy to verify for functional
correctness. On the other hand, HLLs are more compact and simulate faster. Thus, a designer can do more
verification in the same span of time. Despite these advances, FPGA programming remains complex. This
has compelled academia and industry to develop new compilers, frameworks, and libraries to facilitate
hardware design.

High-Level Synthesis and Languages
High-level synthesis (HLS), also known as behavioral or algorithmic synthesis, is an automated design

process that takes as input a functional description of a design and outputs an RTL implementation. It
transforms an untimed (or partially timed) high-level specification into a fully timed implementation. The
process of HLS starts by analyzing the data dependencies between the various operations in the functional
description. This analysis leads to a Data Flow Graph (DFG) representation. After the DFG generation,
during the allocation phase, HLS maps each operation onto a hardware resource with latency and area
characteristics. Then, HLS adds the notion of time to the design during the scheduling phase. Scheduling
takes the operations and resources of the DFG and decides in which clock cycle to execute them, given
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their latency information. This step infers sequential logic by adding registers between operations and
creating finite state machines [472].

Over the past three decades, many HLS tools have been proposed. The work in [473] presents an
evaluation of different academic and commercial HLS tools tested on the same set of benchmarks. These
tools have different input languages, perform different internal optimizations, and produce different quality
results, even for the same input languages. The results show that each HLS tool can significantly improve
performance once the designer has mastered benchmark-specific optimizations and constraints. However,
academic HLS tools have a higher learning curve because of a minor focus on usability. Commercial
HLS tools have an advantage because of their better documentation, robustness, and design verification
integration.

In terms of input languages for HLS, most of the HLLs are variants of the C language. However, there
are a few limitations to generate hardware from a pure C specification. First, C lacks the notion of timing
and concurrency. The designer must rely on the HLS tool to create clock-based timing. Similarly, the
designer must specify the concurrency model or rely on HLS to extract the parallelism among operations
or processes. Second, C lacks bit-accurate data types. It only provides “native” data types such as char,
int, and long, whose size is a multiple of a byte. Third, it lacks the concepts of hardware interfaces and
communication channels. SystemC was adopted as HLS language to address all of these limitations [474].
However, SystemC still has not entirely made inroads in the FPGA community. Another common problem
with all C-based languages, including SystemC, is memory access and modeling. These languages have
a flat memory model, and memory access is done through pointers. Either HLS has to decide how to
implement the memories in hardware, or the designer must leverage additional HLS directives or libraries
to model the memory sub-system properly. Finally, in the family of the C-based specification languages
for HLS, the SYCL language is emerging. SYCL (pronounced sickle) is an industry-driven standard that
adds parallelism to C++ to design heterogeneous systems. SYCL programs perform best when paired with
SYCL-aware C++ compilers such as the open-source data-parallel C++ (DPC++) compiler [475].

Apart from the variations of C, Bluespec is an open-source language for the description and synthesis of
hardware based on SystemVerilog. It provides levels of abstraction with a clean semantic that highlights
aspects of the architecture. It can be considered a high-level functional HDL, where modules are
implemented as rules using SystemVerilog syntax. Those rules are called guarded atomic actions and
express behaviors as concurrently cooperating finite state machines (FSMs). Another recent language
among FPGA designers is Chisel. It is based on Scala and supports hardware definition using highly
parameterized generators, object-oriented and functional programming. Similar to an HLS flow, it compiles
into an RTL Verilog implementation.

Although all these languages have helped create efficient hardware and significantly shorten the
development time, specific coding techniques are still necessary. Also, the growth and diversification of the
application domains have shown the limitations of these programming languages. This has further pushed
the level of abstraction to domain-specific languages (DSLs). In recent years, we are observing the growth
of a considerable corpus of DSLs and frameworks for FPGA designs [476, 517]. In a DSL-based approach,
the users and the tools can use domain knowledge to apply static and dynamic optimizations. However, a
domain-specific HLS tool requires an appropriate compiler and a development environment that caters to
the target domain. Table 5 shows some of the DSLs and frameworks developed over the years for FPGA
computing organized by domains of application. Although all the approaches in the table are diverse in
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Table 5. A brief taxonomy of domain-specific languages and frameworks for FPGA applications
Domain and Interfaces DSLs and Frameworks
Signal-Processing HDLCoder [476], LabView [476], Spiral [477], VSIPL [478]
Networking SNORT [479], Click [480], P4 [481], Floem [482]
Databases Glacier [483]
Machine Learning OptiML [484]
Numerics Verilog AMS [485]
Streaming Maxeler [486], SCORE [487], Lime [488], Aetherling [489]
Dataflow OpenDF [490], OpenSpatial [476]
Graphs GraphStep [491], GraphGen [492]
Data Parallel MapReduce [476], Accelerator [493], FCUDA [494], SuSy [495]
Circuit Generators Flopoco [496], JHDL [497], PAMDC [498]
Image processing HIPACC [499], FROST [500], Darkroom [501], RIPL [502], PolyMage [503]
Static JBits [504], TVM [505]
Task based TAPAS [506]
Dynamic PyRTL [507], APARAPI [508], TornadoVM[509], Caldeira et al. [510],

LINQits [511], DHDL [512], Spatial [513]
Type Systems DAHLIA [514]
Verification Kami [515]
Virtualization Cascade [516]

terms of applications, the interesting question is, what are the common denominators? To the best of our
knowledge, most of the approaches are broadly based on two approaches: either the DSL specification gets
directly compiled into the RTL implementation, or the approach leverages source-to-source compilers. In
the latter case, the DSL compiler produces an equivalent source code in a different programming language,
for example, C++, for a more standard HLS flow. As a final concluding remark for this paragraph, the
efforts for designing better HLS compilers and languages are a significant part of present FPGA research.
Furthermore, the work in Table 5 by no means is an exhaustive list. The area of DSLs for FPGA easily
outnumbers the work presented in the table.

