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Abstract—The goal of this special session paper is to introduce
and discuss different breakthrough technologies as well as novel
architectures and how they together may reshape the future of
Artificial Intelligent. Our aim is to provide a comprehensive
overview on the latest advances in brain-inspired computing
and how the latter can be realized when emerging technologies,
using beyond-CMOS devices, are coupled with novel computing
paradigms that go beyond von Neumann architectures. Different
emerging technologies like Ferroelectric Field-Effect Transistor
(FeFET), Phase Change Memory (PCM), and Resistive RAM
(ReRAM) are discussed, demonstrating their promising capa-
bility in building neuromorphic computing architectures that
are inspired by nature. In addition, this special session paper
discusses various novel concepts such as Logic-in-Memory (LIM),
Processing-in-Memory (PIM), and Spiking Neural Networks
(SNNs) towards exploring the far-reaching consequences of
beyond von Neumann computing on accelerating deep learn-
ing. Finally, the latest trends in brain-inspired computing are
summarized into algorithm, technology, and application-driven
innovations towards comparing different PIM architectures.

Index Terms—FeFET, PCM, ReRAM, photonic, neuromorphic,
DNN, SNN, Processing-in-Memory, emerging technology

I. INTRODUCTION

The unprecedented shift towards data-centric computing,
driven by the massive amount of data that deep neural net-
works (DNNs) demand, makes specialized brain-inspired hard-
ware accelerators inevitable. In order to overcome the memory
bottleneck, architectures that go beyond von Neumann princi-
ples are key because they offer processing capability for the
data where it resides. Hence, the continuous need for moving
the data back and forth between processing elements and
memory blocks is eliminated. Towards realizing brain-inspired
computing, emerging non-volatile memory technologies can
play a substantial role. Several technologies are gaining a
remarkable attraction due to their promising capability to build
efficient neuromorphic hardware. In this special session paper,
we discuss three main technologies; Ferroelectric Field-Effect
Transistor (FeFET), Phase Change Memory (PCM), and Re-
sistive RAM (ReRAM) as well as how they can be employed
to accelerate deep learning and build efficient neuromorphic
hardware.
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Ultra-Efficient Deep Learning using FeFET: Due to its
CMOS compatibility, FeFET technology is gaining more and
more attention from the semiconductor industry. For example,
GlobalFoundries demonstrated the fabrication of FeFETs using
their commercial state-of-the-art 28nm HKMG CMOS through
a dual-mask patterning [1]. They have also showed that their
10 MiB chips feature Ins read latency and a very good yield.
Furthermore, Intel has recently demonstrated the fabrication of
FeFETs with an endurance that reaches up to 102 cycles [2].
FeFET technology can be used not only to build area-efficient
ultra-low power non-volatile memories (NVM), but it also
holds a large promise for neuromorphic applications.

In Section II, we explain how Binarized Neural Networks
(BNNs) can be trained in the presence of errors that may
stem from underlying FeFET-based NVM devices when they
are used to store the model’s data (i.e., parameters, inputs,
activations). We show how hardware/software co-design is a
key to obtain accurate inference based on unreliable FeFET
devices. We also discuss how FeFET can be employed to
build PIM-based XNOR which accelerates further the BNN’s
inference because weights are stored inside the XNOR logic
eliminating the need for memory communications. Finally,
we briefly discuss how error-aware BNN training help in
implementing robust SNNs providing large energy savings.

Photonics Neuromorphic Computing using PCM: En-
abling energy-efficient hardware emulation of key function-
alities of the brain is critical for realizing brain-inspired
computing. In particular, synapses and neurons efficiently im-
plemented at the device/circuit level not only provide building
blocks for executing the event-driven bio-plausible spiking
neural networks (SNNs), but also open up promising new
avenues for crossbar-based analog PIM. However, hardware
implementations of various spiking neuron models such as
(Hodgkin-Huxley and Leaky-Integrate-Fire) and synapses on
CMOS platforms are inefficient in terms of latency, energy,
and area. Emerging device technologies, especially various
types of non-volatile memories (NVMs) such as Resistive
RAM (ReRAM) [3] and Phase Change Memory (PCM) [4],
have been extensively investigated for developing such neuro-
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Fig. 1: Errors due to temperature, stemming from underlying
FeFET devices, are modeled and then injected during the
BNN training. As a result, robust BNNs against run-time
temperature errors are acquired [7].

