
Topological Relational Learning on Graphs

Yuzhou Chen
Department of Electrical Engineering

Princeton University
yc0774@princeton.edu

Baris Coskunuzer
Department of Mathematical Sciences

University of Texas at Dallas
coskunuz@utdallas.edu

Yulia R. Gel
Department of Mathematical Sciences

University of Texas at Dallas
ygl@utdallas.edu

Abstract

Graph neural networks (GNNs) have emerged as a powerful tool for graph clas-
sification and representation learning. However, GNNs tend to suffer from over-
smoothing problems and are vulnerable to graph perturbations. To address these
challenges, we propose a novel topological neural framework of topological rela-
tional inference (TRI) which allows for integrating higher-order graph information
to GNNs and for systematically learning a local graph structure. The key idea is
to rewire the original graph by using the persistent homology of the small neigh-
borhoods of nodes and then to incorporate the extracted topological summaries
as the side information into the local algorithm. As a result, the new framework
enables us to harness both the conventional information on the graph structure and
information on the graph higher order topological properties. We derive theoretical
stability guarantees for the new local topological representation and discuss their
implications on the graph algebraic connectivity. The experimental results on node
classification tasks demonstrate that the new TRI-GNN outperforms all 14 state-of-
the-art baselines on 6 out 7 graphs and exhibit higher robustness to perturbations,
yielding up to 10% better performance under noisy scenarios.

1 Introduction

Node classification is one of the most active research areas in graph learning. The target here is,
given a single attributed graph G and a small subset of nodes with prior label information, to predict
labels of all remaining unlabelled nodes. Applications of node classification are very diverse, ranging
from customer attrition analytics to tracking corruption-convictions among politicians. Graph neural
networks (GNNs) offer a powerful machinery for addressing such problems on large heterogeneous
networks, resulting in an emerging field of geometric deep learning (GDL) which adapts deep learning
to non-Euclidean objects such as graphs [9, 51, 54, 16].

Although GDL achieves a highly competitive performance in various graph-based classification and
prediction tasks, similarly to the image domain deep learning on graphs is often found to be vulnerable
to graph perturbations and adversarial attacks [43, 50, 26]. In turn, most recent results [42, 19] suggest
that local graph information may be invaluable for robustifying GDL against graph perturbations and
adversarial attacks. Also, as shown by [36, 4, 53] in conjunction with network community learning,
local algorithms (i.e., algorithms based only on a small radius neighborhood around the node) may
demonstrate superior performance if coupled with side information in the form of a node labeling
positively correlated with the true graph structure. Inspired by these results, the ultimate goal of this
paper is to introduce the idea of local algorithms with local topological side information on similarity

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

of node neighborhood shapes into GNN. By shape here, we broadly understand data characteristics
which are invariant under continuous transformations such as stretching, bending, and compressing,
and to study such graph shapes properties, we invoke the machinery of topological data analysis
(TDA) [21, 11].

Topological Relational Inference: from Matchmaking to Adversarial Graph Learning and Be-
yond In particular, to capture more complex graph properties and enhance model robustness, we
introduce the concept of topological relational inference (TRI) and propose two novel options for
information passing which rely on the local topological structure of each node: (i) Inject a new
topology-induced multiedge between two nodes based on shape similarity of their local neighbor-
hoods; (ii) Enrich each individual node features by harnessing local topological side information
from its neighbors. The rationale behind our idea is multi-fold. First, we assess not only global
graph topology and relationships between the feature sets of two individual nodes, as with the current
diffusion mechanisms and random walks on graphs, but we also examine important interactions
between shapes of the feature sets of the node neighborhoods. As a result, our new topology-induced
multigraph representation (TIMR) of graph G in (i) strengthens the relationship among nodes which
might not be (yet) connected by a visible (or "tangible") edge in G but whose higher order intrinsic
characteristics are very similar. The intuitive analogy here might be with a matchmaking agency
who aims to connect two people on a blind date, based on a careful assessment of interplay among
similarities of their interests, socio-demographics as well as that of their close friends, rather than
bringing in two individuals together through a random walk among all available profiles of potential
candidates. Another example is the customer churn and retention analytics based on peer effects [15].
That is, the goal here is to classify the node as potential churn customer based not only on the
individual attributes but on interactions among its neighbor attributes. Second, such a new multiedge
in (i), based on shape similarity of node local neighborhoods may assist not only the matchmaking
agency in coupling the most appropriate individuals (or link prediction in less romantic and more
technical terms), but to enhance resilience of the graph structure and associated graph learning.
Indeed, a new multiedge in (i) can be used as an essential remedial ingredient in graph defense
mechanisms as criteria to clean the perturbed graph, i.e., to reconstruct edges removed by the attacker
or to suppress edges induced by the attacker, depending on the strength of the topology-induced
link. Third, by learning shape properties within each local node neighborhood, our TRI allows for
systematic recovering of intrinsic higher-order interactions among nodes well beyond a level of
pair-wise connectivity, and such local topological side information in (ii) enhances accuracy in node
classification tasks even on clean graphs. Significance of our contributions are the following:

• We propose a novel perspective to graph learning with GNN – topological relational inference,
based on the idea of similarity among shapes of local node neighborhoods.

• We develop a new topology-induced multigraph representation of graphs which systematically
accounts for the key local information on the attributed graphs and serves as an important remedial
ingredient against graph perturbations and attacks.

• We derive theoretical stability guarantees for the new local topological representation of the graph
and discuss their implications for the graph algebraic connectivity.

• Our expansive node classification experiments show that TRI-GNN outperforms 14 state-of-the-
art baselines on 6 out 7 graphs and delivers substantially higher robustness (i.e., up to 10% in
performance gains under noisy scenarios) than baselines on all 7 datasets.

