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Automaton-based Implicit Controlled Invariant Set Computation for

Discrete-Time Linear Systems

Zexiang Liu Tzanis Anevlavis Necmiye Ozay Paulo Tabuada

Abstract— In this paper, we derive closed-form expressions
for implicit controlled invariant sets for discrete-time control-
lable linear systems with measurable disturbances. In particular,
a disturbance-reactive (or disturbance feedback) controller in
the form of a parameterized finite automaton is considered.
We show that, for a class of automata, the robust positively
invariant sets of the corresponding closed-loop systems can be
expressed by a set of linear inequality constraints in the joint
space of system states and controller parameters. This leads to
an implicit representation of the invariant set in a lifted space.
We further show how the same parameterization can be used
to compute invariant sets when the disturbance is not available
for measurement.

I. INTRODUCTION

When tasked with synthesizing a controller in order to

ensure safety of a plant under uncertainties, the objective

is to indefinitely keep the state of the plant within a set

of safe states. A natural solution to this task is to initialize

the state in a Robust Controlled Invariant Set (RCIS) within

the set of safe states. RCISs have the property that any

trajectory starting within an RCIS can always be forced to

remain inside the RCIS and, therefore, inside the set of safe

states. Consequently, RCISs are at the core of safety-critical

applications.

Since the conception of the standard method for computing

the Maximal RCIS of discrete-time systems [1], [2], is known

to suffer from poor scaling with the system’s dimension

and no guarantees of termination, different approaches at-

tempted to alleviate these drawbacks. In the case of bounded

disturbances, when the set of safe states are polytopes,

[3] computes inner and outer approximations of RCISs for

linear systems with guarantees on finite-time termination.

For the same system class, a different line of works [4]–[6]

approximate the Maximal/Minimal RCIS by first closing the

loop with a linear state feedback law and then computing

the Robust Positively Invariant Set (RPIS) of the closed-

loop system. This group of methods are typically very

conservative since only linear state feedback controllers are

considered.

Finally, several recent methods [7]–[10], including previ-

ous works from the authors, develop approaches for con-
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structing implicit RCIS in closed form, represented as poly-

topes in a high-dimensional space whose projection onto

the original state space is an RCIS. By avoiding computing

RCISs explicitly, those methods can work for systems with

higher dimensions. It is indeed the case in many practical ap-

plications, such as model predictive control and supervision

control, that knowledge of the explicit RCIS is not required

and the implicit representation suffices [11], [12].

Inspired by the recent progress on implicit RCISs, in

this work we propose a novel approach to compute implicit

RCISs for discrete-time linear systems. In addition, the

aforementioned works consider non-measurable disturbances

only, however, in many safety-critical applications, incoming

disturbances can be measured in ahead [13] and, hence,

are considered measurable [2]. Thus, unlike the existing

works, we develop a method that works for both measurable

and non-measurable disturbances, achieved by introducing

an automaton-based controller whose input is exactly the

measurable disturbance. More specifically, our contributions

are as follows:

1) We propose an automaton-based method for computing

implicit RCISs for a class of linear systems that contains

the class of controllable linear systems, with measurable

disturbances.

2) We derive conditions on the structure of the automaton

such that the implicit RCIS is computed in closed-form.

3) We present a generic connection between measurable

and non-measurable disturbances, enabling the proposed

method to work with systems with non-measurable distur-

bances.

In addition to the above, we demonstrate the practicality

of the implicit RCIS in the task of supervision control for the

lane keeping problem. The goal is to modify nominal control

inputs, as needed, to keep the system’s trajectory within a

set of safe states. We show that this is achieved by solving

an optimization problem using the implicit RCIS.

The paper is organized as follows: In Section II, the

problem is mathematically set up, along with the essential

definitions and assumptions. Section III lays down the ideas

for computing an implicit RCIS for systems with measurable

disturbances. Subsequently, Section IV investigates when

the implicit RCIS can be computed in closed-form, while

Section V connects the proposed method to the case of

non-measurable disturbances. Section VI provides a computa-

tional evaluation of the proposed method. Finally, conclusion

is found in Section VII. To keep a streamlined presentation,

the proofs of all theorems are found in Appendix.

Notation: The Minkowski sum of two sets A and B is
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denoted by A+B= {a+b | a∈A,b∈B}. For a singleton {x},

we write the Minkowski sum {x}+B as x+B. We denote the

convex hull of a set A by CH(A). For a sequence (d(t))N
t=0,

we denote the finite subsequence (d(t))b
t=a by d(a : b) with

0 ≤ a ≤ b ≤ N. We denote the projection of a set C in R
n+m

onto the first n coordinates by Proj1:n(C) in R
n. For two

vectors x ∈ R
n and y ∈ R

m, (x,y) denotes the concatenated

vector in R
n+m.

II. PRELIMINARIES

In this work, we consider a discrete-time linear system Σ:

Σ : x(t + 1) = Ax(t)+Bu(t)+ d(t), (1)

where x ∈ R
n is the state of Σ, u ∈ R

m is the input, and

d ∈ D ⊆ R
n is a disturbance term. The set D contains all

possible values of d. The disturbance d is measurable if u(t)
can be determined based on the measurement d(t); otherwise,

d is non-measurable.

Definition 1 (Safe set). Let S ⊆ R
n+m be the set of desired

state and input pairs (x,u), called the safe set of the system.

That is, we want (x(t),u(t)) ∈ S for all t ≥ 0.

The difference between measurable and non-measurable

disturbances is reflected in the following definitions of a

Robust Controlled Invariant Set (RCIS).

Definition 2 (RCIS with non-measurable disturbance). Con-

sider a non-measurable disturbance d. A set C ⊆ R
n is an

RCIS for the system Σ within the safe set S if:

∀x ∈C,∃u such that (x,u) ∈ S,Ax+Bu+ d ∈C,∀d ∈ D. (2)

Definition 3 (RCIS with measurable disturbance). For the

disturbance d being measurable, a set C ⊆ R
n is an RCIS

for the system Σ within the safe set S if:

∀x ∈C,∀d ∈ D,∃u such that (x,u) ∈ S,Ax+Bu+ d ∈C. (3)

Note that the order of the quantifiers ∀d ∈ D and ∃u is

swapped in the definitions above, which means an RCIS C

with respect to a non-measurable disturbance is guaranteed to

be an RCIS for the same system with measurable disturbance

but not vice versa. Finally, we call a set Cmax the Maximal

RCIS within S if it is controlled invariant and contains every

RCIS in S.

