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A Fixed-Time Stable Adaptation Law for Safety-Critical Control under

Parametric Uncertainty

Mitchell Black Ehsan Arabi Dimitra Panagou

Abstract— We present a novel technique for solving the prob-
lem of safe control for a general class of nonlinear, control-affine
systems subject to parametric model uncertainty. Invoking
Lyapunov analysis and the notion of fixed-time stability (FxTS),
we introduce a parameter adaptation law which guarantees
convergence of the estimates of unknown parameters in the
system dynamics to their true values within a fixed-time
independent of the initial parameter estimation error. We then
synthesize the adaptation law with a robust, adaptive control
barrier function (RaCBF) based quadratic program to compute
safe control inputs despite the considered model uncertainty. To
corroborate our results, we undertake a comparative case study
on the efficacy of this result versus other recent approaches
in the literature to safe control under uncertainty, and close
by highlighting the value of our method in the context of an
automobile overtake scenario.

I. INTRODUCTION

Safe control design in our increasingly technology-reliant

society is important, yet difficult even under idealized con-

ditions. In theory, it may be performed by a variety of

techniques, including control barrier function (CBF)-based

strategies [1], [2]. As a set-theoretic method for enforcing

that the states of a system remain safe, i.e. within a specified

set, CBFs have proven to be effective both in correcting some

potentially unsafe control action [3], [4] and as a constraint

in optimization-based control [5], [6]. In fact, control design

using quadratic programs (QP) as a means to synthesize

control Lyapunov function (CLF)-based performance spec-

ifications, which can guarantee convergence of the closed-

loop trajectories to some goal set, and CBF-based safety has

become a staple in the literature [7], [8].

While CLFs encode a goal-reaching performance spec-

ification, the rate of convergence depends on the form of

the condition imposed on its time-derivative. For example,

while an exponentially stable CLF [9] guarantees that system

trajectories reach a goal set as time tends toward infinity,

the principle of fixed-time stability (FxTS) is used to define

a fixed-time stable CLF [6] which drives the closed-loop

trajectories to the goal within a fixed-time independent of

initial conditions.

Robust approaches to safety [10], which often shrink the

safe set in order to preserve set-invariance in the presence

of worst-case disturbances, tend to be overly conservative.

Typically, conservatism degrades the ability of the controller

to meet performance objectives. In contrast, adaptive safety
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techniques [11] are prone to chattering control solutions,

especially as the state approaches the boundary of the safe

set. While a highly oscillatory control signal may suffice in

simulation, it can destabilize dynamical systems in practice.

In an approach which combines these two regimes, however,

the authors of [12] demonstrate that robust, adaptive control

barrier functions (RaCBF) can mitigate these shortcom-

ings. In addition, they utilize set-membership identification

(SMID) to reduce the uncertainty surrounding a set of

unknown parameters in the system dynamics, which results

in improved performance. In a learning-based approach, [13]

seeks to improve the performance of a Segway controller

by learning unstructured uncertainty in the dynamics of the

control barrier function itself. And while many of these

techniques have been demonstrably effective in improving

controller performance, the issue of navigating the domain

near the boundary of the safe region remains problematic

without formal guarantees of deciphering model uncertainty.

In considering some structured, parametric uncertainty for

a class of nonlinear, control-affine systems, we introduce

a novel parameter adaptation law which provides such a

guarantee to drive the parameter estimates to their true

values within fixed-time, independent of the initial estimates.

Using Lyapunov analysis, we leverage this result to define an

upper bound on the parameter estimation error as an explicit

function of time. We then introduce a new condition on

the time derivative of an RaCBF that guarantees forward-

invariance of a shrunken safe set, which approaches the

nominal safe set within the fixed-time horizon. In a case

study on the ability of our proposed controller to tolerate

marginally safe regions of the state space versus a selection

from the literature, we compare the works of [5], [11], [12]

and [14] on a simple problem with static obstacles. Finally,

we use an automobile overtaking scenario to highlight an-

other advantage of the proposed method: with the uncertain

parameters in the system dynamics guaranteed to be known

within fixed-time, our controller can accomplish a maneuver

even under high levels of uncertainty.

