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Abstract—The goal of this special session paper is to introduce
and discuss different breakthrough technologies as well as novel
architectures and how they together may reshape the future of
Artificial Intelligent. Our aim is to provide a comprehensive
overview on the latest advances in brain-inspired computing
and how the latter can be realized when emerging technologies,
using beyond-CMOS devices, are coupled with novel computing
paradigms that go beyond von Neumann architectures. Different
emerging technologies like Ferroelectric Field-Effect Transistor
(FeFET), Phase Change Memory (PCM), and Resistive RAM
(ReRAM) are discussed, demonstrating their promising capa-
bility in building neuromorphic computing architectures that
are inspired by nature. In addition, this special session paper
discusses various novel concepts such as Logic-in-Memory (LIM),
Processing-in-Memory (PIM), and Spiking Neural Networks
(SNNs) towards exploring the far-reaching consequences of
beyond von Neumann computing on accelerating deep learn-
ing. Finally, the latest trends in brain-inspired computing are
summarized into algorithm, technology, and application-driven
innovations towards comparing different PIM architectures.

Index Terms—FeFET, PCM, ReRAM, photonic, neuromorphic,
DNN, SNN, Processing-in-Memory, emerging technology

I. INTRODUCTION

The unprecedented shift towards data-centric computing,

driven by the massive amount of data that deep neural net-

works (DNNs) demand, makes specialized brain-inspired hard-

ware accelerators inevitable. In order to overcome the memory

bottleneck, architectures that go beyond von Neumann princi-

ples are key because they offer processing capability for the

data where it resides. Hence, the continuous need for moving

the data back and forth between processing elements and

memory blocks is eliminated. Towards realizing brain-inspired

computing, emerging non-volatile memory technologies can

play a substantial role. Several technologies are gaining a

remarkable attraction due to their promising capability to build

efficient neuromorphic hardware. In this special session paper,

we discuss three main technologies; Ferroelectric Field-Effect

Transistor (FeFET), Phase Change Memory (PCM), and Re-

sistive RAM (ReRAM) as well as how they can be employed

to accelerate deep learning and build efficient neuromorphic

hardware.

Ultra-Efficient Deep Learning using FeFET: Due to its

CMOS compatibility, FeFET technology is gaining more and

more attention from the semiconductor industry. For example,

GlobalFoundries demonstrated the fabrication of FeFETs using

their commercial state-of-the-art 28nm HKMG CMOS through

a dual-mask patterning [1]. They have also showed that their

10 MiB chips feature 1ns read latency and a very good yield.

Furthermore, Intel has recently demonstrated the fabrication of

FeFETs with an endurance that reaches up to 1012 cycles [2].

FeFET technology can be used not only to build area-efficient

ultra-low power non-volatile memories (NVM), but it also

holds a large promise for neuromorphic applications.

In Section II, we explain how Binarized Neural Networks

(BNNs) can be trained in the presence of errors that may

stem from underlying FeFET-based NVM devices when they

are used to store the model’s data (i.e., parameters, inputs,

activations). We show how hardware/software co-design is a

key to obtain accurate inference based on unreliable FeFET

devices. We also discuss how FeFET can be employed to

build PIM-based XNOR which accelerates further the BNN’s

inference because weights are stored inside the XNOR logic

eliminating the need for memory communications. Finally,

we briefly discuss how error-aware BNN training help in

implementing robust SNNs providing large energy savings.

Photonics Neuromorphic Computing using PCM: En-

abling energy-efficient hardware emulation of key function-

alities of the brain is critical for realizing brain-inspired

computing. In particular, synapses and neurons efficiently im-

plemented at the device/circuit level not only provide building

blocks for executing the event-driven bio-plausible spiking

neural networks (SNNs), but also open up promising new

avenues for crossbar-based analog PIM. However, hardware

implementations of various spiking neuron models such as

(Hodgkin-Huxley and Leaky-Integrate-Fire) and synapses on

CMOS platforms are inefficient in terms of latency, energy,

and area. Emerging device technologies, especially various

types of non-volatile memories (NVMs) such as Resistive

RAM (ReRAM) [3] and Phase Change Memory (PCM) [4],

have been extensively investigated for developing such neuro-
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Fig. 1: Errors due to temperature, stemming from underlying

FeFET devices, are modeled and then injected during the

BNN training. As a result, robust BNNs against run-time

temperature errors are acquired [7].