Next, consider an autonomous system Σa:

Σa : x(t + 1) = f (x(t),d(t)) (4)

with state x ∈ R
n and a disturbance term d ∈ D.

Definition 4 (Robust Positively Invariant Set (RPIS)). A set

C ⊆ S is an RPIS of the autonomous system Σa within S if:

∀x ∈C we have that f (x,d) ∈C,∀d ∈ D. (5)

A set Cmax is the Maximal RPIS within S if it is positively

invariant and contains every robust positively invariant set in

S.

Notice that, compared to systems with control inputs, there

is no concept of measurable or non-measurable disturbances

for autonomous systems.

Definition 5 (Reachable set for autonomous systems). Let Σa

be an autonomous system. The reachable set R(Σa,x0) of Σa

from state x0 is the set of all possible states that the system

may visit. Formally, x∈R(Σa,x0) if and only if there exists a

trajectory (x(t))k
t=0, for some k ≥ 0, of Σa under disturbance

sequence (d(t))k−1
t=0 ∈ Dk with x(0) = x0 and x(k) = x.

Proposition 1. The set C = {x ∈R
n |R(Σa,x)⊆ S}, i.e., the

set of states whose corresponding reachable set is contained

in the safe set S, is the Maximal RPIS for Σa within S.

A. Problem Setup

In the first part of this work, we focus on the computation

of RCISs for systems with measurable disturbances. More

specifically, we propose a method that computes the desired

implicit representation for an RCIS in closed-form based on

the following assumptions. In the second part, we extend our

method to compute RCISs for non-measurable disturbances.

Assumption 1: The matrix A is nilpotent. That is, there exists

a non-negative integer h ≤ n such that Ah = 0.

Remark 1. Assumption 1 is satisfied by any controllable

system, as there always exists a feedback gain K such that

A+BK is nilpotent. Thus, any controllable system satisfies

Assumption 1 by pre-feedbacking the system with u=Kx+v

and taking v as the new control input1 [14, Ch.3].

Assumption 2: The safe set S ⊂ R
n+m and the disturbance

set D ⊂ R
n are both polytopes.

The next theorem shows that to compute an RCIS for

systems with a measurable disturbance, we only need to

consider the (finite) vertices of D.

Proposition 2. Under Assumption 2, consider a system Σ
with a measurable disturbance d ∈ D, and let Dv be the set

of vertices of D. Let Σ′ be the same system as Σ but with the

measurable disturbance d ∈ Dv. Then, a convex set C is an

RCIS for Σ if and only if C is an RCIS for Σ′.

According to Proposition 2, given any polytopic distur-

bance set D, we can substitute D by the finite set Dv without

loss of generality. Thus, for the remaining of this paper, we

directly assume that D is a finite set, as stated below.

Assumption 3: The disturbance set D ⊂ R
n is given as a

finite set of vertices.

Problem 1: For a linear system Σ, a safe set S, and a

disturbance set D satisfying Assumptions 1, 2 and 3, compute

a convex implicit RCIS of Σ within S in closed-form.

III. CONTROLLED INVARIANT SET COMPUTATION

FRAMEWORK

The Maximal RCIS for a system in (1) with measurable

and/or non-measurable disturbances can be computed by a

standard iterative method ( [1], [2]), which is not guaranteed

to terminate in finite time and does not scale to high-

dimensional systems. To reduce the computation burden,

many existing works close the loop with a linear feedback

controller and then compute an RPIS of the closed-loop

1Accordingly, given the safe set Sxu for (x,u), the safe set Sxv for the new
state-input pair (x,v) should be Sxv = {(x,v) | (x,Kx+ v) ∈ Sxu}.



system as an under-approximation of the Maximal RCIS. In

this section, we extend this idea to a more general case: We

close the loop with a parameterized nonlinear disturbance-

feedback controller. Then, by computing an RPIS of an

augmented closed-loop system, we search for the feasible

initial states and controller parameters simultaneously such

that the closed-loop trajectory satisfies the safety constraints.

Lastly, we retrieve an RCIS from the RPIS of the augmented

system.

First, we want to determine an appropriate controller

structure. We draw some inspirations from Definition 3:

Given any RCIS C for Σ under measurable disturbances,

by definition, there exists a memoryless state-disturbance

feedback controller u(t) = k (x(t),d(t)) such that C is the

Maximal RPIS of the closed-loop system. In other words, any

RCIS, including the Maximal RCIS, is the Maximal RPIS of

a closed-loop system with respect to some memoryless state-

disturbance controller. Thus, to minimize the conservative-

ness of the closed-loop RPIS, it is enough to consider the

class of memoryless state-disturbance feedback controllers.

Furthermore, it is well-known that any memoryless state-

disturbance feedback controller is equivalent to a disturbance

feedback controller with memory, explained by the following

example.

Example 1. Consider a memoryless state-disturbance feed-

back controller u(t) = κ(x(t),d(t)). This controller can be

equivalently expressed as:

{

s(t + 1) = As(t)+Bκ(s(t),d(t))+ d(t),

u(t) = κ(s(t),d(t)),
(6)

with s(0) = x(0). That is, the internal dynamics of the

controller forms a state estimator. �

For above reasons, we consider a parameterized

disturbance-feedback controller Σc with memory:

Σc :

{

s(t + 1) = T (s(t),d(t);θ ),

u(t) = o(s(t),d(t);θ ).
(7)

In the above, s is the internal state (memory) of the controller

that distills useful information from the disturbance input

d ∈ D, and u is the output of the controller. The same d and

u correspond to the disturbance and the control input of Σ
respectively. The state transition function T and the output

function o map the current state s(t) and the disturbance input

d(t) into the next state s(t + 1) and the current output u(t)
respectively. Finally, θ is a constant vector that parameterizes

the state transition function T and the output function o. The

value of θ can depend on the initial state x0 of the system Σ,

such as in Example 1, θ = x(0). In what follows, we assume

that the functions T and o in Σc are known. We discuss how

to select T and o in the next section.

Closing the loop of Σ in (1) with the controller in (7), we

obtain the following closed-loop system augmented with the

controller internal state s and the constant vector θ :

Σcl :





x(t + 1)
θ (t + 1)
s(t + 1)



=





Ax(t)+Bo(s(t),d(t);θ (t))+ d(t)
θ (t)

T (s(t),d(t);θ (t))



 , (8)

with the augmented state (x,θ ,s) and the disturbance d ∈ D.