2 Related Work

Graph Neural Networks Inspired by the success of the convolution mechanism on image-based
tasks, GNNs continue to attract an increasing attention in the last few years. Based on the spectral
graph theory, [10] introduced a graph-based convolution in Fourier domain. However, complexity
of this model is very high since all Laplacian eigenvectors are needed. To tackle this problem,
ChebNet [18] integrated spectral graph convolution with Chebyshev polynomials. Then, Graph
Convolutional Networks (GCNs) of [30] simplified the graph convolution with a localized first-order
approximation. More recently, there have been proposed various approaches based on accumulation
of the graph information from a wider neighborhood, using diffusion aggregation and random walks.
Such higher-order methods include approximate personalized propagation of neural predictions
(APPNP) [31], higher-order graph convolutional architectures (MixHop) [3], multi-scale graph

2

convolution (N-GCN) [2], and Lévy Flights Graph Convolutional Networks (LFGCN) [14]. In
addition to random walks, other recent approaches include GNNs on directed graphs (MotifNet) [35],
graph convolutional networks with attention mechanism (GAT, SPAGAN) [48, 52], and graph Markov
neural network (GMNN) [39]. Most recently, Liu et al. [34] consider utilizing information on the node
neighbors’ features in GNN, proposing Deep Adaptive Graph Neural Network (DAGNN). However,
DAGNN does not account for the important information on the shapes of the node neighborhoods.

Persistent Homology for Graph Learning Machinery of TDA and persistent homology (PH) is
increasingly widely used in conjunction with graph classification, that is, when the goal is to predict
a label for the entire graph rather than for individual nodes. Such tools for graph classification
with persistent topological signatures include kernel-based methods [46, 40, 33, 55, 32] and neural
networks [24, 12]. All of the above methods consider the task of classifying graph labels and are
based on assessing ‘global’ graph topology, while our focus is node classification and our approach is
based on evaluating local topological graph properties (i.e., shape of individual node neighborhoods).
Integration of PH to node classification is virtually unexplored. To the best of our knowledge, the
closest result in this direction is PEGN-RC [56]. However, the key idea of PEGN-RC is distinctly
different from our approach. PEGN-RC reweights only each existing edge, based on the topological
information within its edge vicinity and, in contrast to TRI-GNN, neither compares any shapes, nor
creates new or removes existing edges. Importantly, PEGN-RC does not integrate topology of both
graph and node attributes, while TRI-GNN does.

3 Preliminaries on Topological Data Analysis and Persistent Homology

The machinery of topological data analysis (TDA) and, particularly, persistent homology offer a
mathematically rigorous and systematic framework of tools to evaluate shape properties of the
observed data, that is, intrinsic data characteristics which are invariant under continuous deformations
such as stretching, compressing, and bending [58, 21, 37]. The main premise is that the observed
data which can be, as in our case, a graph G or a point cloud in a Euclidean or any finite metric
space constitute a discrete sample from some unknown metric spaceM. Our goal is then to recover
information on some essential properties of M which has been lost due to sampling. Persistent
homology addresses this reconstruction task by counting occurrences of certain patterns, e.g., loops,
holes, and cavities, within shape ofM. Such pattern counts and functions thereof, called topological
signatures are then used to characterize intrinsic properties of G.

The approach is implemented in two main steps. We start from associating G with some nested
sequence of subgraphs G1 ⊆ G2 ⊆ . . . ⊆ Gm = G. Then we monitor evolution of pattern
occurrences (e.g., cycles, cavities, and more generally n-dimensional holes) in this nested sequence
of subgraphs. To ensure a systematic and computationally efficient manner of pattern counting,
we construct a simplicial complex Ci (e.g., a clique complex) induced by Gi. The sequence {Gi}
induces a filtration: nested sequence of simplicial complexes C1 ⊆ C2 ⊆ . . . ⊆ Cm = C. Now
we can not only track patterns but also evaluate the lifespan of each topological feature. Let bσ
be the index of the simplicial complex Cbσ at which we first record (i.e., birth) the n-dimensional
topological feature σ (n-cycle), while simplicial complex Cdσ be the first complex we observe its
disappearance (i.e., death). Then lifespan or persistence of the topological feature σ is dσ − bσ. To
evaluate all topological features together, we consider a persistence diagram (PD) where the multi-set
Dn = {(bσ, dσ) ∈ R2 : dσ > bσ} ∪∆ records the birth and deaths of all n-cycles in the filtration
{Ci}. Here, ∆ = {(t, t)|t ∈ R} is the diagonal set containing points in PD, counted with infinite
multiplicity. Different persistent diagrams can be compared based on the cost of the optimal matching
between points of the two diagrams, while avoiding topological noise near ∆ [13].

Depending on the question at hand, we can construct different suitable filtrations relevant to the
problem. In this paper, we consider two different filtrations. First, we consider the sublevel filtration
based on a node degree function f : V 7→ N. As degree is an integer valued function, so are our
thresholds {αi} ⊂ N. Our sublevel filtration is then defined as follows. Let Vαi = {u ∈ V | f(u) ≤
αi}. Then, Gαi is the subgraph generated by Vαi . In particular, the edge euv ∈ E is in Gαi if both u
and v are in Vαi . We call this degree based filtration. In addition, we consider a second filtration
defined by the edge-weight function on the graph where edge weights are induced by similarity of
node attributes. We call this attribute based filtration (See Section 4). Note that degree based filtration
is induced only by the graph properties, while attribute based filtration is constructed by using the
features coming from the observed data.

3

4 Topological Relational Inference Graph Neural Network (TRI-GNN)

Problem Statement Let G = (V, E) be an attributed graph with a set of nodes V , a set of edges
E ⊆ V × V and euv ∈ E denoting an edge between nodes u, v ∈ V . The total number of nodes in
G is N = |V|. Let W ∈ RN×N be a N ×N -adjacency matrix of G such that ωuv = 1 for euv ∈ E
and 0 otherwise, and D be a diagonal N ×N -degree matrix with Duu =

∑
v ωuv. For undirected

graphs W is symmetric (i.e., W = W>). To feed in directed graphs into the graph neural network
architecture, we set W ′ = (W>+W)/2. Finally, each u ∈ V is equipped with a set of node features,
i.e., Xu = (Xu1, Xu2, . . . , XuF) represents an F -dimensional feature vector for node u ∈ V , and X
is a N ×F -matrix of all node features. Our objective is to develop a robust semi-supervised classifier
such that we can predict unknown node labels in G, given some training set of nodes in G with prior
labeling information. Figure 1 illustrates our TRI-GNN model framework.