mimetic devices, although the majority of effort so far has been

made within the electrical domain, relying on the modulation

of device resistances. In Section III, we discuss the recent

demonstrations of ultra-fast photonic computing devices based

on PCMs that can pave the way for fast neuromorphic comput-

ing beyond the electrical domain [5]. Instead of relying on the

changes in resistivity in conventional memrisitive technolo-

gies, phase-change photonic neuro-mimetic devices exploit

optical characteristics (such as transmission and reflection) in

response to the modulation of the complex refraction index

associated with amorphous-crystallized phase changes. We

demonstrate an all-photonic SNN inferencing engine for im-

age classification tasks. The proposed photonic neuromorphic

systems can potentially overcome limitations of electrically

driven NVM-based neuromorphic systems such as high write

latency, sneak paths and IR drops [6].

Algorithm, Technology, and Application-Driven Innova-
tions: In Section IV, we present the latest trends in brain-

inspired computing, and summarize these studies into algo-

rithm, technology, and application-driven innovations. In the

algorithm level, we present two mainstream brain-inspired

algorithms, deep neural networks and spiking neural networks.

We also talk about the hardware design driven by these

two types of neural networks. In the technology level, we

discuss Processing-in-Memory (PIM), a promising architecture

inspired by the in-memory computing nature of our brain.

We compare PIM technologies based on DRAM/SRAM/Non-

Volatile Memory, by analyzing their different targeting prob-

lems, advantages, and challenges. In the application level, we

demonstrate how brain-inspired techniques motivate system

designs for new applications, with a focus on bio-informatics.

We believe more cross-layer innovations will emerge in the

field of brain-inspired computing and reshape the future AI.

II. BRAIN-INSPIRED COMPUTING WITH FERROELECTRIC

FETS: OPPORTUNITIES AND CHALLENGES FOR BNNS

We first introduce BNNs and their advantages to other

models in Sec. II-A. Then, we introduce FeFET, one of the

most promising emerging NVMs in II-B, and discuss its trade-

offs. In Sec. II-C, we show that, despite reliability issues,

FeFET memory can be used as on-chip memory for BNN

accelerators in traditional von Neumann systems. Finally, in

Sec. II-D, we present our visions of highly efficient FeFET-

based beyond von Neumann systems for BNN execution.
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Fig. 2: Accuracy of convolutional BNNs (trained on the Fash-

ionMNIST) plotted over temperature in error-prone FeFET-

based on-chip memory [7]. In the rose plot, the accuracy

is shown when no countermeasures against the temperature-

induced errors are employed. In the green plot, the accuracy

is shown for a BNN acquired with error-tolerance training.

A. Binarized Neural Networks (BNNs)

BNNs are one of the most resource-efficient and hardware-

friendly NN models to date. In BNNs, the weights and

activations are binarized. Due to this, instead of integer or

floating-point-based multiply-accumulate (MAC) operations,

simple XNOR and bitcount can be employed for computations.

This leads to significant latency and energy reductions. With

binarized weights and activations, the operations of layers can

be computed with

popcount(XNOR(W �
i , X

�−1)) > s,

where � describes the layer index, W �
i the weights of neuron

i, X�−1 the inputs to layer �, popcount accumulates the

number of ‘1s’, and s is a learnable threshold parameter

(the comparison returns a binary activation value [8], [9]). In

addition to the reduction of the required memory size from the

binarization of the weights/activations and the simplification

of operations, the on-and off-chip communication overhead is

also significantly decreased.

One additional advantage of BNNs is the error-tolerance. In

the case of integer or floating-point-based NNs, the position

of bit errors matters. For example, in floating-point NNs, one

bit error can cause predictions to become useless, if a bit error

occurs in the exponent field [10], while in integer values, the

flip of the most significant bit causes a change with large

magnitude as well. In contrast to this, in BNNs, a flip of

one bit in a binary weight or activation causes a change of

computation results by merely 1. Furthermore, due to the

binary activation function, values with large magnitude get

saturated. Since BNNs have simplified logic in computations,

it brings to the fore the memory technology used. As on-

chip memory, SRAM is typically used. However, high leakage

power and large area pose difficult challenges for efficient

system designs. Using a non-volatile memory, for example

based on FeFET, considerably reduces the overall inference



cost. Therefore, in efficient BNN inference systems, the in-

efficient SRAM memories should be replaced with efficient

non-volatile FeFET memories.