In the above augmented system, we can calculate feasible

initial states x0 and controller parameters θ simultaneously.

The control input u(t) of Σ is equal to o(x(t),d(t);θ (t)), as

a function of the augmented state. Then, given the safe set S

of the system Σ, we define the safe set Scl for the closed-loop

system Σcl by:

Scl = {(x,θ ,s) | (x,o(s,d;θ )) ∈ S,∀d ∈ D)} . (9)

The following theorem connects the problem of computing

an RCIS for the system Σ with the problem of computing an

RPIS for the closed-loop system Σcl .

Theorem 1. Let Ccl be an RPIS for the closed-loop sys-

tem Σcl within the safe set Scl . Then, the convex hull

CH(Proj1:n(Ccl)) of the projection of Ccl onto the first n

coordinates is a convex RCIS for the system Σ within the

safe set S.

According to Theorem 1, we propose a novel framework

for computing RCISs: Given a controller specified by func-

tions T and o, we first compute the Maximal RPIS Ccl of the

augmented system Σcl within Scl , and then take the convex

hull of the projection of Ccl .

The size of the resulting RCIS depends on the choice of

functions T and o. In Section VI-A, we demonstrate two

classes of functions T and o that lead to larger RCISs as

the number of parameters increases. In theory, there exist

functions T and o such that the resulting RCIS meets the

Maximal RCIS. However, how to find T and o achieving

the Maximal RCIS is beyond the scope of this paper. One

significant advantage of this framework, explored in the next

section, is that by carefully designing T and o, this novel

framework enables closed-form construction of RCISs.

IV. CLOSED-FORM CONSTRUCTION OF

IMPLICIT ROBUST CONTROLLED INVARIANT SETS

In the previous section, we presented a framework for

computing RCISs. Still, there are two main questions to

be addressed. First, can we compute the Maximal RPIS Ccl

efficiently? Second, in practice the convex hull computation

is expensive, can we avoid this operation? In this section, we

show that by carefully designing T and o, we address both

questions.

A. Computing Ccl in closed-form

From Proposition 1, we have that:

Ccl = {(x,θ ,s) | R(Σcl ,(x,θ ,s)) ⊆ Scl} . (10)

According to (10), if we express the reachable set

R(Σcl ,(x,θ ,s)) in closed-form, then we obtain a closed-

form expression of Ccl . The next theorem gives a sufficient



Fig. 1: A toy mealy machine controller.

condition for the reachable set R(Σcl) to admit a closed-form

expression.

Theorem 2. Under Assumption 1 and 3, if the state s of the

controller belongs to a finite set Q, then given any initial state

(x,θ ,s), the reachable set R(Σcl ,(x,θ ,s)) is finite. Moreover,

it can be expressed in closed-form.

Note that Theorem 2 is the only result that requires

Assumption 1 in this work. Given Theorem 2, we want to

design the functions T and o such that the internal state

s of the controller belongs to a finite set Q. Recall that by

Proposition 2 and Assumption 3, the input d of the controller

also belongs to a finite set D. Thus, the controller Σc is a

system with finite states and inputs. In the literature, this

type of system is called a mealy machine, a special class of

automata.

Definition 6 (Mealy Machine). A Mealy Machine Σ f ts is a

quintuple (Q,D,T ,Θ,o), where:

• Q is a finite set of discrete states;

• D is a finite set of actions;

• T : Q×D→ Q is the state transition function that maps

each state-action pair to the next state;

• Θ is a finite set of outputs;

• o : Q×D → Θ is the output function that maps each

state-action pair to an element in the set Θ.

With slightly abusing notations, we denote both the action

set of a mealy machine and the disturbance set of Σ by D,

since in this work we only consider the disturbance set D

as the action set. The transition function T and the output

function o are designed by the user. We parameterize the

output set Θ of a mealy machine by a parameter vector

θ : Suppose that Θ = {ui}
L
i=1, where each ui is a vector

of variables in R
m. Given a vector θ = (u1, · · · ,uL) ∈ R

mL,

we define a parameterized output function o(s,d;θ ) : Q×
D → R

m such that o(s,d;θ ) = ui for o(s,d) = ui. A simple

example of a mealy machine and the parameterized output

function is shown below.

Example 2. Let D = {d1,d2} ⊂ R
n, and Q = {s1,s2}.

The state transition function T is shown in

Fig. 1. The output set is Θ = {u1,u2}. The

output function is o(s1,d1) = o(s2,d1) = u1 and

o(s1,d2) = o(s2,d2) = u2. Let the controller parameter

be θ = (u1,u2) = (1,2). Then, the parameterized

output function is o(s1,d1;θ ) = o(s2,d1;θ ) = 1 and

o(s1,d2;θ ) = o(s2,d2;θ ) = 2. �

Next, we provide guidance on how to construct Ccl effi-

ciently. Since s ∈ Q, with Q finite, we can decompose Ccl

into |Q| subsets:

Ccl =
⋃

si∈Q

Csub(si)×{si}, (11)

where:

Csub(si) =
{

(x,θ ) ∈ R
n+mL | R(Σcl ,(x,θ ,si))⊆ Scl

}

. (12)

For each state (x′,θ ,s′) ∈ R(Σcl ,(x,θ ,si)):

(x′,θ ,s′) ∈ Scl ⇔ (x′,o(s′,d;θ )) ∈ S, ∀d ∈ D. (13)

As x′ and o(s′,d;θ ) are linear functions of x, θ , and

d ∈ D, the condition (x′,o(s′,d;θ )) ∈ S is a set of linear

inequality constraints on (x,θ ). Thus, by (13) and the fact

that R(Σcl ,(x,θ ,si)) is finite, the set Csub(si) in (12) can

be expressed by a set of linear inequality constraints, that

is a polytope in R
n+mL. We use the following example to

illustrate the computation of Csub(si).