mimetic devices, although the majority of effort so far has been
made within the electrical domain, relying on the modulation
of device resistances. In Section III, we discuss the recent
demonstrations of ultra-fast photonic computing devices based
on PCMs that can pave the way for fast neuromorphic comput-
ing beyond the electrical domain [5]. Instead of relying on the
changes in resistivity in conventional memrisitive technolo-
gies, phase-change photonic neuro-mimetic devices exploit
optical characteristics (such as transmission and reflection) in
response to the modulation of the complex refraction index
associated with amorphous-crystallized phase changes. We
demonstrate an all-photonic SNN inferencing engine for im-
age classification tasks. The proposed photonic neuromorphic
systems can potentially overcome limitations of electrically
driven NVM-based neuromorphic systems such as high write
latency, sneak paths and IR drops [6].

Algorithm, Technology, and Application-Driven Innova-
tions: In Section IV, we present the latest trends in brain-
inspired computing, and summarize these studies into algo-
rithm, technology, and application-driven innovations. In the
algorithm level, we present two mainstream brain-inspired
algorithms, deep neural networks and spiking neural networks.
We also talk about the hardware design driven by these
two types of neural networks. In the technology level, we
discuss Processing-in-Memory (PIM), a promising architecture
inspired by the in-memory computing nature of our brain.
We compare PIM technologies based on DRAM/SRAM/Non-
Volatile Memory, by analyzing their different targeting prob-
lems, advantages, and challenges. In the application level, we
demonstrate how brain-inspired techniques motivate system
designs for new applications, with a focus on bio-informatics.
We believe more cross-layer innovations will emerge in the
field of brain-inspired computing and reshape the future Al

II. BRAIN-INSPIRED COMPUTING WITH FERROELECTRIC
FETS: OPPORTUNITIES AND CHALLENGES FOR BNNs

We first introduce BNNs and their advantages to other
models in Sec. II-A. Then, we introduce FeFET, one of the
most promising emerging NVMs in II-B, and discuss its trade-
offs. In Sec. II-C, we show that, despite reliability issues,
FeFET memory can be used as on-chip memory for BNN
accelerators in traditional von Neumann systems. Finally, in
Sec. II-D, we present our visions of highly efficient FeFET-
based beyond von Neumann systems for BNN execution.
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Fig. 2: Accuracy of convolutional BNNs (trained on the Fash-
ionMNIST) plotted over temperature in error-prone FeFET-
based on-chip memory [7]. In the rose plot, the accuracy
is shown when no countermeasures against the temperature-
induced errors are employed. In the green plot, the accuracy
is shown for a BNN acquired with error-tolerance training.

A. Binarized Neural Networks (BNNs)

BNNs are one of the most resource-efficient and hardware-
friendly NN models to date. In BNNs, the weights and
activations are binarized. Due to this, instead of integer or
floating-point-based multiply-accumulate (MAC) operations,
simple XNOR and bitcount can be employed for computations.
This leads to significant latency and energy reductions. With
binarized weights and activations, the operations of layers can
be computed with

popcount( X NOR(W{, X7 1)) > s,

where ¢ describes the layer index, W/ the weights of neuron
i, X1 the inputs to layer ¢, popcount accumulates the
number of ‘1s’, and s is a learnable threshold parameter
(the comparison returns a binary activation value [8], [9]). In
addition to the reduction of the required memory size from the
binarization of the weights/activations and the simplification
of operations, the on-and off-chip communication overhead is
also significantly decreased.

One additional advantage of BNNS is the error-tolerance. In
the case of integer or floating-point-based NN, the position
of bit errors matters. For example, in floating-point NNs, one
bit error can cause predictions to become useless, if a bit error
occurs in the exponent field [10], while in integer values, the
flip of the most significant bit causes a change with large
magnitude as well. In contrast to this, in BNNs, a flip of
one bit in a binary weight or activation causes a change of
computation results by merely 1. Furthermore, due to the
binary activation function, values with large magnitude get
saturated. Since BNNs have simplified logic in computations,
it brings to the fore the memory technology used. As on-
chip memory, SRAM is typically used. However, high leakage
power and large area pose difficult challenges for efficient
system designs. Using a non-volatile memory, for example
based on FeFET, considerably reduces the overall inference



cost. Therefore, in efficient BNN inference systems, the in-
efficient SRAM memories should be replaced with efficient
non-volatile FeFET memories.