Software and Hardware Integration
Running an application as software on a microprocessor is more accessible than designing and running

specialized hardware, but it may result in poor performance and higher power costs. On the other hand,
partitioning an application into software and hardware components is challenging. This process, also known
as hardware/software codesign, divides an application between software running on the microprocessor
and one or more custom hardware or co-processors components to achieve desired performance goals.
Understandably there exists a plethora of research work in this area. The authors in [518] have provided
background information on notable aspects of older FPGA technologies and simultaneously explained the
fundamental architectures and design methods for codesign. Furthermore, the work in [519] is another
comprehensive study that aims to evaluate and analyze the microarchitectural characteristics of state-of-the-
art CPU-FPGA platforms in depth. That paper covers most of the shared-memory platforms with detailed
benchmarks.

The two leading FPGA vendors, Xilinx and Intel, have their own solutions. The Xilinx Runtime Library
(XRT) [520] is implemented as a combination of userspace and kernel driver components. It supports both
PCIe-based boards and MPSoC based embedded platforms. Similarly, Xilinx SDSoc [521] and SDAccel
[522] became publicly available later in late 2015; the former works only on select boards of the Zynq
family of FPGAs, the latter only on selected PCIe-based boards for OpenCL computing. Since 2020
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Xilinx has introduced Vitis [523] as a unified platform. Vitis Unified Software Platform is a comprehensive
development environment to build and seamlessly deploy accelerated applications on Xilinx platforms,
including on-premises Alveo cards, FPGA-instances in the cloud, and embedded platforms. In addition, the
recent efforts of Xilinx under the flagship Versal [524] is also a step towards codesign applications. Intel
has the Open Programmable Acceleration Engine (OPAE) [525] which is the API library for programmers
writing host applications that will leverage the FPGA acceleration. Likewise, Intel oneAPI [526] is an open,
unified programming model built on standards to simplify the development and deployment of data-centric
workloads across CPUs, GPUs, FPGAs, and other accelerators.

Apart from vendor solutions, academia and the open-source community have also attempted to simplify
the integration of applications, operating systems, and hardware acceleration. For a comprehensive analysis,
the reader is referred to the works in [527, 528], which give a historical review and summary on ideas
and key concepts to include reconfigurable computing aspects in operating systems. They also present
an overview of published and available operating systems of the last 30 years targeting reconfigurable
computing. Similarly, the design exploration and engineering of FPGA drivers that are portable across
multiple physical interfaces (PCIe, Ethernet, optical links) have remained a significant part of HW/SW
codesign research. The challenges come from the variety of FPGA boards, the plethora of interfaces, and
the diverse user requirements. Fundamentally, the FPGA drivers should allow the designer to load or
reconfigure an application bitstream and support data transfers between the FPGA and host.

A significant engineering challenge is to consider how to partition driver functionality between the
hardware and software components. One growing research focus is to exploit the spatial parallelism of
FPGA technology through implementing multiple queues on FPGA drivers. A thorough analysis of system-
level drivers for FPGA is out of the scope of our white paper. Readers interested in FPGA system-level
drivers are referred to the work in [529, 530]. The authors of those papers have provided benchmarks of
various mainstream academic and vendor solutions regarding system-level drivers in the FPGA domain.

Despite various existing OS and driver solutions, an open problem that remains is standardization. An
industry-wide standardization would allow for faster development and better portability, and (re)usability of
FPGA applications. There is already ongoing work in this area. Standards like the CCIX consortium [531]
and the Heterogeneous System Architecture (HSA) foundation [532] have already made good progress.
The Case for ML Frameworks for FPGA Design

Machine learning is one of the fastest growing application domains and over the years there has been an
increasing demand for FPGA-based implementations, as the FPGA can achieve latency and throughput
and efficiency requirements through extreme customization of the hardware design leveraging reduced
precision arithmetic, streaming dataflow implementations (as were introduced as spatial architectures), and
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fine-granular sparsity. In order to enable a broad spectrum of users with these customizations and to reduce
the significant engineering effort, compilers and tools are needed that cater to the needs of ML researchers
and domain experts working with FPGAs. Two main ML frameworks are making the effort to fill this
vacuum: hls4ml and FINN. Considering the aforementioned tools, compilers, programming languages, and
codesign solutions, both hls4ml and FINN have the potential to reach a broader scientific community. To
get a better understanding of how such a tool flow works, we consider the FINN compiler in more detail in
the following paragraphs.

The FINN compiler [462] is an open-source framework to generate spatial DPU or streaming dataflow
accelerators on FPGAs. The FINN compiler has a highly modular structure as shown in Figure 12, which
allows the user to interactively generate a specialized architecture for a specific DNN. The framework
provides a frontend, transformation and analysis passes, and multiple backends to explore the design space
in terms of resource and throughput constraints. Brevitas [533], a PyTorch library for quantization-aware
training, is the frontend used in this work. It enables training DNNs with weights and activations quantized
down to a few bits, then exports the trained network into the intermediate representation (IR) used by the
FINN compiler. The transformation and analysis passes help to generate an efficient representation of
the DNN. Finally, the backend contains a code generator that creates synthesizable accelerator descriptions,
which can be implemented as either a standalone Vivado IPI component or integrated into various shells,
including Xilinx Alveo boards and PYNQ embedded platforms.