Example 3. Consider the mealy machine controller in Ex-

ample 2. Suppose that the nilpotent matrix A of system Σ
satisfies A2 = 0. Then, the reachable set R(Σcl ,(x,θ ,si))
contains 7 elements, that is

R(Σcl ,(x,θ ,si)) =

{

⋃

j,k=1,2

(ABu j +Buk +Ad j + dk,θ ,sk)

}

∪

{

(x,θ ,si)

}

∪

{

⋃

j=1,2

(Ax+Bu j + d j,θ ,s j)

}

,

where θ = (u1,u2). Suppose that the safe set is

S = {(x,u) ∈ R
n+m | Gxx+Guu ≤ h}. Then:

Csub(s1) =Csub(s2) =

{(x,u) ∈ R
n+m |Gxx+Guui ≤ h,

Gx(Ax+Bu j + d j)+Guu j ≤ h,

Gx(ABu j +Buk +Ad j + dk)+Guui ≤ h,

∀i, j,k ∈ {1,2}}.

Finally, Ccl =
⋃

i=1,2 Csub(si)×{si}.

So far we constructed Ccl in closed-form. However, to

obtain an RCIS from Ccl , we have to project Ccl onto the

first n coordinates and then compute the convex hull of the

projected set. Both projection and convex hull operations are

time consuming and thus undesirable. In what follows we

derive an implicit expression of the resulting RCISs.

B. Implicit Controlled Invariant Set Expression (Method 1)

Assumption 4: The safe set S of Σ is bounded.

Given that S is bounded, the projection of Csub(si) onto

the first n coordinates is also bounded. Thus, we can always

find a large enough hyperbox B such that:

Proj1:n(B∩Csub(si)) = Proj1:n(Csub(si)).

Denote the intersection of the hyperbox B and the polytope

Csub(si) by Csub(si) = B∩Csub(si). The projection of Ccl is



exactly the union of the projections of polytopes Csub(si)
over si ∈ Q, that is:

Proj1:n(Ccl) =
⋃

si∈Q

Proj1:n

(

Csub(si)
)

. (14)

Since the order of convex hull operation and the projection

can be swapped, we have that:

CH(Proj1:n(Ccl)) = Proj1:n

(

CH

(

⋃

si∈Q

Csub(si)

))

. (15)

Since Csub(si) is a polytope, it can be written as:

Csub(si) = {(x,θ ) | Gi(x,θ )≤ hi}.

Then, we construct the polytope:

Cλ =

{

(

x,θ ,x1,θ1, · · · ,x|Q|,θ|Q|,λ1, · · · ,λ|Q|

)

|

λi ≥ 0,Gi(xi,θi)≤ λihi,∀1 ≤ i ≤ |Q|,

|Q|

∑
i=1

λi = 1,
|Q|

∑
i=1

xi = x,
|Q|

∑
i=1

θi = θ

}

.

(16)

Under Assumption 4, given that (x,θ ) ∈ Rn+mL, we have:

CH

(

⋃

si∈Q

Csub(si)

)

= Proj1:(n+mL) (Cλ ) , (17)

Proj1:n

(

CH

(

⋃

si∈Q

Csub(si)

))

= Proj1:n(Cλ ). (18)

By (15) and (18), the RCIS CH(Proj1:n(Ccl)) is the projec-

tion of Cλ onto the first n coordinates. In other words, Cλ is

an implicit expression of the RCIS CH(Proj1:n(Ccl)).

Remark 2. Assumption 4 is only required if we want the

equality Proj1:n(Cλ ) = CH(Proj1:n(Ccl)) to hold. In the next

subsection, we introduce an alternative implicit expression

which does not require a bounded safe set S.

C. Implicit Controlled Invariant Set Expression (Method 2)

In Example 3, the projection of Ccl is already convex and,

thus, the convex hull computation is omitted. It turns out that

the convexity of Proj1:n(Ccl) is not a coincidence. We define

the nested state transition function by:

T
∗(s,(d(t))k

t=0)=

{

T (s,d(0)), k = 0,

T (T ∗(s,(d(t))k−1
t=0 ),d(k)), k > 0.

(19)

Similarly, the nested output function o∗(s,(d(t))k
t=0) is:

o∗(s,(d(t))k
t=0) =

{

o(s,d(0)), k = 0,

o(T ∗(s,(d(t))k−1
t=0 ),d(k)), k > 0.

(20)

Define a preorder relation “�” on Q as follows.

For any s1,s2 ∈ Q, we have that s1 � s2 if for all

(d1(t))
k1
t=0 ∈ Dk1 and (d2(t))

k2
t=0 ∈ Dk2 with non-negative inte-

gers k1,k2 ≤ |Q|2, o∗(s1,(d1(t))
k1
t=0) = o∗(s1,(d2(t))

k2
t=0) im-

plies o∗(s2,(d1(t))
k1
t=0) = o∗(s2,(d2(t))

k2
t=0) .

Here, the “=” sign in o∗(si,(d1(t))
k1
t=0) = o∗(si,(d2(t))

k2
t=0)

is interpreted as the function o∗ mapping two inputs to the

Algorithm 1 Compute Implicit Controlled Invariant Set

inputs: Σ, S, Σc = (Q,D,T ,Θ,o).

if a dominant state sdom ∈ Q exists then

Compute Csub(sdom) as in (12).

return Csub(sdom).
else

for si ∈ Q0 ⊆ Q do

Compute Csub(si) as in (12).

end for

Compute Cλ as in (16).

return Cλ .

end if

same element in Θ (regardless of the parameter θ ). Given

the definition of the relation � on Q, we can algorithmically

check if two states s and s′ satisfy s � s′ with worst case

time complexity O(|Q|2).

Note that the “�” relation is not a partial order as it

does not satisfy the antisymmetry condition, namely it is

possible to have s1 � s2 and s2 � s1 but s1 6= s2. However, the

following theorem shows that the � relation in Q actually

implies the partial order on the sets {Proj1:n(Csub(s))}s∈Q

defined by the set inclusion.

Theorem 3. Given the � relation defined on the set

Q, for any two states s1, s2 ∈ Q, s1 � s2 implies that

Proj1:n(Csub(s1))⊇ Proj1:n(Csub(s2)).

We call a state smax ∈ Q a maximal state if for any s′ ∈ Q,

s′ � smax implies smax � s′, and call a state sdom a dominant

state if sdom � s for all s ∈ Q. Denote Qmax as the set of all

the maximal states in Q.

Corollary 1. Suppose that there exists a dominant state

sdom ∈ Q. Then, Proj1:n(Ccl) = Proj1:n(Csub(sdom)).

Corollary 1 explains our observation in Example 3.

Example 4. For the mealy machine in Example 2, s1 � s2

and s2 � s1. Thus, both s1 and s2 are dominant states. Then,

Proj1:n(Ccl) = Proj1:n(Csub(s1)) = Proj1:n(Csub(s2)).