The paper is organized as follows. Section II reviews set

invariance via CBFs, finite-time stability (FTS), FxTS, and

an FTS parameter estimation scheme from the literature. In

Section III we formalize the problem at hand. Section IV

contains our novel FxTS adaptation law and its implications

on safe control under uncertainty. Section V highlights a

simple case study used to compare other recent work to our

proposed method, and its application on a highway overtake

example. We conclude with a summary of contributions and

directions for future work in Section VI.
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II. MATHEMATICAL PRELIMINARIES

In the rest of the paper, R denotes the set of real numbers.

The ones vector of size n × m is denoted 1n×m. We use

‖ · ‖ to denote the Euclidean norm and ‖ · ‖∞ to denote

the L∞ norm. As convention, we denote the minimum

and maximum eigenvalue of a matrix M as λmin(M) and

λmax(M) respectively. We write ∂S for the boundary of the

closed set S, and int(S) for its interior. The Lie derivative

of a function V : Rn → R along a vector field f : Rn → R
n

at a point x ∈ R
n is denoted as LfV (x) , ∂V

∂x f(x).
We now review the preliminaries, including a finite-time

parameter adaptation law from the literature which inspired

our fixed-time adaptation law.

A. Set Invariance

In this paper, we consider the following class of nonlinear,
control-affine systems subject to parametric uncertainty:

ẋ(t) = f(x(t)) + g(x(t))u(t) + ∆(x(t))θ, x(t0) = x0, (1)

where x(t) ∈ R
n denotes the state, u(t) ∈ U ⊂ R

m the

control input, and θ ∈ Θ ⊂ R
p some constant, bounded,

unknown parameters. We assume that f : Rn → R
n and

g : R
n → R

n×m are locally Lipschitz, that ∆ : R
n →

R
n×p is a known regressor matrix, and that f , g, and ∆ are

bounded for bounded inputs. The regressor ∆ may capture,

for example, the effects of sensing or modelling errors in the

system dynamics, whereas the θ vector parameterizes such

errors. We also define θ̂ as the estimated parameter vector,

and θ̃ = θ − θ̂ as the parameter estimation error vector. As

such, the parameter error dynamics are described by

˙̃
θ = θ̇ − ˙̂

θ = − ˙̂
θ, θ̃(0) = θ̃0. (2)

Let us also define a set of safe states as

S = {x ∈ R
n : h(x) ≥ 0} (3a)

∂S = {x ∈ R
n : h(x) = 0} (3b)

int(S) = {x ∈ R
n : h(x) > 0} (3c)

where h : R
n → R is continuously differentiable. Then,

the following Lemma, known as Nagumo’s Theorem [15],

provides a necessary and sufficient condition on the forward

invariance of the set (3) under the system dynamics (1).

Lemma 1. Let a unique closed-loop solution to (1) exist in

forward time. We say that the set S can be rendered forward-

invariant if and only if there exists a control u ∈ U such that

sup
u∈U

{Lfh(x) + Lgh(x)u + L∆h(x)θ} ≥ 0, ∀x ∈ ∂S. (4)

Remark 1. The closed-loop system (1) admits a unique

solution if u(t) ∈ U is Lipschitz.

The authors of [12] ensure S is safe with respect to the

uncertain dynamics (1) by enforcing that a shrunken set, Sr,

is safe. Before formally defining Sr we make the following

assumption.

Assumption 1. The set Θ to which the unknown parameters

θ belong is known, compact, and convex.

Remark 2. Assumption 1 imples that we can also restrict

θ̂ ∈ Θ. Thus, we can define an upper bound ϑ :=
supθ1,θ2∈Θ(‖θ1−θ2‖∞) on the norm ‖θ̃‖∞ of the parameter

estimation error θ̃, so that ‖θ̃‖∞ ≤ ϑ.

We let ϑ = ϑ · 1p×1, and are now ready to present the

definition for the shrunken set, Sr, as defined in [12].

