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A Fixed-Time Stable Adaptation Law for Safety-Critical Control under
Parametric Uncertainty

Mitchell Black

Abstract— We present a novel technique for solving the prob-
lem of safe control for a general class of nonlinear, control-affine
systems subject to parametric model uncertainty. Invoking
Lyapunov analysis and the notion of fixed-time stability (FxTS),
we introduce a parameter adaptation law which guarantees
convergence of the estimates of unknown parameters in the
system dynamics to their true values within a fixed-time
independent of the initial parameter estimation error. We then
synthesize the adaptation law with a robust, adaptive control
barrier function (RaCBF) based quadratic program to compute
safe control inputs despite the considered model uncertainty. To
corroborate our results, we undertake a comparative case study
on the efficacy of this result versus other recent approaches
in the literature to safe control under uncertainty, and close
by highlighting the value of our method in the context of an
automobile overtake scenario.

I. INTRODUCTION

Safe control design in our increasingly technology-reliant
society is important, yet difficult even under idealized con-
ditions. In theory, it may be performed by a variety of
techniques, including control barrier function (CBF)-based
strategies [1], [2]. As a set-theoretic method for enforcing
that the states of a system remain safe, i.e. within a specified
set, CBFs have proven to be effective both in correcting some
potentially unsafe control action [3], [4] and as a constraint
in optimization-based control [5], [6]. In fact, control design
using quadratic programs (QP) as a means to synthesize
control Lyapunov function (CLF)-based performance spec-
ifications, which can guarantee convergence of the closed-
loop trajectories to some goal set, and CBF-based safety has
become a staple in the literature [7], [8].

While CLFs encode a goal-reaching performance spec-
ification, the rate of convergence depends on the form of
the condition imposed on its time-derivative. For example,
while an exponentially stable CLF [9] guarantees that system
trajectories reach a goal set as time tends toward infinity,
the principle of fixed-time stability (FxTS) is used to define
a fixed-time stable CLF [6] which drives the closed-loop
trajectories to the goal within a fixed-time independent of
initial conditions.

Robust approaches to safety [10], which often shrink the
safe set in order to preserve set-invariance in the presence
of worst-case disturbances, tend to be overly conservative.
Typically, conservatism degrades the ability of the controller
to meet performance objectives. In contrast, adaptive safety
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techniques [11] are prone to chattering control solutions,
especially as the state approaches the boundary of the safe
set. While a highly oscillatory control signal may suffice in
simulation, it can destabilize dynamical systems in practice.
In an approach which combines these two regimes, however,
the authors of [12] demonstrate that robust, adaptive control
barrier functions (RaCBF) can mitigate these shortcom-
ings. In addition, they utilize set-membership identification
(SMID) to reduce the uncertainty surrounding a set of
unknown parameters in the system dynamics, which results
in improved performance. In a learning-based approach, [13]
seeks to improve the performance of a Segway controller
by learning unstructured uncertainty in the dynamics of the
control barrier function itself. And while many of these
techniques have been demonstrably effective in improving
controller performance, the issue of navigating the domain
near the boundary of the safe region remains problematic
without formal guarantees of deciphering model uncertainty.

In considering some structured, parametric uncertainty for
a class of nonlinear, control-affine systems, we introduce
a novel parameter adaptation law which provides such a
guarantee to drive the parameter estimates to their true
values within fixed-time, independent of the initial estimates.
Using Lyapunov analysis, we leverage this result to define an
upper bound on the parameter estimation error as an explicit
function of time. We then introduce a new condition on
the time derivative of an RaCBF that guarantees forward-
invariance of a shrunken safe set, which approaches the
nominal safe set within the fixed-time horizon. In a case
study on the ability of our proposed controller to tolerate
marginally safe regions of the state space versus a selection
from the literature, we compare the works of [5], [11], [12]
and [14] on a simple problem with static obstacles. Finally,
we use an automobile overtaking scenario to highlight an-
other advantage of the proposed method: with the uncertain
parameters in the system dynamics guaranteed to be known
within fixed-time, our controller can accomplish a maneuver
even under high levels of uncertainty.