Corollary 2. Define a partition over Qmax as follows: For

s and s′ ∈ Q, s and s′ belong to the same component if

s � s′ and/or s′ � s. Let a set Q0 ⊆ Qmax contain exactly

one state from each component of this partition. Then,

Proj1:n(Ccl) = ∪smax∈Q0
Proj1:n(Csub(smax)).

According to Corollary 1, if a dominant state sdom exists

in Q, the RCIS CH(Proj1:n(Ccl)) is simply the projection

of Csub(sdom) onto the first n coordinates. In this case, we

can directly take Csub(sdom) as the implicit representation of

the RCIS CH(Proj1:n(Ccl)); otherwise, by Section IV-B, we

construct Cλ as the implicit RCIS. Note that according to

Corollary 2, we can replace Q by Q0 in the definition of

Cλ . The overall procedure of computing implicit RCISs is

summarized in Algorithm 1.



V. BRIDGE MEASURABLE AND NON-MEASURABLE

DISTURBANCES

In this section we prove a connection between measurable

and non-measurable disturbances, which enables our method

to compute RCISs for systems with any type of disturbances.

Suppose a system Σ in (1) has a non-measurable distur-

bance d ∈ D. We construct a system Σ′ with a measurable

disturbance by adding a one-step delay:

Σ′:

[

x(t + 1)
u(t + 1)

]

=

[

A B

0 0

][

x(t)
u(t)

]

+

[

0

Im

]

v(t)+

[

In

0

]

d(t), (21)

with state (x,u) ∈ R
n+m, input v ∈ R

m, a measurable distur-

bance d ∈ D ⊆ R
n, and In, Im being the n× n and m×m

identity matrices respectively.

Let the safe set of Σ be S ⊂R
n+m. We want to compute an

RCIS for Σ within S. The next theorem reveals that this can

be achieved by computing an RCIS for Σ′ within S×R
m.

Theorem 4. Given the systems Σ in (1) and Σ′ in (21), if C′

is an RCIS for Σ′ in S×R
m, the projection Proj1:n(C

′) of C′

onto the first n coordinates is an RCIS for Σ in S.

If C′ is the maximal RCIS for Σ′ in S×R
m, then Proj1:n(C

′)
is the maximal RCIS for Σ in S.

Thanks to Theorem 4, in terms of computing RCISs, any

method designed for measurable disturbances can be applied

to systems with non-measurable disturbances.

VI. CASE STUDY

A. Mealy machines with dominant states

We present two classes of mealy machines that contain at

least one dominant state.

1) Simple Loop: Given an integer L > 0, let Q = {si}
L
i=1

and Θ = {ui}
L
i=1. Define, for all d ∈ D, the state transition

and output functions as:

T (si,d) =

{

si+1 i < L,

s1 i = L.
, o(si,d) =

{

ui+1 i < L,

u1 i = L.
(22)

For such a structure, any s ∈ Q is a dominant state.

2) Tree Structure: Suppose the cardinality of the dis-

turbance set |D| = K. Given an integer L > 0, define

N = (KL − 1)/(K− 1). Let Q = {s0} ∪
⋃L

i=1 Di. That is, Q

is the union of s0 and all finite sequences of elements in D

with length less than or equal to L. We assign one output for

each s ∈ Q denoted by u(s). Thus, Θ = {u(s)}s∈Q. The state

transition function is defined as for all d ∈ D:

T (s,d) =











d s = s0,

sd s ∈ Dk,k < L,

s(2 : L)d s ∈ DL,

(23)

where sd ∈ Dk+1 denotes the concatenation of s ∈ Dk and

d ∈ D, and s(2 : L)d denotes the concatenation of the subse-

quence s(2 : L) of s and d ∈D. For instance, if s = d1d2 · · ·dL,

then s(2 : L)d = d2 · · ·dLd.

For L = K = 2, the state transition function is shown in

Fig. 2. We call this class of mealy machines tree structure

Fig. 2: The tree-structure mealy machine (L = 3, D =
{d1,d2}). The red arrow and blue arrow indicate transitions

under d1 and d2 respectively.

since the mealy machine transition graph, as shown in Fig. 2,

embeds a tree with s0 the root node.

Given the state transition function, the output function is

simply defined as:

o(s,d) = u(T (s,d)). (24)

For any tree-structure mealy machine, s0 is the dominant

state. Intuitively, the tree-structure mealy machine memorizes

the past L disturbance measurements and assigns a control

input to each possible combination of the past L disturbances.

Finally, for both classes of mealy machines introduced

here, it can be proven that by increasing the number of

discrete states (complexity), that is increasing L, we tend

to obtain larger RCISs.

B. Lane keeping supervision

Consider a 4-dimensional linearized bicycle vehicle dy-

namics with respect to a constant longitudinal velocity 30m/s

in [15], discretized with time step ∆t = 0.1s. The system

states consist of the lateral displacement y, lateral velocity

v, yaw angle ∆Ψ and yaw rate r. The control input u is the

steering angle. The disturbance is d = (0,0,−rd∆t,0), where

rd ∈ R is the road curvature within a range |rd | ≤ rd,max.

The safe set is given by constraints |y| ≤ 0.9, |v| ≤ 1.2,

|∆Ψ| ≤ 0.05, |r| ≤ 0.3 and |u| ≤ π/2.

The future road curvature can be measured in ahead and

thus d is a measurable disturbance [13]. We compare our

method with Method 2 in [9], LMI-based low-complexity

RCIS in [4] and the Maximal RCIS. Our method uses

the tree structure with L = 4 in Section VI-A as the

mealy machine controller. For Method 2 in [9], we set

the parameter L = 14 and compute the lifted set in high

dimensional space as an implicit RCIS. Note that Method

2 with parameter L is the same as our method equipped

with simple loop controller with parameter L. For the LMI-

based method in [4], we set the parameter ρ = 1 and run the

iterative algorithm until convergence. The methods in [9],

[4] consider non-measurable disturbances only. To make a

fair comparison, our method computes RCISs for d being

measurable and/or non-measurable respectively. We evaluate

the algorithm performance by their computation time and the

volume percentage of the resulting RCISs to the Maximal



TABLE I: Computation Time and Volume Percentage of

Computed RCIS to the Maximal RCIS. (Lane Keeping)

rd,max 0.01 0.015 0.03 0.05 0.07

Our method

(d meas.)