4.1 Topology-induced Multigraph Representation

The first step in our TRI model with the associated Topology-induced Multigraph Representation
(TIMR) of G is to define topological similarity among two node neighborhoods. The key goal here is
to go beyond the vanilla local optimization algorithms which capture only pairwise similarity of node
features [36] and beyond only triangle motifs as descriptors of higher-order node interactions [35, 47].
Our aim is to systematically extract all n-dimensional topological features and their persistence in
each node neighborhood and then to compare node neighborhoods in terms of their exhibited shapes.
Definition 1 (Weighted k-hop Neighborhood). An induced subgraph Gku = (Vku , Eku) ⊆ G, equipped
with an edge-weight function τ induced by similarity of node features in Gku , is called a weighted
k-hop neighborhood of node u ∈ V if: (1) for any v ∈ Vku , the shortest path between u and v is at
most k; (2) edge-weight function τ : Vku ×Vku 7→ R≥0 is such that for any v, w ∈ Vku with evw ∈ Eku ,
τvw = ||Xv−Xw||, where || · || is either Euclidean distance (in the case of continuous node features),
Hamming distance (in the case of categorical node features), Heterogeneous Value Difference Metric
(HVDM) or other distance appropriate for mixed-type data [20]. If τvw ≡ 1 for any evw ∈ Eku , Gku
reduces to a conventional k-hop neighborhood.

Armed with the edge-weight function τ induced by node attributes (see Definition 1) or with a node
degree function, we now compute a sublevel filtration within each node neighborhood and track
lifespan of each extracted topological feature, e.g., components, loops, cavities, and n-dimensional
holes (see previous section). Here we consider two cases: attribute based filtration (Gku is equipped
with an edge-weight function τ based on node attributes) and degree based filtration (Gku is an
unweighted graph with τ ≡ 1). We can then compare how topologically similar shapes exhibited by
node neighborhoods in terms of Wasserstein distance among their persistence diagrams.
Definition 2. (Topological Similarity among k-hop Neighborhoods) Let D(Gku) and D(Gkv) be
persistence diagrams of the weighted k-hop neighborhood subgraphs Gku and Gkv of nodes u and v, re-
spectively. We measure topological similarity between Gku and Gkv with Wasserstein distance between

the corresponding persistence diagrams as dWp
(Gku,Gkv) = infγ

(∑
x∈D(Gku)∪∆ ||x − γ(x)||p∞

) 1
p ,

where p ≥ 1 and γ is taken over all bijective maps between D(Gku) ∪∆ and D(Gkv) ∪∆, counting
their multiplicities. In our analysis we use p = 1.

As noted by [36], integrating neighboring nodes whose labeling is positively correlated with the true
cluster structure, as a side information to a community recovery process may lead to substantial
performance gains. Inspired by these results, we not only inject topological side information into
GNN but also distinguish this side information w.r.t. its strength. We propose a new topology-induced
multigraph representation of G, where a multiedge between nodes u and v comprises information
on (tangible) connectivity between u and v (i.e, existence of euv) as well as on strong and weak
topological similarity of the local neighborhoods of u and v, irregardless whether euv exists.
Definition 3. (Topology-induced Multigraph Representation (TIMR)) Consider a graph G =
(V, E), with dW,p(Gku,Gkv) as a measure of topological similarity among two k-hop neighborhoods
Gku and Gkv , for all u, v ∈ V (see Definition 1). Then a topology-induced multigraph representation
of G is defined as Ω = (V, E topo), where E topo is a set of multiedges such that for any u, v ∈ V and
thresholds ε1, ε2 ∈ R+

etopo
uv = {1euv∈E ,1dW,p(Gku,Gkv)∈[0,ε1],−1dW,p(Gku,Gkv)∈[ε2,∞)}. (1)

4

Figure 1: The TRI-GNN semi-supervised learning framework (for more details see Appendix B).

Note that {dW,p(Gku,Gkv) ∈ [0, ε1]} and {dW,p(Gku,Gkv) ∈ [ε2,∞)} are incompati-
ble events. Hence, multiedges have multiplicity at most 2 and E topo is a multiset of
{(1, 1, 0); (0, 1, 0); (1, 0,−1); (0, 0,−1)}. The intuition behind TIMR is to reflect a level of shape
similarity among any two node neighborhoods, irregardless whether there exists an edge between
these nodes in G. Later, by using Ω, we induce a graph W topo (Figure 1) defined as follows: If
neighborhoods of two nodes in G are topologically similar, we add an edge between the nodes if
there is none. If neighborhoods of two nodes in G are topologically dissimilar, we remove the edge
between the nodes if one exists.

Alternatively, we can associate TIMR with positive topology-induced and negative topology-induced
adjacency matrices, W topo+ and W topo− , respectively

W topo+
uv =

[
0 ≤ dfW,p(G

k
u,Gkv) < ε1

]
, W topo−

uv =
[
ε2 < dfW,p(G

k
u,Gkv) <∞

]
, (2)

where [·] is an Iverson bracket, i.e., 1 whenever a condition in the bracket is satisfied, and 0 otherwise.
Selection of hyperparameters ε1 and ε2 can be performed by assessing quantiles of the empirical
distribution of shape similarities and then cross-validation. Thresholds ε1 and ε2 are used to reinforce
meaningful edge structures and suppress noisy edges.

How does TIMR help? TIMR allows us not only to inject a new edge among two nodes if shapes
of their multi-hop neighborhoods are sufficiently close, but also to eliminate an existing edge if
topological distance among their multi-hop node neighborhoods is higher than predefined threshold
ε2. That is, TIMR adds an edge between the nodes whose “similarity” is detected by persistent
homology, and removes the edge between “topologically dissimilar” nodes. This way, in the new
TIMR graph, similar nodes gets closer, and dissimilar nodes gets farther away, thereby assisting
throughout the node classification process. As a result, TIMR also mitigates the impact of noise
edges and reduces the effect of over-fitting. Furthermore, while we have not formally explored TIMR
in conjunction with formal defense mechanisms against adversarial attacks, TIMR may be viewed
as an essential remedial ingredient in defense. Indeed, TIMR offers an insight about one of the key
defense challenges [27], namely, systematic criteria we should follow to clean the attacked graph –
TIMR suggests to recover edges removed by the attacker with positive topology-induced links and to
suppress edges induced by the attacker with negative topology-induced links.