B. Ferroelectric Field-effect Transistor (FeFET) Memory

FeFET is considered to be one of the most promising
memory technologies. The reason for the ability of FeFET
to store logic ‘0’ and logic ‘1’ lies in the available dipoles
inside the FE. The directions of these dipoles can switch, if a
sufficiently strong electric field is applied. This state is non-
volatile, because the dipoles retain their direction when the
field is turned off. The logic ‘0’ and logic ‘1’ can be read out
from the FeFET based on the intensity of the current returned
(e.g. high or low), which can be converted into the digital
domain with sensing circuits.

The three main advantages of FeFET over other NVMs
are as follows: (1) FeFET is fully CMOS-compatible, which
means that it can be fabricated using current manufac-
turing processes. This has been demonstrated by Global-
Foundries [1]. (2) FeFET-based memories can perform read
and write operations within 1ns latency. This reduces the
differences compared to traditional SRAM technology, while
the energy usage of FeFET is significantly lower [1]. (3)
FeFET memory has the potential to enable extremely low-
density memory, since a cell consists of merely one transistor.

One of the major disadvantages of FeFET is the suscepti-
bility to errors. Manufacturing variability (during production)
and temperature influences (at run-time) can cause variations
in the FE properties. This shrinks available noise margins and
may cause errors. To use FeFET despite the errors, for example
as on-chip memory for BNN inference systems, it is necessary
to extract the error models for the stored bits. With the error
model, the impact of the temperature-induced bit errors on the
inference accuracy of BNNs can be evaluated.

C. BNNs with FeFET-based Memory in von Neumann Systems

In Fig. 1, we show the steps for extracting the temperature-
dependent error model of FeFET transistors. The entire FeFET
device is implemented and modeled in the Technology CAD
(TCAD) framework (Synopsys Sentaurus). We consider vari-
ation in the underlying transistor and the added ferroelectric
layer. After incorporating the temperature and variation effects
in our calibrated TCAD models, we perform Monte-Carlo
simulations for the entire FeFET device. Then, for a certain
read voltage, we extract the probability of error, i.e. we
calculate the probability that logic ‘0’ is read as logic ‘1’ and
a logic ‘1’ is read as logic ‘0’. Details on device physics mod-
eling and reliability analysis for FeFET under the effects of
temperature variability (run-time) and manufacturing (design-
time) variability can be found in [11] and [12], respectively.

With the acquired bit error model, we then evaluate the
resiliency of BNNs against temperature-induced bit errors,
assuming a system that uses FeFET-based on-chip memory.
The system architecture is a von Neumann system, i.e. memory
and processing elements are separated. The system uses tradi-

tional off-chip memory (e.g., reliable DRAM) and unreliable
emerging on-chip FeFET memory.

In Fig. 2, we show that the impact of the temperature bit
errors can be substantial if no bit error training is used and
when no attention is paid to the asymmetry of the bit error
rates (rose curve). We find accuracy degradation of over 25%
for the FASHION dataset at the highest operating temperature
85°. When applying methods to increase the error tolerance of
BNN:gs, e.g with bit flip injection during training (green curve),
we achieve bit error tolerance for the entire range of operating
temperature. More details about the system model, methods,
experiments, and BNN architectures can be found in [7].

D. Beyond von Neumann: FeFET-based XNOR Logic-In-
Memory for BNNs

One of the most fundamental challenges in existing von
Neumann-based architectures is the memory wall. Compared
to the latency of processing elements, the data movements
cause latencies that are orders of magnitudes higher. To
conquer this challenge, the Logic-In-Memory (LIM) design
paradigm has been proposed, in which computations are per-
formed inside the memory. In the last few years, several studies
have explored LIM-based architectures. For example, for con-
ventional SRAM memories [13] and emerging NVMs [14],
boolean logic functions (e.g., XNOR, NAND, etc.) have been
successfully integrated inside the memory.

Here, we focus on LIM designs for BNNs. The LIM
architecture is in a stark contrast to a traditional von Neumann
architecture, where logic and memory are separated. In the
LIM architecture, the binary weights are stored in a pair of
complementary FeFET gates, which also implement the logic
function XNOR. This means, the weights are already stored in
the memory, and no additional data movement is required for
the weights. The FeFET-based XNOR gates are connected in
a row to perform binary multiplication, while for the popcount
and activation, analog or digital circuits can be employed [14].