The paper is organized as follows. Section II reviews set
invariance via CBFs, finite-time stability (FTS), FxTS, and
an FTS parameter estimation scheme from the literature. In
Section III we formalize the problem at hand. Section IV
contains our novel FxTS adaptation law and its implications
on safe control under uncertainty. Section V highlights a
simple case study used to compare other recent work to our
proposed method, and its application on a highway overtake
example. We conclude with a summary of contributions and
directions for future work in Section VI.
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II. MATHEMATICAL PRELIMINARIES

In the rest of the paper, R denotes the set of real numbers.
The ones vector of size n X m is denoted 1,,x,,. We use
|| - || to denote the Euclidean norm and || - || to denote
the %, norm. As convention, we denote the minimum
and maximum eigenvalue of a matrix M as A, (M) and
Amaz (M) respectively. We write S for the boundary of the
closed set .S, and int(S) for its interior. The Lie derivative
of a function V : R® — R along a vector field f : R — R"
at a point « € R™ is denoted as LV (z) £ 9L f(x).

We now review the preliminaries, including a finite-time
parameter adaptation law from the literature which inspired
our fixed-time adaptation law.

A. Set Invariance

In this paper, we consider the following class of nonlinear,
control-affine systems subject to parametric uncertainty:

#(t) = f(z(t) + g(x(t))u(t) + A(z(t))0, z(to) = xo, (1)

where z(t) € R™ denotes the state, u(t) € U C R™ the
control input, and § € © C RP some constant, bounded,
unknown parameters. We assume that f : R®™ — R™ and
g : R® — R™*"™ are locally Lipschitz, that A : R" —
R™*P is a known regressor matrix, and that f, g, and A are
bounded for bounded inputs. The regressor A may capture,
for example, the effects of sensing or modelling errors in the
system dynamics, whereas the 6 vector parameterizes such
errors. We also define 6 as the estimated parameter vector,
and 0 = 6 — 0 as the parameter estimation error vector. As
such, the parameter error dynamics are described by

G=0-6=—0, §(0) = by @)
Let us also define a set of safe states as
S ={zeR":h(z) >0} (3a)
0S ={zx € R" : h(z) =0} (3b)
int(S) = {x € R" : h(z) > 0} (3c)

where h : R” — R is continuously differentiable. Then,
the following Lemma, known as Nagumo’s Theorem [15],
provides a necessary and sufficient condition on the forward
invariance of the set (3) under the system dynamics (1).

Lemma 1. Let a unique closed-loop solution to (1) exist in
Sforward time. We say that the set S can be rendered forward-
invariant if and only if there exists a control uw € U such that

sup{Lsh(z) + Lyh(z)u + Lah(x)0} > 0,Vx € 9S. (4)
uelU

Remark 1. The closed-loop system (1) admits a unique
solution if u(t) € U is Lipschitz.

The authors of [12] ensure S is safe with respect to the
uncertain dynamics (1) by enforcing that a shrunken set, S,,
is safe. Before formally defining S, we make the following
assumption.

Assumption 1. The set © to which the unknown parameters
0 belong is known, compact, and convex.

Remark 2. Assumption 1 imples that we can also restrict
6 € ©. Thus, we can define an upper bound ¥ =
supy, g,co([|01—02|/oc) on the norm 10]|0c of the parameter
estimation error 0, so that ||0)|s < 1.

We let ¥ = ¥ - 1,%1, and are now ready to present the
definition for the shrunken set, S,, as defined in [12].

S, = {x €R": h(x) > %19T1"_119} (5a)

a8, = {x €R": h(z) = %19T1"_119} (5b)
int(S,) = {:c €R": h(z) > %ﬂTF‘lﬁ} (5¢)

where I' is a constant, positive-definite matrix such that
h(x(0)) > 397T~19. A new CBF may be defined as

1
h,(z,9) = h(z) — EﬂTF*Lﬂ, (6)
and the sufficient condition that renders S, safe is
. oh )
hy = %:b 977719 > —a(h,), (7

where « : [0,a) — [0,00) is some class K function, i.e.,
strictly increasing with «(0) = 0.

Remark 3. If S, C S in (5) is safe, then S in (3) is safe.
Thus, satisfaction of (7) implies that (4) holds.

B. Finite- and Fixed-Time Stability

We now address performance criteria: finite- and fixed-
time stability of an equilibrium point of the dynamical system

#(t) = f(x(t), a(to) = xo, ®

for which it is assumed that a unique solution exists, where
x € R™, f:R™ = R" is continuous, and f(0) = 0.

Definition 1 ([16]). The origin of (8) is globally finite-time
stable (FTS) if the following conditions hold:
e The origin of (8) is stable in the sense of Lyapunov
o Any solution z(t,xo) of (8) reaches the origin in finite
settling-time, T(xg), i.e. x(t,x9) = 0, Vt > T (o).

