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Automaton-based Implicit Controlled Invariant Set Computation for
Discrete-Time Linear Systems
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Abstract—In this paper, we derive closed-form expressions
for implicit controlled invariant sets for discrete-time control-
lable linear systems with measurable disturbances. In particular,
a disturbance-reactive (or disturbance feedback) controller in
the form of a parameterized finite automaton is considered.
We show that, for a class of automata, the robust positively
invariant sets of the corresponding closed-loop systems can be
expressed by a set of linear inequality constraints in the joint
space of system states and controller parameters. This leads to
an implicit representation of the invariant set in a lifted space.
We further show how the same parameterization can be used
to compute invariant sets when the disturbance is not available
for measurement.

I. INTRODUCTION

When tasked with synthesizing a controller in order to
ensure safety of a plant under uncertainties, the objective
is to indefinitely keep the state of the plant within a set
of safe states. A natural solution to this task is to initialize
the state in a Robust Controlled Invariant Set (RCIS) within
the set of safe states. RCISs have the property that any
trajectory starting within an RCIS can always be forced to
remain inside the RCIS and, therefore, inside the set of safe
states. Consequently, RCISs are at the core of safety-critical
applications.

Since the conception of the standard method for computing
the Maximal RCIS of discrete-time systems [1], [2], is known
to suffer from poor scaling with the system’s dimension
and no guarantees of termination, different approaches at-
tempted to alleviate these drawbacks. In the case of bounded
disturbances, when the set of safe states are polytopes,
[3] computes inner and outer approximations of RCISs for
linear systems with guarantees on finite-time termination.
For the same system class, a different line of works [4]-[6]
approximate the Maximal/Minimal RCIS by first closing the
loop with a linear state feedback law and then computing
the Robust Positively Invariant Set (RPIS) of the closed-
loop system. This group of methods are typically very
conservative since only linear state feedback controllers are
considered.

Finally, several recent methods [7]-[10], including previ-
ous works from the authors, develop approaches for con-
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structing implicit RCIS in closed form, represented as poly-
topes in a high-dimensional space whose projection onto
the original state space is an RCIS. By avoiding computing
RCISs explicitly, those methods can work for systems with
higher dimensions. It is indeed the case in many practical ap-
plications, such as model predictive control and supervision
control, that knowledge of the explicit RCIS is not required
and the implicit representation suffices [11], [12].

Inspired by the recent progress on implicit RCISs, in
this work we propose a novel approach to compute implicit
RCISs for discrete-time linear systems. In addition, the
aforementioned works consider non-measurable disturbances
only, however, in many safety-critical applications, incoming
disturbances can be measured in ahead [13] and, hence,
are considered measurable [2]. Thus, unlike the existing
works, we develop a method that works for both measurable
and non-measurable disturbances, achieved by introducing
an automaton-based controller whose input is exactly the
measurable disturbance. More specifically, our contributions
are as follows:

1) We propose an automaton-based method for computing
implicit RCISs for a class of linear systems that contains
the class of controllable linear systems, with measurable
disturbances.

2) We derive conditions on the structure of the automaton
such that the implicit RCIS is computed in closed-form.

3) We present a generic connection between measurable
and non-measurable disturbances, enabling the proposed
method to work with systems with non-measurable distur-
bances.

In addition to the above, we demonstrate the practicality
of the implicit RCIS in the task of supervision control for the
lane keeping problem. The goal is to modify nominal control
inputs, as needed, to keep the system’s trajectory within a
set of safe states. We show that this is achieved by solving
an optimization problem using the implicit RCIS.

The paper is organized as follows: In Section II, the
problem is mathematically set up, along with the essential
definitions and assumptions. Section III lays down the ideas
for computing an implicit RCIS for systems with measurable
disturbances. Subsequently, Section IV investigates when
the implicit RCIS can be computed in closed-form, while
Section V connects the proposed method to the case of
non-measurable disturbances. Section VI provides a computa-
tional evaluation of the proposed method. Finally, conclusion
is found in Section VII. To keep a streamlined presentation,
the proofs of all theorems are found in Appendix.
Notation: The Minkowski sum of two sets A and B is
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denoted by A+ B={a+b|acA,bec B}. For asingleton {x},
we write the Minkowski sum {x} + B as x+B. We denote the
convex hull of a set A by CH(A). For a sequence (d(t))Y,,
we denote the finite subsequence (d(t))”_, by d(a: b) with
0 <a < b <N. We denote the projection of a set C in R"*"™
onto the first n coordinates by Proj;.,(C) in R”. For two
vectors x € R" and y € R™, (x,y) denotes the concatenated
vector in R+,

II. PRELIMINARIES

In this work, we consider a discrete-time linear system X:
Yox(t+1)=Ax(t)+Bu(t)+d(1), (1)

where x € R” is the state of X, u € R” is the input, and
d € D CR" is a disturbance term. The set D contains all
possible values of d. The disturbance d is measurable if u(t)
can be determined based on the measurement d(¢); otherwise,
d is non-measurable.

Definition 1 (Safe set). Let S C R"™ be the set of desired
state and input pairs (x,u), called the safe set of the system.
That is, we want (x(z),u(t)) € S for all t > 0.

The difference between measurable and non-measurable
disturbances is reflected in the following definitions of a
Robust Controlled Invariant Set (RCIS).

Definition 2 (RCIS with non-measurable disturbance). Con-
sider a non-measurable disturbance d. A set C C R" is an
RCIS for the system X within the safe set S if:

Vx € C,3u such that (x,u) € S,Ax+Bu+decC,Nd €D. (2)

Definition 3 (RCIS with measurable disturbance). For the
disturbance d being measurable, a set C C R" is an RCIS
for the system X within the safe set S if:

Vx € C,Vd € D,3u such that (x,u) € S,Ax+Bu+deC. (3)

Note that the order of the quantifiers Vd € D and Ju is
swapped in the definitions above, which means an RCIS C
with respect to a non-measurable disturbance is guaranteed to
be an RCIS for the same system with measurable disturbance
but not vice versa. Finally, we call a set Cpy the Maximal
RCIS within S if it is controlled invariant and contains every
RCIS in S.

