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Abstract

Open-domain question answering answers a
question based on evidence retrieved from
a large corpus. State-of-the-art neural ap-
proaches require intermediate evidence anno-
tations for training. However, such interme-
diate annotations are expensive, and meth-
ods that rely on them cannot transfer to the
more common setting, where only question—
answer pairs are available. This paper inves-
tigates whether models can learn to find evi-
dence from a large corpus, with only distant su-
pervision from answer labels for model train-
ing, thereby generating no additional annota-
tion cost. We introduce a novel approach
(DISTDR) that iteratively improves over a
weak retriever by alternately finding evidence
from the up-to-date model and encouraging
the model to learn the most likely evidence.
Without using any evidence labels, DISTDR
is on par with fully-supervised state-of-the-
art methods on both multi-hop and single-
hop QA benchmarks. Our analysis confirms
that DISTDR finds more accurate evidence
over iterations, which leads to model improve-
ments. The code is available at https://
github.com/henryzhao5852/DistDR.

1 Introduction

Open-domain question answering (ODQA) takes
a question, retrieves evidence from a large cor-
pus, and finds an answer based on that evi-
dence (Voorhees et al., 1999). With the help of
large scale datasets, state-of-the-art approaches to
QA (Karpukhin et al., 2020; Zhao et al., 2021, inter
alia) can answer both simple questions that require
only a single evidence piece (i.e., one passage); and
more challenging multi-hop questions: computers
must jump or “hop” from passage to passage (we
call these passages evidence pieces), building a
reasoning chain to find the answer.
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Question: What state does Sang-Wook Cheong work as a materials scientist?
Answer: New Jersey

Annotated Evidence: Sang-Wook Cheong -> Rutgers University
Alternate Evidence: Sang-Wook Cheong -> History of Rutgers University

Evidence Piece 1: Sang-Wook Cheong
Sang-Wook Cheong is a Korean American materials scientist at Rutgers
University.

Evidence Piece 2: Rutgers University

Rutgers, The State University of New Jersey, commonly referred to as Rutgers
University, Rutgers, or RU, is an American public research university and the
largest institution for higher education in New Jersey.

Evidence Piece 3: History of Rutgers University

Rutgers University is an institution of higher learning with campuses across
the State of New Jersey. Its main flagship campus locates in New Brunswick
and Piscataway, New Jersey.

Figure 1: A multi-hop question example from HOT-
POTQA that requires finding multiple evidence pieces
to form a reasoning chain (Sang-Wook Cheong —
Rutgers University). Red: Text that overlaps between
question and evidence piece; Blue: Span that matches
the answer. State-of-the-art systems use evidence la-
bels for training, but acquiring labeled evidence pieces
is expensive.

State-of-the-art (SOTA) methods, however, are
trained with all of the intermediate evidence
pieces (e.g., in Figure 1, the evidence pieces for
Sang-Wook Cheong’s workplace which point you
to Rutgers University’s location) needed for the an-
swer. Creating such intricate training data is ex-
pensive. For example, Kwiatkowski et al. (2019)
use additional experts to justify the correctness of
annotated evidence. The annotation protocol is
even more nuanced for multi-hop questions. For
example, Yang et al. (2018) ask annotators to write
multi-hop questions based on two linked Wikipedia
passages as a pre-defined reasoning chain, which
creates dataset artifacts (Min et al., 2019b). While
plenty of question-answer pairs are available with-
out evidence labels, we cannot directly train SOTA
models on such data.

Our work focuses on training ODQA systems
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without these expensive annotations (Section 2):
we only start with a question-answer pair. With
that starting point, we use distant supervision to
infer which evidence helps us get to the answer.
The technical challenge is how to find these evi-
dence from millions of candidates. Previous meth-
ods (Joshi et al., 2017; Cheng et al., 2020) use term
matching (e.g., TF-IDF) for evidence retrieval, but
their goal is a single piece of evidence: linking a
question to a passage. As shown in Figure 1, the
key to finding some evidence pieces does not ap-
pear in the question: for example, you only know to
figure out that Rutgers University is in New Jersey
after learning where Professor Cheong works. For-
tunately, navigating to an answer given a question
from a search engine is not impossible: humans
do it every day, building on their existing knowl-
edge toward the answer (Russell, 2019). With each
round of searching to find additional clues, human
users accumulate information to find the right an-
swer. This paper creates a computational approach
(D1sTDR) that can use similar techniques to find
the evidence needed to answer a given question.