However, as shown above, FeFETs are inherently prone to
errors, and error models for more advanced system setups
were not explored in the literature yet. Furthermore, the error
tolerance of BNNs is not fully exploited yet in BNN circuit
design, although several recent studies have proposed methods
to increase the error tolerance significantly with minimal
accuracy cost [7], [15]. Still, the core design in [14] has
served as a template to build more advanced hardware, such
as the neuron circuits in Spiking Neural Networks (SNNs), as
demonstrated in [16], [17]. Recently, the impact of executing
BNNs in SNN hardware was explored in [16]. In that study,
a neuron circuit is composed out of multiple FeFET-based
XNOR gates in a row, where popcount is performed by
Kirchhoff’s circuit law, and a membrane capacitor (serving as
a sum-of-product accumulator) is connected to a comparator
(enabling the conversion of the time to first spike to a discrete
representation). The membrane capacitor size, and therefore,
energy, latency, and area, is optimized by exploiting the error
tolerance of BNNs. We believe that there is further potential



for exploiting the error tolerance of BNNs to build even more
efficient FeFET-and BNN-based SNN circuits.

III. BRAIN-INSPIRED COMPUTING WITH PHASE-CHANGE
PHOTONIC DEVICES: OPPORTUNITIES AND CHALLENGES

In this section, we focus on how to build large-scale SNN
systems with PCM-based photonic devices. First, we show
how the contrasting optical properties of the PCM Ge,Sb,Tes
(GST) can be leveraged to realize basic neuromorphic ele-
ments such as neurons and synapses. We further demonstrate
an in-memory photonic dot product engine, and an all-photonic
SNN inferencing engine for image-classification tasks. We
conclude the section with a discussion highlighting future
opportunities and key challenges for photonic neuromorphic.

A. PCM-based photonic spiking neuron

Basic functional blocks of an SNN consist of spiking
neurons and weighted synaptic connections. The bio-plausible
integrate-and-fire (IF) spiking neuron model and its variants
have been extensively used in large scale SNNs and demon-
strated satisfactory performance on various Al tasks such as
image classfications [18]. We demonstrate photonic IF neuron
based on a GST-embedded ring resonator, leveraging the dis-
tinctive optical characteristics in the crystalline and amorphous
states of GST materials [19]. Conceptually, the writing of
neuron’s membrane potential is realized by exploiting the
phase change dynamics of GST under the heating of incident
EM waves, while the reading operations rely on the ring
resonator’s transmission characteristics [20].

As is shown in Fig.3 (a), a ring resonator comprises a pair of
rectangular waveguides optically coupled to a ring waveguide.
The transmissions of the THROUGH and DROP ports reach a
peak or dip when resonant conditions of the ring is satisfied.
By incorporating a GST element on top of a fraction of the
ring waveguide, light propagation through the waveguide is
modulated due to the tunable evanescent coupling between
the GST element and the adjacent ring [20]. Specifically,
amorphization of GST is triggered when the local device
temperature is elevated above the melting point of GST due
to the considerable heating from the incident electromagnetic
(EM) wave under “WRITE” pulses. When the crystallographic
states of GST evolve between 100% amorphous (a-GST) and
100% crystalline (c-GST), the imaginary component of the
refractive index varies by over 10x [21], leading to significant
change of optical attenuation of the PCM and thus continuous
modulations of the port transmission. During “READ” oper-
ation with an incident EM wave at the resonant wavelength,
crystalline (amorphous) GST induces high (low) transmission
in THROUGH Port and (low) high transmission in DROP Port.

Moreover, incoming spikes of opposite polarities are consid-
ered by connecting two ring resonators with an interferometer.
As is illustrated in Fig.3 (a), the DROP port of the positive
ring resonator and the THROUGH port of the negative ring
resonator are connected to the interferometer, forming the
integration unit of IF neuron. The output magnitude of the
interferometer can reflect the combined effects of positive and
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Fig. 3: Photonic neuromorphic building blocks: (a) IF Neuron.
(b) Synapse and dot-product engine.

negative inputs, serving the role of membrane potential of
an IF neuron. Note that the change of PCM states during
“WRITE” operations are retained when write pulses are gone,
enabling non-volatility for “READ” operations. Thus at every
time-step, the membrane potential integration is proportional
to the amplitude of the resultant incident spike to the neuron.