Definition 2 ([17]). The origin of (8) is fixed-time stable
(FxTS) if it is globally FTS and any solution x(t,xo) of (8)
reaches the origin in finite settling-time, T', independent of
xo, Le. x(t,z9) =0, Vt > T.

We refer the interested reader to [16] and [17] respectively
for Lyapunov conditions which guarantee FTS and FxTS of
the origin of (8).

C. Finite-Time Parameter Estimation

The parameter estimation scheme in the discussion to

follow is predicated on Assumption 2.

Assumption 2. The state, x, and control input u, of (1) are
bounded, and x is accessible for measurement.

Let us now review the notion of persistent excitation (PE).



Definition 3 ([18]). A vector or matrix function, ¢, is
persistently excited (PE) if there exist T > 0, € > 0, such
that ftt+T (r)¢T (r)dr > eI, ¥Vt > 0.

Now we introduce the following assumption on A(x).

Assumption 3. The transpose of the regressor matrix in (1),
AT (x), is persistently excited.

Remark 4. Positive-definiteness of AT A is sufficient for AT
to satisfy the PE condition.

We now review a FTS parameter estimation scheme which
forms the basis for our FxTS adaptation law and was
first proposed for nonlinear dynamical systems in [19], and
extended for robotic applications in [20]. First, we note that
we may re-write (1) as:

z(t) = p(z,u) + ®(x)0, 9)

where ¢(z,u) = f(x) + g(x)u and ®(x) = A(z). The
authors of [19] and [20] introduce zf, ¢y, and @ to filter
z, ¢, and ® as follows:

kip+ap =z x0)=0, @r0)=0  (10)
kor+or=w, ¢7(0)=0, ¢;0)=0 (1D
by + @y =®, ®;0)=0, d0)=0 (12)

where k > 0 is a design parameter. Mimicking the form of

the system dynamics, the filtered system dynamics are:
Tp =5+ ®s0, 13)

which serves as the basis for estimating §. We now observe
that 2y — ¢ = @6 and define an auxiliary and integrated
regressor matrix P and vector ) such that:

P=—(.P+ 30y, P(0)=0
Q=—L.Q+PF(iy—py), Q) =0

where £. > 0 is another design parameter. The solutions are:

P(t) = /0 e T (r) 0y (r)dr

(14)
15)

(16)

Q) = / e NBT (1) (r) — p(r))dr (17)

and from them it may be discerned that ) = P#6. Now, define
an additional auxiliary vector as

W =P —Q = —P4. (18)

Then, the authors of [20] introduce their adaptation law as
PTW
i
where A is a constant, positive definite, gain matrix. Finite-

time (FT) convergence of the estimated parameters to their
true values is guaranteed by the following result.

b= —A (19)

Theorem 1 ([20]). For system (9) with parameter adaptation
law (19) and Apin(P) > o > 0, the parameter estimation
error 6 converges to zero in finite-time t,, satisfying t, <

~ -1
16(0)| 2=,

[ea

While in general it is not required that A from (19) and T’
from (5) be equivalent, we consider this to be true for the rest
of the paper. In Section IV, we advance the FT parameter
estimation result by proposing a FxTS adaptation law for the
class of systems described by (1).

III. PROBLEM FORMULATION
We now formalize the problem under consideration.

Problem 1. Consider a nonlinear, control-affine dynamical
system subject to parametric uncertainty as in (1). Given

that Assumptions 1-3 hold, design an adaptation law, 0, and
controller, u, such that the following conditions are satisfied:
i) The parameter estimation error converges to zero within
fixed-time, Ty, ie. O(t) — 0 as t — Ty < oo
independent of 6(0).
ii) The system trajectories remain safe for all time, i.e.
.I'(t) €S, vt> to.
iti) The system trajectories converge to a goal set within
fixed-time, Ty, i.e. x(t) € Sq, Vt > Ty,

The following section contains our proposed method.

IV. MAIN RESULTS

Before introducing one of the main results of the paper,
we address modifications to the filtering scheme (10)-(12).
In place of the first-order scheme of [19], [20], we use the
following second-order filters:

k2% ¢ + 2kedy +xp =a (20)

k2Gs + 2kepr 5 = ¢ @1
K20+ 2k Dy + Bp = (22)

where all initial conditions are zero, i.e. 87(0) = 0, 37(0) =
0, B7(0) = 0, VB € {z,p,®}. This second-order system is
stable, strictly proper, and minimum-phase similarly to (10)-
(12), and in addition, it is critically damped with a natural
frequency of w, = 1/k.. This is desirable, as critically
damped systems exhibit the smallest settling time, ¢, without
oscillations [21].