B. Ferroelectric Field-effect Transistor (FeFET) Memory

FeFET is considered to be one of the most promising

memory technologies. The reason for the ability of FeFET

to store logic ‘0’ and logic ‘1’ lies in the available dipoles

inside the FE. The directions of these dipoles can switch, if a

sufficiently strong electric field is applied. This state is non-

volatile, because the dipoles retain their direction when the

field is turned off. The logic ‘0’ and logic ‘1’ can be read out

from the FeFET based on the intensity of the current returned

(e.g. high or low), which can be converted into the digital

domain with sensing circuits.

The three main advantages of FeFET over other NVMs

are as follows: (1) FeFET is fully CMOS-compatible, which

means that it can be fabricated using current manufac-

turing processes. This has been demonstrated by Global-

Foundries [1]. (2) FeFET-based memories can perform read

and write operations within 1ns latency. This reduces the

differences compared to traditional SRAM technology, while

the energy usage of FeFET is significantly lower [1]. (3)

FeFET memory has the potential to enable extremely low-

density memory, since a cell consists of merely one transistor.

One of the major disadvantages of FeFET is the suscepti-

bility to errors. Manufacturing variability (during production)

and temperature influences (at run-time) can cause variations

in the FE properties. This shrinks available noise margins and

may cause errors. To use FeFET despite the errors, for example

as on-chip memory for BNN inference systems, it is necessary

to extract the error models for the stored bits. With the error

model, the impact of the temperature-induced bit errors on the

inference accuracy of BNNs can be evaluated.

C. BNNs with FeFET-based Memory in von Neumann Systems

In Fig. 1, we show the steps for extracting the temperature-

dependent error model of FeFET transistors. The entire FeFET

device is implemented and modeled in the Technology CAD

(TCAD) framework (Synopsys Sentaurus). We consider vari-

ation in the underlying transistor and the added ferroelectric

layer. After incorporating the temperature and variation effects

in our calibrated TCAD models, we perform Monte-Carlo

simulations for the entire FeFET device. Then, for a certain

read voltage, we extract the probability of error, i.e. we

calculate the probability that logic ‘0’ is read as logic ‘1’ and

a logic ‘1’ is read as logic ‘0’. Details on device physics mod-

eling and reliability analysis for FeFET under the effects of

temperature variability (run-time) and manufacturing (design-

time) variability can be found in [11] and [12], respectively.

With the acquired bit error model, we then evaluate the

resiliency of BNNs against temperature-induced bit errors,

assuming a system that uses FeFET-based on-chip memory.

The system architecture is a von Neumann system, i.e. memory

and processing elements are separated. The system uses tradi-

tional off-chip memory (e.g., reliable DRAM) and unreliable

emerging on-chip FeFET memory.

In Fig. 2, we show that the impact of the temperature bit

errors can be substantial if no bit error training is used and

when no attention is paid to the asymmetry of the bit error

rates (rose curve). We find accuracy degradation of over 25%

for the FASHION dataset at the highest operating temperature

85°. When applying methods to increase the error tolerance of

BNNs, e.g with bit flip injection during training (green curve),

we achieve bit error tolerance for the entire range of operating

temperature. More details about the system model, methods,

experiments, and BNN architectures can be found in [7].

D. Beyond von Neumann: FeFET-based XNOR Logic-In-
Memory for BNNs

One of the most fundamental challenges in existing von

Neumann-based architectures is the memory wall. Compared

to the latency of processing elements, the data movements

cause latencies that are orders of magnitudes higher. To

conquer this challenge, the Logic-In-Memory (LIM) design

paradigm has been proposed, in which computations are per-

formed inside the memory. In the last few years, several studies

have explored LIM-based architectures. For example, for con-

ventional SRAM memories [13] and emerging NVMs [14],

boolean logic functions (e.g., XNOR, NAND, etc.) have been

successfully integrated inside the memory.

Here, we focus on LIM designs for BNNs. The LIM

architecture is in a stark contrast to a traditional von Neumann

architecture, where logic and memory are separated. In the

LIM architecture, the binary weights are stored in a pair of

complementary FeFET gates, which also implement the logic

function XNOR. This means, the weights are already stored in

the memory, and no additional data movement is required for

the weights. The FeFET-based XNOR gates are connected in

a row to perform binary multiplication, while for the popcount

and activation, analog or digital circuits can be employed [14].