DiISTDR starts with a weak retriever then itera-
tively improves it by finding more useful evidence
(Section 3). Specifically, we model evidence as a la-
tent variable and develop a hard-EM algorithm that
alternates between using the up-to-date retriever to
find evidence (hard E-step) and updating the model
parameters to further encourage the most useful
evidence in the next iteration (M-step).

To implement this idea, we need a trainable re-
trieval system. We use dense retrieval (Lee et al.,
2019) as our retriever, which uses a neural network
to encode the evidence pieces we collect at each
round into query vectors. DISTDR provides itera-
tive feedback within the context of a QA system to
guide the encoder to better find evidence pieces.

We evaluate DISTDR on ODQA benchmarks, in-
cluding both single-hop questions (Kwiatkowski
et al., 2019, NATURALQUESTIONS), where the
evidence is the target passage, and multi-hop ques-
tions (Yang et al., 2018, HOTPOTQA), where the
evidence is a chain of passages. Without using
any annotated evidence labels, DISTDR’s accu-
racy, according to several measures, is on par
with fully-supervised state-of-the-art approaches
on both benchmarks (Section 4).

Our analyses confirm the intuition that over it-
erations, DISTDR selects more accurate evidence,
which in turn improves the model. Although some

retrieved evidence from DISTDR does not match
the annotation, it gives useful training signal, as
DISTDR finds alternative evidence—another ad-
vantage of an automated approach (Section 5).
For example, you can connect Sang-Wook Cheong
to New Jersey through another Wikipedia page
(History of Rutgers University in Figure 1).

2  Why Weakly-Supervised ODQA

Our task is to answer questions over large textual
corpora. Our approach is generally applicable to
both single-hop and multi-hop questions. We use
Wikipedia as the knowledge source, but we do not
use the metadata such as hyperlinks, to ensure our
method can apply to any corpus (e.g., ClueWeb).

State-of-the-art approaches on ODQA mainly fo-
cus on the fully-supervised setting, where the ques-
tion, answer, and evidence are given in training.
Figure 1 shows an example multi-hop question
with answer and annotated evidence. The fully-
supervised setting simplifies model training but has
three major challenges: (1) Annotation is costly:
the question—answer pair is widely available in the
real world, but the evidence (Sang-Wook Cheong
— Rutgers University in Figure 1) requires hu-
man annotation, which is expensive to get, espe-
cially for complex questions; (2) Domain gener-
alization: the labeled evidence is only on a sin-
gle corpus, generalization to other corpora (e.g.,
moving from Wikipedia to medical records) is non-
trivial; (3) Alternative evidence: there are often
multiple correct evidence candidates in the cor-
pora (e.g., in Figure 1, both Sang-Wook Cheong
— Rutgers University and Sang-Wook Cheong
— History of Rutgers University are correct), but
only one of them is annotated as “gold evidence”.
Therefore, we explore the more common but chal-
lenging weakly-supervised setting which only re-
quires question—answer input pairs.

Formally, given a question ¢ and a textual corpus
with D passages, our task is to first find a small
subset of relevant passages as evidence z to the
answer, where each evidence combines evidence
pieces z = z1,...,2, Wwith length n (n = 1 for
single-hop questions), then find a span a from ev-
idence z as an answer. We focus on the weakly-
supervised setting, where training examples consist
only of question—answer pairs (q,a), we gather
evidence Z from corpus as the distant supervision
signal, based on the assumption that the presence
of the answer a (source of distant supervision) in an



evidence piece implies that the evidence is needed
to answer the question. This is contrast to the fully-
supervised setting, where the gold evidence z* is
also given during training.

3 Weakly-Supervised ODQA with
DiSTDR

We present DISTDR, a unified framework for
weakly-supervised ODQA. DISTDR is trained by
retrieving evidence from a large corpus with distant
supervision.