For further processing, the DNN model must be converted into the IR of the FINN compiler first. The
frontend stage takes care of this by converting the PyTorch description into the IR, called FINN-ONNX.
This IR is based on ONNX [534], an open-source interchange format that uses a protobuf description to
represent DNNs. It comes with several standard operators and allows the user to easily create their own
operators to customize the model. The nodes represent layers and edges carry outputs from one layer to
become inputs to another. The feature to customize the ONNX representation is used in the framework
to add application-specific nodes and attributes. Each node is tagged with the quantization of its inputs,
parameters (weights and activations), and outputs to enable quantization-aware optimizations and the
mapping to backend primitives optimized for quantized computation. During the compiler flow the nodes
will be transformed into a backend-specific variants via a series of transformation passes.

The main principle of the FINN compiler is graph transformation and analysis passes, which change
or analyze the IR of the model. A pass is a function that takes the IR graph as input and either (a) transforms
the DNN by looking for a certain pattern, changing the graph in a specific manner and outputs the modified
graph, or (b) analyzes the DNN to produce metadata about its properties. To bring the model into a
representation from which code can be produced and finally the hardware accelerator can be generated,
various transformations must be applied. The main transformations involved are summarized below.

Although the PyTorch description of the network is mostly quantized, it may still contain some floating-
point operations from e.g. preprocessing, channelwise scaling or batchnorm layers. In order to generate a
hardware accelerator from the model, these floating-point operations must be absorbed into multi-level
thresholds, so that a functionally identical network of integer operations is created. The transformation
to achieve this is called streamlining, as described by Umuroglu and Jahre [535]. During streamlining,
floating-point operations are moved next to each other, collapsed into a single operation, and absorbed into
succeeding multi-thresholding nodes.
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Next, high-level operations in the graph are lowered to simpler implementations that exist in the FINN
HLS-based hardware library. For instance, convolutions will be lowered to a sliding window node followed
by a matrix-vector node, while pooling operations will be implemented by a sliding window followed
by an aggregation operator. The resulting graph now consists of layers that can be converted to hardware
building block equivalents. Each node corresponds to a Vivado HLS C++ function call, from which an IP
block per layer can be generated using Vivado. The resources utilized by each hardware building block can
be controlled through specific attributes passed from FINN to Vivado. For example, multiplications can be
performed with LUTs or DSP blocks, and parameters can be stored in distributed, Block, or Ultra RAM.

Finally, the folding process assigns compute resources to each layer to obtain the desired throughput
with a balanced pipeline by fine-tuning their degree of parallelism. To enable per-layer specialization
without reconfiguration and minimize latency, FINN creates dedicated per-layer hardware interconnected
with FIFO channels, thus the outermost loop across L layers is always fully pipelined. Once the folding
is specified, resource estimates can be produced for each node. There are several ways to estimate the
resources. Even before IP blocks are generated from the HLS layers, an estimate of the resources per layer
can be made by using analytical models based on the concepts from the FINN-R paper [463]. Estimations
can also be extracted from Vivado HLS after IP generation, though these results are still estimations that
may differ from the resource usage of the final implementation due to synthesis optimizations.

The Backend is responsible for consuming the IR graph and backend-specific information to create a
deployment package, also implemented using the transformation concept. To get the inference accelerator,
between the layers FIFOs are inserted, which can be sized automatically by the FINN compiler. Afterwards,
the single IP blocks are stitched together and synthesized. The stitched IP can be manually integrated into a
system, or inserted into an appropriate shell for the target platform. If the target platform is an Alveo card,
the design is exported as a Vivado Design Checkpoint (DCP), followed by generation of Xilinx Vitis [536]
object files and linking.
Summary of Hardware/Software Codesign and FPGA-based Systems

In summary, CPUs are the most general solution for CNN inference but high in power. GPUs and DPUs
offer highest performance, whereby GPU are more expensive in regards to energy cost. FPGAs offer
several tradeoffs that may well fit rapidly moving application domains. FPGAs can adopt any precision and
numerical representation, which provides utmost flexibility and leverages optimization with quantization to
the maximum, whereas hardened approaches need to default to the next higher supported precision where
the reduced precision variable can be embedded. Furthermore, through the spatial dataflow approach, much
lower latency can be achieved. However, the complexity of programming FPGAs limits their deployment.
Tools such as hls4ml and FINN are frameworks specifically created for the ML domain where they automate
the process of hardware generation for the end-user thus hiding the associated design complexity of FPGAs
and enabling them for the previously discussed end applications.
4.5 Beyond-CMOS neuromorphic hardware

With rapidly growing machine learning applications comes the acute need for their efficient hardware
implementations. Most of the efforts are focused on digital CMOS technology, such as implementations
based on general-purpose TPUs/GPUs, FPGAs, and more specialized ML hardware accelerators. The
steady improvements in such hardware platforms’ performance and energy efficiency over the past decade
are attributed to the use of very advanced, sub-10-nm CMOS processes and holistic optimization of
circuits, architectures, and algorithms. It includes, for example, taking advantage of aggressive voltage
supply scaling [537], very deep pipelines and extensive data reuse in architectures [538], and lowering

Frontiers 57



McCarn Deiana, Tran, et al. Fast Machine Learning in Science

the precision of weights and activations of the algorithms [539]. As a result, very compact state-of-the-art
neural networks, such as MobileNet based on 3.4M parameters and 300M multiply-and-add operations
per inference [540], can now be fitted entirely on a single chip. However, on all these fronts, advances are
saturating and cannot rely on the faltering Moore’s law.

On the other hand, further progress would be essential because ML algorithms are getting increasingly
more complex. For example, transformer networks [541], the state-of-the-art approach for many ML
tasks today [541–543], could have hundreds of billions of parameters and perform hundreds of trillions
of operations per inference. Moreover, the transformer’s functional performance typically improves with
the model size [544, 545]. Training such models requires enormous, data-center-scale (e.g., kiloTPU-
year) resources while performing inference on resource-constrained edge devices would be extremely
challenging.