Next, consider an autonomous system X,:

Loix(t+1) = f(x(t),d(t)) “4)
with state x € R" and a disturbance term d € D.

Definition 4 (Robust Positively Invariant Set (RPIS)). A set
C C S is an RPIS of the autonomous system ¥, within § if:

Vx € C we have that f(x,d) € C,Vd € D. (5)

A set Cpqy 1s the Maximal RPIS within S if it is positively
invariant and contains every robust positively invariant set in
S.

Notice that, compared to systems with control inputs, there
is no concept of measurable or non-measurable disturbances
for autonomous systems.

Definition 5 (Reachable set for autonomous systems). Let ¥,
be an autonomous system. The reachable set %(%4,x) of L,
from state xq is the set of all possible states that the system
may visit. Formally, x € Z(X,,xo) if and only if there exists a
trajectory (x(¢))_,, for some k > 0, of X, under disturbance
sequence (d(t))i-) € D* with x(0) = xo and x(k) = x.

Proposition 1. The set C={x € R" | #Z(X,,x) C S}, i.e., the
set of states whose corresponding reachable set is contained
in the safe set S, is the Maximal RPIS for ¥, within S.

A. Problem Setup

In the first part of this work, we focus on the computation
of RCISs for systems with measurable disturbances. More
specifically, we propose a method that computes the desired
implicit representation for an RCIS in closed-form based on
the following assumptions. In the second part, we extend our
method to compute RCISs for non-measurable disturbances.
Assumption 1: The matrix A is nilpotent. That is, there exists
a non-negative integer 4 < n such that A" = 0.

Remark 1. Assumption 1 is satisfied by any controllable
system, as there always exists a feedback gain K such that
A+ BK is nilpotent. Thus, any controllable system satisfies
Assumption 1 by pre-feedbacking the system with u = Kx+v
and taking v as the new control input' [14, Ch.3].

Assumption 2: The safe set S C R"™ and the disturbance
set D C R" are both polytopes.

The next theorem shows that to compute an RCIS for
systems with a measurable disturbance, we only need to
consider the (finite) vertices of D.

Proposition 2. Under Assumption 2, consider a system X
with a measurable disturbance d € D, and let D, be the set
of vertices of D. Let X! be the same system as ¥. but with the
measurable disturbance d € D,. Then, a convex set C is an
RCIS for ¥ if and only if C is an RCIS for ¥'.

According to Proposition 2, given any polytopic distur-
bance set D, we can substitute D by the finite set D, without
loss of generality. Thus, for the remaining of this paper, we
directly assume that D is a finite set, as stated below.
Assumption 3: The disturbance set D C R” is given as a
finite set of vertices.

Problem 1: For a linear system X, a safe set S, and a
disturbance set D satisfying Assumptions 1, 2 and 3, compute
a convex implicit RCIS of ¥ within § in closed-form.

III. CONTROLLED INVARIANT SET COMPUTATION
FRAMEWORK

The Maximal RCIS for a system in (1) with measurable
and/or non-measurable disturbances can be computed by a
standard iterative method ( [1], [2]), which is not guaranteed
to terminate in finite time and does not scale to high-
dimensional systems. To reduce the computation burden,
many existing works close the loop with a linear feedback
controller and then compute an RPIS of the closed-loop

lAccordingly, given the safe set Sy, for (x,u), the safe set Sy, for the new
state-input pair (x,v) should be Sy, = {(x,v) | (x, Kx+Vv) € Sy, }-



system as an under-approximation of the Maximal RCIS. In
this section, we extend this idea to a more general case: We
close the loop with a parameterized nonlinear disturbance-
feedback controller. Then, by computing an RPIS of an
augmented closed-loop system, we search for the feasible
initial states and controller parameters simultaneously such
that the closed-loop trajectory satisfies the safety constraints.
Lastly, we retrieve an RCIS from the RPIS of the augmented
system.

First, we want to determine an appropriate controller
structure. We draw some inspirations from Definition 3:
Given any RCIS C for ¥ under measurable disturbances,
by definition, there exists a memoryless state-disturbance
feedback controller u(t) =k(x(t),d(t)) such that C is the
Maximal RPIS of the closed-loop system. In other words, any
RCIS, including the Maximal RCIS, is the Maximal RPIS of
a closed-loop system with respect to some memoryless state-
disturbance controller. Thus, to minimize the conservative-
ness of the closed-loop RPIS, it is enough to consider the
class of memoryless state-disturbance feedback controllers.
Furthermore, it is well-known that any memoryless state-
disturbance feedback controller is equivalent to a disturbance
feedback controller with memory, explained by the following
example.

Example 1. Consider a memoryless state-disturbance feed-
back controller u(¢) = x(x(¢),d(¢)). This controller can be
equivalently expressed as:

s(t+1) =As(t)+Bx(s(t),d(r))+d (), ©)
u(t) = K (s(1),d(t)),
with s(0) = x(0). That is, the internal dynamics of the
controller forms a state estimator. [ |

For above reasons, we consider a parameterized
disturbance-feedback controller . with memory:

Zcz{s(t—i—l) = 7 (s(1).d(1): ),

=o(s(t),d(t);0). @

u(t)

In the above, s is the internal state (memory) of the controller
that distills useful information from the disturbance input
d € D, and u is the output of the controller. The same d and
u correspond to the disturbance and the control input of X
respectively. The state transition function .7 and the output
function o map the current state s(¢) and the disturbance input
d(t) into the next state s(r+ 1) and the current output u(t)
respectively. Finally, 0 is a constant vector that parameterizes
the state transition function .7 and the output function 0. The
value of 0 can depend on the initial state xg of the system X,
such as in Example 1, 8 = x(0). In what follows, we assume
that the functions .7 and o in X are known. We discuss how
to select 7 and o in the next section.