DISTDR follows the retriever—reader framework
for ODQA, using dense retrieval to find evidence
(Section 3.1). However, in our approach, we only
have questions ¢ and answers a, so we need to
induce evidence 2 for training our retriever. We
expect our initial retriever will struggle to find evi-
dence. However, if it can find some useful evidence,
we can encourage it to follow the clues to more ev-
idence that can answer questions. This intuition
is the foundation for our iterative approach (Sec-
tion 3.2) for evidence retrieval: an initial retriever
attempts to find evidence (Dense Retrieval). If
the evidence contains the answer (Answer Match-
ing), we label it as positive evidence (otherwise
it’s negative evidence); then we use the retrieved
evidence as labels to retrain the retriever and reader
(Model Update). While this idea forms the ba-
sis of our algorithm, it can be led astray by false
positives: evidence that contains the answer but is
irrelevant to question. Returning to our running ex-
ample, while “named after a lawn ornament store in
Wayne, New Jersey” has the state where Professor
Cheong works, it is irrelevant to condensed matter
physics. Thus, a reader filters spurious evidence
(Reader Filter) to keep DISTDR on target.

3.1 Preliminary: Fully-Supervised ODQA

This section reviews state-of-the-art systems for
fully-supervised ODQA, where a dense retriever
finds evidence from a large corpus, and a reader—
multi-tasked with evidence reranking and span
extraction—outputs a span as the answer.

Dense Retrieval Dense retrieval (Lee et al.,
2019) is based on a dual-encoder architecture,
which uses BERT to represent both the query ¢ and
the passage p with dense vectors. The model learns
a scoring function (e.g., dot product) between ques-
tion and passage vectors:

f(q,p) = sim(Encq(q), Encp(p)). (1)

These models are highly scalable, since passages
can be encoded offline, and are efficiently retrieved
over maximum inner product search (MIPS) with
the query (Shrivastava and Li, 2014).

Multi-step Evidence Retrieval We apply mul-
tiple dense retrieval steps to find evidence with a
sequence of evidence pieces (each piece is a pas-
sage) 21, ..., zn, After each retrieval step, we cre-
ate the new query by concatenating retrieved evi-
dence pieces to the original question. Specifically,
at retrieval step t, we form a new query ¢; by ap-
pending our already retrieved evidence pieces to
the original question
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and retrieve a new evidence piece z;. During in-
ference, a beam search finds the top-k evidence,
where the score is the product of individual ev-
idence pieces’ score. For training, given posi-
tive evidence zT = zfr .-+, 27 (In Figure 1, zf :
Sang-Wook Cheong, z;r : Rutgers University) and
a set of negative evidence Z—, we use negative log

likelihood loss (NLL) over each step:

L(g, 2" 27) = 3)

exp/(@zi1a)
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Evidence Reranking and Span Extraction Af-
ter the retriever, QA systems need a reader, which
combines evidence selection (reranking) and span
extraction. Unlike retrieval, the reader encodes
pairwise information between question and evi-
dence, thus giving a more accurate (but slower)
prediction. Following Karpukhin et al. (2020), we
use a BERT encoder with input formatted as [CLS]
question [SEP] title; [SEP] evi; [SEP]

title,, [SEP] evi,[SEP], where [CLS]
and [SEP] are special tokens, and each evi, is an
evidence piece z;. First, we use [CLS] token’s rep-
resentation Upc s7 to estimate the probability that
the collected evidence z contains the answer:

P(z|q) = softmax (U] g;Wrank), 4)

where Wi,k is a weight vector. Then answers are
predicted with a span start and end classifier:

P(start| g, z) = softmax(Uwsar), )
P(end| g, z) = softmax(Uweng), (6)
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Figure 2: Our DISTDR model, with question: q , evidence: [z, answer: [a, model component: | Dense Retrieval |.

indicates reader output matches the correct answer, thus the positive evidence is kept (otherwise filtered out,
presented by X). Left: at E-step, DISTDR finds the most relevant evidence using the current dense retriever on
the training examples, uses both answer string matching and reader filter to form positive and negative evidence.
Right: at M-step, DISTDR updates both retriever and reader components using the training data from E-step as

distant supervision.

where Wy, and weyg are weights. From the
highest-scored evidence Z, we select the answer
with the highest span probability P(start| 2, q) X
P(end|2,q). The training objective is the log-
likelihood of the positive evidence for reranking
and maximum marginal likelihood over all spans
in the positive evidence for span extraction.