Time (s) 0.042 0.035 0.037 0.035 0.032

Vol (%) 100.00 99.99 99.89 98.91 74.75

Our method

(d non-meas.)

Time (s) 0.071 0.062 0.072 0.063 0.060

Vol (%) 100.00 100.00 100.00 99.89 0

Method 2 of

[9] (L = 14)

Time (s) 0.506 0.443 0.404 0.397 0.484

Vol (%) 99.82 87.64 0 0 0

LMI Method

[4] (ρ = 1)

Time (s) 0.449 0.519 0.562 0.500 0.564

Vol (%) 0 0 0 0 0

Maximal RCIS Time (s) 13.084 18.918 15.525 15.698 21.513

RCIS. The volume percentage is estimated by monte carlo

method with sample size N = 104.

The comparison results are shown in Table I: According

to the 2nd, 3rd and 4th rows of Table I, when dealing with

non-measurable disturbances only, our method outperforms

Method 2 of [9] and LMI-based method in [4] in both the

computation time and the volume of the resulting RCIS for

all rd,max, showing a strong robustness to non-measurable

disturbances. The LMI-based method encounters an infeasi-

ble optimization problem in all test cases and thus has 0

volume percentage. Method 2 of [9], as a special case of the

proposed method, has a decent volume percentage when the

disturbance range is small. But as rd,max > 0.015, the RCIS

from Method 2 of [9] becomes empty, while our method still

has volume percentage greater than 98% for both measurable

and non-measurable cases.

Shown by the first 2 rows of Table I, when rd,max = 0.07,

our method returns a nonempty RCIS for d being measurable,

but returns an empty RCIS for d being non-measurable.

Thus, by considering d as a measurable disturbance, our

method is robust to a larger range of disturbances. Finally,

comparing the first 2 rows with the last row of Table I,

when rd,max < 0.07, our method computes implicit RCISs

with almost the same size as the Maximal RCISs, using less

than 0.3% computation time of the Maximal RCISs.

Next, we illustrate how the computed implicit RCIS can be

used to supervise a nominal controller. Suppose the current

state x(t) belongs to the RCIS Proj1:n(Csub(s0)). Given the

nominal steering input ud(t) and the disturbance d(t) at time

t, we minimally change the input ud(t) such that the next

state x(t +1) stays in the RCIS Proj1:n(Csub(s0)) by solving

the following quadratic program:

min
u(t),θ

‖ud(t)− u(t)‖2
2

subject to (Ax(t)+Bu(t)+ d(t),θ )∈Csub(s0),
(25)

where A, B are the system matrices and θ is a slack variable.

We use the solution u(t) of (25) as the actual steering input

to the vehicle. The feasibility of (25) is guaranteed since

Proj1:n(Csub(s0)) is an RCIS and x(t) ∈ Proj1:n(Csub(s0)).
We compare the supervised inputs obtained in (25) to the

ones obtained based on the Maximal RCIS Cmax via the

following quadratic program:

min
u(t)

‖ud(t)− u(t)‖2
2

subject to Ax(t)+Bu(t)+ d(t)∈Cmax.
(26)
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Fig. 3: Vehicle maneuvers under control inputs supervised

by our implicit RCIS (cyan curve) and the Maximal RCIS

(red curve). The black region indicates the road surface.
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Fig. 4: Vehicle steering inputs supervised by our implicit

RCIS (red curve) and the Maximal RCIS (blue curve) (6 ≤
t ≤ 8).

The nominal controller is ud(t) = −0.1812y− 0.0373v−
4.5996∆Ψ−0.6649r. We run two simulations with the same

initial states and control inputs obtained from (25) and (26)

respectively (rd,max = 0.015). As shown in Fig. 3 and Fig. 4,

the vehicle maneuvers and steering inputs supervised by our

implicit RCIS Csub(s0) and the Maximal RCIS are very close

to each other. The maximal difference between the control

inputs from (25) and (26) is around 0.035 at t = 6.5s. This

observation is consistent with the results shown in Table I,

where the volume of our implicit RCIS is approximately

99.96% of the volume of the Maximal RCIS.

C. Chain of integrators

Consider a discrete-time n-th order integrator:

x(t + 1) =

(

In +

[

0 In−1

0 0

])

x(t)+

[

0

1

]

(u(t)+ d(t)) (27)

with x ∈ R
n, u ∈ R and d ∈ R. In indicates the iden-

tity matrix in R
n×n. d is considered as a measurable

disturbance within range |d| ≤ 0.1. The safe set is

S = {(x,u) | |xi| ≤ 1,∀i = 1, . . . ,n, |u| ≤ 1}.
The comparison results of our approach (tree structure,

L = 4) with Method 2 of [9] (L = 14) and the LMI-based

method in [4] (ρ = 1) are shown in Table II. For n ≤ 4,

our method outperforms the other 2 methods in computation

time and volume percentage. For n = 2, our method returns

exactly the Maximal RCIS, depicted in Fig. 5. For n ≥ 6, the

Maximal RCIS does not terminate within 1 hour. Thus we

only check if the computed RCISs are empty or not instead

of comparing their volume to the Maximal RCIS. When

n ≥ 6, our method is the only one that returns non-empty

RCISs. Note that even though the implicit RCIS has closed-

form expression, the number of constraints in the implicit

RCIS grows exponentially as n increases. In this example,



Fig. 5: RCISs for double integrator. Yellow: RCIS from LMI-

based method [4]. Red: the Maximal RCIS computed by both

our method and [9].

TABLE II: Computation Time and Volume Percentage of

Computed RCIS to the Maximal RCIS (Chain of Integrators).

n 2 4 6 8 10

Our method

(d meas.)

Time (s) 0.005 0.025 0.368 9.287 339.060

Vol (%) 100 98.79 > 0 > 0 > 0

Method 2 of

[9] (L = 14)

Time (s) 0.183 0.341 2.420 7.168 37.105

Vol (%) 74.49 0 0 0 0

LMI Method

[4] (ρ = 1)

Time (s) 3.465 0.603 0.952 1.405 3.1402

Vol (%) 66.85 ≈ 0 0 0 0

Maximal RCIS Time (s) 0.734 11.114 > 3600 > 3600 > 3600

TABLE III: Computation Time and Volume Percentage of

Computed RCIS to the Maximal RCIS (Truck with N trail-

ers).