However, as shown above, FeFETs are inherently prone to

errors, and error models for more advanced system setups

were not explored in the literature yet. Furthermore, the error

tolerance of BNNs is not fully exploited yet in BNN circuit

design, although several recent studies have proposed methods

to increase the error tolerance significantly with minimal

accuracy cost [7], [15]. Still, the core design in [14] has

served as a template to build more advanced hardware, such

as the neuron circuits in Spiking Neural Networks (SNNs), as

demonstrated in [16], [17]. Recently, the impact of executing

BNNs in SNN hardware was explored in [16]. In that study,

a neuron circuit is composed out of multiple FeFET-based

XNOR gates in a row, where popcount is performed by

Kirchhoff’s circuit law, and a membrane capacitor (serving as

a sum-of-product accumulator) is connected to a comparator

(enabling the conversion of the time to first spike to a discrete

representation). The membrane capacitor size, and therefore,

energy, latency, and area, is optimized by exploiting the error

tolerance of BNNs. We believe that there is further potential



for exploiting the error tolerance of BNNs to build even more

efficient FeFET-and BNN-based SNN circuits.

III. BRAIN-INSPIRED COMPUTING WITH PHASE-CHANGE

PHOTONIC DEVICES: OPPORTUNITIES AND CHALLENGES

In this section, we focus on how to build large-scale SNN

systems with PCM-based photonic devices. First, we show

how the contrasting optical properties of the PCM Ge2Sb2Te5

(GST) can be leveraged to realize basic neuromorphic ele-

ments such as neurons and synapses. We further demonstrate

an in-memory photonic dot product engine, and an all-photonic

SNN inferencing engine for image-classification tasks. We

conclude the section with a discussion highlighting future

opportunities and key challenges for photonic neuromorphic.

A. PCM-based photonic spiking neuron

Basic functional blocks of an SNN consist of spiking

neurons and weighted synaptic connections. The bio-plausible

integrate-and-fire (IF) spiking neuron model and its variants

have been extensively used in large scale SNNs and demon-

strated satisfactory performance on various AI tasks such as

image classfications [18]. We demonstrate photonic IF neuron

based on a GST-embedded ring resonator, leveraging the dis-

tinctive optical characteristics in the crystalline and amorphous

states of GST materials [19]. Conceptually, the writing of

neuron’s membrane potential is realized by exploiting the

phase change dynamics of GST under the heating of incident

EM waves, while the reading operations rely on the ring

resonator’s transmission characteristics [20].

As is shown in Fig.3 (a), a ring resonator comprises a pair of

rectangular waveguides optically coupled to a ring waveguide.

The transmissions of the THROUGH and DROP ports reach a

peak or dip when resonant conditions of the ring is satisfied.

By incorporating a GST element on top of a fraction of the

ring waveguide, light propagation through the waveguide is

modulated due to the tunable evanescent coupling between

the GST element and the adjacent ring [20]. Specifically,

amorphization of GST is triggered when the local device

temperature is elevated above the melting point of GST due

to the considerable heating from the incident electromagnetic

(EM) wave under “WRITE” pulses. When the crystallographic

states of GST evolve between 100% amorphous (a-GST) and

100% crystalline (c-GST), the imaginary component of the

refractive index varies by over 10x [21], leading to significant

change of optical attenuation of the PCM and thus continuous

modulations of the port transmission. During “READ” oper-

ation with an incident EM wave at the resonant wavelength,

crystalline (amorphous) GST induces high (low) transmission

in THROUGH Port and (low) high transmission in DROP Port.

Moreover, incoming spikes of opposite polarities are consid-

ered by connecting two ring resonators with an interferometer.

As is illustrated in Fig.3 (a), the DROP port of the positive

ring resonator and the THROUGH port of the negative ring

resonator are connected to the interferometer, forming the

integration unit of IF neuron. The output magnitude of the

interferometer can reflect the combined effects of positive and

(a)

(b)

Fig. 3: Photonic neuromorphic building blocks: (a) IF Neuron.

(b) Synapse and dot-product engine.

negative inputs, serving the role of membrane potential of

an IF neuron. Note that the change of PCM states during

“WRITE” operations are retained when write pulses are gone,

enabling non-volatility for “READ” operations. Thus at every

time-step, the membrane potential integration is proportional

to the amplitude of the resultant incident spike to the neuron.

Once the GST reaches full amorphization, the membrane

potential exceeds its threshold, resulting in the ‘firing’ action

of a spike which is implemented by an additional firing unit.