A. FxTS Adaptation Law

We now introduce one of the main results of the paper,
an adaptation law which renders the trajectories é(t) of the
parameter estimation error fixed-time stable to zero, and thus
guarantees convergence of the parameters to their true values
within fixed-time.

Theorem 2. Consider a nonlinear, control-affine system with
parametric uncertainty as in (1). If (20)-(22) filter x, ¢, and
®, and the auxiliary matrix P and vectors Q, W are defined
by (14)-(18), then, under the ensuing adaptation law

O =TW (WP~ "W)™ (—e1o1™ — coer?*),  (23)

the estimated parameters, é(t), converge to the true param-
eters, 0, in fixed-time, Ty, i.e., é(t) — 0 and é(t) — 0 as
t — Ty, where

1 1

Cle(l - 716) 026(’726 - 1) '

Ty <Ty,= (24)



with v = %WTP_TI‘_lP_lW, Cle > 0, coe > 0, 0 <
Yie <1, y2¢ > 1, and T' € RP*P being a constant, positive-
definite, gain matrix.
Proof. Consider the Lyapunov function candidate V; =
19TI‘ 19 for the system of the parameter-error dynamlcs
(2) Since 6 = 0, its time derivative along the trajectories of
(2) reads V; = -7~ 19, Applying the adaptation law (23)
yields V; = —0"W (WTP~TW)"~
Then, by substituting (18), we obtain
"/é _ _Cle‘/e:he _ 626‘/5’72@7

(_cleV’YIe — C2€V'72e )'

(25)

i.e., the fixed-time stability condition from [17, Lemma
1]. Hence, the origin of (2) is fixed-time stable, and the
trajectories é(t) reach the origin within a settling time Tp,
given by (24). Consequently, the estimated parameter vector,
é(t), converges to the true parameter vector, #, within a fixed
time, Ty, i.e., (1) = 0. O

Whereas previous studies (e.g. [22]) use (14) and (15) in
the design of a FxT adaptation scheme that converges to
some bounded set, (23) guarantees fixed-time convergence
of the estimated parameters to their true values. With this
knowledge, we derive an expression for the upper bound on
the infinity norm of the parameter error as a function of time.

Corollary 1. Let 0 =6 —0 be the parameter estimation
error vector associated with a system of the form (1). If all
of the following conditions hold

i) The estimated parameter update law, 0, is given by (23)
ii) w(z(t)) is any locally Lipschitz controller
iii) T is constant, positive-definite, and diagonal
iv) 71e=1—i andvze=1+#—1ef0rs0meue > 1

then the following expression constitutes an upper bound on
Hb‘( Moo, ¥Vt € [0, Tp):

He
16(8)]|o0 < \/M —tan —N%t]) = n(t), (26)
where M = 2. (T), N = /2, and
Cle
1
= =tan* <§NnT(O)I‘_1n(O)) 27)
with n(t) = n(t) - 1px1 and
PeZ
T, < <T 28
) o b (28)

Proof. We consider the Lyapunov function candidate V; =

16TT 10, whose time derivative along the trajectories of (2)

av; 1-1 141
reads =2 = —c1.V; The _ oy yitt/ne,

By separation of variables and integration, we now solve
for ¢ as a function of V(0) and V' (¢). The change of variables

T = Vél/“e and dz = #Lvél‘l/“edv allows us to obtain:

Vi(t) uex“‘iild:c
- T
v (0) —CleXHe — C2eTHe

_ \/le:—ck [tanfl (Nvél/ue (t)) —tan~! (NV(;/”& (O))]

(29)

where N =, /2. This leads to
Vi(t) = it tan~' (NV(0)) — N2e¢ " G0
g(t) = | 7y tan |tan e
where V(0) = 16(0)"T16(0) < 1n(0)"T'n(0). Now,
since V; = %9 16, then with T" diagonal we can express
V; = (002 + ..+ T, 192), and observe that V; >
;/\m}w( )H6‘||2 > %)\m}w( )||9H2 . Then, we substitute (30)

in this inequality and rearrange terms to recover (26).
Then, for 0 < t < Cfﬁtan_l (%NnTF_ln) we have
that (30) decreases monotonically to zero. As such, we let
Z = tan~! (3Nn'T"'n) and obtain (28), which places a
tighter upper bound on the settling time, T}, than (24). O

Remark 5. As a consequence of (26), we may tighten the
set of admissible parameters at time t as O(t) = {0 € R? :
10 — 0|l < n(t)}, VE € [0,Ty), and as O(t) = {6},
vt € (Tp, o0).