System dimension n = 3 n = 5 n = 7 n = 9

Our method
Time (s.) 0.109 0.781 8.669 163.1
Vol (%) 100 100 > 0 0

Method 2 of

[9] (L=14)

Time (s.) 0.547 0.814 1.352 6.577

Vol (%) 100 98.90 0 0

Maximal RCIS Time (s.) 0.746 13.76 > 3600 > 3600

for n = 10, it takes about 339s for our method to generate

the implicit RCIS, which is a polytope in R
24 with about

36× 104 constraints.

D. Truck with N trailers

Consider a continuous-time model for a truck with N

trailers [16]. The state consists of the N +1 velocity values,

each for the truck and the N trailers, and the N spring

elongations in between them. Hence, N trailers correspond

to dimension n = 2N + 1. The input is the velocity of the

truck. We discretize the model with a sampling time of Ts

seconds assuming piecewise constant inputs.

Table III shows the results of this case study for our

method and the approach in [9]. For n ≥ 7 the method

computing the Maximal RCIS does not terminate after 1

hour, and, hence, we only check non-emptiness of sets

instead of volume percentage. When the Maximal RCIS is

computed, we see that our approach covers it, but due to the

implicit representation, the running times are much faster.

However, we see that in this example, after some point, as

the dimension becomes large, the set our algorithm returns is

empty. This can be understood as by adding more trailers the

noise from each spring compounds towards the ones behind

it, resulting in the shrinking of the RCIS.

VII. CONCLUSION

In this paper, we present a novel method of computing

implicit RCISs in closed-form. The key insight is to construct

a closed-loop system with a parameterized automaton-based

controller. The implicit RCISs obtained by our method

characterize the set of feasible initial states and controller

parameters under which the system state-input trajectory

stays in the safe set. Compared with the standard iterative

methods [1], [2], all the computations of our method are done

in one-shot, which guarantees finite-time termination and

better scalability. Several numerical examples are provided

to demonstrate the efficiency and practicality of the proposed

method.
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APPENDIX

Proof of Proposition 1 . Let x ∈ C and d ∈ D. By the Defi-

nition 5, R(Σ, f (x,d)) ⊆ R(Σa,x) ⊆ S and thus f (x,d) ∈ C.

Hence, C is an RPIS by definition.

Suppose x belongs to an arbitrary RPIS within S. By

definition, R(Σa,x) ⊆ S. Thus, x ∈C and C is the Maximal

RPIS.

Proof of Proposition 2. The ”only if” direction is obvious.

It is left to show the ”if” direction. Suppose the safe set is S.

Let C be an RCIS for the system Σ′ in S and x be a point in C.

We want to show that for all d ∈ D, there exists u such that

Ax+Bu+d ∈ S. Since D =CH(Dv), there exists a finite K >
0 such that d = ∑K

i=1 αidi for some d1, ..., dK ∈ Dv and some

α1, ..., αK ≥ 0 satisfying ∑K
i=1 αi = 1. Since C is controlled

invariant for Σ′, for each di ∈ Dv, there exists ui such that

(x,ui) ∈ S and Ax+Bui +Edi ∈ C. Define u = ∑K
i=1 αiui. It

is easy to show that (x,u) ∈ S and Ax+Bu+Ed ∈C, by the

convexity of S and C. Thus, C is an RCIS within S for Σ.

Proof of Theorem 1. Denote CH(Proj1:n(Ccl)) by Cp. Let

x ∈Cp and d ∈ D. We want to show that there exists u such

that (x,u) ∈ S and Ax+Bu+ d ∈Cp.

By definition of convex hull, there exist a positive integer

k > 0, k vectors xi ∈ Proj1:n(Ccl) and k scalars αi ∈ [0,1] for i

from 1 to k such that ∑k
i=1 αi = 1 and ∑k

i=1 αixi = x. For each

i, there exists θi and si such that (xi,θi,si) ∈Ccl . We define

ui = o(si,d). Note that by the definition of Scl , (xi,ui) ∈ S.

Also, since Ccl is an RPIS, (Axi + Bui + d,θi,T (si,d)) ∈
Ccl and thus Axi +Bui + d ∈ Cpro j. We define u = ∑k

i=1 αiui.

Since S is convex and (xi,ui) ∈ S, (x,u) = ∑k
i=1 αi(xi,ui) ∈ S.

Since Cp is convex and Axi +Bui + d ∈ Cp, Ax+Bu+ d =

∑k
i=1 αi(Axi + Bui + d) ∈ Cp. Thus, Cp is an RCIS for the

system Σ in S.

Proof of Theorem 2. We want to show R(Σcl ,(x,θ ,s)) is

finite. Let ((x(t),θ (t),s(t)))∞
t=0 be the trajectory of Σcl with

initial state (x(0),θ (0),s(0)) = (x,θ ,s). Let (d(t))∞
t=0 be the

disturbance sequence. Given A is nilpotent, that is Ah = 0 for

some h ≥ 0, we have that

x(t) =

{

Atx+∑t−1
i=0 At−1−i[Bo(s(i),d(i);θ )+ d(i)] t < h,

∑t−1
i=t−h At−1−i[Bo(s(i),d(i);θ )+ d(i)] t ≥ h.

(28)

Since s(t) and d(t) belong to finite sets Q and

D, o(s(t),d(t);θ ) belongs to the finite set U(θ ) =
{o(s,d;θ )}s∈Q,d∈D. Thus, according to (28), x(t), as a func-

tion of o(s(t),d(t);θ ) and d(t) for t ≥ h, must belongs

to a finite set, denoted by X(θ ). Thus, the reachable set

R(Σcl ,(x,θ ,s)) ⊆ X(θ )×{θ}×Q is a finite set.

Proof of Theorem 3. We want to derive a sufficient condi-

tion under which Proj1:n(Csub(s1)) ⊇ Proj1:n(Csub(s2)). Note

that if for all (x,θ2) ∈ Csub(s2), there exists θ1 such

that (x,θ1) ∈ Csub(s1), then we have Proj1:n(Csub(s1)) ⊇
Proj1:n(Csub(s2)).

Similar to how we define o∗(s,d), we define the parame-

terized nested output function as

o∗(s,(d(t))k
t=0;θ ) =

{

o(s,d(0);θ ) k = 0,

o(T ∗(s,(d(t))k−1
t=0 ),d(k);θ ) k > 0.