The opportunities for building more efficient hardware may come from biological neural networks.
Indeed, it is believed that the human brain, with its >1000× more synapses than the weights in the
largest transformer network, is extremely energy efficient [546], which serves as a general motivation for
developing neuromorphic hardware [547]. There is a long history of CMOS neuromorphic circuits [548].
However, unleashing the full potential of neuromorphic computing might require novel, beyond-CMOS
device and circuit technologies [549] that allow for more efficient implementations of various functionalities
of biological neural systems.

In this section, the most prominent emerging technology proposals, including those based on emerging
dense analog memory device circuits, are grouped according to the targeted low-level neuromorphic
functionality - see, e.g. reviews in [550–553] and original work utilizing volatile [554–564] and nonvolatile
[565–580, 561, 581] memristors, phase change memories (PCM) [582–588], and nonvolatile NOR [589–
591, 579], and NAND [592–594], and organic volatile [595] floating gate memories, as well as multiferroic
and spintronic [596–600], photonic [601, 602, 588, 603–611], and superconductor [612, 609, 613] circuits.
More discussion is devoted to analog vector-by-matrix multiplication circuits in the following subsection
because of their immediate value for today’s state-of-the-art algorithms. More biologically-realistic
proposals described in the subsequent sections are less emphasized because they target algorithms with
inferior performance. The least mature though very intriguing quantum neuromorphic computing [614, 615]
is not discussed in this brief review.

Analog Vector-by-Matrix Multiplication
The emergence of dense analog-grade nonvolatile memories in the past two decades renewed interest in

analog-circuit implementations of vector-by-matrix multiplication (VMMs) [547, 616, 565, 617, 618, 589,
591], which is the most common and frequently performed operation of any neural network in training or
inference [619, 620]. In the simplest case, such a circuit is comprised of a matrix of memory cells that serve
as configurable resistors for encoding the matrix (synaptic) weights and peripheral sense amplifiers playing
the role of neurons (Fig. 13). The input vector is encoded as voltages applied to rows of the memory matrix
so that the currents flowing into virtually grounded columns correspond to VMM results. Because addition
and multiplication are performed on the physical level, via Kirchhoff’s and Ohm’s laws respectively, such
an approach can be extremely fast and energy-efficient, provided that memory devices are dense and
their conductances are adjustable (i.e., multi-state). The energy efficiency in part comes from performing
“in-memory” computing that reduces the amount of data (corresponding to the synaptic weights) that are
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Figure 13. Analog vector-by-matrix multiplication (VMM) in a crossbar circuit with adjustable crosspoint
devices. For clarity, the output signal is shown for just one column of the array, while sense amplifier
circuitry is not shown. Note that other VMM designs, e.g. utilizing duration of applied voltage pulses,
rather than their amplitudes, for encoding inputs/outputs, are now being actively explored – see, e.g., their
brief review in Ref. [551]

.

moved across or in-and-out of the chip during computation. Such communication overhead could dominate
the energy consumption in the most advanced digital CMOS implementations.

The general challenge towards practical adoption of such circuits, especially when using the most
prospective emerging memory technologies, is variations in I-V characteristics, e.g., in the switching
voltages applied to change the memory state. In light of this challenge, the most straightforward application
is ex-situ trained inference accelerators for the earlier firing-rate neural networks [551], i.e., the so-called
second generation of artificial neural networks (ANNs) with graded-response neurons. In such applications,
memory devices are updated infrequently, only when new inference functionality should be programmed.
Thus, crosspoint devices’ conductances can be tuned with slower, more tolerant to device variations write
schemes. For example, after the weights have been found in the software, memory cells are programmed,
one by one, using feedback write-verify algorithms that can adapt to the unique I-V characteristics of each
device [565]. For the same reason, the switching endurance, i.e., the number of times the memory devices
can be reliably programmed, and the write speed/energy are less critical. Additionally, VMM operations
in the inference of many neural networks could be performed with moderate, less than 8-bit precision,
without incurring accuracy loss [621], which further relaxes requirements for analog properties and permits
more I-V non-idealities and noise.

The most advanced neuromorphic inference circuits have been demonstrated with more mature floating-
gate transistor memory circuits. Up until recently, such circuits were implemented primarily with “synaptic
transistors” [622], which may be fabricated using the standard CMOS technology, and several sophisticated,
efficient systems were demonstrated [546, 618, 623]. However, these devices have relatively large areas
(>103 F 2, where F is the minimum feature size), leading to higher interconnect capacitance and hence
larger time delays. More recent work focused on implementing mixed-signal networks with much denser
(∼40 F2) commercial NOR-flash memory arrays redesigned for analog computing applications [591, 589].
For example, a prototype of a 100k+-cell two-layer perceptron network fabricated in a 180-nm process with
modified NOR-flash memory technology was reported in Ref. [590]. It performed reliably, with negligible
long-term drift and temperature sensitivity, and reproducible classification of the MNIST benchmark
set images with ∼ 95% fidelity and sub-1-µs time delay and sub-20-nJ energy consumption per pattern.
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The energy-delay product was six orders of magnitude better than the best (at that time) 28-nm digital
implementation performing the same task with a similar fidelity [590].

Recent theoretical studies showed that neuromorphic inference circuits could be also implemented with
much denser 3D-NAND flash memories [592–594], projected to scale eventually to 10 terabits per square
inch density. In the long term, the most promising are perhaps circuits based on metal-oxide resistive
switching random access (ReRAM for short, which are also called metal-oxide memristors) [552, 553],
especially their passively integrated (0T1R) technology variety [576]. Indeed, due to the ionic switching
mechanism, ReRAM devices with dimensions below 10 nm still retain excellent analog properties and
year-scale retention [567]. Furthermore, a low-temperature fabrication budget allows monolithic vertical
integration of multiple ReRAM crossbar circuits, further increasing effective density [566]. There has
been rapid progress in scaling up the complexity of ReRAM-based neuromorphic circuit demonstrations
over the past several years [568, 571–576]. However, the ReRAM technology is still in much need
of improvement. In addition to high device variations, another remaining issue is high write currents
and operating conductances, which must be decreased by at least one order of magnitude to reduce the
significant overhead of peripheral circuits [576].