4.2 TIMR Theoretical Stability Guarantees

We now establish theoretical stability properties of the TIMR average degree. The average degree
is known to be closely related to performance in node classification tasks [28, 17, 1] and, hence,
degree-dependent regularization is often used in adversarial training [38, 49, 44]. Here we prove that
under perturbations of the observed graph G, average degrees of the TIMR graphs of the original and
distorted copies remain close. That is, the proposed TRI framework allows us to increase robustness
of the graph degree properties with respect to graph perturbations and attacks. Given that persistent
homology representations are known to be robust against noise, our result appears to be intuitive.
However, integration of graph persistent homology into node classification tasks and its theoretical
guarantees remain yet an untapped area.

5

Let G+ and G− be two graphs of the same order. Let T+ and T− be TIMR graphs of G+ and G−,
constructed by the degree based filtration. We define local k-distance between two graphs based on
the Wasserstein distance dWp between their persistence diagrams as follows. Let u± be a node in G±
and Gku± be k-neighborhood of the u± in G±. Let

dk(u+, u−) = dW1
(D0(Gku+),D0(Gku−)),

where dW1 is Wasserstein-1 distance (see Definition 1), and D0(G) is the persistence diagram of
0-cycles. Let ϕ : V + → V − be a bijection between node sets of G+ and G−, respectively. Then, the
local k-distance between G+ and G− is defined as

Dk(G+,G−) = min
ϕ

∑
u+

dk(u+, ϕ(u+)).

We now have the following stability result:
Theorem 1 (Stability of Average Degree). Let G+ and G− be two graphs of same size and order. Let
T± be the TIMR graph induced by G±, with thresholds ε1 and ε2. Let α± be the average degree of
T±. Then, there exists a constant K(ε1, ε2) > 0 such that

|α+ − α−| ≤ K(ε1, ε2)Dk(G+,G−).

The proof of the theorem is given in Appendix A in the supplementary material.

Furthermore, we conjecture the following result on stability of algebraic connectivity of TIMR graphs
for the attribute based case. Here, the algebraic connectivity λ2(G) is the second smallest eigenvalue
of the graph Laplacian L(G), and it is considered to be a spectral measure to determine the robustness
of the graph [45].

Conjecture: Let G be a graph, and let G′ be a graph which is obtained by adding one edge e to G,
i.e., G′ = G ∪ e. Let T, T ′ be the TIMR graphs induced by G,G′, respectively. Then,

|λ2(T ′)− λ2(T)| ≤ K(ε1, ε2)|λ2(G′)− λ2(G)|.

Note that this conjecture is not true for degree based TIMR graphs. The reason for that when one
adds an edge euv to G, then this operation significantly changes k-neighborhoods of all nodes in
Nk(vi) andNk(vj). Since degree based TIMR construction depends on persistence diagrams of these
k-neighborhoods, adding such an edge causes an uncontrollable effect on the algebraic connectivity.
However, in attribute based construction, similarity is only based on the attributes, and the distances
in the graph does not have an effect on edge addition/deletion decision. So, when the original graph G
is perturbed by adding an edge, the attributes remain intact, and TIMR representations of the original
and perturbed graphs are identical.

4.3 STAN: learning from Subgraphs, Topology and Attributes of Neighbors

For graphs with continuous or binary node features, higher-order form of message passing and
aggregation (i.e., powers of the adjacency matrix) are shown to capture important structural graph
properties that are inaccessible at the node-level. However, such higher-order architectures largely
focus on global network topology and do not account for the important local graph structures. Also,
performance of such higher-order graph convolution architectures tend to suffer from over-smoothing
and be susceptible to noisy observations, since their propagation schemes recursively update each
node’s feature vector by aggregating over information delivered by all further nodes captured by a
random walk.

Here we propose a new recursive feature propagation scheme STAN which updates the node features
from Subgraphs, Topology, and Attributes of Neighbors. In particular, for each target node, STAN
(i) converts these three features into a form of topological edge weights, (ii) calculates topological
average of neighborhood features, (iii) aggregates them with the initial node features.

Let X(0)
u = Xu be the initial node features for u ∈ V and T be the number of STAN iterations. Then

we iteratively update the feature representation of node u using side information collected from nodes
within its k-hop local neighborhood via X(t+1)

u = fup

(
φaggr

(
X

(t)
u , α(u)

∑
v∈Vk(u) d̂uv · X

(t)
v

))
,

6

where fup is the update function such as a multi-layer perceptron (MLP) and a gated network, φaggr is
function that aggregates topological features into node features, such as sum and mean; α(u) is a
weighting factor which can be set either as a hyperparameter or a fixed scalar, and d̂uv are normalized
topological edge weights

d̂uv =
exp

[(
dfW,p(Gu,Gv)

)−1]∑
v∈Vk(u) exp

[(
dfW,p(Gu,Gv)

)−1] .
The core principle of STAN is to assign different importance scores to nodes, depending on how
similar topologically their neighborhoods are to the target node, and to control the impact on the
target node prediction when aggregating neighborhoods’ information. For instance, suppose target
node is u and we also have nodes v and w. We assign a higher weight to the edge between u and v (if
the shapes of their neighborhoods are more similar) and a lower weight to the edge between u and w
(if neighborhoods of u and w have more distinct topology). As a result, the updated node features of
u will be more affected by v.

Figure 2: STAN for node feature vectors extension. The target node u (red) with 2-hop neighborhood,
where four 1-hop neighbors (blue) and three 2-hop neighbors (green). Each node is represented by a
3-component feature vector. We include more discussion on the STAN in Appendix B.