The firing unit is made of a photonic amplifier, a circulator

and a rectangular waveguide with an embedded GST element

initially in the crystalline state. For a rectangular waveuguide

with GST, the transmission is low (high) in crystalline (amor-

phous) state. The device is designed so that ‘read’ and ‘write’

phases for the ‘integration unit’ and the ‘firing unit’ alternate

in successive cycles. When the output from integration unit

is strong enough to amorphize the GST in the rectangular

waveguide, a large transmission in the rectangular waveguide

will generate an output spike, followed by a ’RESET’ pulse

that resets the GST to the initial crystalline state which

corresponds to the resting potential of neurons.

B. PCM-based photonic synapse and dot product engine

The integrated micro-ring resonator with embedded PCM

can also implement synaptic devices. Leveraging similar
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Fig. 4: All-photonic MVM engine with both synapse and neuron arrays.

mechanism as used for the aforementioned photonic IF neu-

rons, synaptic connection with varying magnitudes can be

realized based on the impact of the embedded GST on the

transmission of waveguides [22]. A single-bus ring resonator

can achieve the desirable synaptic functionality. Due to the

contrasting imaginary refractive index of a-GST and c-GST,

modulation of transmission can be obtained following the

PCM amorphization dynamics. Specifically, a-GST will have

the minimal transmission in the rectangular bus waveguide

(weakest synaptic connection), while multi-level synaptic

weights can be represented by the partially crystallized GST

leading to intermediate levels of transmission. The synaptic

weights are retained following the non-volatility of GST states.

The PCM-based photonic synapse paves a pathway towards

implementing weighted sum operations, which are ubiquitous

in both SNNs and regular deep artificial neural networks.

It has been demonstrated that the proposed ring resonator

devices with GST components can be linked by a sharing

rectangular bus to execute a parallel summation of input

weighted by a vector of transmission [23]. By leveraging the

wavelength division multiplex (WDM) technology [24], input

spikes can represent a vector by the magnitude of incident EM

waves at multiple wavelength channels Pλi. Therefore, as is

illustrated in Fig. 3 (b), an in-memory dot product engine can

be constructed if the selective wavelengths are matched with

the resonance wavelengths of the synaptic resonators. At the

output port of bus waveguide, we obtain a multi-wavelength

spike with weighted amplitudes. This spike is then fed to a

photodiode (PD) array, which produces a current array with

the magnitude governed by I ∝ ∑
Tλi · Pλi. Note that each

synaptic resonator needs to represent its synaptic weight by

the transmission at a distinctive resonant wavelength, requir-

ing a designed differentiation method (such as varying ring

diameters among the connected resonators). For accurate dot-

product operation, it is necessary to achieve significant isola-

tion between the wavelength channels to minimize channel-

to-channel crosstalk. To this effect, the constraint on the input

vector size of the proposed photonic dot product engine is

determined by the ratio of the free spectral range (FSR) and

the full-width at half maximum (FWHM) of the individual

ring resonator. Based on the proposed single-bus ring resonator

configuration, we demonstrate that wavelength range with an

exemplary design of ring diameters around 1.5 μm is capable

of containing 16 distinctive channels [22].

C. All-photonic SNN inference hardware

All-photonic neuromorphic computing systems can be re-

alized with the integration of the proposed IF neuron and

synaptic dot product engine. Efficient neural network oper-

ations, which relies immensely on matrix operations, desire

to have computing cores with massive parallelism. Therefore,

as is shown in Figure 4, the proposed single-bus resonator

based dot engine is extended to multiple rows to facilitate

matrix-vector multiplications (MVM). A 2D synaptic weight

matrix can be mapped to the transmission of the 2D ring

resonators by modifying the crystalline states of the GST

components therein. Two MVM arrays are used for mapping

of positive and negative weights, respectively. Input with

multiple channels to such a MVM computing core will first

be fed into a multiplexer, and then the WDM signal will be

split evenly based on the row number and connected to the

rectangular bus waveguide at each row. The signals obtained

by photodetector (PD) arrays connected to the outports will

be proportional to the result of MVM. In order to build an

integrated synapse-neuron system, the electrical current from

the PD arrays are further passed onto laser diodes so that the

electrical current can be converted to optical spikes for the

post-synaptic neurons.