Sr =

{

x ∈ R
n : h(x) ≥ 1

2
ϑTΓ−1ϑ

}

(5a)

∂Sr =

{

x ∈ R
n : h(x) =

1

2
ϑTΓ−1ϑ

}

(5b)

int(Sr) =

{

x ∈ R
n : h(x) >

1

2
ϑTΓ−1ϑ

}

(5c)

where Γ is a constant, positive-definite matrix such that

h(x(0)) ≥ 1
2ϑ

TΓ−1ϑ. A new CBF may be defined as

hr(x,ϑ) = h(x)− 1

2
ϑTΓ−1ϑ, (6)

and the sufficient condition that renders Sr safe is

ḣr =
∂h

∂x
ẋ− ϑTΓ−1ϑ̇ ≥ −α(hr), (7)

where α : [0, a) → [0,∞) is some class K function, i.e.,

strictly increasing with α(0) = 0.

Remark 3. If Sr ⊂ S in (5) is safe, then S in (3) is safe.

Thus, satisfaction of (7) implies that (4) holds.

B. Finite- and Fixed-Time Stability

We now address performance criteria: finite- and fixed-

time stability of an equilibrium point of the dynamical system

ẋ(t) = f(x(t)), x(t0) = x0, (8)

for which it is assumed that a unique solution exists, where

x ∈ R
n, f : Rn → R

n is continuous, and f(0) = 0.

Definition 1 ([16]). The origin of (8) is globally finite-time

stable (FTS) if the following conditions hold:

• The origin of (8) is stable in the sense of Lyapunov

• Any solution x(t, x0) of (8) reaches the origin in finite

settling-time, T (x0), i.e. x(t, x0) = 0, ∀t ≥ T (x0).

Definition 2 ([17]). The origin of (8) is fixed-time stable

(FxTS) if it is globally FTS and any solution x(t, x0) of (8)

reaches the origin in finite settling-time, T , independent of

x0, i.e. x(t, x0) = 0, ∀t ≥ T .

We refer the interested reader to [16] and [17] respectively

for Lyapunov conditions which guarantee FTS and FxTS of

the origin of (8).

C. Finite-Time Parameter Estimation

The parameter estimation scheme in the discussion to

follow is predicated on Assumption 2.

Assumption 2. The state, x, and control input u, of (1) are

bounded, and x is accessible for measurement.

Let us now review the notion of persistent excitation (PE).



Definition 3 ([18]). A vector or matrix function, φ, is

persistently excited (PE) if there exist T > 0, ǫ > 0, such

that
∫ t+T

t φ(r)φT (r)dr ≥ ǫI, ∀t ≥ 0.

Now we introduce the following assumption on ∆(x).

Assumption 3. The transpose of the regressor matrix in (1),

∆T (x), is persistently excited.

Remark 4. Positive-definiteness of ∆T∆ is sufficient for ∆T

to satisfy the PE condition.

We now review a FTS parameter estimation scheme which

forms the basis for our FxTS adaptation law and was

first proposed for nonlinear dynamical systems in [19], and

extended for robotic applications in [20]. First, we note that

we may re-write (1) as:

ẋ(t) = ϕ(x, u) + Φ(x)θ, (9)

where ϕ(x, u) = f(x) + g(x)u and Φ(x) = ∆(x). The

authors of [19] and [20] introduce xf , ϕf , and Φf to filter

x, ϕ, and Φ as follows:

kẋf + xf = x, xf (0) = 0, ẋf (0) = 0 (10)

kϕ̇f + ϕf = ϕ, ϕf (0) = 0, ϕ̇f (0) = 0 (11)

kΦ̇f +Φf = Φ, Φf (0) = 0, Φ̇f (0) = 0 (12)

where k > 0 is a design parameter. Mimicking the form of

the system dynamics, the filtered system dynamics are:

ẋf = ϕf +Φfθ, (13)

which serves as the basis for estimating θ. We now observe

that ẋf − ϕf = Φfθ and define an auxiliary and integrated

regressor matrix P and vector Q such that:

Ṗ = −ℓeP +ΦT
f Φf , P (0) = 0 (14)

Q̇ = −ℓeQ+ΦT
f (ẋf − ϕf ), Q(0) = 0 (15)

where ℓe > 0 is another design parameter. The solutions are:

P (t) =

∫ t

0

e−ℓe(t−r)ΦT
f (r)Φf (r)dr (16)

Q(t) =

∫ t

0

e−ℓe(t−r)ΦT
f (r)(ẋf (r) − ϕf (r))dr (17)

and from them it may be discerned that Q = Pθ. Now, define

an additional auxiliary vector as

W = P θ̂ −Q = −P θ̃. (18)

Then, the authors of [20] introduce their adaptation law as

˙̂
θ = −Λ

PTW

‖W‖ , (19)

where Λ is a constant, positive definite, gain matrix. Finite-

time (FT) convergence of the estimated parameters to their

true values is guaranteed by the following result.