4.4 Convolution based TRI-GNN Layer

We now turn to construction of the TRI-GNN layer. Let W ∈ RN×N×3 be a 3-dimension tensor,
where N is the number of nodes and 3 is the number of candidate adjacency matrices (i.e., W ,
W topo+ , and W topo−). Let W uvr be the r-th type of edge between nodes u and v of W , where
u ∈ {1, . . . , N}, v ∈ {1, . . . , N}, and r ∈ {1, 2, 3}. That is, we denote W , W topo+ , and W topo− by
setting r = 1, 2, 3. We then consider a joint topology-induced adjacency matrix W topo

W topo
uv =

{
1, if

∑
rW uvr > 0

0, otherwise
. (3)

In the experiments, we utilize the classification function for the generalized semi-supervised learning
as the default filter engine of TRI-GNN. Given W topo, we compute topological distance-based graph
Laplacian Ltopo = (D̃topo)−σW̃ topo(D̃topo)σ−1, where W̃ topo = (W topo + I)ρ, D̃topo =

∑
v W̃

topo
uv ,

σ ∈ [0, 1], and ρ ∈ (0,∞). Equipped with the new graph Laplacian Ltopo and node information
matrix X(T) at iteration T , TRI-GNN uses the following graph convolution layer

H(`+1) = ψ
(
µ
(
I − µLtopo)−1

H(`)Θ(`)
)

= ψ
(
µ

∞∑
i=0

(
µLtopo)iH(`)Θ(`)

)
,

where µ ∈ (0, 1] is a regularization parameter, H(`) ∈ RN×F` and H(`+1) ∈ RN×F`+1 are input
and output activations for layer ` (H(0) = X(T)), Θ ∈ RF`×F`+1 are the trainable parameters of
TRI-GNN, and ψ is an element-wise nonlinear activation function such as ReLU. In the experiments
µ is selected from {0.1, 0.2, . . . , 0.9}, and its choice impacts the number of terms in Taylor expansion.
To reduce the computational complexity, based on the Taylor series expansion, we empirically find

7

that maxi = dRµe is a suitable rule of thumb (where R ∈ [2, 50]), while the closer σ is to 0, the
more robust to the choice of regularization parameters the performance is. Note that in order to
improve the robustness of TRI-GNN when it is exposed to noisy, we can consider convolution based
TRI-GNN layer with parallel structure.

Table 1: Performance on semi-supervised classification. Average accuracy (%) and standard deviation
(%) in ().

Method IEEE 118-Bus ACTIVSg200 ACTIVSg500 ACTIVSg2000 Cora-ML CiteSeer PubMed
ChebNet 60.00 (3.11) 80.63 (4.20) 95.18 (1.00) 80.04 (0.37) 81.45 (1.21) 70.23 (0.80) 78.40 (1.10)
GCN 52.86 (0.78) 82.96 (1.66) 90.33 (0.68) 73.36 (0.41) 81.50 (0.40) 71.11 (0.72) 79.00 (0.53)
MotifNet 65.75 (0.77) 73.20 (1.61) 95.18 (0.53) 82.00 (0.44) - - -
ARMA 70.55 (2.23) 80.07 (3.30) 94.33 (0.47) 81.20 (0.23) 82.80 (0.63) 72.30 (0.44) 78.80 (0.30)
GAT 70.23 (1.80) 83.56 (2.58) 95.00 (0.47) 83.00 (0.59) 83.11 (0.70) 70.85 (0.70) 78.56 (0.31)
RGCN 81.80 (1.79) 83.35 (3.12) 95.91 (0.50) 85.23 (0.40) 82.80 (0.60) 72.13 (0.50) 79.11 (0.30)
GMNN 78.88 (2.50) 84.13 (1.89) 96.57 (0.52) 86.21 (0.29) 83.72 (0.90) 73.10 (0.79) 81.80 (0.53)
LGCNs 71.43 (2.20) 83.78 (1.50) 95.14 (0.45) 85.57 (0.25) 83.35 (0.51) 73.08 (0.63) 79.51 (0.22)
SPAGAN 78.55 (2.25) 81.83 (2.09) 96.19 (0.40) 86.00 (0.26) 83.63 (0.55) 73.02 (0.41) 79.60 (0.40)
APPNP 82.05 (2.24) 81.21 (1.85) 96.11 (0.45) 86.77 (0.30) 83.31 (0.53) 72.30 (0.51) 80.12 (0.20)
VPN 82.19 (2.20) 79.89 (1.82) 96.23 (0.50) 86.87 (0.33) 81.89 (0.57) 71.40 (0.32) 79.60 (0.39)
LFGCN 82.20 (2.30) 81.11 (2.10) 97.61 (0.47) 87.74 (0.30) 84.35 (0.57) 71.89 (0.77) 79.60 (0.55)
MixHop 80.05 (2.50) 80.53 (1.96) 95.94 (0.40) 86.10 (0.25) 81.90 (0.81) 71.41 (0.40) 80.81 (0.58)
PEGN-RC 82.30 (1.90) 83.30 (1.10) 97.20 (0.50) 87.62 (0.74) 82.70 (0.50) 71.91 (0.63) 79.40 (0.70)

TRI-GNNA 82.80 (1.64) 84.93 (1.51) 97.85 (0.56) 88.82 (0.56) 84.80 (0.55) 73.45 (0.65) 79.80 (0.52)
TRI-GNND 82.67 (2.08) 86.18 (0.20) 98.11 (0.43) 89.06 (0.44) 84.98 (0.49) 73.32 (0.48) 79.70 (0.50)

5 Experiments

We now empirically evaluate the effectiveness of our proposed method on seven node-classification
benchmarks under semi-supervised setting with different graph size and feature type. We run all
experiments for 50 times and report the average accuracy results and standard deviations.

5.1 Experimental Settings

Datasets We compare TRI-GNN with the state-of-the-art (SOA) baselines, using standard publicly
available real and synthetic networks: (1) 3 citation networks [41]: Cora-ML, CiteSeer, and PubMed,
where nodes are publications and edges are citations; (2) 4 synthetic power grid networks [8, 7, 23]:
IEEE 118-bus system, ACTIVSg200 system, ACTIVSg500 system, and ACTIVSg2000 system,
where each node represents a load bus, transformer, or generator and we use total line charging
susceptance (BR_B) as edge weight. For more details see Table I (in Appendix C.1).