We developed a device-to-algorithm framework for evaluat-

ing the functional performance of the proposed neuromorphic

system. The transmission characteristics of the ring resonators

with varying states of the GST element are taken into account

to evaluate the accuracy of the dot-product operation. The

error in the computation stems from the non-idealities induced



by the crosstalk between adjacent channels. At the algorithm

level, we consider a fully connected SNN consisting one

hidden layer. For MNIST hand written digit dataset, the

network architecture is set with M=784, N=500, and P=10,

where M, N, and P are the numbers of neurons in the input

layer, hidden layer and output layer respectively. We adopt

the approach of converting a trained ANN to obtain the

synaptic weights of SNN. It is found that, with non-idealities

of photonic devices included, the SNN implemented with the

behavior of the proposed neuromorphic system can have less

than 0.5% degradation of inference accuracy from the ideal

scenario. The proposed photonic neuromorphic hardware can

offer faster inference operations due to the ultrafast dynamics

with 200 ps pulse width. Moreover, significant improvement in

write latency can be further harvested when synaptic weights

need updates, since the write pulse in photonic system is

subnanoseconds while PCM devices in electrical domain have

write latency around 50-100 ns.

D. Future opportunities and challenges

The demonstrated GST-on-silicon neuromorphic system

suggests a promising pathway of implementing brain-inspired

computing based on PCM. The benefits of NVM is retained

with PCM-based photonics as the non-volatile states of GST

components eliminate extra need for off-chip memory access.

Moreover, compared to the popular NVM based PIM in elec-

trical domain, the photonic approach achieves highly parallel

fan-in leveraging WDM technique, and provides significant

improvement in processor latency. It also offers immunity from

the impact of various circuit-level non-idealities such as sneak

paths and IR drop. We envision that integration of photonic

device and emerging PCM may offer exciting opportunities in

developing high-performance AI processors [25].

However, a few challenges remains before scalable comput-

ing hardware can be realized efficiently on such systems. At

the device level, large-scale photonic system desires shrinking

the physical dimension of ring resonators in order to achieve

high-density integration. But smaller devices will face more

fabrication difficulty and controllability/variability issue with

the integration of GST component. Moreover, the parallelism

of the proposed dot product engine is constrained by the

FSR of ring design, based on the mechanism of synaptic

connection. Increased computational error will be induced

due to interference among adjacent wavelength channels, if

more channels are squeezed into a limited FSR. Time-domain

multiplexing in combination with the low-latency modulation

of PCM, may offer some mitigation of processing MVM with

large array sizes, but further reduction of the writing energy

of PCM is still desirable [26]. Lastly, functional interface

blocks such as analog-digital conversion and electrical-optical

conversion at a matching speed (∼GHz) with the photonic

components consumes significant energy. The proposed neuro-

morphic photonic hardware would benefit at the system level

from the incorporation of low power interfaces such as PD

arrays, laser diodes, and AD/DA circuitries.

IV. BRAIN-INSPIRED COMPUTING: ALGORITHM,

TECHNOLOGY, AND APPLICATION-DRIVEN INNOVATIONS

Brain-inspired computing has the potential to break the

von Neumann bottleneck and build an Artificial Intelligent

(AI) system. In this section, we present the latest trends in

brain-inspired computing, and summarize these studies into

algorithm, technology, and application-driven innovations.

A. DNN and SNN Acceleration

In past years, deep neural networks (DNNs) have been

proved its power in a wide range of applications, such as com-

puter vision, speech recognition, and language processing. The

design principles of DNNs are borrowed from the mechanism

of brain, where information is stored in neurons and passed

through synapses. Compared with DNNs, spiking neural net-

works (SNNs) exhibit a closer scheme to the biological neuron

models which attract extensive attention. Meanwhile, some re-

sent studies show advantages of SNNs in processing sparse and

noisy data. However, with the development of algorithms, the

hardware demand for DNNs and SNNs increased dramatically.

many studies make effort to design efficient accelerators that

reduce the hardware resources and execution latency. Such that

the deployment of DNNs/SNNs in the real system becomes

achievable.

1) DNN Accelerators: Many works accelerate DNNs by

exploiting reconfigurable computation parallelism or dataflow.

For instance, Evolver [27] designs hybrid dataflows to accel-

erate different DNN structures with high resource utilization.

There are also accelerators that explore the sparsity in pro-

cessing DNNs. These accelerators design special architectures

to skip operations with zero activations and weights [28]. Zero

activations are produced by ReLU activation, and zero weights

are caused by redundancy in DNN models.