3.2 Learning DISTDR: Hard-EM

This section introduces training DISTDR with
weak supervision. We treat the evidence z as a
latent variable (Figure 2) with a multinomial distri-
bution (parameterized by probability of selecting
correct evidence from the retriever) over solution
set Z = D x n, where D is the corpus size and n
is the number of retrieval steps. Formally, given
the question ¢ and answer a, our goal is to max-
imize the probability of finding correct evidence
P(z|q) (For single-hop questions, z is retrieved
with single step; for multi-hop questions, it takes
multiple steps to find z: after the first retrieval
step, the query ¢ is not just the original question
but also appended evidence as in Equation 2.), and
selecting an answer from the question P(a | g, z).
We use expectation maximization (EM) to infer the
latent variable z. We compute the likelihood of
each z given g, yielding a vector of estimates Z (E-
step); then update the model parameters based on 2
(M-step). Since it’s intractable to enumerate all ev-
idence candidates to compute the expectation, we
adopt hard-EM (Samdani et al., 2012) and approxi-
mate the E-step by picking the most likely solution
as z. We pass over all questions in the training set
and repeat this process for multiple iterations until
the model converges.

Hard E-step At the hard E-step, for each ques-
tion ¢ in the training set we find the most likely esti-
mated evidence 2. This is implemented by multiple

retrieval steps for multi-hop questions, specifically
at each step t:

Z = argmax P(2:|q, 21, ..., Zt—1); @)
zeZ

and single-step retrieval for single-hop questions.
We use an up-to-date retriever to find the top-k
evidence from corpus (with beam search for the
k-highest scoring chains, Section 3.1).

Given the retrieval output, we will eventually
need to retrain the retriever. This requires knowing
which evidence is useful and which is not. As a
proxy, we look for the answer to split the top-k can-
didate evidence into positive (has the answer) Zt
and negative 7~ evidence (lacks the answer) sets.
And as a by-product, we generate the most chal-
lenging negative evidence at each iteration, which
makes training more robust (Guu et al., 2020).

Evidence Filter Although using the answer to
filter evidence ensures that the positive evidence
contains the answer, it does not always mean this
evidence is relevant. For example, the answer to
“Who played in the most world series MLB games’
18 New York Yankees, but “New York Yankees is
an American professional baseball team” is not the
correct evidence. This issue is more pronounced
at the beginning of the process when the retriever
is weaker. To mitigate this issue, the reader filters
spurious positives: if it does not believe New York
Yankees is the answer to the question, the evidence
is not usable. Specifically, for each evidence 2T in
the positive evidence set, the current reader model
outputs the most likely answer a. We only keep
positive evidence if a matches the correct answer.

2

M-step Now that we have our estimated evi-
dence 2, including both the highest scored positive
evidence 27 (after filtering), which we assume is a
true solution, and Z~ as negative evidence set. We



have (g, Z, a) for each training example to update
both the retriever P(Z|q) and reader P(a|q,2)
(Section 3.1).

4 Experiments

In this section, we evaluate DISTDR on both multi-
hop and single-hop QA benchmarks. DISTDR is
generally applicable to both questions by adopting
different evidence retrieval steps.

4.1 Datasets

We evaluate on two datasets (statistics in Table 1),
HOTPOTQA and NATURALQUESTIONS.

HOTPOTQA (Yang et al., 2018) is a multi-hop
QA benchmark, where intermediate hops have been
annotated by hand. We focus on the full wiki
setting, where the corpus is first passage of all
Wikipedia pages (5.23 million passages). We do
not use its supporting facts (evidence) annotation in
our setting. We only use its bridge questions subset,
which are designed to be multi-hop. HOTPOTQA
also includes comparison questions that compare
properties of two question entities, but its yes/no
answers are beyond the scope of this paper, as we
cannot get distant supervision from them.

NATURALQUESTIONS  (Kwiatkowski et al.,
2019) is a QA benchmark, which mainly includes
single-hop questions. Besides questions and an-
swers, NATURALQUESTIONS also annotates pas-
sages as evidence, but we do not use it in the
weakly-supervised setting. We follow Karpukhin
et al. (2020) and use all of Wikipedia as a corpus,
split into 100-token chunks (21 million passages).

4.2 Evaluation Metrics

On HOTPOTQA, we evaluate the retrieval compo-
nent on ten evidence (chains), where each sequence
has two passages. For retrieval, we follow Zhao
et al. (2021) and report answer recall (the fraction
of questions with the answer string in the retrieved
passages), passage recall (if at least one gold pas-
sage is in the retrieved passages), and chain recall
(if both gold passages are included in the retrieved
passages) on the dev set. For the reader, we first
use the same metrics as above on the top ten chains
reranked from top-100 retrieval results for rerank-
ing. Then we report an exact match (EM) score
on answer spans. On NATURALQUESTIONS, we
report answer recall on top-% passages (k = 1, 20)
from the retriever, and exact match (EM) on answer
spans on test set, following Karpukhin et al. (2020).