Closing the loop of X in (1) with the controller in (7), we
obtain the following closed-loop system augmented with the

controller internal state s and the constant vector 0:

x(t+1) Ax(t)+Bo(s(t),d(t);0(¢)) +d(t)
Loy |0(+1)]| = 0(r) , (8)
s(t+1) T (s(t),d(1);0(1))

with the augmented state (x,0,s) and the disturbance d € D.

In the above augmented system, we can calculate feasible
initial states xp and controller parameters 6 simultaneously.
The control input u(¢) of X is equal to o(x(¢),d(); 6(¢)), as
a function of the augmented state. Then, given the safe set S
of the system X, we define the safe set S.; for the closed-loop
system X by:

S ={(x,0,s) | (x,0(s,d;0)) € S,Vd € D)}. 9

The following theorem connects the problem of computing
an RCIS for the system X with the problem of computing an
RPIS for the closed-loop system X;.

Theorem 1. Let C.; be an RPIS for the closed-loop sys-
tem Y. within the safe set S.. Then, the convex hull
CH(Proj,.,(Cy)) of the projection of C. onto the first n
coordinates is a convex RCIS for the system Y. within the
safe set S.

According to Theorem 1, we propose a novel framework
for computing RCISs: Given a controller specified by func-
tions .7 and o, we first compute the Maximal RPIS C,; of the
augmented system X within S.;, and then take the convex
hull of the projection of C,.

The size of the resulting RCIS depends on the choice of
functions .7 and o. In Section VI-A, we demonstrate two
classes of functions .7 and o that lead to larger RCISs as
the number of parameters increases. In theory, there exist
functions .7 and o such that the resulting RCIS meets the
Maximal RCIS. However, how to find .7 and o achieving
the Maximal RCIS is beyond the scope of this paper. One
significant advantage of this framework, explored in the next
section, is that by carefully designing .7 and o, this novel
framework enables closed-form construction of RCISs.

IV. CLOSED-FORM CONSTRUCTION OF
IMPLICIT ROBUST CONTROLLED INVARIANT SETS

In the previous section, we presented a framework for
computing RCISs. Still, there are two main questions to
be addressed. First, can we compute the Maximal RPIS C
efficiently? Second, in practice the convex hull computation
is expensive, can we avoid this operation? In this section, we
show that by carefully designing .7 and o, we address both
questions.

A. Computing C,; in closed-form
From Proposition 1, we have that:

CC/ = {(X,G,S) |%(cha(x761s)) g SC/}' (10)

According to (10), if we express the reachable set
H(Zei,(x,0,s)) in closed-form, then we obtain a closed-
form expression of C;. The next theorem gives a sufficient



Fig. 1: A toy mealy machine controller.

condition for the reachable set Z(X.;) to admit a closed-form
expression.

Theorem 2. Under Assumption 1 and 3, if the state s of the
controller belongs to a finite set Q, then given any initial state
(x,0,s), the reachable set #(X.,(x,0,s)) is finite. Moreover,
it can be expressed in closed-form.

Note that Theorem 2 is the only result that requires
Assumption 1 in this work. Given Theorem 2, we want to
design the functions .7 and o such that the internal state
s of the controller belongs to a finite set Q. Recall that by
Proposition 2 and Assumption 3, the input d of the controller
also belongs to a finite set D. Thus, the controller X, is a
system with finite states and inputs. In the literature, this
type of system is called a mealy machine, a special class of
automata.

Definition 6 (Mealy Machine). A Mealy Machine Ly is a
quintuple (Q,D,.7,0,0), where:

o ( is a finite set of discrete states;

e D is a finite set of actions;

o« 7 :0QxD— Q is the state transition function that maps
each state-action pair to the next state;

o O is a finite set of outputs;

e 0:0xD — O is the output function that maps each
state-action pair to an element in the set ©.

With slightly abusing notations, we denote both the action
set of a mealy machine and the disturbance set of ¥ by D,
since in this work we only consider the disturbance set D
as the action set. The transition function .7 and the output
function o are designed by the user. We parameterize the
output set ® of a mealy machine by a parameter vector
0: Suppose that © = {ui}{‘zl, where each u; is a vector
of variables in R™. Given a vector 8 = (7,---,4) € R",
we define a parameterized output function o(s,d;0) : Q X
D — R™ such that o(s,d;0) =7, for o(s,d) = u;. A simple
example of a mealy machine and the parameterized output
function is shown below.

Example 2. Let D = {d;,dr} C R", and Q= {s1,2}.

The state transition function . is shown in
Fig. 1. The output set is © = {uj,up}. The
output  function is  o(s;,d) =o(sz2,d;) =u;  and

o(si,dy) = o(sy,dy) =up. Let the controller parameter

be 0= (uj,u;)=(1,2). Then, the parameterized
output function is o(s;,d;;0) =o0(s2,d;;0)=1 and
o(s1,d2;0) = 0(s52,d;0) = 2. u

Next, we provide guidance on how to construct C,; effi-
ciently. Since s € O, with Q finite, we can decompose C

into |Q| subsets:

Ce = | Coun(si) x {si},

s;i€Q

(1)

where:
Coun(51) = { (x,0) € R™™ | Z(Ze1, (x,6,5:)) C St} (12)
For each state (x',0,s') € Z(Z.,(x,0,s;)):

(x,0,5') €Sy = (X,0(s',d;0)) €S, Vd € D. (13)

As X' and o(s',d;0) are linear functions of x, 6, and
d € D, the condition (x',0(s',d;0)) € S is a set of linear
inequality constraints on (x,0). Thus, by (13) and the fact
that Z (X, (x,0,s;)) is finite, the set Cyp(s;) in (12) can
be expressed by a set of linear inequality constraints, that
is a polytope in R We use the following example to
illustrate the computation of Cy,p(s;).