Once the GST reaches full amorphization, the membrane
potential exceeds its threshold, resulting in the ‘firing’ action
of a spike which is implemented by an additional firing unit.
The firing unit is made of a photonic amplifier, a circulator
and a rectangular waveguide with an embedded GST element
initially in the crystalline state. For a rectangular waveuguide
with GST, the transmission is low (high) in crystalline (amor-
phous) state. The device is designed so that ‘read’ and ‘write’
phases for the ‘integration unit’ and the ‘firing unit’ alternate
in successive cycles. When the output from integration unit
is strong enough to amorphize the GST in the rectangular
waveguide, a large transmission in the rectangular waveguide
will generate an output spike, followed by a 'RESET’ pulse
that resets the GST to the initial crystalline state which
corresponds to the resting potential of neurons.

B. PCM-based photonic synapse and dot product engine

The integrated micro-ring resonator with embedded PCM
can also implement synaptic devices. Leveraging similar
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mechanism as used for the aforementioned photonic IF neu-
rons, synaptic connection with varying magnitudes can be
realized based on the impact of the embedded GST on the
transmission of waveguides [22]. A single-bus ring resonator
can achieve the desirable synaptic functionality. Due to the
contrasting imaginary refractive index of a-GST and c-GST,
modulation of transmission can be obtained following the
PCM amorphization dynamics. Specifically, a-GST will have
the minimal transmission in the rectangular bus waveguide
(weakest synaptic connection), while multi-level synaptic
weights can be represented by the partially crystallized GST
leading to intermediate levels of transmission. The synaptic
weights are retained following the non-volatility of GST states.

The PCM-based photonic synapse paves a pathway towards
implementing weighted sum operations, which are ubiquitous
in both SNNs and regular deep artificial neural networks.
It has been demonstrated that the proposed ring resonator
devices with GST components can be linked by a sharing
rectangular bus to execute a parallel summation of input
weighted by a vector of transmission [23]. By leveraging the
wavelength division multiplex (WDM) technology [24], input
spikes can represent a vector by the magnitude of incident EM
waves at multiple wavelength channels P);. Therefore, as is
illustrated in Fig. 3 (b), an in-memory dot product engine can
be constructed if the selective wavelengths are matched with
the resonance wavelengths of the synaptic resonators. At the
output port of bus waveguide, we obtain a multi-wavelength
spike with weighted amplitudes. This spike is then fed to a
photodiode (PD) array, which produces a current array with
the magnitude governed by I o > T); - Py;. Note that each
synaptic resonator needs to represent its synaptic weight by
the transmission at a distinctive resonant wavelength, requir-
ing a designed differentiation method (such as varying ring
diameters among the connected resonators). For accurate dot-
product operation, it is necessary to achieve significant isola-
tion between the wavelength channels to minimize channel-
to-channel crosstalk. To this effect, the constraint on the input

with both synapse and neuron arrays.

vector size of the proposed photonic dot product engine is
determined by the ratio of the free spectral range (FSR) and
the full-width at half maximum (FWHM) of the individual
ring resonator. Based on the proposed single-bus ring resonator
configuration, we demonstrate that wavelength range with an
exemplary design of ring diameters around 1.5 pum is capable
of containing 16 distinctive channels [22].

C. All-photonic SNN inference hardware

All-photonic neuromorphic computing systems can be re-
alized with the integration of the proposed IF neuron and
synaptic dot product engine. Efficient neural network oper-
ations, which relies immensely on matrix operations, desire
to have computing cores with massive parallelism. Therefore,
as is shown in Figure 4, the proposed single-bus resonator
based dot engine is extended to multiple rows to facilitate
matrix-vector multiplications (MVM). A 2D synaptic weight
matrix can be mapped to the transmission of the 2D ring
resonators by modifying the crystalline states of the GST
components therein. Two MVM arrays are used for mapping
of positive and negative weights, respectively. Input with
multiple channels to such a MVM computing core will first
be fed into a multiplexer, and then the WDM signal will be
split evenly based on the row number and connected to the
rectangular bus waveguide at each row. The signals obtained
by photodetector (PD) arrays connected to the outports will
be proportional to the result of MVM. In order to build an
integrated synapse-neuron system, the electrical current from
the PD arrays are further passed onto laser diodes so that the
electrical current can be converted to optical spikes for the
post-synaptic neurons.