Theorem 1 ([20]). For system (9) with parameter adaptation

law (19) and λmin(P ) > σ > 0, the parameter estimation

error θ̃ converges to zero in finite-time ta, satisfying ta ≤
‖θ̃(0)‖λmax(Γ

−1)
σ .

While in general it is not required that Λ from (19) and Γ
from (5) be equivalent, we consider this to be true for the rest

of the paper. In Section IV, we advance the FT parameter

estimation result by proposing a FxTS adaptation law for the

class of systems described by (1).

III. PROBLEM FORMULATION

We now formalize the problem under consideration.

Problem 1. Consider a nonlinear, control-affine dynamical

system subject to parametric uncertainty as in (1). Given

that Assumptions 1-3 hold, design an adaptation law,
˙̂
θ, and

controller, u, such that the following conditions are satisfied:

i) The parameter estimation error converges to zero within

fixed-time, Tθ, i.e. θ̃(t) → 0 as t → Tθ < ∞,

independent of θ̃(0).
ii) The system trajectories remain safe for all time, i.e.

x(t) ∈ S, ∀t ≥ t0.

iii) The system trajectories converge to a goal set within

fixed-time, Tg , i.e. x(t) ∈ Sg , ∀t ≥ Tg.

The following section contains our proposed method.

IV. MAIN RESULTS

Before introducing one of the main results of the paper,

we address modifications to the filtering scheme (10)-(12).

In place of the first-order scheme of [19], [20], we use the

following second-order filters:

k2e ẍf + 2keẋf + xf = x (20)

k2e ϕ̈f + 2keϕ̇f + ϕf = ϕ (21)

k2eΦ̈f + 2keΦ̇f +Φf = Φ (22)

where all initial conditions are zero, i.e. βf (0) = 0, β̇f (0) =
0, β̈f (0) = 0, ∀β ∈ {x, ϕ,Φ}. This second-order system is

stable, strictly proper, and minimum-phase similarly to (10)-

(12), and in addition, it is critically damped with a natural

frequency of ωn = 1/ke. This is desirable, as critically

damped systems exhibit the smallest settling time, ts, without

oscillations [21].

A. FxTS Adaptation Law

We now introduce one of the main results of the paper,

an adaptation law which renders the trajectories θ̃(t) of the

parameter estimation error fixed-time stable to zero, and thus

guarantees convergence of the parameters to their true values

within fixed-time.

Theorem 2. Consider a nonlinear, control-affine system with

parametric uncertainty as in (1). If (20)-(22) filter x, ϕ, and

Φ, and the auxiliary matrix P and vectors Q, W are defined

by (14)-(18), then, under the ensuing adaptation law

˙̂
θ = ΓW

(

WTP−TW
)−1

(−c1eν
γ1e − c2eν

γ2e) , (23)

the estimated parameters, θ̂(t), converge to the true param-

eters, θ, in fixed-time, Tθ, i.e., θ̃(t) → 0 and θ̂(t) → θ as

t → Tθ, where

Tθ ≤ Tb =
1

c1e(1− γ1e)
+

1

c2e(γ2e − 1)
. (24)



with ν = 1
2W

TP−TΓ−1P−1W , c1e > 0, c2e > 0, 0 <
γ1e < 1, γ2e > 1, and Γ ∈ R

p×p being a constant, positive-

definite, gain matrix.

Proof. Consider the Lyapunov function candidate Vθ̃ =
1
2 θ̃

TΓ−1θ̃ for the system of the parameter-error dynamics

(2). Since θ̇ = 0, its time derivative along the trajectories of

(2) reads V̇θ̃ = −θ̃TΓ−1 ˙̂θ. Applying the adaptation law (23)

yields V̇θ̃ = −θ̃TW
(

WTP−TW
)−1

(−c1eν
γ1e − c2eν

γ2e).
Then, by substituting (18), we obtain

V̇θ̃ = −c1eV
γ1e

θ̃
− c2eV

γ2e

θ̃
, (25)

i.e., the fixed-time stability condition from [17, Lemma

1]. Hence, the origin of (2) is fixed-time stable, and the

trajectories θ̃(t) reach the origin within a settling time Tθ,

given by (24). Consequently, the estimated parameter vector,

θ̂(t), converges to the true parameter vector, θ, within a fixed

time, Tθ , i.e., θ̂(Tθ) = θ.