Example 3. Consider the mealy machine controller in Ex-
ample 2. Suppose that the nilpotent matrix A of system X
satisfies A> = 0. Then, the reachable set Z (X, (x,0,s;))
contains 7 elements, that is

@(ch,(x,e,si))—{ U (ABM.j-i-Buk—FAdj-l-dk,e,Sk)}

Jjk=12

u {(x,e,si)} u{ U (Ax—l—Buj—i—dj,G,Sj)} :

Jj=12

where 6 = (uj,uz). Suppose that the safe set is

S ={(x,u) € R"" | Gyx+ G,u < h}. Then:

Coub(51) = Coup(52) =
{(x,u) e R""™ |Gox+ Guu; < b,
G(Ax+Buj+d;)+Guj < h,
Gy(ABuj + Buy + Ad; +dy) + Gu; < h,
Vi, j. ke {1,2}}.

Finally, Co; = U= 2 Coun (si) % {si}-

So far we constructed C, in closed-form. However, to
obtain an RCIS from C,, we have to project C.; onto the
first n coordinates and then compute the convex hull of the
projected set. Both projection and convex hull operations are
time consuming and thus undesirable. In what follows we
derive an implicit expression of the resulting RCISs.

B. Implicit Controlled Invariant Set Expression (Method 1)

Assumption 4: The safe set S of X is bounded.

Given that S is bounded, the projection of C,(s;) onto
the first n coordinates is also bounded. Thus, we can always
find a large enough hyperbox B such that:

Projy.,, (BN Cap(si)) = Projy.,, (Coup(si))-

Denote the intersection of the hyperbox B and the polytope
Can(si) by Cyup(si) = BNCyyp(si). The projection of C, is



exactly the union of the projections of polytopes Cqp(s;)
over s; € Q, that is:

Proj;.,(Cet) = | Projy., (Coun(si)) -
s;i€0

Since the order of convex hull operation and the projection
can be swapped, we have that:

(14)

CH(PrOjl:n(Ccl)) = Projl:n (CH < U Esub(si)>> . (15)

si€Q
Since Cyyp(s;) is a polytope, it can be written as:
Csub(si) = {(x, 9) | Gi(x,0) < h,’}.
Then, we construct the polytope:
C}L = { (-xaeaxlaela"' 7x‘Q‘19‘Q‘aA’17"' 7)"Q‘) |

A > O,Gi(x,', 9,') < 7L,'h,',V1 <i< |Q|,
[ [ [

Z)Li: I,in—x,zei—e}.

=1 =1 i=1

Under Assumption 4, given that (x,0) € R"", we have:

(16)

CH < U E‘mb(m) =Projy.(uimr) (C2), (A7)
si€0

Proj,.,, (CH ( U Em,,(s,»)>> = Proj,.,(Cy)- (18)

s;€Q

By (15) and (18), the RCIS CH(Proj,.,(C)) is the projec-
tion of C, onto the first n coordinates. In other words, C, is
an implicit expression of the RCIS CH(Proj,.,(Cy)).
Remark 2. Assumption 4 is only required if we want the
equality Proj,.,(Cy) = CH(Proj,.,,(C)) to hold. In the next
subsection, we introduce an alternative implicit expression
which does not require a bounded safe set S.

C. Implicit Controlled Invariant Set Expression (Method 2)

In Example 3, the projection of C,; is already convex and,
thus, the convex hull computation is omitted. It turns out that
the convexity of Proj,.,(C,) is not a coincidence. We define
the nested state transition function by:

7 (s,d(0)),
T(T*(s,(d(1))iZg),d (k).

k=0,

k> 0. (19)

T(s, (d(t))f—o)—{

Similarly, the nested output function o* (s, (d(¢))X_,) is:

o(s,d(0)), . k=0, 20)

o( 7 (s,(d()); =0 ),d(k)), k>0.

Define a preorder relation “>” on Q as follows.
For any s1,50 € Q, we have that s; » s if for all
(d1(1))", € DM and (da(1))}2,, € D' with non-negative inte-
gers ki,ka < |QP, 0" (s1,(d1(1))Ly) = 0 (51, (da2(1))2) im-
plies o (s, (1 (1)) o) = 0" (52, (da(1))2) -

Here, the “=" sign in o* (s;, (d) (1))'L,) = 0* (si, (da(1))12,)
is interpreted as the function o* mapping two inputs to the

0" (s, (d(1))i=0) = {

Algorithm 1 Compute Implicit Controlled Invariant Set
inputs: X, S, X, = (0,D,.7,0,0).

if a dominant state s;,,, € Q exists then
Compute Cyup(Sgom) as in (12).
return Cy,p(Sgom)-

else
for s, € Q9 CQ do

Compute Cy,p(s;) as in (12).

end for
Compute Cj, as in (16).
return C) .

end if

same element in O (regardless of the parameter 6). Given
the definition of the relation > on Q, we can algorithmically
check if two states s and s’ satisfy s = s with worst case
time complexity O(|Q|?).

Note that the “> relation is not a partial order as it
does not satisfy the antisymmetry condition, namely it is
possible to have s; = s and s, = 51 but 51 # s,. However, the
following theorem shows that the > relation in Q actually
implies the partial order on the sets {Proj;.,(Cou(5))}sco
defined by the set inclusion.

Theorem 3. Given the > relation defined on the set
Q, for any two states s, sy € Q, s1 >~ s implies that
Projl:n(CSub(Sl)) 2 Projl:n(CSub(Sz))'

We call a state s,,q, € Q a maximal state if for any s’ € Q,
5" = Spmax implies s,qc = 5, and call a state sy,,, a dominant
state if s,y = s for all s € Q. Denote Q. as the set of all
the maximal states in Q.