Baselines We compare TRI-GNN with 14 SOA GNNs: (i) 5 higher-order graph convolution architec-
tures: LGCNs [22], APPNP [31], VPN [25], LFGCN [14], and MixHop [3]; (ii) 2 graph attention
mechanism: GAT [48] and SPAGAN [52]; (iii) 4 GNNs with polynomial filters: ChebNet [18],
GCN [30], MotifNet [35], and ARMA [6]; (iv) 2 GNNs by learning the generative distribution:
GMNN [39] and RGCN [57]; and (v) 1 GNNs with topological information: PEGN-RC [56]. In the
experiments, we implement two variants of TRI-GNN, i.e., TRI-GNNA (node attributes as filtration
function) and TRI-GNND (node degree as filtration function). In addition, in our robustness experi-
ments, we select the 4 strongest baselines in each of the GNN areas: random walks, graph attention
networks, higher-order graph convolutional models, and robust graph convolutional networks (i.e.,
APPNP, GAT, LFGCN, and RGCN). More details on experimental setup are in Appendix C.2. The
source code of TRI-GNN is publicly available at https://github.com/TRI-GNN/TRI-GNN.git.

5.2 Performance on Node Classification

Table 1 shows the results for node classification results on graphs. We observe that TRI-GNN
outperforms all baselines on CoraML, CiteSeer, and four power grid networks, while achieving
comparable performance on PubMed. This consistently strong performance of TRI-GNN indicates
utility of integrating more complex graph structures through aggregating higher-order topological
information. The best results are highlighted in bold for all datasets. As Table 1 shows, TRI-GNND
and TRI-GNNA outperform all baselines on all 7 but 1 benchmark datasets, yielding relative gains
of 0.5-2.5% on clean graphs. Overall, TRI-GNND appears to be the most competitive approach,

8

https://github.com/TRI-GNN/TRI-GNN.git

especially for ACTIVSg200 and ACTIVSg500 systems. Nevertheless, TRI-GNNA tends to follow
TRI-GNND relatively closely. It validates that the framework of topological relational inference
can integrate topological information across multigraph representation and feature propagation,
respectively. On PubMed, GMNN achieves a better accuracy than both TRI-GNN versions due to
PubMed exhibiting the weakest structural information with very few links per node on average, but
both TRI-GNN models still deliver highly competitive results. In addition, we find that for sparser
heterogeneous graphs, with lower numbers of node attributes per class, richer topological structure
(i.e., synthetic ACTIVSg200 and ACTIVSg2000) and weaker dependency between attributes and
classes, PH induced by the graph properties is more important than attribute-induced PH, while
for denser, more homogeneous graphs as IEEE 118-bus, attribute-based filtration is the key. These
insights echo findings in real citation networks.

Ablation Study Our TRI framework contains two key components: (i) encoding higher-order topo-
logical information via TIMR, (ii) STAN, i.e., updating the node features by aggregating information
from subgraphs, topology, and neighborhood features. To glean a deeper insight into how different
components help TRI-GNN to achieve highly competitive results, we conduct experiments by re-
moving individual component separately, namely (1) TRI-GNND w/o TIMR (i.e., denoted by Ω), (2)
TRI-GNND w/o STAN, and (3) TRI-GNND with TIMR and STN (where STN represents updating the
node features by only aggregating information from subgraphs and topology without neighborhood
features). As Table 2 shows, both TIMR Ω and STAN indeed yield significant performance improve-
ments on all datasets. The ablation study on contribution of TIMR and STAN with TRI-GNNA are in
Table II of Appendix C.3. The results show that all the components are indispensable.

Table 2: TRI-GNND ablation study. Significance analysis is performed with one-sided two-sample
t-test based on 50 runs; *, **, *** denote p-value < 0.1, 0.05, 0.01 (i.e., significant, statistically
significant, highly statistically significant).

Dataset TRI-GNND w/o Ω w/o STAN with Ω, STN
ACTIVSg200 86.18 (0.20) ∗∗∗82.93 (1.32) ∗∗∗83.00 (3.17) ∗∗∗83.25 (1.58)
ACTIVSg500 98.11 (0.43) ∗∗∗93.71 (1.03) ∗∗∗94.31 (1.20) ∗∗∗93.69 (1.50)
Cora-ML 84.98 (0.49) ∗∗∗84.26 (0.77) ∗∗∗84.00 (0.33) ∗∗∗84.40 (0.56)
CiteSeer 73.32 (0.48) ∗∗73.11 (0.43) 73.20 (0.55) ∗73.19 (0.47)

Boundary Sensitivity We select the ε1 and ε2 values based on quantiles of Wasserstein distances
between persistence diagrams (see Figure 3a). The optimal choice of ε1 and ε2 can be obtained
via cross-validation. For instance, the optimal quantile of ε1 and ε2 for ACTIVSg200 dataset is
0.55 and 2.50 respectively. We consider the lower and upper bounds for ε1 are 0.50 (minimum)
and 0.05-quantile, respectively, and the lower and upper bounds for ε2 are 0.1-quantile and 6.74
(maximum), respectively. For ε1, we generate a sequence from 0.50 to 2.00 with increment of the
sequence 0.05; for ε2, we generate a sequence from 2.50 to 6.74 with increment of the sequence 0.5.
Based on cross-validation, we conduct experiments in different ε1 and ε2 combinations. Figures 3b
and 3c show the performances with respect to different thresholds (ε1 and ε2) combinations (where
† denotes the εi (where i ∈ {1, 2}) is not fixed). From the results in Figure 3, we find that (ε1, ε2)
around (0.55, 2.50) tend to deliver the optimal performance (accuracy (%)). The optimal results
differ among graphs and depend on sparsity, label rates and graph higher-order properties. To better
examine the boundary sensitivity, we further evaluate hyperparameters ε1 and ε2 on ACTIVSg500 in
Appendix C.8.

Robustness Analysis To evaluate the model performance under graph perturbations, we test the
robustness of the TRI-GNN framework under random attacks (here we present the results for TRI-
GNNA, and analogous robustness for TRI-GNND are in Appendix C.4.). Random attack randomly
generates fake edges and injects them into the existing graph structure. The ratio of the number of
fake edges to the number of existing edges varies from 0 to 100%. As Figure 4 shows, TRI-GNNA
consistently outperforms all baselines on both citation and power grid networks under random attacks,
delivering gains up to 10% in highly noisy scenarios (see Cora-ML). These findings indicate that
TRI-GNNA is again the most robust GNN node classifier under random attacks. By aggregating local
topological information from node features and neighborhood substructures, TRI-GNNA can “absorb”
noisy edges and, as a result, exhibits less sensitivity to graph perturbations and adversarial attacks.

9

(a) Wasserstein distances. (b) (ε1, ε†2). (c) (ε†1, ε2).