The device requirements for training hardware accelerators are different and much more stringent. For
instance, long retention is not required because weights are frequently updated. That allows using volatile
memories in analog VMM circuits, such as interfacial memristors based on electron trapping/detrapping
switching [554–556] and solid-state-electrolyte memories [595, 557, 549], or even capacitor-based
memories controlling current via crosspoint transistors [584]. However, the toughest challenge is much
higher computing and weight precision required for training operation and the need for efficient schemes
for weight updates, which in turn necessitate drastically tighter device variations. The additional related
requirement is that the change in device conductance upon applying the write pulse should not depend on
its current state (the so-called linearity of update property). Otherwise, accurate conductance adjustment
would require sending a unique write pulse based on the current device state, which would be hardly
compatible with fast (in parallel) weight update.

Phase change memories have also been investigated as candidates for variable resistors in analog VMM
circuits [582, 586], though their main drawback is significant drift in the conductive state over time. High
write endurance, high density (with vertical 3D-NAND-like integrated structure), and long retention are
demonstrated in 1T Ferroelectric RAM devices. There is much excitement about such devices’ applications
in training and inference accelerators [600], though their analog properties are probably inferior to ReRAM.
The significant drawbacks of magnetic devices, such as magnetic tunnel junction memories, are smaller
on/off current ratios, insufficient for practical VMM circuits, and poor analog properties for scaled-down
devices [596].

The potentials of using light for implementing fast and large-fanout interconnect and linear computations,
such as multiply-and-add operation, have motivated photonic neuromorphic computing research [549, 602,
601, 605]. Different implementation flavors, e.g., with fixed [603] and programmable [588, 604, 606, 607]
functionalities, have been recently suggested in the context of modern neural networks. Specifically,
Ref. [603] reports a system of multiple 3D-printed optical layers, each being a mesh of regions (neurons)
with specifically chosen transmission-reflection properties, which can perform pattern classification
inference similar to the convolutional neural networks. By sending a coherent light with amplitude-
encoded input, a useful computation is performed at the speed of light. Specifically, the light diffracts and
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interferes when passing through the optical system and is ultimately steered to the specific region at the
output layer corresponding to the pattern class. Refs. [588, 604, 606, 607] report optical neuromorphic
systems with configurable weights. The inputs are encoded in the light’s energy, and the weights are
encoded by optical attenuation in PCM devices in Ref. [588] so that a product is computed by passing the
light via PCM device. Ref. [607] proposes encoding inputs with light amplitude and uses specific frequency
for different VMM inputs. The light from inputs is combined and passed to the frequency selective weight
banks based on a microring resonator (MRR) that features metal heaters to perform multiplication. In
particular, the MRR coupling (i.e., weight) is controlled via heating by adjusting currents supplied to each
MRR. In these reconfigurable implementations, the product accumulation (i.e., the summation operations
in the VMM) is performed by integrating the light-induced charges on the photodetector. A very aggressive
time-division multiplexing scheme for calculating VMM in which both weights and inputs are encoded
in the coherent light’s amplitude is proposed in Ref. [604]. At one step of such scheme, the input light is
fanned out into n channels and combined with the light-encoded n weights using a beam splitter and then
sent to n homodyne photodetectors to compute n products in parallel. All-optical feed-forward inference
based on Mach-Zehnder interferometer meshes utilizes single-valued decomposition for the weight matrix
[606]. Unitary matrix transformations are implemented with optical beam splitters and phase shifters, while
the diagonal matrix is implemented with optical attenuators.

In principle, sub-aJ energy and sub-ps latency for a single multiply-and-add operation might be possible
with optical computing [605]. However, the main challenge remains much large dimensions of the
optical components and the very high I/O overhead of converting to and from optical domains [549,
601, 605]. The designs that rely on conversion to the electrical domain would be especially affected by
poor integration density of optical devices due to larger electrical communication overheads, which were
shown to overwhelm system-level performance of (much denser) ReRAM based circuits [551]. Optical
systems would ultimately benefit from very wide (�10,000) dot-products and/or utilizing deep time-
division multiplexing to amortize the I/O overhead. However, the possible issues of nonlinearities in charge
integration and utility of such wide dot-product computations remain unclear [605].

Stochastic Vector-by-Matrix Multiplication
Computations performed by the brain are inherently stochastic, in that, e.g. substantially different neural

responses are observed to the repeatable presentation of identical stimuli [624]. Such noisy operation is
mimicked by probabilistic neural networks, such as Boltzmann machines [625] and deep belief neural
networks [626]. In the simplest case, such a network is comprised of binary neurons that compute stochastic
dot products, i.e., probabilistically generate output according to their pre-activation (dot-product) values.