2) Preliminary of SNNs: One of the most distinct character

of SNNs is the dynamic neuron modeling that simulate the

brain behaviour. Leaky integrate-and-fire is the most widely

used model as Figure 5(a). Each neuron is composed by mem-

brane potential u and spike s. Once the neuron’s membrane

potential is greater than a threshold thf , it will generate a

weighted spike to the connected neurons and its membrane

potential is rest to rst. Otherwise, the membrane potential

will decay with a factor α.

Because of the special neuron modeling, SNNs usually

involve a more complex spatial information propagation. Also,

the dynamic modeling demands an additional temporal axis

to propagate information along time as Figure 5(b). These

characters lead the inefficiency of commercial platforms to

run SNNs. Thus, many studies design accelerators to boost

the inference and training of SNNs.

3) SNN Accelerators: Currently, most of neuromorphic

chips tend to accelerate the inference stage of SNNs. Tianjic

[29] designs a hybrid architecture with unified routing infras-

tructure that can deploy both DNNs and SNNs.

Despite the inference accelerator, some studies design train-

ing accelerators for different SNN learning algorithms. Most



Fig. 5: Preliminary of SNNs: (a) Neuron modeling. (b) Infor-

mation propagation in SNN inference.

training neuromorphic chips target on the local synaptic pla-

siticity learning rules such as spike time dependent plasiticity

(STDP). Recently, H2Learn [30] designs a training neuro-

morphic chip that can support back propagation through time

(BPTT) learning algorithm. Specifically, the BPTT learning

algorithm can improve the model accuracy a lot and H2learn

utilizes the binary input pattern and the sparsity during learn-

ing to boost the BPTT based learning efficiently.

B. PIM for NN Acceleration

Ubiquitous NN applications have motivated many NN ac-

celerator designs in the past few years. However, as the

NN model size increases, massive data movement between

computing units and memory becomes a bottleneck in the

computing system. Processing-in-Memory (PIM), inspired by

the in-memory computing nature of our brain, is a promising

hardware technology that tackles the memory bottleneck in

conventional accelerators. The basic idea of PIM is placing

the multiply-accumulate (MAC) units near or in the memory,

thus utilizing the high bandwidth in memory to reduce data

movement latency and energy. Based on the implementation

logic of MAC in memory, PIM architectures can be classified

into two categories: analog PIM and digital PIM, as illustrated

in Fig. 7.

1) Analog PIM: In comparison to conventional digital NN

accelerators with separate MAC units and memory (Fig. 7(a)),

analog PIM realizes in-memory MAC based in current or

voltage (Fig. 7(b)). Analog PIM is usually implemented in

SRAM or non-volatile memory like ReRAM. Input digital-

to-analog converters (DAC) and output analog-to-digital con-

verters (ADC) are required in the peripheral circuits. For one

NN layer (O = I ∗W ), the weights (W ) don’t need reading

out of memory for MAC computation, saving lots of data

movement. For the MAC operation itself, analog computing

usually consumes less power than conventional digital logic.

However, in a practical analog PIM, only a limited number

of rows and columns in a cell array can be activated each
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O
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Fig. 6: Architectures for NN acceleration: (a) Digital Accelera-

tor. (b) Analog PIM. (c) Digital PIM. (W: Weights in memory.

I, O: Inputs and Outputs.)

cycle [31]. The number of activated rows depends on accuracy

limitations, because activating too many rows will cause large

accumulated analog deviation that harms NN accuracy. To

save the overhead of high-resolution ADCs, usually multiple

columns share one ADC in analog PIM, which limits the

number of activated columns. As a result, practical analog PIM

works in a smaller granularity than the entire array, called an

operation unit (OU).

2) Digital PIM: As the requirement for higher accuracy

and robustness arises, there is a new trend of integrating digital

logic into PIM design, which is called digital PIM (Fig. 7(c)).

According to the base memory devices, digital PIM can be

further classified as SRAM-based and DRAM-based.

Recently, TSMC’s implements a digital PIM in ISSCC’21

[32] by attaching only one NOR gate to each cell and placing

accumulators at the subarray level. All the in-memory logic

can be activated concurrently to achieve almost 100% array

utilization, with no accuracy loss caused by PIM.