Dataset Train Dev Test
HOTPOTQA 72,424 5918 -
NATURALQUESTIONS 79,168 8,757 3,610

Table 1: Number of questions on HOTPOTQA and
NATURALQUESTIONS. We use the dev (sub)set to eval-
uate HOTPOTQA, since the test set is hidden and we
only use its bridge questions.

4.3 Compared Methods

On HOTPOTQA retrieval, we compare DISTDR
with unsupervised TF-IDF, and two recent state-
of-the-art multi-step dense retrieval methods—
BEAMDR (Zhao et al., 2021) and MDR (Xiong
et al., 2021b)—under full supervision. For the
reader, we first compare DISTDR with BEAMDR
and two other top leaderboard entries, Transformer-
XH (Zhao et al., 2020) and GRR (Asai et al., 2020),
both of which use Wikipedia hyperlinks to find
candidates. For fair comparison, all approaches
use BERT-base as pre-trained model, and we use
the released model checkpoints to do inference on
bridge question subsets. !

On NATURALQUESTIONS, we compare
D1STDR with two state-of-the-art dense retrieval
methods, DPR (Karpukhin et al., 2020) and
ANCE (Xiong et al., 2021a), which use same model
architecture as DPR, with asynchronous negative
evidence updates during training. We evaluate on
fully-supervised and weakly-supervised settings.
We directly use the released model checkpoint on
full supervision and train models from published
code and data’ on distant supervision. All
approaches use BERT-base as pre-trained model.

4.4 Implementation details

On HOTPOTQA, we initialize our retriever with a
dense retrieval checkpoint from NATURALQUES-
TIONS for both hops.? To initialize the reader, we
first run DISTDR’s retrieval for one iteration (with-

'MDR uses RoBERTa-base for retrieval, and
BERT/ELECTRA-large for reranking and span extrac-
tion. We include the retrieval results (though it gives slight
gains) but do not compare the reader. We expect the reader
results are close to BEAMDR, as both use similar models.

“The released data uses answers to match top BM-25 results
for distant supervision.

3We make this choice because we need a cold starting point
for our EM process (i.e., at the first iteration, find some training
signals from the retrieved evidence). The initialization on
HoTPOTQA does not use any evidence labels (which would
be cheating in our setting). There are potentially alternative
approaches to initializations that could be considered for future
work.



Models Ans Passage Chain
No Supervision

TF-IDF 60.7 90.8 358
Full Supervision

MDR 85.2 89.3 75.3
BEAMDR 84.9 91.1 73.6

Distant Supervision
DiSTDR w/ TF-IDF chains
DisTDR

55.6 523 223
86.2 92.2 75.1

Table 2: Comparison of DISTDR’s retrieval (based on
top-10 chains) with unsupervised and fully-supervised
methods on HOTPOTQA dev set over answer, passage
and chain recall. DISTDR matches fully-supervised
dense retrieval approaches.

Models Ans  Passage Chain Span
Full Supervision

Transformer-XH 91.8 97.0 813 524
GRR 87.5 922 79.0 504
BEAMDR 90.5 947 83.0 526
Distant Supervision

DisTDR 914 953 81.7 51.6

Table 3: Comparison of DISTDR with other fully-
supervised methods with reranking over answer, pas-
sage and chain recall, and span extraction over span
exact match. DISTDR is competitive to BEAMDR.

out the reader filter), and train the reader from
scratch, using the top-50 retrieval outputs.* We
use the same hyper-parameters as BEAMDR, and
train DISTDR for eight iterations.> On NATU-
RALQUESTIONS, we initialize DISTDR from a
DPR checkpoint under distant supervision (so the
evidence label is not used). We train DISTDR for
ten iterations, using the same hyper-parameters as
DPR (Karpukhin et al., 2020). We run DISTDR on
eight 2080Ti GPUs, and training takes three days.