We now formalize the new RaCBF condition for forward-
invariance of sets S and S, defined in (3) and (5).

Theorem 3. Ler n(t) = n(t) - 1,x1 where n(t) is given
by (26). Under the premises of Corollary 1, the following
condition is sufficient for forward-invariance of S, i.e. (5):

sup{Lsh(z) + Lgh(z)u + ¥}
uelU

> —a (4le) = ("I 00 )+ OO G

where
i(t) = Z tan'® ! (E — N t) sec’ ( - N‘ﬁt> (32)
e 1
p ~ ~
U= Z min {CiP@(Hi —n),CiPe(8; + 77)} (33)
i=1
for Z = —c1eV M N2~ te, where C; denotes the ith column

of Lah(z) fori € {1,...,p}, and Pg the vector projection
onto ©, as defined in [23].

Proof. We recall (6) and now replace the constant ¥ with the
time-varying 7(t), where henceforth we drop the argument

Thus, h, (, )—h( )——nTI‘ In, and h,(z,m) = L=d+
on,

(5) is forward invariant.

L P = Shi = Lph(z) + Leh(z)u + Lah(z)o,
. S TF_I .
n
—Tr(T~1)nn, where we obtain 7)(¢) in (32) by differentiating

(26) from Corollary 1.

Next, we consider the case where (1 + é) € 0O, for
which Po(n + 6) = (n + ). By (26) we have that
0, —-n < 6; < 0; +n, Vi € {1,...,p}, where O is
convex by Assumption 1. Thus, the solution of the following
minimization problem represents the worst admissible effect
of the unknown parameters on safety:

¢* = argmin Lah(z)¢
PcO

(34)

This is a constrained linear program. As such, a unique
minimizer, ¢* = [¢] ... (bZ]T exists, where by the fact



that Lah(z)g = Y8 Ci¢; with C; as the i column of
Lah(z), we have that ¢7, ... , ¢ are the minimizers of the
following p constrained linear programs:

¢f = argmin  Ci¢;, Vie{l,...,p} (35
0;—n<¢;<0;+n

Furthermore, the solutions of constrained linear programs are

guaranteed to be on the boundary of the solution domain,

which in this case implies that either ¢; = 0; —n or o =

éi + 7. Thus, we denote ¥ = Lah(z)¢* and recover (33)

so that U < Lah(x)0, VO € O.

For (n+0) ¢ ©, (34) is again solved, but now Pe(n+6)
reduces 77 when necessary to enforce that ¢ € ©. We again
obtain that a unique solution exists and that ¥ < Lah(z)#,
Vo € ©.

For both cases we have that Lgh(z)+Lgh(z)u+¥ < 28

and thus (31) implies (7), and (5) is forward-invariant. [

The use of the projection operator in Theorem 3 reduces
the conservatism of the approach without compromising the
robustness of the forward-invariance condition.

V. CASE STUDY
A. Comparing Controllers

In the first numerical study, we investigate how our
approach compares to other recent results in the literature,
namely the adaptation laws from [11], [12], and [14], and the
worst-case disturbance consideration of [5]. As a basis for
comparison, we consider a 2D single-integrator system sub-
ject to parametric uncertainty and challenge the controllers
to safely achieve convergence to the origin by avoiding static
obstacles separated by a small gap (Fig. 1).

== Barrier
Y Initial Condition
® Goal

T @ *

(<]

Fig. 1: Problem setup for the first numerical case study, “Shoot the
Gap.” The controller must determine what actions, u, and u,, to
take in order to realize safe trajectories from the Initial Condition
to the Goal.

1) Dynamics: We denote z = [z y]T as the state, where
z and y are the lateral and longitudinal position coordinates

with respect to an inertial frame. The system dynamics are

. |1 0f |ug 61
ool e
where the known regressor matrix is given by
B 1+ sin?(27f12) 0
A(Z) = Ka { 0 1+ 6082(27Tf2y)

with 64, 62 as constant parameters that are unknown a priori,
and Ka, f1, fo given in Table I. Assumption 1 is enforced
by defining lower and upper bounds # and 6, respectively,
and imposing 8 < 61,0, < 6. The choice of A is such that
ATA is positive-definite for all z € R?, thus satisfying the
PE condition and Assumption 3.