The stochastic functionality can be realized at either the synapse or the neuron side. In the latter, more
straightforward scenario, the neuron first computes a dot-product of its inputs and corresponding weights
deterministically. The result is then passed to some “probabilistic” activation function, e.g., used as an
argument in the sigmoid probability function, to determine the probability of generating high output.
Because of the typically large (> 100) ratio of synapses to neurons, the efficient deterministic dot-product
implementations, e.g., with the already discussed analog VMM circuits, is of primary importance for
realizing high-performance probabilistic neural network hardware. Still, earlier work showed that even
the simplest, deterministic neurons may incur substantial overhead, e.g., occupy up to 30% of the area
and consume up to 40% of energy for some neural network models [551]. Hence neuromorphic hardware
would also benefit from the efficient realization of stochastic neurons.
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Emerging devices can be broadly employed in two ways to achieve stochastic functionality, namely by
using either dynamic or static I-V characteristics of memory devices. Specifically, the former approach is to
utilize intrinsically stochastic switching between memory states in emerging memory devices. For example,
in MTJ memories, thermal fluctuation causes stochastic transition between the low resistance parallel
and high resistance antiparallel states so that the probability of the final memory state upon switching
could be controlled by the spin-torque current [596]. The melt-quench-induced reconfiguration of the
atomic structure is intrinsically stochastic in phase-change memories (PCMs) [583]. These phenomena
were suggested for implementing MTJ [597] and PCM [583] stochastic neurons. The second approach is
to utilize intrinsic and extrinsic current fluctuations in memory devices, e.g., random telegraph [577] and
thermal noise [578] in ReRAM devices, or shot-noise in nanoscale floating gate transistors [578, 579]. In
such an approach, the noisy current flowing into the neuron is compared against a reference value, e.g.
using a simple latch, to implement a probabilistic activation function [579].

The primary concern for the former approach is the limited endurance of many memories and the drift in
the stochastic switching properties upon repeated switching. An additional drawback is a necessity for the
co-integration of multiple memory device technologies for scalable stochastic dot-product circuits, e.g.,
integrating ReRAM-based artificial synapses and MTJ-based neurons. On the other hand, analog circuits
based on ReRAM devices only (Fig. 13), though operating at a much lower signal-to-noise ratio (SNR),
can be utilized to implement stochastic VMM of the second approach. Furthermore, adjusting read voltages
in such a circuit allows for controlling SNR. Hence, the control of effective temperature, i.e. the slope
of sigmoid probability function, enables efficient implementation of stochastic annealing in Boltzmann
machines during runtime. The second approach’s possible downside is slower operation because of lower
read currents (which can be potentially addressed by utilizing external noise instead [579]). Finally, the
impact of noise quality on functional performance is another common concern. This issue has not been
systematically studied yet, though Gaussian-like thermal or shot noise should be more advantageous for
truly random operation.
Spiking Neuron and Synaptic Plasticity

Despite much recent progress in algorithms [627, 628], the most biologically plausible, spiking neural
networks (SNNs) [620] are still inferior in the functional performance to simpler ANNs. If simpler ANNs
would remain superior, the work of efficient SNN hardware could still be justified by the need to efficiently
interface to the brain and/or model it, which in turn could lead to the development of higher-cognition
artificial intelligence algorithms. An additional intriguing feature of SNNs is local weight update rules,
requiring only information from pre- and post-synaptic neurons that could enable large-scale neuromorphic
hardware with real-time training capabilities [629].

In the simplest SNN models, the information is encoded in spike-time correlations [620], while the
network function is defined by the synaptic weights, which are adjusted based on the relative timing of spikes
that are passed via synapses. In addition to VMM, the essential operations in SNNs are leaky-integrate-
and-fire (LIF) functions performed by neurons and various types of synaptic plasticity, such as short-term
plasticity (STP) and long-term potentiation (LTP), and spike-timing-dependent-plasticity (STDP) [620].
LIF neurons mimic the dynamic processes in the neuronal membrane, while synaptic plasticities mimic
learning and memory mechanisms in biological networks. For example, STP is a temporary change in the
synaptic strength implementing a short-term memory. Without immediate reinforcement of synaptic weight
adjustment, the memory would be lost, i.e., the synaptic weight would relax to the original equilibrium state.
On the other hand, the frequently repeated spiking stimulus causes long-term memory, e.g., permanent
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potentiation via the LTP mechanism. STDP is a time-dependent specialization of Hebbian learning. Its
specific goal is to strengthen the synaptic efficiency when pre- and post- synaptic spikes happen in the
expected causal temporal order and weaken it otherwise.

A compact implementation of LIF neurons with biological, ms-scale integration times using conventional
circuit technology is challenging because of the large capacitors that are required. Leaky integration
circuits utilizing volatile memristors (e.g., based on filamentary [562], interfacial [563], and Mott insulator
[564] switching mechanisms) have been suggested to address this problem. In such implementations,
the integrated current is encoded with a conductive state of the volatile memory device. Neuron spiking
functionality was demonstrated with threshold-switching (volatile) memory devices that feature S-type
negative differential resistance (NDR) I-V characteristics [560]. This approach’s general idea is similar
to the oscillator circuits based on S-type (NDR) device connected to a resistor-capacitor circuit [630].
LIF neurons based on spin-torque magnetic memories were simulated in Ref. [598]. In such a neuron,
spin-torque oscillations are employed to generate spikes, while incremental magnetization and its relaxation
mimic integration and leakage, respectively.

STP to LTP transition has been emulated with solid-state-electrolyte devices – see, e.g., original work in
Ref. [558] and more recent work on “diffusive” memristors [559]. Specifically, the short and infrequent
write pulses result in the formation of thin filaments, which are unstable and quickly dissolve, representing
a short memory. However, a thicker and more stable filament can be formed by applying repeated and/or
longer write pulses, thus mimicking transition to the LTP. Different STDP window implementations, e.g.,
using PCM [587] or metal-oxide ReRAM [569] devices, have been suggested by carefully selecting the
shape of pre and post-synaptic write voltage pulses—see a comprehensive review of the emulated synaptic
plasticity with memristive devices in Refs. [631, 632].