Whereas previous studies (e.g. [22]) use (14) and (15) in

the design of a FxT adaptation scheme that converges to

some bounded set, (23) guarantees fixed-time convergence

of the estimated parameters to their true values. With this

knowledge, we derive an expression for the upper bound on

the infinity norm of the parameter error as a function of time.

Corollary 1. Let θ̃ = θ − θ̂ be the parameter estimation

error vector associated with a system of the form (1). If all

of the following conditions hold

i) The estimated parameter update law,
˙̂
θ, is given by (23)

ii) u(x(t)) is any locally Lipschitz controller

iii) Γ is constant, positive-definite, and diagonal

iv) γ1e = 1− 1
µe

and γ2e = 1 + 1
µe

for some µe > 1

then the following expression constitutes an upper bound on

‖θ̃(t)‖∞, ∀t ∈ [0, Tθ]:

‖θ̃(t)‖∞ ≤
√

M

(

1

N
tan

[

Ξ−N
c1e
µe

t

])µe

:= η(t), (26)

where M = 2λmax(Γ), N =
√

c2e
c1e

, and

Ξ = tan−1

(

1

2
NηT (0)Γ−1η(0)

)

(27)

with η(t) = η(t) · 1p×1 and

Tθ ≤ µeΞ√
c1ec2e

≤ Tb (28)

Proof. We consider the Lyapunov function candidate Vθ̃ =
1
2 θ̃

TΓ−1θ̃, whose time derivative along the trajectories of (2)

reads
dVθ̃

dt = −c1eV
1−1/µe

θ̃
− c2eV

1+1/µe

θ̃
.

By separation of variables and integration, we now solve
for t as a function of V (0) and V (t). The change of variables

x = V
1/µe

θ̃
and dx = 1

µe
V

1−1/µe

θ̃
dV allows us to obtain:

t =

∫ V (t)

V (0)

µex
µe−1dx

−c1exµe−1 − c2exµe+1
= (29)

− µe√
c1ec2e

[

tan−1
(

NV
1/µe

θ̃
(t)

)

− tan−1
(

NV
1/µe

θ̃
(0)

)]

where N =
√

c2e
c1e

. This leads to

Vθ̃(t) =

(

1

N
tan

[

tan−1 (NV (0))−N
c1e
µe

t

])µe

(30)

where V (0) = 1
2 θ̃(0)

TΓ−1θ̃(0) ≤ 1
2η(0)

TΓ−1η(0). Now,

since Vθ̃ = 1
2 θ̃

TΓ−1θ̃, then with Γ diagonal we can express

Vθ̃ = 1
2 (Γ

−1
11 θ̃

2
1 + ... + Γ−1

pp θ̃
2
p), and observe that Vθ̃ ≥

1
2λ

−1
max(Γ)‖θ̃‖2 ≥ 1

2λ
−1
max(Γ)‖θ̃‖2∞. Then, we substitute (30)

in this inequality and rearrange terms to recover (26).

Then, for 0 ≤ t ≤ µe

c1eN
tan−1

(

1
2NηTΓ−1η

)

we have

that (30) decreases monotonically to zero. As such, we let

Ξ = tan−1
(

1
2NηTΓ−1η

)

and obtain (28), which places a

tighter upper bound on the settling time, Tθ, than (24).

Remark 5. As a consequence of (26), we may tighten the

set of admissible parameters at time t as Θ(t) = {θ ∈ R
p :

‖θ − θ̂(t)‖∞ ≤ η(t)}, ∀t ∈ [0, Tθ], and as Θ(t) = {θ̂},

∀t ∈ (Tθ,∞].

We now formalize the new RaCBF condition for forward-

invariance of sets S and Sr, defined in (3) and (5).