2) Control Formulation: To encode the goal-convergence

criterion we define the CLF:
V(z) = Kv(z® +4?), 37)

The safe states are those residing outside of the two ellipses
shown in Figure 1, which results in the following two CBFs:

(z—21)®  (y—w)?

hi(z) = = v o4 = LA | (38)
(z—22)®  (y—u2)?

ha(z) = = 2 4 = 2. (39)

where x1, T2, Y1, Y2, a, and b are parameters that define the

location, size, and shape of the ellipses.

We choose the CLF-CBF-QP framework ([7], [10]) for
computing the control inputs. While we simulated the con-
trollers from the literature both in their original form and
with standardized FxT-CLFs to more fairly assess their
abilities, no meaningful differences were observed in their
ability to “shoot the gap.” As such, we present results for
the latter case. Our control framework is then:

1 q
§UTQU +pods + > pid}

N £ (40a)
s.t.
—u1 <u; < up (40b)
—t2 <uz < Uz (40c)
1<6; (40d)
LV (2) 4+ LgV (2)u+ ¢z, Az, t),0,m)
<o — a1 V(2)"™ — eV (2)"? (40e)
Lshi(2) + Lghi(2)u+ ¢(z, Az, t),0,n) > —8:;hi(z) (40

Vi € {1,...,q}, where generally u = [u; uz]? and for this
problem u; = u, and us = uy, do is a relaxation parameter
on the performance objective whose inclusion guarantees
feasibility of the QP, §; allows for larger negative values
of hi(z) away from the boundary of the safe set, and p;
penalizes values of d;, Vi € {0,...,q}. The functions ¢ :
R xR"*P x RP x RP — R and ¢ : R” x R"*P x RP x RP —
R represent the terms specific to the way each respective
controller handles the uncertainty in the system dynamics.
While all of (40b)-(40f) are linear in the decision variables,
(40b) and (40c) enforce input constraints, (40d) prevents
over-conservatism in enforcing safety, (40e) encodes FxT
convergence to the goal, and safety is guaranteed by (40f).

3) Results: The full set of parameters for this numerical
case study! are provided in Table L

We endeavor to demonstrate that by learning the true
values of the uncertain parameters in the system dynamics
of (36), our method is capable of approaching the boundary
of the safe set more closely than previous results in the

I'Simulation code is accessible at Github: https://tinyurl.com/y3xhylug.
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Fig. 2: State trajectories, control inputs, and control barrier function evolutions in time for the Shoot the Gap example.

TABLE I: Shoot the Gap Parameters

@ | Val |QP| Val |CBF| Val |CLF| Val | 6 | Val
fi 1 Q | Iax2 | a Ky 1 ke | 0.001
fo 4 |pol| 50 b |49 | T 4 | T. | 02
01 1| p; 5 x1 1 H 5 e 5
02 1 P2 5 9 1 c1 1.963 | c1e 50
01 10 [a1 | 25 | v1 | 6 | c2 | 1.963| coe | 50
02 10 | a2 | 25 | 32 4 | 1 | 08 |ye| 08
0.833 v2 | 12 | y2e | 12
Le | 100

literature and, as a consequence, able to reach a goal which
may require such an approach despite uncertainty. Table II
provides the legend codes used to refer to these other works.

TABLE II: Controllers from the Literature

Authors Citation Legend Code
Taylor et al. [11] TAY
Black et al. [5] BLA
Lopez et al. [12] (w/o SMID) LOP
Lopez et al. [12] (w/ SMID) LSM
Zhao et al. [14] ZHA

Proposed Method PRO

Note: [12] presents RaCBF-based control formulations with and without
SMID for parameter estimation. We have considered both cases.

First, we observe that in accordance with Theorem 2,
Figure 3 highlights that the parameter estimates, 0, do in fact
converge to their true values within fixed-time Ty given by
(28). Figure 2a shows that our proposed method “’shoots the
gap” where the others do not; that is, our method can tolerate
regions of the state space which exist in close proximity
to the boundary of the safe region. As such, it fulfills its
specification of FxT convergence to the origin. In this sense,
our synthesized adaptation law and RaCBF-based controller
is less restrictive than the existing literature.

B. Highway Overtake

We now consider an automobile highway overtake prob-
lem, similarly to [5], and show how our control formulation

10} r
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Fig. 3: Estimates of the unknown model parameters, 6.

can guarantee success of the overtake maneuver under un-
certainty, where the robust CBF approach cannot.