Corollary 1. Suppose that there exists a dominant state
Sdom € Q. Then, Proj,.,(Ce;) = Projy.,(Coun(Sdom))-

Corollary 1 explains our observation in Example 3.

Example 4. For the mealy machine in Example 2, 51 = s
and s, >~ s1. Thus, both s; and s, are dominant states. Then,

Projl:n (CCZ) = Projl:n (Csub(sl)) = Projl:n(csub(sz))'

Corollary 2. Define a partition over Qmax as follows: For
s and s' € Q, s and s’ belong to the same component if
s =5 andfor s’ = s. Let a set Qy C Quax contain exactly
one state from each component of this partition. Then,

Projy.,(Cer) = Us,re00 P0J1:0 (Cout (Smax))-

According to Corollary 1, if a dominant state s;,,, exists
in Q, the RCIS CH(Proj;.,(Cy)) is simply the projection
of Cyup(Sgom) onto the first n coordinates. In this case, we
can directly take Cyp(s40m) as the implicit representation of
the RCIS CH(Proj,.,,(C,)); otherwise, by Section IV-B, we
construct C; as the implicit RCIS. Note that according to
Corollary 2, we can replace Q by Qo in the definition of
C,. The overall procedure of computing implicit RCISs is
summarized in Algorithm 1.



V. BRIDGE MEASURABLE AND NON-MEASURABLE
DISTURBANCES

In this section we prove a connection between measurable
and non-measurable disturbances, which enables our method
to compute RCISs for systems with any type of disturbances.

Suppose a system X in (1) has a non-measurable distur-
bance d € D. We construct a system X' with a measurable
disturbance by adding a one-step delay:

|x@E+1)  [A B||x(1) 0 I,
E'L0+4) =10 o|u) + hlva)+ 0 d(r), (21
with state (x,u) € R"™, input v € R”, a measurable distur-
bance d € D C R", and I,, I, being the n xn and m x m
identity matrices respectively.

Let the safe set of X be § C R"™. We want to compute an

RCIS for ¥ within S. The next theorem reveals that this can
be achieved by computing an RCIS for ¥’ within § x R"™,

Theorem 4. Given the systems X in (1) and ¥’ in (21), if C'
is an RCIS for ¥ in S x R™, the projection Proj.,(C') of C'
onto the first n coordinates is an RCIS for ¥ in S.

If C' is the maximal RCIS for ¥ in S x R™, then Proj,.,(C")
is the maximal RCIS for ¥ in S.

Thanks to Theorem 4, in terms of computing RCISs, any
method designed for measurable disturbances can be applied
to systems with non-measurable disturbances.

VI. CASE STUDY
A. Mealy machines with dominant states
We present two classes of mealy machines that contain at
least one dominant state.
1) Simple Loop: Given an integer L >0, let Q = {s;}%
and © = {Mi},L:1~ Define, for all d € D, the state transition
and output functions as:

9(si,d>—{s"“ ’<L’,o(sl-,d)—{”"“ <L)

S1 i=L. 7 i=L
For such a structure, any s € Q is a dominant state.

2) Tree Structure: Suppose the cardinality of the dis-
turbance set |D| = K. Given an integer L > 0, define
N=(K:=1)/(K—1). Let Q = {so} UUL,D'. That is, Q
is the union of sp and all finite sequences of elements in D
with length less than or equal to L. We assign one output for
each s € Q denoted by u(s). Thus, ® = {u(s)}scg. The state
transition function is defined as for all d € D:

d s =50,
T (s,d) =< sd seDf k<L, (23)
s(2:L)d seD

where sd € D! denotes the concatenation of s € D* and
d € D, and s(2: L)d denotes the concatenation of the subse-
quence s(2: L) of s and d € D. For instance, if s = dyd, - - - d,
then s(2:L)d =d,---d;d.

For L = K = 2, the state transition function is shown in
Fig. 2. We call this class of mealy machines tree structure

Fig. 2: The tree-structure mealy machine (L =3, D =
{di1,d»}). The red arrow and blue arrow indicate transitions
under d; and d, respectively.

since the mealy machine transition graph, as shown in Fig. 2,
embeds a tree with sy the root node.

Given the state transition function, the output function is
simply defined as:

o(s,d) =u(T (s,d)). (24)

For any tree-structure mealy machine, sg is the dominant
state. Intuitively, the tree-structure mealy machine memorizes
the past L disturbance measurements and assigns a control
input to each possible combination of the past L disturbances.

Finally, for both classes of mealy machines introduced
here, it can be proven that by increasing the number of
discrete states (complexity), that is increasing L, we tend
to obtain larger RCISs.

B. Lane keeping supervision

Consider a 4-dimensional linearized bicycle vehicle dy-
namics with respect to a constant longitudinal velocity 30m/s
in [15], discretized with time step At = 0.1s. The system
states consist of the lateral displacement y, lateral velocity
v, yaw angle AW and yaw rate r. The control input u is the
steering angle. The disturbance is d = (0,0, —ryAt,0), where
rg € R is the road curvature within a range |ry| < 7y max-
The safe set is given by constraints |y| < 0.9, |v| < 1.2,
|A¥| < 0.05, |r] <0.3 and |u| < 7/2.