Theorem 3. Let η(t) = η(t) · 1p×1 where η(t) is given
by (26). Under the premises of Corollary 1, the following
condition is sufficient for forward-invariance of Sr, i.e. (5):

sup
u∈U

{Lfh(x) + Lgh(x)u+Ψ}

≥ −α

(

h(x)− 1

2
η(t)TΓ−1

η(t))

)

+ Tr(Γ−1)η(t)η̇(t) (31)

where

η̇(t) = Z tan
µe
2

−1

(

Ξ−N
c1e
µe

t

)

sec2
(

Ξ−N
c1e
µe

t

)

(32)

Ψ =

p
∑

i=1

min
{

CiPΘ(θ̂i − η), CiPΘ(θ̂i + η)
}

(33)

for Z = −c1e
√
MN2−µe , where Ci denotes the ith column

of L∆h(x) for i ∈ {1, . . . , p}, and PΘ the vector projection

onto Θ, as defined in [23].

Proof. We recall (6) and now replace the constant ϑ with the

time-varying η(t), where henceforth we drop the argument.

Thus, hr(x,η) = h(x)− 1
2η

TΓ−1η, and ḣr(x,η) =
∂hr

∂x ẋ+
∂hr

∂η η̇. We will show that if (31) holds then (7) holds and thus

(5) is forward-invariant.

First, ∂hr

∂x ẋ = ∂h
∂x ẋ = Lfh(x) + Lgh(x)u + L∆h(x)θ,

then with Γ diagonal we can express ∂hr

∂η η̇ = −ηTΓ−1η̇ =

−Tr(Γ−1)ηη̇, where we obtain η̇(t) in (32) by differentiating

(26) from Corollary 1.

Next, we consider the case where (η + θ̂) ∈ Θ, for

which PΘ(η + θ̂) = (η + θ̂). By (26) we have that

θ̂i − η ≤ θi ≤ θ̂i + η, ∀i ∈ {1, . . . , p}, where Θ is

convex by Assumption 1. Thus, the solution of the following

minimization problem represents the worst admissible effect

of the unknown parameters on safety:

φ∗ = argmin
φ∈Θ

L∆h(x)φ (34)

This is a constrained linear program. As such, a unique

minimizer, φ∗ = [φ∗
1 . . . φ∗

p]
T exists, where by the fact



that L∆h(x)φ =
∑p

i=1 Ciφi with Ci as the ith column of

L∆h(x), we have that φ∗
1, . . . , φ

∗
p are the minimizers of the

following p constrained linear programs:

φ∗
i = argmin

θ̂i−η≤φi≤θ̂i+η

Ciφi, ∀i ∈ {1, . . . , p} (35)

Furthermore, the solutions of constrained linear programs are

guaranteed to be on the boundary of the solution domain,

which in this case implies that either φ∗
i = θ̂i − η or φ∗

i =
θ̂i + η. Thus, we denote Ψ = L∆h(x)φ

∗ and recover (33)

so that Ψ ≤ L∆h(x)θ, ∀θ ∈ Θ.

For (η+ θ̂) /∈ Θ, (34) is again solved, but now PΘ(η+ θ̂)
reduces η when necessary to enforce that φ ∈ Θ. We again

obtain that a unique solution exists and that Ψ ≤ L∆h(x)θ,

∀θ ∈ Θ.

For both cases we have that Lfh(x)+Lgh(x)u+Ψ ≤ ∂h
∂x ẋ

and thus (31) implies (7), and (5) is forward-invariant.

The use of the projection operator in Theorem 3 reduces

the conservatism of the approach without compromising the

robustness of the forward-invariance condition.

V. CASE STUDY

A. Comparing Controllers

In the first numerical study, we investigate how our

approach compares to other recent results in the literature,

namely the adaptation laws from [11], [12], and [14], and the

worst-case disturbance consideration of [5]. As a basis for

comparison, we consider a 2D single-integrator system sub-

ject to parametric uncertainty and challenge the controllers

to safely achieve convergence to the origin by avoiding static

obstacles separated by a small gap (Fig. 1).

0 1 2 3 4 5

X (m)

−10

−5

0

5

Y
(m

)

Barrier

Initial Condition

Goal

Fig. 1: Problem setup for the first numerical case study, ”Shoot the
Gap.” The controller must determine what actions, ux and uy , to
take in order to realize safe trajectories from the Initial Condition
to the Goal.