1) Dynamics: Just as in [5], we model the vehicles as
kinematic bicycles using the model from [24]. Accordingly,
the state vectors are z; = [z; y; 0; v;]”, where x and y are
planar Euclidean coordinates (longitudinal and transverse),
0 is the heading angle, v is velocity, and the subscript ¢ €
{e, 1} denotes belonging to the Ego or Lead vehicle. The
corresponding dynamical system is described by:

v; cos(6;) 0 o0
0

. v; sin(6; 0 0 w;
4= 0( )| 4 o {ai}—s—Ai(z)& (41)
0 0 1/M

where M is the mass of the vehicle in kg, and w; and
a; represent the angular velocity and heading acceleration
control inputs, for which the bounds w < w; < @ in rad—!
and ¢ < a; < a in m/s? hold. For reference, all overtake



parameter values may be found in Table III>. We elect to

model erratic, or distracted, driver behavior by the addition

of the uncertain term A;(z)0, where A; : R* — R* x R? is

the known regressor matrix. As such, we let A, = 0, , and

A = 0,5, with the exception of A; (90)(z) =1+ 5(1 —

cos(2m fr1a1)) and Ay (11)(2) = 75+ 55 (1 —sin(27 fi 227)).
2) Problem Formulation: We define the safe sets as:

S; ={z | hi(z) >0}, Vi € {1,2,3} 42)
where
hi(z) = Ks ((ye — Er(2))(EL(2) —ye))  (43)
hao(z)=L—v (44)
2 2
hs(z) = (x — x’) + (u) -1 45
S Sy
and
Ocve sin(0.)
Er(z) =er + —
2 _ .
_ 2952 (“51]‘;‘4(06) + Ve cos(ee)) (46)
Bu(z) = e — Ocve s_in(&e)
w
2 _ .
_ % <as1]1\14(95) — e cos(@e)) 7)

where e, and e; denote the physical edges of the right and
left side of the road such that (46) and (47) imply that (43)
encodes that the Ego vehicle remain on the road despite
bounded steering control. We also have that (44) enforces
the road speed limit, L, in m/s, and (45) ensures that safety
margins s, = 7ve cos(fe) + . and s, = w, + 0.75 between
vehicles are observed, where /. and w, are the length and
width of the vehicles in m. Then, S = NS;, Vi € {1,2,3}.
In addition, Oncoming vehicles are known to obey the
following pattern: the first vehicle has a time-headway of 24s
with the Lead Vehicle, and subsequent Oncoming vehicles
arrive in 30s intervals. Consequently, the Ego vehicle must
complete the overtake within 24s to proceed at the outset,
and within 30s to proceed after the first Oncoming vehicle.
We now formally define the overtake problem.

Problem 2. Given the initial states, z.(0), z(0), the time
headway of an oncoming vehicle, T}, and the set © to which
the unknown parameter vector, 0, belongs, determine whether
it is safe for the Ego vehicle to overtake the Lead vehicle, i.e.
whether there exist z(t), ue(t) € U = {(we, te) | w < we <
@, a < a. < a} such that z.(t) € S, ¥t € [0,T], where T
is the upper bound on time to complete the overtake. If safe
and T < Ty, design a control input, u.(t) € U for the given
2(0) such that the Ego vehicle overtakes the Lead vehicle.

3) Control Formulation: Just as in [5], we partition the
problem into the following sub-problems:

i) Ego Vehicle approaches Lead Vehicle

ii) Ego Vehicle merges into overtake lane

2M, le, and We taken from the
2020 Ford Mustang Shelby GT: https://tinyurl.com/yxhn63of.

iii) Ego Vehicle advances beyond Lead Vehicle
iv) Ego Vehicle merges back into original lane
We use the CLF-CBF-QP control framework presented in
(40) to compute the control inputs, u; = we and uy = ae,

pointwise-in-time where ¢ = 3 in accordance with hq(z),
ha(2), and h3(z) in (43)-(45). Our CLF is:

V(z) = Ky (ko + kyiy? + ko0? + k,0° — 1) (48)

where T =x —xq4, § = Yy — Y4, 0=0—0, and v = v — vy,
and zq = [24 ya 04 v4)T is the desired state. We define the
fixed-time convergence times for the four sub-problems as
T, =3,T, =5, T3 =17, and Ty = 5 respectively.