The future road curvature can be measured in ahead and
thus d is a measurable disturbance [13]. We compare our
method with Method 2 in [9], LMI-based low-complexity
RCIS in [4] and the Maximal RCIS. Our method uses
the tree structure with L = 4 in Section VI-A as the
mealy machine controller. For Method 2 in [9], we set
the parameter L = 14 and compute the lifted set in high
dimensional space as an implicit RCIS. Note that Method
2 with parameter L is the same as our method equipped
with simple loop controller with parameter L. For the LMI-
based method in [4], we set the parameter p = | and run the
iterative algorithm until convergence. The methods in [9],
[4] consider non-measurable disturbances only. To make a
fair comparison, our method computes RCISs for d being
measurable and/or non-measurable respectively. We evaluate
the algorithm performance by their computation time and the
volume percentage of the resulting RCISs to the Maximal



TABLE I: Computation Time and Volume Percentage of
Computed RCIS to the Maximal RCIS. (Lane Keeping)

Tdma 0.01 0.015 0.03 0.05 0.07
Our method Time (5)  0.042 0035 _ 0.037 0035 _ 0.032
(d meas.) Vol (%)  100.00  99.99  99.89  98.91  74.75
Our method Time 5) _ 0.071 0062 _ 0.072 _ 0.063 _ 0.060
(d non-meas.) | Vol (%)  100.00  100.00  100.00  99.89 0
Method 2 of Time (5) 0506 0443 0404 0397 0484
[9] (L= 14) Vol (%)  99.82  87.64 0 0 0
LMI Method Time (5) 0449 0519 0562 0500  0.564
4] (p=1) Vol (%) 0 0 0 0 0
Maximal RCIS | Time (s)  13.084 18018 15525 15.698 21513

RCIS. The volume percentage is estimated by monte carlo
method with sample size N = 10%.

The comparison results are shown in Table I: According
to the 2nd, 3rd and 4th rows of Table I, when dealing with
non-measurable disturbances only, our method outperforms
Method 2 of [9] and LMI-based method in [4] in both the
computation time and the volume of the resulting RCIS for
all 74 mqx, showing a strong robustness to non-measurable
disturbances. The LMI-based method encounters an infeasi-
ble optimization problem in all test cases and thus has 0
volume percentage. Method 2 of [9], as a special case of the
proposed method, has a decent volume percentage when the
disturbance range is small. But as 74 4 > 0.015, the RCIS
from Method 2 of [9] becomes empty, while our method still
has volume percentage greater than 98% for both measurable
and non-measurable cases.

Shown by the first 2 rows of Table I, when rg ;4 = 0.07,
our method returns a nonempty RCIS for d being measurable,
but returns an empty RCIS for d being non-measurable.
Thus, by considering d as a measurable disturbance, our
method is robust to a larger range of disturbances. Finally,
comparing the first 2 rows with the last row of Table I,
when 74 e < 0.07, our method computes implicit RCISs
with almost the same size as the Maximal RCISs, using less
than 0.3% computation time of the Maximal RCISs.

Next, we illustrate how the computed implicit RCIS can be
used to supervise a nominal controller. Suppose the current
state x(¢) belongs to the RCIS Proj;.,(Cyup(s0)). Given the
nominal steering input u,(¢) and the disturbance d () at time
t, we minimally change the input uy(¢) such that the next
state x(z + 1) stays in the RCIS Proj,.,(Csup(s0)) by solving
the following quadratic program:

: 2
min Jua () —u()ll>
subject to (Ax(t) + Bu(t) +d(t),0) € Cyp(s0),

where A, B are the system matrices and 0 is a slack variable.
We use the solution u(r) of (25) as the actual steering input
to the vehicle. The feasibility of (25) is guaranteed since
Proj;.,,(Caup(s0)) is an RCIS and x(¢) € Proj;.,,(Csup(50))-

We compare the supervised inputs obtained in (25) to the
ones obtained based on the Maximal RCIS C,, via the
following quadratic program:

(25)

min||ug (1) — u(r)|3
u(r) (26)
subject to Ax(r) + Bu(t) + d(t) € Cpax-

our method
= maximal RCIS

0 50 100 150 200 250
y (m)

Fig. 3: Vehicle maneuvers under control inputs supervised
by our implicit RCIS (cyan curve) and the Maximal RCIS
(red curve). The black region indicates the road surface.
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Fig. 4: Vehicle steering inputs supervised by our implicit
RCIS (red curve) and the Maximal RCIS (blue curve) (6 <
t <8).

The nominal controller is uy(t) = —0.1812y —0.0373v —
4.5996AY — 0.6649r. We run two simulations with the same
initial states and control inputs obtained from (25) and (26)
respectively (74 max = 0.015). As shown in Fig. 3 and Fig. 4,
the vehicle maneuvers and steering inputs supervised by our
implicit RCIS Cy,p(s0) and the Maximal RCIS are very close
to each other. The maximal difference between the control
inputs from (25) and (26) is around 0.035 at ¢ = 6.5s. This
observation is consistent with the results shown in Table I,
where the volume of our implicit RCIS is approximately
99.96% of the volume of the Maximal RCIS.

C. Chain of integrators

Consider a discrete-time n-th order integrator:

x(t—i—l)—(ln-l-{g ’"01])x(t)+m (W) +d()) @7)

with x € R", u € R and d € R. I, indicates the iden-
tity matrix in R™". d is considered as a measurable
disturbance within range |d| < 0.1. The safe set is
S={(xu)| x| <LVi=1,...,n, |u <1}

The comparison results of our approach (tree structure,
L = 4) with Method 2 of [9] (L = 14) and the LMI-based
method in [4] (p = 1) are shown in Table II. For n < 4,
our method outperforms the other 2 methods in computation
time and volume percentage. For n = 2, our method returns
exactly the Maximal RCIS, depicted in Fig. 5. For n > 6, the
Maximal RCIS does not terminate within 1 hour. Thus we
only check if the computed RCISs are empty or not instead
of comparing their volume to the Maximal RCIS. When
n > 6, our method is the only one that returns non-empty
RCISs. Note that even though the implicit RCIS has closed-
form expression, the number of constraints in the implicit
RCIS grows exponentially as n increases. In this example,
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Fig. 5: RCISs for double integrator. Yellow: RCIS from LMI-
based method [4]. Red: the Maximal RCIS computed by both
our method and [9].