(29)

Given s and θ , the parameterized nested output function

o∗(s, ·;θ ) becomes a function of (d(t))k
t=0 in ∪∞

i=1Di. If for

any θ2, we can always find a θ1 such that the functions

o∗(s2, ·;θ2) = o∗(s1, ·;θ1), then for all (x,θ2) ∈ Csub(s2),
(x,θ1) ∈ Csub(s1). Intuitively, recall that (x,θ2) ∈Csub(s2) if

(x(k),o∗(s2,(d(t))
k
t=0)) ∈ S for all k ≥ 0 and (d(t))k

t=0 ∈ Dk.

If we know that (x(k),o∗(s2,(d(t))
k
t=0;θ2)) ∈ S for all k ≥ 0,

then we know (x(k),o∗(s2,(d(t))
k
t=0;θ2)) ∈ S for all k ≥ 0

since o∗(s2, ·;θ2) = o∗(s1, ·;θ1). Thus, (x,θ1) ∈Csub(s1).
Now our goal is to derive a sufficient condition under

which there exists a θ1 such that o∗(s1, ·;θ1) = o∗(s2, ·;θ2)
for all θ2.

Lemma 1. Given s1, s2 ∈ Q and θ1, θ2, the functions

o∗(s1, ·;θ1) = o∗(s2, ·;θ2) if and only if o∗(s1,(d(t))
k
t=0;θ1)=

o∗(s2,(d(t))
k
t=0;θ2) for all k ≤ |Q|2 and all (d(t))k

t=0 ∈ Dk.

According to Lemma 1, given any θ2, we can di-

rectly solve for a θ1 satisfying o∗(s1,(d(t))
k
t=0;θ1) =

o∗(s2,(d(t))
k
t=0;θ2) for all k ≤ |Q|2 and all (d(t))k

t=0 ∈ Dk,

which is a system of linear equations on θ1. It can be checked

that given any θ2, the solvability of the system of equations

on θ1 is guaranteed if for all (d1(t))
k1
t=0 and (d2(t))

k2
t=0 with

k1, k2 ≤ |Q|2, o∗(s1,(d1(t))
k1
t=0) = o∗(s1,(d2(t))

k2
t=0) implies

o∗(s2,(d1(t))
k1
t=0) = o∗(s2,(d2(t))

k2
t=0), that is s1 � s2 by def-

inition.

Proof of Lemma 1 . Given the mealy machine

(Q,D,T ,Θ,o), we can construct a product mealy machine

(Q × Q,D,Tpd,Θ × Θ,opd) where for all si, s j ∈ Q and

d ∈ D

Tpd((si,s j),d) = (T (si,d),T (s j ,d)), (30)

opd((si,s j),d) = (o(si,d),o(s j ,d)). (31)

Given θ1 and θ2 as two value assignments of Θ, we define

the parameterized output function opd((si,s j),d;θ1,θ2) =
(o(si,d;θ1),o(s j,d;θ2)).

Given s1, s2 ∈ Q and θ1 and θ2, by construction,

o∗pd((s1,s2), ·;θ ) is equal to (o∗(s1, ·;θ1),o
∗(s2, ·;θ2)). Thus,

o∗(s1, ·;θ1) 6= o∗(s2, ·;θ2) if and only if there exists a

(d(t))k
t=0 such that (s′1,s

′
2) = T ∗

pd((s1,s2),(d(t))
k−1
t=0 ) and

opd((s
′
1,s

′
2),d(k);θ1,θ2) = (u1,u2) for some u1, u2 ∈ Θ, u1 6=

u2. Since there are only |Q|2 states in the product mealy ma-

chine, if (s′1,s
′
2) can be visited from (s1,s2) under action se-

quence (d(t))k−1
t=0 , the smallest k we need is less than or equal

to |Q|2. Thus, if o∗(s1, ·;θ1) 6= o∗(s2, ·;θ2), there must exists

a (d(t))k
t=0 with k ≤ |Q|2 such that o∗(s1,(d(t))

k
t=0;θ1) 6=

o∗(s2,(d(t))
k
t=0;θ2)

Proof of Theorem 4. Denote Cp = Proj1:n(C
′). Suppose C′ is

an RCIS of Σ′ in S×R
m. Let x ∈Cp. We want to show that

there exist u such that (x,u) ∈ S and for all d ∈ D, Ax+Bu+
d ∈Cp.



By definition of Cp, there exists u ∈R
m such that (x,u) ∈

C′ ⊆ S. Furthermore, since C′ is controlled invariant, there

exists v ∈ R
m such that (Ax+Bu+ d,v) ∈ C′ for all d ∈ D.

Thus, Ax+Bu+d ∈Cp for all d ∈ D. Thus, we showed that

Cp is an RCIS for the system Σ in S.

Next, suppose that C′ is the Maximal RCIS for Σ′ in S×
R

m. Also, suppose that Cmax is the Maximal RCIS for Σ
in S. We want to show that Proj1:n(C

′) = Cmax. Note that

Proj1:n(C
′) ⊆ Cmax as Proj1:n(C

′) is controlled invariant for

Σ in S. We need to show that Proj1:n(C
′) ⊇ Cmax, which is

done in 3 steps.

First, define the set C′
max = {(x,u) | (x,u) ∈ S,Ax+Bu+

d ∈Cmax,∀d ∈ D}. We want to show that C′
max is controlled

invariant for Σ′ in S×R
m. Let (x,u) ∈ C′

max and d ∈ D. By

construction, (x,u) ∈ S and x+ = Ax+Bu+ d ∈ Cmax. Since

Cmax is controlled invariant for Σ, there exists v ∈ R
m such

that (x+,v) ∈ S and Ax+ +Bu+ d+ ∈ Cmax for all d+ ∈ D.

Thus, by definition of C′
max, (x+,v) = (Ax+Bu+d,v)∈C′

max.

Thus, C′
max is an RCIS for Σ′ in S×R

m.

Second, as C′ is the Maximal RCIS for Σ′ in S×R
m, C′ ≥

C′
max. Thus, Proj1:n(C

′)⊇ Proj1:n(C
′
max).

Finally, note that for all x ∈Cmax, there exists u such that

(x,u) ∈ S and Ax+Bu+d ∈Cmax for all d ∈ D, namely that

(x,u)∈C′
max. Hence, Cmax ⊆Proj1:n(C

′
max)⊆ Proj1:n(C

′). That

is, Proj1:n(C
′) =Cmax is the Maximal RCIS for Σ in S.
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