4.5 Main Results

Table 2 presents retrieval results on HOTPOTQA.
Here, TF-IDF is only able to find one evidence piece
(usually the first hop which overlaps with question),
but fails to find all the evidence pieces. Hence,
using evidence from TF-IDF as distant supervi-
sion cannot effectively train DISTDR. DISTDR
is slightly better than BEAMDR and MDR—both
are state-of-the-art dense retrieval methods with

“We follow the reader setup from Karpukhin et al. (2020):
if multiple positives are in top-50 outputs, one of them is
sampled as the positive instance in each training iteration.
Our pilot experiment shows that reader model is robust: such

initialization gives reasonable accuracy.
SDISTDR converges after five iterations (Figure 3).

Models Topl Top20 Span
Full Supervision

DPR 46.3 78.4 41.5
ANCE 50.9 81.9 46.0
Distant Supervision

DPR 45.2 78.2 37.9
ANCE 45.7 79.1 383
DisTDR 504 80.1 40.5

Table 4: Comparison of DISTDR with other dense re-
trieval systems on NATURALQUESTIONS dataset over
answer recall @1, 20, and span exact match. DISTDR
is competitive to fully-supervised approaches.

Models Ans  Passage Chain
DisTDR 862 922 751
DisTDR w/ Sampled Pos 83.9 909 72.1
Remove Reader Filter 854 919 72.1

Remove Non-gold Evidence  66.7  74.1 53.1

Table 5: Ablations evaluated on answer, passage, and
chain recall. Removing all but the gold evidence hurts
most, while the other components of DISTDR all con-
tribute to finding the answer.

full supervision—even though DISTDR is only
trained on (question, answer) pairs. When using
the same model implementation but with distant su-
pervision, DISTDR is competitive to BEAMDR on
reader results (Table 3). On NATURALQUESTIONS
(Table 4), unlike multi-hop questions, using IR to
find evidence as distant supervision provides help-
ful training signals, which is confirmed by small
gap between distant and full supervision.® Build-
ing on top of distantly-supervised DPR, DISTDR
beats weakly-supervised systems, and is competi-
tive with fully-supervised models.

S Analysis

This section explores HOTPOTQA results to under-
stand why DISTDR is on par with fully-supervised
approaches.

5.1 Analysis on Model Training

We first study how DISTDR finds better evidence
from a large corpus with hard EM.

®Compared to retrieval, the gap is larger for the reader.
This is due to training data processing for DPR (and ANCE).
On retrieval, DPR replaces annotated gold passage with the
corresponding 100-token passage in the candidate pool, and
discard the questions if the matching is failed (25% of ques-
tions). On reader, DPR uses annotated passage as positive, and
top retrieved passages that do not contain the answer are the
negatives, thus entire training data is used.
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Figure 3: Quantitive analysis on DISTDR by iteration. (a): Compare different evidence filter strategies on dev set;
(b): Statistics on training set extracted evidence; (c): Compare span extraction component over gold evidence; (d):
Average distance difference on dev set from question to top-10 negative passages (Average) and positive passage.
DiSTDR finds better evidence over iterations, the improved evidence further helps model training.
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Figure 4: T-SNE visualization on an example with query (()) and top-10 scored (first hop) passage (P) embeddings
on first four iterations. DISTDR closes the distance between query and positive passage with more accurate

evidence over iterations as distant supervision.

Effect of Hard EM We study the effect of hard
EM by examining accuracy and extracted evi-
dence statistics at every iteration. Chain recall for
Di1STDR on the dev set increases over the first
five iterations (Figure 3a) and then converges. As
the evidence finder improves, the E-step extracts
better evidence for training examples (Figure 3b):
both the percentage of used training examples and
gold evidence in training examples increase with
additional EM iterations. The improved evidence
further helps DISTDR training. We compare mul-
tiple positive sampling strategies: using hard EM
(top-1 as positive evidence) is slightly better than
randomly sampling from top-k positives for the
M-step update (Table 5, second row).

The Effect of Evidence Filtering Filtering pos-
itive evidence is crucial for high-quality evidence.
We ablate different filtering methods in Table 5 and
Figure 3a: No filter, only an answer filter, and an
additional reader filter (DISTDR). No filter fails
completely: evidence should not be considered cor-
rect if it does not contain the answer. With an ad-
ditional reader filter, DISTDR beats using only the
answer matching filter and converges faster (since
the reader filter reduces false-positives, this makes
training more robust).