Several small-scale spiking neuromorphic systems based on emerging device technologies were
demonstrated, including coincidence detection via STDP mechanism based on metal-oxide memristors [570,
581] and temporal data classification with diffusive memristors [561]. However, the overall progress in
such advanced hardware has been much slower compared to simpler ANNs inference accelerators. The
main reason is more demanding functionality from emerging devices in such applications and hence the
more severe impact of device variations on the SNN operation and performance. For example, SNNs
rely on fixed-magnitude spikes to update the conductance of multiple devices in parallel. Because of that,
change in the conductances could vary drastically even with minor variations in I-V ’s switching voltages,
which in turn leads to very significant variations in STDP characteristics [570]. On the other hand, as
already mentioned above, the implementation of simpler ex-situ trained ANNs is much less challenging
because the write amplitude voltages in such networks can be adjusted uniquely for each device based on
the feedback information during conductance tuning [565].

Superconductor circuits, e.g., based on rapid single flux quantum (RSFQ) variety [633], are naturally
suited for spiking circuits due to information encoding in SFQ voltage pulses. For example, Josephson
Junction spiking neurons operating at up to 50 GHz range have been demonstrated in Ref. [612]. The
historical challenges of such an approach include inferior fabrication technology (which may finally change
given the enormous investments in superconductor quantum computing), the low-temperature operation
that limits its applications, and the lack of efficient analog memory circuits [634]. The photonic spiking
neural networks (e.g., Ref. [608]) and hybrid superconductor / optoelectronic neuromorphic circuits [609]
share the same challenges of the already discussed photonic neuromorphic inference approaches.
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Reservoir Computing
Due to intrinsic memory properties, recurrent neural networks, such as Google Neural Machine

Translation model, are especially suitable for processing sequential or temporal data. Reservoir computing
(RC) networks are a special type of efficiently learning recurrent networks [635], that were motivated
by cortical information processing [636]. Among its variants are liquid state machines [637], which is a
spiking RC network, and echo state networks [638], an RC based on a very sparse recurrent network. The
main component in RC networks is a reservoir, which is a nonlinear recurrent network that maps inputs
into a higher-dimensional spatio-temporal representation and has the property of a fading memory of the
previous inputs and network states. Another component is a readout layer, which maps the intermediate
state to the outputs. All connections in the reservoir are fixed and only weights in the readout layer are
trainable. Because of that and sparse intermediate representation, faster and online algorithms can be
employed for training such networks, which is a primary strength of this approach.

Though both readout and the reservoir can also be realized with the discussed analog VMM circuits,
intriguing opportunities for implementing the reservoir are presented by nonlinear physical phenomena
in superconductor, magnetic, and photonic devices [639]. For example, spoken vowel recognition was
demonstrated with RC in which the reservoir was implemented with four coupled MTJ-based spin-torque
oscillators (STO) [599]. In such a demo, the temporal input corresponding to spoken vowels is first
converted to the frequency domain, which is in turn mapped to the corresponding DC bias currents that are
applied to the MTJ devices. The induced voltage on the STO devices is used as an output of the reservoir.
The reservoir utilizes the nonlinear dependence of the frequency of STOs on the DC current and the
history-dependent transient motions of the MTJ’s free layer spins spin.

Various photonic reservoirs have been suggested [601], e.g. utilizing transient properties of optical
systems with time-delayed feedback [610], or relying on superimposing lights that passively circulates
via waveguides, splitters and combiners, and nonlinear conversion to the electronic domain [611], to
achieve high-dimensional response. The dynamics in the superconductor circuits are recently studied for
efficient and extremely fast reservoir implementation [613]. Specifically, the proposed reservoir is based on
a Josephson transmission line (JTL) formed by a chain of biased JJs. An input pulse from one end of the
JTL causes a rapid cascade of junction phase slips that propagate SFQ pulse to the other end. Because JJs
modulate each others’ currents, a complex dynamical state is achieved.

There are several general concerns with RC computing approaches. On the algorithmic level, RC is
inferior in performance to state-of-the-art approaches and it is unclear whether without further algorithm
improvements such a handicap can be outweighed by the advantages of online training. The main concern
for various hardware implementations is again related to the device variations, e.g., whether the hardware
would be able to produce repeatable results when applying the same input. An additional concern for
magnetic devices is the limited coupling between devices which could impact the effectiveness of the
reservoir.

Hyperdimensional Computing / Associative Memory
Hyperdimensional computing [640] circuits have been recently demonstrated with ReRAM [580] and

PCM [585] devices. The low-level operation in hyperdimensional computing is closely related to that
of associative or content addressable memory [619]. Specifically, at the core of such an approach is an
associative memory array circuit that outputs the closest, in a Hamming distance sense, memory row entry
to a binary input vector serving as a search key. Assuming symmetric binary representation, with −1 and
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+1 encoding, Hamming distance is linearly related to a dot product, i.e., equal to output vector length
minus dot product between the input vector and the stored memory row values. Therefore, the critical
functionality in hyperdimensional computing is again a VMM operation. After the VMM operation has
been completed, its results are passed to the winner-take-all circuit [619] (which is a harder version of a
softmax function [641]) that determines the element with the smallest Hamming distance while discarding
all other outputs. The additional simplification is that both input and weights in VMM are binary.

In principle, binary VMM can be more efficiently implemented in hardware than its fully analog
version. Similar to binary neural networks [539], the apparent tradeoff is a worse functional performance of
hyperdimensional computing. Another essential feature of hyperdimensional computing is the suitability for
fast “one-shot” or incremental learning [640] though at the cost of having a much more redundant memory
array. Note that fast “one-shot” learning is not unique to hyperdimensional computing. For example,
Hebbian learning and its many variants used in training associative neural networks have recursive form
and are naturally incremental in that the weights can be modified only based on current weight values and
the new pattern stored in the network [619].
Concluding Remarks

Many emerging devices and circuit technologies are currently being explored for neuromorphic hardware
implementations. Neuromorphic inference accelerators utilizing analog in-memory computing based
on floating gate memories are perhaps the closest to widespread adoption, given the maturity of such
technology, the practicality of its applications, and competitive performance as compared to conventional
(digital CMOS) circuit implementations. Comparing the performance prospects of other neuromorphic
approaches is not straightforward because many proposals target algorithms with inferior functional
performance, especially those closely mimicking the brain’s operation. Baring a substantial breakthrough
in ML algorithms or the emergence of new applications that could benefit from high-performance low-
accuracy neuromorphic hardware, the inferior functional performance may limit the practicality of other
approaches. The main challenge, much more so for advanced neuromorphic computing concepts, remains
significant variations in the operation of emerging devices.