TABLE III: Overtake Parameters

z | Val | QP Val |CBF | Val |CLF| Val [4 Val

M | 1994 | Qo0 /&2 er 0 Ky 1075 | ke [0.001
f1.1]0.01 Ql,l 1/a? el 6 M 5 Te 0.2
Fl2 [002 | po |5x105] L | 30 | 71 | 08 | e | 5
01 1 p1 1 le [481] 72 1.2 cle | 50
02 0 P2 1 we | 1.92] kz |0.0625 | c2e [ 50
P3 1 T 1.8 | ky 100 | c2e | 50

w 0.175 k)g 400 Yie 0.8

@ | 4890 Fo | 1 |70 | 12

le 100

Note: @QJ;,; denotes the value of the row 7 column j entry for the
matrix. Non-specified entries are uniformly zero.

4) Results: The scenario was initialized as z.(0) =
—64.8, y.(0) = 1.5, 6.(0) = 0, v.(0) = 24, 2;(0) = 0,
y1(0) = 1.5, yg(0) = 0, and v;(0) = 19. For all considered
sets of admissible parameters, O, we set 0=0,=—-06, =
0y = —05, and chose § = 1,2,4,6,8,10. Table IV shows
how the fixed-time horizon grows for BLA as 6 increases.

TABLE 1V: Overtake Fixed-Time Horizons

0 TPRO Tera toncoming,l toncoming,i
1 20 20.74 24 24 + 30(i-1)
2 20 21.31 24 24 + 30(i-1)
4 20 22.67 24 24 + 30(i-1)
6 20 24.42 24 24 + 30(i-1)
8 20 26.80 24 24 + 30(i-1)
10 20 30.38 24 24 + 30(i-1)

As such, the PRO technique completes the overtake with-
out delay for all parameter bounds, whereas the BLA con-
troller appropriately proceeds immediately with the overtake
when 6 = 1,2, 4, proceeds after the first oncoming vehicle
has passed when # = 6,8, and cannot guarantee a safe
overtake when 6 = 10. This is precisely the advantage
of our proposed controller. Because it is guaranteed to
adaptively learn the true parameters within fixed-time, it is
able to successfully complete the overtake maneuver for all

considered sets, ©.

VI. CONCLUSION

In this study on the efficacy of various techniques for safe
control under parametric model uncertainty, we presented
a novel adaptation law that learns the uncertain parameters
associated with a class of nonlinear, control-affine dynamical
systems in fixed-time. We synthesized our parameter adapta-
tion law with a robust, adaptive CBF-based controller in the


https://www.ford.com/cars/mustang/models/shelby-gt350r

1.0]

0.0

— Road Edge 6 — Road Edge
Lane Divider Lane Divider
BLA:I=1 _ — BLA:I=2
PRO:6=1 5 -= PRO:G=2
— Brazo=a | BLA:I=6
-= PRO:G=1 /7 \ PRO:G=6
— BLA:G=8 4 f BLA:G=10
-- PRO:I=3 | | PRO:3=10
E 3] | |
> | \
2 / \
1
0
0 200 400 600 800 1006 0 200 400 600 800 1000
X (m) X (m
n " ? = BLAa:0=8 ]"U
n n =
:: i 0o
4 =
i 0.0
A 03 ot
H == 3| — Boundary o o 3| — Boundary
0 5 10 15 20 25 30 35 40 |£ \ "0 5 10 1b 20 % 30 35 40 |£
O O TR W . S—
2 1.0) 2
0.5
1 a. 1
oo @ 0.0] \
— BLA:§=8 = BLA:f=10 \\
| == PRO:G=38 0 —0.5 PRO:G=10 0 A
| — ia, —l 0 — i
0 5 10 15 20 25 30 35 40 =20 =10 0 10 20 30 4 0 5 10 15 20 25 30 35 40 =20 =10 0 10 20 30 40
Time (sec) Time (sec) Time (sec) Time (sec)

Fig. 4: Results for 6 different simulations of the overtake problem. The top row displays state trajectories. The bottom row contains
control inputs and CBF trajectories for cases where [5] must postpone the overtake maneuver (left) and cannot complete safely complete
it (right).

form of a quadratic program, and provided an upper bound

on t

he parameter estimation error as an explicit function

of time. We then studied the performance of our method
on a simple, 2D single integrator system in relation to
several recent works from the literature and demonstrated

that

our contribution succeeds in navigating near unsafe

regions where the others fail. We further illustrated the
promise of our method in applications where a decision on
whether to initiate a possibly unsafe maneuver is required,
using the automobile overtake problem as a case study.

In the future, we intend to study cases for which the
uncertain parameters are time-varying and an upper bound
is not known a priori, as we recognize that these may have
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