Figure 3: Hyperparameters ε1 and ε2 selection of TRI-GNN on ACTIVSg200 dataset.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Noise Edges

A
ve

ra
g

e
ac

cu
ra

cy

APPNP
GAT
LFGCN
RGCN
TRI −GNNA

ACTIVSg500(a)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Noise Edges

APPNP
GAT
LFGCN
RGCN
TRI −GNNA

ACTIVSg2000(b)

0.65

0.70

0.75

0.80

0.85

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Noise Edges

A
ve

ra
g

e
ac

cu
ra

cy

APPNP
GAT
LFGCN
RGCN
TRI −GNNA

Cora−ML(c)

0.55

0.60

0.65

0.70

0.75

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Noise Edges

APPNP
GAT
LFGCN
RGCN
TRI −GNNA

Citeseer(d)

Figure 4: Node classification accuracy under random attacks.

Computational Costs In less extreme scenarios, the expected number of nodes in the k-hop neigh-
borhood can be approximated by d̄k, where d̄ is the mean degree of the graph and mathematical
expectation is in terms of the node degree distribution. The computational complexity for Wasserstein
distance between two persistence diagrams is O(M3), where M is the total number of barcodes in
the both persistence diagrams. In the worst case scenario, if we use a very fine filtering function for
persistence diagrams of k-hop neighborhoods, it would give at most 2d̄k barcodes (i.e., the number
of barcodes in each k-hop neighborhood is at most d̄k and we compare two k-hop neighborhoods).
Considering we use the degree filtering function for our persistence diagrams, we expect to have much
less (∼ d̄k) barcodes in the 0-th persistence diagram of a k-hop neighborhood by using the technique
in [29]. Hence, the overall computational complexity would be of stochastic orderO(N2d̄

3k
2). It may

be costly to run PH for denser graphs (currently, computational complexity is the main roadblock
for all PH-based methods on graphs) but as we noted earlier, for denser graphs we may use a degree
filtration under lower k-hops which is still found to be very powerful even for small k. Table II in
Appendix C.2 reports the average running time of PD generation and training time per epoch of our
TRI-GNN model on all datasets.

6 Conclusion

We have proposed a novel perspective to node classification with GNN, based on the TDA con-
cepts invoked within each local node neighborhood. The new TRI approach has shown to deliver
highly competitive results on clean graphs and substantial improvements in robustness against graph
perturbations. In the future, we plan to apply TRI-GNN as a part of structured graph pooling.

Societal Impact and Limitations

Among the major limitations we currently see is probable existence of the bias of the proposed node
classification approach due to potentially unbalanced population groups [5]. Indeed, in the context of
social data analysis, given that we analyze peer neighborhoods which themselves tend to be largely
formed by the same users as the target node and hence are likely to be dominated by the abundant
group, such bias is very likely to exist and to be non-negligible. Mitigating it is a problem on its
own but some ideas include using multiple filtration functions based on different node attributes so
the node neighborhoods are made more diverse and are no longer dominated by a specific group or
removing some potentially sensitive node attributes (e.g., gender) completely from the study (which
has its own pros and cons in terms of accuracy).

10

Acknowledgements

This material is based upon work sponsored by the National Science Foundation under award numbers
ECCS 2039701, INTERN supplement for ECCS 1824716, DMS 1925346 and the Department of the
Navy, Office of Naval Research under ONR award number N000142112226. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Office of Naval Research. The authors are also grateful to
the NeurIPS anonymous reviewers for many insightful suggestions and engaging discussion which
improved clarity of the manuscript and highlighted new open research directions. Any opinion,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

References
[1] Emmanuel Abbe, Enric Boix-Adsera, Peter Ralli, and Colin Sandon. Graph powering and spectral

robustness. SIAM Journal on Mathematics of Data Science, 2(1):132–157, 2020.

[2] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-GCN: Multi-scale graph convolu-
tion for semi-supervised node classification. In UAI, pages 841–851, 2020.

[3] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyun-
yan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional architectures via
sparsified neighborhood mixing. In ICML, pages 21–29, 2019.

[4] Konstantin Avrachenkov and Maximilien Dreveton. Almost exact recovery in noisy semi-supervised
learning. arXiv:2007.14717, 2020.

[5] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairmlbook.org,
2021. http://www.fairmlbook.org.

[6] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks with
convolutional arma filters. TPAMI, 2021.

[7] Adam B Birchfield, Kathleen M Gegner, Ti Xu, Komal S Shetye, and Thomas J Overbye. Statistical
considerations in the creation of realistic synthetic power grids for geomagnetic disturbance studies.
Transactions on Power Systems, 32(2):1502–1510, 2016.

[8] Adam B Birchfield, Ti Xu, Kathleen M Gegner, Komal S Shetye, and Thomas J Overbye. Grid structural
characteristics as validation criteria for synthetic networks. Transactions on Power Systems, 32(4):3258–
3265, 2016.

[9] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. Signal Processing Magazine, 34(4):18–42, 2017.

[10] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. In ICLR, 2014.

[11] Gunnar Carlsson. Topological pattern recognition for point cloud data. Acta Numerica, 23:289–368, 2014.

[12] Mathieu Carrière, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda. Perslay:
A neural network layer for persistence diagrams and new graph topological signatures. In AISTATS, pages
2786–2796, 2020.

[13] Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: fundamental and
practical aspects for data scientists. Frontiers in Artificial Intelligence, 4, 2021.

[14] Yuzhou Chen, Yulia R Gel, and Konstantin Avrachenkov. LFGCN: Levitating over graphs with levy flights.
In ICDM, pages 960–965. IEEE, 2020.

[15] Yuzhou Chen, Yulia R Gel, Vyacheslav Lyubchich, and Todd Winship. Deep ensemble classifiers and peer
effects analysis for churn forecasting in retail banking. In PaKDD, pages 373–385, 2018.

[16] Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, and Chang-
Tien Lu. Bridging the gap between spatial and spectral domains: A survey on graph neural networks.
arXiv:2002.11867, 2020.

11

http://www.fairmlbook.org

[17] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph
structured data. In ICML, pages 1115–1124, 2018.

[18] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In NeurIPS, pages 3844–3852, 2016.