Despite rapidly changing evidence, the reader’s

span extraction is robust over iterations (Figure 3c),
even on the first iteration, suggesting it is robust
against spurious false-positive evidence.

Visualizing DISTDR in Dense Space DISTDR
improves evidence retrieval by bringing the ques-
tion representation closer to positive evidence and
pushing negative evidence away (Figure 3d). In
Figure 4, T-SNE (Maaten and Hinton, 2008) visual-
izes the first hop query and passage representations
(second hop representations are similar) in dense
space at each iteration. As expected, at the begin-
ning, the question is far from the positive passage,
with negative passages between. After updating
the representations, the distance gets closer until
positive passage is the closest to the question.

5.2 Analysis on Retrieved Evidence

Di1STDR is competitive to fully-supervised ap-
proaches on HOTPOTQA. However, even at the last
iteration, only 65% of extracted evidence matches
the gold. We ablate evidence and contrasts gold
evidence with that retrieved by DISTDR.

Non-gold Evidence is Helpful If we only retain
training examples that match labeled gold evidence,
answer accuracy falters below DISTDR (Table 5,
last row). Instead of providing noise, non-gold
evidence improves model training.



Q: Jo Ann Terry won the 80m hurdles event at what Sao Paulo-based event from 1963?

A: Pan American Games

Human Annotation: Jo Ann Terry — 1963 pan american games

Di1STDR: Jo Ann Terry — Jovem Pan

Jo Ann Terry: Jo Ann Terry-Grissom is a retired female hurdler from the United States. Affiliated with the Tennessee
State University she won the 80 m hurdles event at the 1963 Pan American Games.

1963 Pan American Games: The 4th Pan American Games were held from April 20 to May 5, 1963, in Sdo Paulo.
Jovem Pan: Jovem Pan is the main Brazilian radio station based in Sdo Paulo, Brazil.

Q: Who'’s the Hungarian-born US film director renowned for adapting Stephen King novellas to the screen, including
The Mist and The Green Mile?

A: Frank Darabont

Human Annotation: The Mist (film) — Frank Darabont

DISTDR: The Green Mile (film) — Frank Darabont

The Mist (film): The Mist is a 2007 American science-fiction horror film based on the 1980 novella ”The Mist” by
Stephen King. The film was written and directed by Frank Darabont.

The Green Mile (film): The Green Mile is a 1999 American fantasy crime drama film written and directed by Frank
Darabont and adapted from the 1996 Stephen King novel of the same name.

Frank Darabont: Frank Arpad Darabont is a French-Hungarian-American film director, screenwriter and producer. As
a director he is known for his film adaptations of Stephen King novellas such as "The Green Mile” and ”The Mist”.

Q: Zimbabwe’s Guwe Secondary School has a sister school in what New York county?

A: Nassau County

Human Annotation: Guwe Secondary School — Carle Place High School

DiSTDR: University of Zimbabwe — East Rockaway High School

Guwe Secondary School: Guwe Secondary School is located in Zimbabwe. It has a sister school in Carle Place, New
York, United States.

Carle Place High School: Carle Place Middle/High School is a six-year comprehensive public high school located in
the hamlet of Carle Place in Nassau County, New York.

University of Zimbabwe: The University of Zimbabwe (UZ) is the oldest and formerly largest university in Zimbabwe.
East Rockaway High School: East Rockaway Junior-Senior High School is a co-educational six-year secondary school

in East Rockaway, New York, and the sole high school in Nassau County, New York.

Table 6: Case study of DISTDR on “false positive” evidence from HOTPOTQA that does not match gold evidence.
Despite the dataset goals, some examples are answerable with a single piece of evidence evidence (top). Other
times, DISTDR finds alternate valid evidence (middle). However, it can also find incorrect evidence (bottom).

Human Analysis and Case Study We manually
annotate fifty training examples where extracted
Di1STDR evidence differs from labeled evidence.
We confirm that most extracted evidence is helpful.
Specifically, 38% of the questions are answerable
via a single piece of evidence, even though this
dataset is supposed to require multiple hops (Ta-
ble 6). In another 28% of cases, DISTDR finds
alternate valid evidence. In the second example in
Table 6, the question mentions both films The Mist
and The Green Mile; therefore the reasoning chain
from either film to the director Frank Darabont is
correct (though only one is annotated). In the final
of 34% of cases, DISTDR finds the wrong evi-
dence, often because the extracted evidence only
includes one span that matches the answer type,
therefore the reader confidently outputs the span
for the wrong reason. In the third example in Ta-
ble 6, Nassau County is the only county it sees, and
therefore the model has stumbled upon the right
answer erroneously. Building a model with faith-
ful predictions is an important ongoing research
topic (Jacovi and Goldberg, 2020).