We developed a device-to-algorithm framework for evaluat-
ing the functional performance of the proposed neuromorphic
system. The transmission characteristics of the ring resonators
with varying states of the GST element are taken into account
to evaluate the accuracy of the dot-product operation. The
error in the computation stems from the non-idealities induced



by the crosstalk between adjacent channels. At the algorithm
level, we consider a fully connected SNN consisting one
hidden layer. For MNIST hand written digit dataset, the
network architecture is set with M=784, N=500, and P=10,
where M, N, and P are the numbers of neurons in the input
layer, hidden layer and output layer respectively. We adopt
the approach of converting a trained ANN to obtain the
synaptic weights of SNN. It is found that, with non-idealities
of photonic devices included, the SNN implemented with the
behavior of the proposed neuromorphic system can have less
than 0.5% degradation of inference accuracy from the ideal
scenario. The proposed photonic neuromorphic hardware can
offer faster inference operations due to the ultrafast dynamics
with 200 ps pulse width. Moreover, significant improvement in
write latency can be further harvested when synaptic weights
need updates, since the write pulse in photonic system is
subnanoseconds while PCM devices in electrical domain have
write latency around 50-100 ns.

D. Future opportunities and challenges

The demonstrated GST-on-silicon neuromorphic system
suggests a promising pathway of implementing brain-inspired
computing based on PCM. The benefits of NVM is retained
with PCM-based photonics as the non-volatile states of GST
components eliminate extra need for off-chip memory access.
Moreover, compared to the popular NVM based PIM in elec-
trical domain, the photonic approach achieves highly parallel
fan-in leveraging WDM technique, and provides significant
improvement in processor latency. It also offers immunity from
the impact of various circuit-level non-idealities such as sneak
paths and IR drop. We envision that integration of photonic
device and emerging PCM may offer exciting opportunities in
developing high-performance Al processors [25].

However, a few challenges remains before scalable comput-
ing hardware can be realized efficiently on such systems. At
the device level, large-scale photonic system desires shrinking
the physical dimension of ring resonators in order to achieve
high-density integration. But smaller devices will face more
fabrication difficulty and controllability/variability issue with
the integration of GST component. Moreover, the parallelism
of the proposed dot product engine is constrained by the
FSR of ring design, based on the mechanism of synaptic
connection. Increased computational error will be induced
due to interference among adjacent wavelength channels, if
more channels are squeezed into a limited FSR. Time-domain
multiplexing in combination with the low-latency modulation
of PCM, may offer some mitigation of processing MVM with
large array sizes, but further reduction of the writing energy
of PCM is still desirable [26]. Lastly, functional interface
blocks such as analog-digital conversion and electrical-optical
conversion at a matching speed (~GHz) with the photonic
components consumes significant energy. The proposed neuro-
morphic photonic hardware would benefit at the system level
from the incorporation of low power interfaces such as PD
arrays, laser diodes, and AD/DA circuitries.

IV. BRAIN-INSPIRED COMPUTING: ALGORITHM,
TECHNOLOGY, AND APPLICATION-DRIVEN INNOVATIONS

Brain-inspired computing has the potential to break the
von Neumann bottleneck and build an Artificial Intelligent
(AI) system. In this section, we present the latest trends in
brain-inspired computing, and summarize these studies into
algorithm, technology, and application-driven innovations.

A. DNN and SNN Acceleration

In past years, deep neural networks (DNNs) have been
proved its power in a wide range of applications, such as com-
puter vision, speech recognition, and language processing. The
design principles of DNNs are borrowed from the mechanism
of brain, where information is stored in neurons and passed
through synapses. Compared with DNNs, spiking neural net-
works (SNNs) exhibit a closer scheme to the biological neuron
models which attract extensive attention. Meanwhile, some re-
sent studies show advantages of SNNs in processing sparse and
noisy data. However, with the development of algorithms, the
hardware demand for DNNs and SNNs increased dramatically.
many studies make effort to design efficient accelerators that
reduce the hardware resources and execution latency. Such that
the deployment of DNNs/SNNs in the real system becomes
achievable.

1) DNN Accelerators: Many works accelerate DNNs by
exploiting reconfigurable computation parallelism or dataflow.
For instance, Evolver [27] designs hybrid dataflows to accel-
erate different DNN structures with high resource utilization.
There are also accelerators that explore the sparsity in pro-
cessing DNNs. These accelerators design special architectures
to skip operations with zero activations and weights [28]. Zero
activations are produced by ReLU activation, and zero weights
are caused by redundancy in DNN models.