Frontiers 65



McCarn Deiana, Tran, et al. Fast Machine Learning in Science

5 OUTLOOK
This report has laid out exciting applications of fast ML to enable scientific discovery across a number of
domains. This is a rapidly developing area with many exciting new studies and results appearing often.
However, this is a relatively young area rich with potential and a number of open challenges across a
number of fields. Beyond what has been laid out in the report, we hope that the discussion of scientific
use-cases and their overlaps will provide readers with the inspiration to entertain and pursue additional
applications.

In Section 4, we provided an overview of techniques for developing powerful ML algorithms that need to
be operated in high throughput and low latency environments. This includes both system design and training
as well as efficient deployment and implementation of those ML models. Implementation in hardware is
discussed under two main categories—current conventional CMOS and more speculative beyond CMOS
technologies. In the conventional CMOS case, in light of the end of Moore’s Law, the recent emphasis
has been focused on advanced hardware architectures designed for ML. We gave an overview of popular
and emerging hardware architectures and their strengths and shortcomings. A key area of importance for
the multitude of hardware is their codesign of a given ML algorithm for specific hardware including the
architecture and programmability of that algorithm. An example of a particularly relevant and important
hardware platform is for FPGAs and that is the use-case discussed in Section 4.4. Finally, we concluded
with an overview of beyond CMOS technologies which offer exciting and ultra-efficient technologies on
which we can implement ML models. While these technologies are speculative, they offer potential orders
of magnitude improvement over conventional technologies.

Both ML training and deployment techniques and computer architectures are extremely rapidly moving
fields with new works appearing at a pace difficult to keep up with, even for this report. While new methods
are being introduced continuously in both spaces, it is particularly important to understand the codesign of
new algorithms for different hardware and the ease of use of the tool flows for deploying those algorithms.
Innovations here will allow rapid and broad adoption of powerful new ML hardware. In the case of beyond
CMOS technologies, these practical considerations are important as well as considering the maturity of the
technology, integration into computing architectures, and how to program such devices.

We look forward to revisiting these topics in the near future to see how quickly advances may come in
applications, ML techniques, and hardware platforms—and most importantly their confluence to enable
paradigm-shifting breakthroughs in science.
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[107] Gómez-Navarro C, De Pablo PJ, Gómez-Herrero J, Biel B, Garcia-Vidal FJ, Rubio A, et al. Tuning
the conductance of single-walled carbon nanotubes by ion irradiation in the anderson localization
regime. Nature Materials 4 (2005) 534–539.

[108] Jesse S, Kalinin SV. Band excitation in scanning probe microscopy: sines of change. J. Phys. D Appl.
Phys. 44 (2011) 464006.

[109] Jesse S, Kumar A, Arruda TM, Kim Y, Kalinin SV, Ciucci F. Electrochemical strain microscopy:
Probing ionic and electrochemical phenomena in solids at the nanometer level. MRS Bull. 37 (2012)
651–658.

[110] Kazakova O, Puttock R, Barton C, Corte-León H, Jaafar M, Neu V, et al. Frontiers of magnetic force
microscopy. J. Appl. Phys. 125 (2019) 060901.

[111] Casola F, van der Sar T, Yacoby A. Probing condensed matter physics with magnetometry based on
nitrogen-vacancy centres in diamond. Nature Reviews Materials 3 (2018) 17088.

[112] Benaglia S, Gisbert VG, Perrino AP, Amo CA, Garcia R. Fast and high-resolution mapping of elastic
properties of biomolecules and polymers with bimodal AFM. Nat. Protoc. 13 (2018) 2890–2907.
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[177] Cuoco E, Powell J, Cavaglià M, Ackley K, Bejger M, Chatterjee C, et al. Enhancing gravitational-
wave science with machine learning. Machine Learning: Science and Technology 2 (2020) 011002.
doi:10.1088/2632-2153/abb93a.

[178] Gabbard H, Williams M, Hayes F, Messenger C. Matching matched filtering with deep networks for
gravitational-wave astronomy. Phys. Rev. Lett. 120 (2018) 141103. doi:10.1103/PhysRevLett.120.
141103.

This is a provisional file, not the final typeset article 76



McCarn Deiana, Tran, et al. Fast Machine Learning in Science

[179] Kim K, Harry IW, Hodge KA, Kim YM, Lee CH, Lee HK, et al. Application of artificial neural
network to search for gravitational-wave signals associated with short gamma-ray bursts. Classical
and Quantum Gravity 32 (2015) 245002. doi:10.1088/0264-9381/32/24/245002.

[180] Kim K, Li TGF, Lo RKL, Sachdev S, Yuen RSH. Ranking candidate signals with machine learning
in low-latency searches for gravitational waves from compact binary mergers. Phys. Rev. D 101
(2020) 083006. doi:10.1103/PhysRevD.101.083006.

[181] George D, Huerta E. Deep learning for real-time gravitational wave detection and parameter
estimation: Results with advanced ligo data. Physics Letters B 778 (2018) 64–70. doi:10.1016/j.
physletb.2017.12.053.

[182] Gebhard TD, Kilbertus N, Harry I, Schölkopf B. Convolutional neural networks: A magic bullet for
gravitational-wave detection? Physical Review D 100 (2019). doi:10.1103/physrevd.100.063015.
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