6 Related Work

Question Answering Datasets There is growing
interest in NLP communities to build large-scale
datasets (Rajpurkar et al., 2016; Jia and Liang,
2017; Dua et al., 2019, inter alia) for QA research.
In addition to questions and answers, benchmark
datasets often include annotated evidence, but it
requires significant annotation protocol design and
human annotations. In SQUAD (Rajpurkar et al.,
2016), among the first large-scale reading compre-
hension datasets, annotators write questions con-
ditioned on a passage, which creates dataset arti-
facts (Jia and Liang, 2017). To overcome dataset ar-
tifacts, NATURALQUESTIONS (Kwiatkowski et al.,
2019) use real Google queries as questions and
ask annotators to label both evidence passages and
short answers. But such annotation is expensive, as
they further ask additional experts to verify whether
the evidence correctly leads to the answer. Instead,
DISTDR focuses on the weakly-supervised setting
with only question—answer pairs, which is signifi-
cantly cheaper.

Annotation is more fraught for multi-hop QA



datasets (Yang et al., 2018). To construct HOT-
POTQA, annotators are presented with a linked
Wikipedia passages, as pilot studies indicate that it
is difficult to ask a meaningful multi-hop question
with arbitrary passages. However, some questions
in HOTPOTQA include shortcuts that are answer-
able by a single passage (Min et al., 2019b), which
is confirmed by our analysis (Section 5.2).

Distant supervision has been successfully
adopted for many NLP tasks such as relation ex-
traction (Mintz et al., 2009). Recent work builds
QA datasets with distant supervision, such as TRIV-
IAQA (Joshietal.,2017), SEARCHQA (Dunn et al.,
2017), QBLINK (Elgohary et al., 2018) by auto-
matically gathering evidence documents from a
corpus as distant supervision for available question-
answer pairs. They use standard IR techniques to
find relevant passages and match them with answer
strings. These methods succeed for simple ques-
tions where terms overlap with evidence passages,
This no longer holds for multi-hop questions that
require a reasoning chain as evidence to the answer:
evidence pieces do not overlap with the question
but rather depend on the previous evidence pieces.
Unsupervised IR methods cannot capture such im-
plicit relations. DISTDR removes the burden of
little textual overlap through dense retrieval and its
iterative process retrieves better evidence.

Open-domain QA systems Chen et al. (2017)
first combine information retrieval and (neural)
reading comprehension for open-domain QA. Sev-
eral works aim to improve the neural reader (Clark
and Gardner, 2018; Wang et al., 2018, inter
alia), or use generative models to compose an an-
swer (Lewis et al., 2020; Izacard and Grave, 2021,
inter alia). Recent progress (Karpukhin et al., 2020;
Xiong et al., 2021a,b, inter alia) uses dense re-
trieval to aid both single-hop and multi-hop ques-
tions. However, a crucial distinction is that these
approaches assume the evidence is given for train-
ing, while DISTDR iteratively finds evidence and
uses it to improve the model. Min et al. (2019a)
also use hard-EM for weakly-supervised QA, but—
orthogonal to our approach—they assume the ev-
idence is given and find the most likely answer
mentions in the evidence, while we aim to find
evidence from a large corpus.

7 Conclusion

We present DISTDR, a distantly-supervised ODQA
system that improves over a weak retriever by iter-

atively finding evidence from a corpus, and using
the evidence as distant supervision for model train-
ing. Without using any evidence labels, DISTDR
matches the fully-supervised SOTA approaches on
both multi-hop and single-hop QA benchmarks.

Annotating evidence for existing question-
answer pairs is generally expensive, especially
for complex questions. While DISTDR can ac-
curately find evidence for arbitrary complex ma-
chine reading-style questions, future work needs
to validate whether this can work for other types
of questions. This could improve the reader to an-
swer numerical reasoning (Dua et al., 2019), tem-
poral reasoning (Ning et al., 2020), multi-model
reasoning (Lei et al., 2018), or combination of these
skills (Bartolo et al., 2020).
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