2) Preliminary of SNNs: One of the most distinct character
of SNNs is the dynamic neuron modeling that simulate the
brain behaviour. Leaky integrate-and-fire is the most widely
used model as Figure 5(a). Each neuron is composed by mem-
brane potential w and spike s. Once the neuron’s membrane
potential is greater than a threshold thy, it will generate a
weighted spike to the connected neurons and its membrane
potential is rest to rst. Otherwise, the membrane potential
will decay with a factor a.

Because of the special neuron modeling, SNNs usually
involve a more complex spatial information propagation. Also,
the dynamic modeling demands an additional temporal axis
to propagate information along time as Figure 5(b). These
characters lead the inefficiency of commercial platforms to
run SNNs. Thus, many studies design accelerators to boost
the inference and training of SNNs.

3) SNN Accelerators: Currently, most of neuromorphic
chips tend to accelerate the inference stage of SNNs. Tianjic
[29] designs a hybrid architecture with unified routing infras-
tructure that can deploy both DNNs and SNNs.

Despite the inference accelerator, some studies design train-
ing accelerators for different SNN learning algorithms. Most
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training neuromorphic chips target on the local synaptic pla-
siticity learning rules such as spike time dependent plasiticity
(STDP). Recently, H2Learn [30] designs a training neuro-
morphic chip that can support back propagation through time
(BPTT) learning algorithm. Specifically, the BPTT learning
algorithm can improve the model accuracy a lot and H2learn
utilizes the binary input pattern and the sparsity during learn-
ing to boost the BPTT based learning efficiently.

B. PIM for NN Acceleration

Ubiquitous NN applications have motivated many NN ac-
celerator designs in the past few years. However, as the
NN model size increases, massive data movement between
computing units and memory becomes a bottleneck in the
computing system. Processing-in-Memory (PIM), inspired by
the in-memory computing nature of our brain, is a promising
hardware technology that tackles the memory bottleneck in
conventional accelerators. The basic idea of PIM is placing
the multiply-accumulate (MAC) units near or in the memory,
thus utilizing the high bandwidth in memory to reduce data
movement latency and energy. Based on the implementation
logic of MAC in memory, PIM architectures can be classified
into two categories: analog PIM and digital PIM, as illustrated
in Fig. 7.

1) Analog PIM: In comparison to conventional digital NN
accelerators with separate MAC units and memory (Fig. 7(a)),
analog PIM realizes in-memory MAC based in current or
voltage (Fig. 7(b)). Analog PIM is usually implemented in
SRAM or non-volatile memory like ReRAM. Input digital-
to-analog converters (DAC) and output analog-to-digital con-
verters (ADC) are required in the peripheral circuits. For one
NN layer (O = I =« W), the weights (W) don’t need reading
out of memory for MAC computation, saving lots of data
movement. For the MAC operation itself, analog computing
usually consumes less power than conventional digital logic.

However, in a practical analog PIM, only a limited number
of rows and columns in a cell array can be activated each
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Fig. 6: Architectures for NN acceleration: (a) Digital Accelera-
tor. (b) Analog PIM. (c) Digital PIM. (W: Weights in memory.
I, O: Inputs and Outputs.)

cycle [31]. The number of activated rows depends on accuracy
limitations, because activating too many rows will cause large
accumulated analog deviation that harms NN accuracy. To
save the overhead of high-resolution ADCs, usually multiple
columns share one ADC in analog PIM, which limits the
number of activated columns. As a result, practical analog PIM
works in a smaller granularity than the entire array, called an
operation unit (OU).

2) Digital PIM: As the requirement for higher accuracy
and robustness arises, there is a new trend of integrating digital
logic into PIM design, which is called digital PIM (Fig. 7(c)).
According to the base memory devices, digital PIM can be
further classified as SRAM-based and DRAM-based.

Recently, TSMC’s implements a digital PIM in ISSCC’21
[32] by attaching only one NOR gate to each cell and placing
accumulators at the subarray level. All the in-memory logic
can be activated concurrently to achieve almost 100% array
utilization, with no accuracy loss caused by PIM.