Unlike SRAM-based digital PIM, DRAM-based digital

PIM targets a different problem, which performs computation

in DRAM to optimize off-chip memory access. For exam-

ple, Samsung’s recent HBM-PIM integrates computing units

deeper into the bank level of their 3D DRAM [33]. Such

DRAM-based PIMs can be used to accelerate much larger

scale NN models.

C. Go Beyond NN, PIM-based Bioinformatics Computing

As mentioned above, PIM brings lots of opportunities to

the acceleration of NN. Actually, besides NN, a wide range of

important applications can also benefit from PIM, for example

graph analytics, image processing, and bioinformatics. In

this subsection, we use PIM based hardware acceleration of

bioinformatics as an example to demonstrate the benefits of

PIM to those emerging applications. Bioinformatics is getting

more and more important and it is developing rapidly, because

it is helpful to, for example, wildlife conservation, under-

standing of human disease, and precise medical care. As an

important example, during the global pandemic Coronavirus

Disease 2019 (COVID-19), the Next Generation Sequencing

(NGS) technology plays an crucial role during the disease

characterization. Unfortunately, with the advancement of the
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NGS technology, bio-data grows exponentially, putting for-

ward great challenges for data processing in bioinformatic.

Due to the importance of bioinformatics, many hardware

approaches have been explored to accelerate different applica-

tions in bioinformatics. Most of those approaches are compute-

centric, i.e., based on CPU/GPU/FPGA. However, the space

for performance improvement is limited for compute-centric

accelerators, because many of their target applications in

bioinformatics are memory-bounds. To address the key issues

of hardware acceleration for bioinformatics from the memory

perspective, many researchers propose PIM solutions for bioin-

formatics, which can be divided into two major categories:

1) Emerging Memory based Architectures: Many re-

searchers leverage emerging memory technologies, mainly

ReRAM, to build domain-specific accelerators for bioinfor-

matics. As shown in Fig. 7 (a), those architectures store

the DNA data within the ReRAM cells and perform parallel

computation/comparison within the ReRAM array in place.

Compared with the previous compute-centric accelerators,

those emerging memory based PIM accelerators for bioin-

formatics can achieve significant performance improvement

and energy reduction due to the features of high density, low

power consumption, and ability to perform parallel operations

in ReRAM [34].

2) DRAM based Architectures: Although emerging mem-

ory technologies bring significant performance improvement,

those technologies are relatively long-term and cannot be

adopted in the foreseeable future [35], [36]. To address this

issue of the emerging memory based approaches, DRAM

based PIM architectures for bioinformatics are proposed.

Those DRAM based PIM architectures for bioinformatics can

also be divided into two categories:

• 3D-Stacking DRAM: Hybrid Memory Cube (HMC) has

been leveraged in previous work to accelerate bioin-

formatics. As shown in Fig. 7 (b), those HMC based

accelerators place processing elements on the logical die

of HMC and leverage the high bandwidth of Through-

Silicon Vias (TSV) to access data in the DRAM dies.

• Dual-Inline Memory Module (DIMM): As shown in

Fig. 7 (c), DIMMs based architectures, such as MEDAL

and NEST [35], [36], insert processing elements into the

PCB board of each DIMM, leaving the cost-sensitive

DRAM dies on the DIMM untouched. Compared with

the above 3D-stacking memory based approaches, those

DIMM based solutions are more cost-effective and prac-

tical due to their non-invasive designs.

To summarize, besides NN, many different applications

involve huge amount of data and the memory, instead of

the computation, becomes their bottlenecks. We use an bioin-

formatics as an example application to demonstrate the new

design opportunities brought by PIM and the possible explo-

rations we can do with PIM.

V. CONCLUSION

The inherent limitations in the existing von Neumann ar-

chitectures in which memory communications form a pro-

found bottleneck for data-centric application largely increase

the need for novel computing paradigms. The journey to

achieve that starts from the underlying technology in which

novel beyond-CMOS devices are required. However, such

innovations in technology need to be combined with novel

architectures. Otherwise, neuromorphic computing cannot be

efficiently realized. Most importantly, hardware/software co-

design is, in fact, a key to overcome the inherent reliability

challenges that come with novel beyond-CMOS devices. In

this special session paper, we have provided a comprehensive

overview on how neuromorphic photonics can be implemented

using PCM technologies. We have also discussed how we

can implement reliable BNNs that use unreliable FeFET-based

NVM. Finally, we discussed the latest trends in brain-inspired

computing, and summarized these studies into algorithm,

technology, and application-driven innovations.
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