TABLE II: Computation Time and Volume Percentage of
Computed RCIS to the Maximal RCIS (Chain of Integrators).

n 2 4 6 8 10
Our method Time (s)  0.005 0.025 0.368 9.287 339.060
(d meas.) Vol (%) 100 98.79 >0 >0 >0
Method 2 of Time (s)  0.183 0.341 2.420 7.168 37.105
[9] (L=14) Vol (%) 74.49 0 0 0 0
LMI Method Time (s)  3.465 0.603 0.952 1.405 3.1402
4] (p=1) Vol (%) 66.85 ~0 0 0 0
Maximal RCIS | Time (s) 0.734  11.114  >3600 > 3600 > 3600

TABLE III: Computation Time and Volume Percentage of
Computed RCIS to the Maximal RCIS (Truck with N trail-
ers).

System dimension n=3 n=>5 n=717 n=9
Time (5.) _ 0.100 0781 _ 8.669 163.1
Our method Vol (%) 100 100 >0 0
Method 2 of Time (5.) 0547 0814 1352 6577
[9] (L=14) Vol (%) 100 98.90 0 0
Maximal RCIS | Time (5.) 0746 1376 >3600 > 3600

for n = 10, it takes about 339s for our method to generate
the implicit RCIS, which is a polytope in R** with about
36 x 10* constraints.

D. Truck with N trailers

Consider a continuous-time model for a truck with N
trailers [16]. The state consists of the N 41 velocity values,
each for the truck and the N trailers, and the N spring
elongations in between them. Hence, N trailers correspond
to dimension n = 2N + 1. The input is the velocity of the
truck. We discretize the model with a sampling time of T
seconds assuming piecewise constant inputs.

Table III shows the results of this case study for our
method and the approach in [9]. For n > 7 the method
computing the Maximal RCIS does not terminate after 1
hour, and, hence, we only check non-emptiness of sets
instead of volume percentage. When the Maximal RCIS is
computed, we see that our approach covers it, but due to the
implicit representation, the running times are much faster.
However, we see that in this example, after some point, as
the dimension becomes large, the set our algorithm returns is
empty. This can be understood as by adding more trailers the
noise from each spring compounds towards the ones behind
it, resulting in the shrinking of the RCIS.

VII. CONCLUSION

In this paper, we present a novel method of computing
implicit RCISs in closed-form. The key insight is to construct
a closed-loop system with a parameterized automaton-based
controller. The implicit RCISs obtained by our method
characterize the set of feasible initial states and controller
parameters under which the system state-input trajectory
stays in the safe set. Compared with the standard iterative
methods [1], [2], all the computations of our method are done
in one-shot, which guarantees finite-time termination and
better scalability. Several numerical examples are provided
to demonstrate the efficiency and practicality of the proposed
method.
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APPENDIX

Proof of Proposition 1 . Let x € C and d € D. By the Defi-
nition 5, Z(X, f(x,d)) C Z(X4,x) C S and thus f(x,d) € C.
Hence, C is an RPIS by definition.

Suppose x belongs to an arbitrary RPIS within S. By
definition, Z(X,,x) C S. Thus, x € C and C is the Maximal
RPIS. (]

Proof of Proposition 2. The “only if” direction is obvious.
It is left to show the “if” direction. Suppose the safe set is S.
Let C be an RCIS for the system ¥’ in S and x be a point in C.
We want to show that for all d € D, there exists u such that
Ax+Bu+d e S. Since D= CH(D,), there exists a finite K >
0 such that d = ):lK:l o;d; for some dy, ..., dx € D, and some
ay, ..., og > 0 satisfying ):lel o; = 1. Since C is controlled
invariant for ¥’, for each d; € D,, there exists u; such that
(x,u;) € S and Ax+ Bu;+ Ed; € C. Define u = Zszl oGu;. It
is easy to show that (x,u) € S and Ax+Bu+ Ed € C, by the
convexity of S and C. Thus, C is an RCIS within S for £. [

Proof of Theorem 1. Denote CH(Proj,.,(Cy)) by C,. Let
x€C, and d € D. We want to show that there exists u such
that (x,u) € S and Ax+Bu+d € C),.

By definition of convex hull, there exist a positive integer
k>0, k vectors x; € Proj,.,(C) and k scalars o; € [0,1] for i
from 1 to k such that ):{'(:1 o; =1 and Z{;l o;x; = x. For each
i, there exists 6; and s; such that (x;,6;,s;) € C.. We define
u; = o(si,d). Note that by the definition of S, (x;,u;) € S.
Also, since C. is an RPIS, (Ax;+ Bu; +d,0;, 7 (s;,d)) €
C¢; and thus Ax; + Bu; +d € Cpppj. We define u = Zf;l o;u;.
Since S is convex and (x;,u;) € S, (x,u) =YX | 04(x;,u;) €S.
Since C, is convex and Ax;+Bu;+d € Cp, Ax+Bu-+d =
Y5 | 0(Ax; + Bu; +d) € Cp. Thus, C, is an RCIS for the
system X in S. O

Proof of Theorem 2. We want to show Z(X.,(x,0,s)) is
finite. Let ((x(1),0(z),s(r)));>, be the trajectory of X.; with
initial state (x(0),6(0),s(0)) = (x,0,s). Let (d(r));>, be the
disturbance sequence. Given A is nilpotent, that is A" = 0 for
some i > 0, we have that

oy [ AT Bols).d(0):0)+ @) 1<
Xt AT Bo(s(i),d(i); 8) + d(i)] t>h.
(28)

Since s(r) and d(r) belong to finite sets Q and

D, o(s(t),d(t);0) belongs to the finite set U(0) =
{0(s,d;0)}sc0.dep- Thus, according to (28), x(1), as a func-
tion of o(s(t),d(r);0) and d(¢) for r > h, must belongs
to a finite set, denoted by X(0). Thus, the reachable set
(L, (x,0,5)) CX(0) x {0} x Qis a finite set. O