Unlike SRAM-based digital PIM, DRAM-based digital
PIM targets a different problem, which performs computation
in DRAM to optimize off-chip memory access. For exam-
ple, Samsung’s recent HBM-PIM integrates computing units
deeper into the bank level of their 3D DRAM [33]. Such
DRAM-based PIMs can be used to accelerate much larger
scale NN models.

C. Go Beyond NN, PIM-based Bioinformatics Computing

As mentioned above, PIM brings lots of opportunities to
the acceleration of NN. Actually, besides NN, a wide range of
important applications can also benefit from PIM, for example
graph analytics, image processing, and bioinformatics. In
this subsection, we use PIM based hardware acceleration of
bioinformatics as an example to demonstrate the benefits of
PIM to those emerging applications. Bioinformatics is getting
more and more important and it is developing rapidly, because
it is helpful to, for example, wildlife conservation, under-
standing of human disease, and precise medical care. As an
important example, during the global pandemic Coronavirus
Disease 2019 (COVID-19), the Next Generation Sequencing
(NGS) technology plays an crucial role during the disease
characterization. Unfortunately, with the advancement of the
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NGS technology, bio-data grows exponentially, putting for-
ward great challenges for data processing in bioinformatic.

Due to the importance of bioinformatics, many hardware
approaches have been explored to accelerate different applica-
tions in bioinformatics. Most of those approaches are compute-
centric, i.e., based on CPU/GPU/FPGA. However, the space
for performance improvement is limited for compute-centric
accelerators, because many of their target applications in
bioinformatics are memory-bounds. To address the key issues
of hardware acceleration for bioinformatics from the memory
perspective, many researchers propose PIM solutions for bioin-
formatics, which can be divided into two major categories:

1) Emerging Memory based Architectures: Many re-
searchers leverage emerging memory technologies, mainly
ReRAM, to build domain-specific accelerators for bioinfor-
matics. As shown in Fig. 7 (a), those architectures store
the DNA data within the ReRAM cells and perform parallel
computation/comparison within the ReRAM array in place.
Compared with the previous compute-centric accelerators,
those emerging memory based PIM accelerators for bioin-
formatics can achieve significant performance improvement
and energy reduction due to the features of high density, low
power consumption, and ability to perform parallel operations
in ReRAM [34].

2) DRAM based Architectures: Although emerging mem-
ory technologies bring significant performance improvement,
those technologies are relatively long-term and cannot be
adopted in the foreseeable future [35], [36]. To address this
issue of the emerging memory based approaches, DRAM
based PIM architectures for bioinformatics are proposed.
Those DRAM based PIM architectures for bioinformatics can
also be divided into two categories:

o 3D-Stacking DRAM: Hybrid Memory Cube (HMC) has

been leveraged in previous work to accelerate bioin-
formatics. As shown in Fig. 7 (b), those HMC based
accelerators place processing elements on the logical die
of HMC and leverage the high bandwidth of Through-
Silicon Vias (TSV) to access data in the DRAM dies.

e Dual-Inline Memory Module (DIMM): As shown in
Fig. 7 (c), DIMMs based architectures, such as MEDAL
and NEST [35], [36], insert processing elements into the
PCB board of each DIMM, leaving the cost-sensitive
DRAM dies on the DIMM untouched. Compared with
the above 3D-stacking memory based approaches, those
DIMM based solutions are more cost-effective and prac-
tical due to their non-invasive designs.

To summarize, besides NN, many different applications
involve huge amount of data and the memory, instead of
the computation, becomes their bottlenecks. We use an bioin-
formatics as an example application to demonstrate the new
design opportunities brought by PIM and the possible explo-
rations we can do with PIM.

V. CONCLUSION

The inherent limitations in the existing von Neumann ar-
chitectures in which memory communications form a pro-
found bottleneck for data-centric application largely increase
the need for novel computing paradigms. The journey to
achieve that starts from the underlying technology in which
novel beyond-CMOS devices are required. However, such
innovations in technology need to be combined with novel
architectures. Otherwise, neuromorphic computing cannot be
efficiently realized. Most importantly, hardware/software co-
design is, in fact, a key to overcome the inherent reliability
challenges that come with novel beyond-CMOS devices. In
this special session paper, we have provided a comprehensive
overview on how neuromorphic photonics can be implemented
using PCM technologies. We have also discussed how we
can implement reliable BNNs that use unreliable FeFET-based
NVM. Finally, we discussed the latest trends in brain-inspired
computing, and summarized these studies into algorithm,
technology, and application-driven innovations.
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