[19] Tyler Derr, Yao Ma, Wenqi Fan, Xiaorui Liu, Charu Aggarwal, and Jiliang Tang. Epidemic graph
convolutional network. In WSDM, pages 160–168, 2020.

[20] Michel Marie Deza and Elena Deza. Encyclopedia of distances. In Encyclopedia of Distances, pages
1–583. Springer, 2009.

[21] Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American Mathematical
Soc., 2010.

[22] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional networks.
In ACM SIGKDD, pages 1416–1424, 2018.

[23] Kathleen M Gegner, Adam B Birchfield, Ti Xu, Komal S Shetye, and Thomas J Overbye. A methodology
for the creation of geographically realistic synthetic power flow models. In PECI, pages 1–6. IEEE, 2016.

[24] Christoph D Hofer, Roland Kwitt, and Marc Niethammer. Learning representations of persistence barcodes.
JMLR, 20(126):1–45, 2019.

[25] Ming Jin, Heng Chang, Wenwu Zhu, and Somayeh Sojoudi. Power up! robust graph convolutional network
via graph powering. In AAAI, 2021.

[26] Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and Jiliang Tang. Adversarial
attacks and defenses on graphs: A review, a tool and empirical studies. ACM SIGKDD Explorations
Newsletter, page 19–34, 2021.

[27] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning
for robust graph neural networks. In ACM SIGKDD, 2020.

[28] Antony Joseph and Bin Yu. Impact of regularization on spectral clustering. The Annals of Statistics,
44(4):1765–1791, 2016.

[29] Lida Kanari, Adélie Garin, and Kathryn Hess. From trees to barcodes and back again: theoretical and
statistical perspectives. Algorithms, 13(12):335, 2020.

[30] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
ICLR, 2017.

[31] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In ICLR, 2019.

[32] Panagiotis Kyriakis, Iordanis Fostiropoulos, and Paul Bogdan. Learning hyperbolic representations of
topological features. In ICLR, 2021.

[33] Tam Le and Makoto Yamada. Persistence fisher kernel: A riemannian manifold kernel for persistence
diagrams. In NeurIPS, pages 10007–10018, 2018.

[34] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In ACM SIGKDD,
pages 338–348, 2020.

[35] Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph convolutional
network for directed graphs. In DSW, pages 225–228. IEEE, 2018.

[36] Elchanan Mossel and Jiaming Xu. Local algorithms for block models with side information. In ITCS,
pages 71–80, 2016.

[37] Elizabeth Munch. A user’s guide to topological data analysis. Journal of Learning Analytics, 4(2):47–61,
2017.

[38] Sharad Nandanwar and M Narasimha Murty. Structural neighborhood based classification of nodes in a
network. In ACM SIGKDD, pages 1085–1094, 2016.

[39] Meng Qu, Yoshua Bengio, and Jian Tang. GMNN: Graph markov neural networks. In ICML, pages
5241–5250, 2019.

12

[40] Bastian Rieck, Christian Bock, and Karsten Borgwardt. A persistent weisfeiler-lehman procedure for graph
classification. In ICML, pages 5448–5458, 2019.

[41] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–93, 2008.

[42] Ke Sun, Piotr Koniusz, and Zhen Wang. Fisher-bures adversary graph convolutional networks. In UAI,
pages 465–475. PMLR, 2020.

[43] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S Yu, and Bo Li. Adversarial attack and defense on
graph data: A survey. arXiv:1812.10528, 2020.

[44] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar. Non-target-specific node
injection attacks on graph neural networks: A hierarchical reinforcement learning approach. In WWW,
volume 3, 2020.

[45] Ali Sydney, Caterina Scoglio, and Don Gruenbacher. Optimizing algebraic connectivity by edge rewiring.
Applied Mathematics and Computation, 219(10):5465–5479, 2013.

[46] Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler-lehman graph kernels. In NeurIPS, pages 6439–6449, 2019.

[47] Francesco Tudisco, Austin R Benson, and Konstantin Prokopchik. Nonlinear higher-order label spreading.
In WWW, pages 2402–2413, 2021.

[48] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention networks. In
ICLR, 2018.

[49] Shen Wang, Zhengzhang Chen, Jingchao Ni, Xiao Yu, Zhichun Li, Haifeng Chen, and Philip S Yu.
Adversarial defense framework for graph neural network. arXiv:1905.03679, 2019.

[50] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples on graph data: Deep insights into attack and defense. In IJCAI, 2019.

[51] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehen-
sive survey on graph neural networks. TNNLS, 2020.

[52] Yiding Yang, Xinchao Wang, Mingli Song, Junsong Yuan, and Dacheng Tao. SPAGAN: shortest path
graph attention network. In IJCAI, pages 4099–4105, 2019.

[53] Monisha Yuvaraj, Asim K Dey, Vyacheslav Lyubchich, Yulia R Gel, and H Vincent Poor. Topological
clustering of multilayer networks. Proceedings of the National Academy of Sciences, 118(21), 2021.

[54] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. TKDE, 2020.

[55] Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications for graph
classification. In NeurIPS, pages 9859–9870, 2019.

[56] Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence enhanced graph neural network. In AISTATS,
pages 2896–2906. PMLR, 2020.

[57] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks against
adversarial attacks. In ACM SIGKDD, pages 1399–1407, 2019.

[58] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Computational
Geometry, 33(2):249–274, 2005.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.2, scalability.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4.2.
(b) Did you include complete proofs of all theoretical results? [Yes] See Supplementary

Material, Appendix A.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See
Section 5 and Appendix C. Source code and data are publicly available at https:
//github.com/TRI-GNN/TRI-GNN.git.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5 and Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] See Section 5 and results on statistical hypothesis
testing.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5 and Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

https://github.com/TRI-GNN/TRI-GNN.git
https://github.com/TRI-GNN/TRI-GNN.git

	Introduction
	Related Work
	Preliminaries on Topological Data Analysis and Persistent Homology
	Topological Relational Inference Graph Neural Network (TRI-GNN)
	Topology-induced Multigraph Representation
	TIMR Theoretical Stability Guarantees
	STAN: learning from Subgraphs, Topology and Attributes of Neighbors
	Convolution based TRI-GNN Layer

	Experiments
	Experimental Settings
	Performance on Node Classification

	Conclusion