Proof of Theorem 3. We want to derive a sufficient condi-
tion under which Proj,.,(Csup(s1)) 2 Proj,.,(Csup(s2)). Note
that if for all (x,02) € Cyp(s2), there exists 6; such
that (x,01) € Cyp(s1), then we have Proj;.,(Cowp(s1)) 2
Projl:n(CSub(sz))'

Similar to how we define 0*(s,d), we define the parame-
terized nested output function as

N oy 0(s7d(0)§9) k=0,
0" (s, (d(1))j:0) = {o(f*(s, d(1))¥=,),d(k);0) k> 0.
(29)

Given s and 6, the parameterized nested output function
0*(s,-;0) becomes a function of (d(t))k_, in UZ D' If for
any 6,, we can always find a 6; such that the functions
0*(s2,:62) = 0*(s1,:61), then for all (x,6,) € Cyp(s2),
(x,01) € Csup(s1). Intuitively, recall that (x,6,) € Cyyp(s2) if
(x(k),0% (52, (d(t))*_,)) € S for all k>0 and (d(t))_, € D-.
If we know that (x(k),0*(s2,(d(t))*_y;6,)) € S for all k >0,
then we know (x(k),0*(s2,(d(t))*_;6,)) € S for all k>0
since 0*(s2,-;62) = 0*(s1,+;61). Thus, (x,0;) € Cyp(s1).

Now our goal is to derive a sufficient condition under
which there exists a 0; such that o*(s1,-;6;) = 0*(s2,-;62)
for all 6,.

Lemma 1. Given s|, s; € Q and 6y, 6, the functions
0*(s1,+61) = 0*(s2,+62) if and only if 0* (s1, (d(t))*_y; 61) =
0*(s2,(d())*_:62) for all k < |Q|* and all (d(t))*_, € D*.

According to Lemma 1, given any 6,, we can di-
rectly solve for a 6 satisfying o*(s1,(d(t))r ;01) =
0*(s2,(d(t))k_y;62) for all k < |Q|* and all (d())*_, € DF,
which is a system of linear equations on 0. It can be checked
that given any 6,, the solvability of the system of equations

on 0 is guaranteed if for all (d; (t));qzo and (dz(t))fio with

ki, ka < Q1% 0*(s1,(di(1))y) = 0*(s1.(da(1));2,y) implies
0* (2, (d1 (1)) = 0% (52, (da(1))12,), that is 51 == 5, by def-
inition. O
Proof of Lemma 1 . Given the mealy machine
(0,D,7,0,0), we can construct a product mealy machine
(Q % Q,D,7,4,0 x ©,0p,;) where for all s;, s; € Q and
deD

Tpa((si,s)),d) = (T (sid), T (s),d)),
0,a((si,5)),d) = (0(si,d),0(s},d)).

Given 0; and 6, as two value assignments of @, we define
the parameterized output function 0,4((si,s;),d;01,6,) =
(O(S,‘,d; 91),0(Sj,d;62)).

Given s;, s, € Q and 6; and 6, by construction,
0,,4((s1,52),+:0) is equal to (0" (s1,;61),0%(s2,;62)). Thus,
0*(s1,+601) # 0*(s2,-;602) if and only if there exists a
(d(1))-y such that (s),5) = 7 ((s1,52), (d(1))=)) and
0pa((s),55),d(k); 01,62) = (u1,u) for some uy, uy € O, Uy #
. Since there are only |Q|? states in the product mealy ma-
chine, if (s/l,s]é) can be visited from (s1,s2) under action se-
quence (d (t))[;(}, the smallest k we need is less than or equal
to |Q|*. Thus, if 0*(s1,-;01) # 0*(s2,-;6>), there must exists
a (d(t))k, with k <|QJ* such that o*(s1,(d(t))*_,;601) #
0" (2, (d(1))"_: 62) O

Proof of Theorem 4. Denote C, = Proj,.,(C"). Suppose C' is
an RCIS of X' in § x R™. Let x € C,,. We want to show that
there exist u such that (x,u) € S and for all d € D, Ax+ Bu+
deC,.

(30)
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By definition of C,, there exists u € R™ such that (x,u) €
C' C S. Furthermore, since C' is controlled invariant, there
exists v € R™ such that (Ax+ Bu+d,v) € C' for all d € D.
Thus, Ax+Bu+d € C, for all d € D. Thus, we showed that
Cp is an RCIS for the system X in S.

Next, suppose that C’ is the Maximal RCIS for ¥’ in § x
R™. Also, suppose that Cp,, is the Maximal RCIS for £
in S. We want to show that Proj;.,(C") = G- Note that
Proj;.,(C") € Cpax as Proj;.,(C’) is controlled invariant for
¥ in S. We need to show that Proj;.,,(C") D Cpay, Which is
done in 3 steps.

First, define the set C, . = {(x,u) | (x,u) € S,Ax+ Bu+
d € Cpax,Vd € D}. We want to show that C,,,, is controlled

invariant for ¥’ in S x R™. Let (x,u) € C,,,, and d € D. By
construction, (x,u) € S and xT =Ax+Bu+d € Cpqy. Since
Ciuax 18 controlled invariant for X, there exists v € R™ such
that (x*,v) € S and Ax" +Bu+d" € Cypgy for all ™ € D.
Thus, by definition of C,, ., (x*,v) = (Ax+Bu+d,v) €C,,,..
Thus, C,,,. is an RCIS for ¥’ in S x R™.

Second, as C' is the Maximal RCIS for ¥/ in S x R™, C' >
Cr/nax' Thus, Projl:n (C/) 2 Projl:n(cr/nax)'

Finally, note that for all x € Gy, there exists u such that
(x,u) € S and Ax+ Bu+d € Cpy, for all d € D, namely that
(x,u) € C),,y- Hence, Cpax C Projy., (C,.) € Projy.,(C'). That
is, Proj;.,(C') = Cpay is the Maximal RCIS for £ in S. [
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