1) Dynamics: We denote z = [x y]T as the state, where

x and y are the lateral and longitudinal position coordinates

with respect to an inertial frame. The system dynamics are

ż =

[

1 0
0 1

] [

ux

uy

]

+∆(z)

[

θ1
θ2

]

, (36)

where the known regressor matrix is given by

∆(z) = K∆

[

1 + sin2(2πf1x) 0
0 1 + cos2(2πf2y)

]

with θ1, θ2 as constant parameters that are unknown a priori,

and K∆, f1, f2 given in Table I. Assumption 1 is enforced

by defining lower and upper bounds
¯
θ and θ̄, respectively,

and imposing
¯
θ ≤ θ1, θ2 ≤ θ̄. The choice of ∆ is such that

∆T∆ is positive-definite for all z ∈ R
2, thus satisfying the

PE condition and Assumption 3.

2) Control Formulation: To encode the goal-convergence

criterion we define the CLF:

V (z) = KV (x
2 + y2), (37)

The safe states are those residing outside of the two ellipses

shown in Figure 1, which results in the following two CBFs:

h1(z) =
(x− x1)

2

a2
+

(y − y1)
2

b2
− 1 (38)

h2(z) =
(x− x2)

2

a2
+

(y − y2)
2

b2
− 1 (39)

where x1, x2, y1, y2, a, and b are parameters that define the

location, size, and shape of the ellipses.
We choose the CLF-CBF-QP framework ([7], [10]) for

computing the control inputs. While we simulated the con-
trollers from the literature both in their original form and
with standardized FxT-CLFs to more fairly assess their
abilities, no meaningful differences were observed in their
ability to ”shoot the gap.” As such, we present results for
the latter case. Our control framework is then:

min
u,δ0,δ1,...,δq

1

2
uTQu+ p0δ

2
0 +

q
∑

i=1

piδ
2
i (40a)

s.t.

−ū1 ≤u1 ≤ ū1 (40b)

−ū2 ≤u2 ≤ ū2 (40c)

1 ≤ δi (40d)

LfV (z) + LgV (z)u+ φ(x,∆(x, t), θ̂, η)

≤ δ0 − c1V (z)γ1 − c2V (z)γ2 (40e)

Lfhi(z) + Lghi(z)u+ ψ(x,∆(x, t), θ̂, η) ≥ −δihi(z) (40f)

∀i ∈ {1, . . . , q}, where generally u = [u1 u2]
T and for this

problem u1 = ux and u2 = uy , δ0 is a relaxation parameter

on the performance objective whose inclusion guarantees

feasibility of the QP, δi allows for larger negative values

of ḣi(z) away from the boundary of the safe set, and pi
penalizes values of δi, ∀i ∈ {0, ..., q}. The functions φ :
R

n×R
n×p×R

p×R
p → R and ψ : Rn×R

n×p×R
p×R

p →
R represent the terms specific to the way each respective

controller handles the uncertainty in the system dynamics.

While all of (40b)-(40f) are linear in the decision variables,

(40b) and (40c) enforce input constraints, (40d) prevents

over-conservatism in enforcing safety, (40e) encodes FxT

convergence to the goal, and safety is guaranteed by (40f).

3) Results: The full set of parameters for this numerical

case study1 are provided in Table I.

We endeavor to demonstrate that by learning the true

values of the uncertain parameters in the system dynamics

of (36), our method is capable of approaching the boundary

of the safe set more closely than previous results in the

1Simulation code is accessible at Github: https://tinyurl.com/y3xhylug.

https://github.com/6lackmitchell/FxT_AdaptationLaw_ParametricUncertainty
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Fig. 2: State trajectories, control inputs, and control barrier function evolutions in time for the Shoot the Gap example.

TABLE I: Shoot the Gap Parameters

ẋ Val QP Val CBF Val CLF Val
˙̂
θ Val

f1 1 Q I2×2 a 1 KV 1 ke 0.001

f2 4 p0 50 b 4.99 T 4 Te 0.2

θ1 -1 p1 5 x1 1 µ 5 µe 5

θ2 1 p2 5 x2 1 c1 1.963 c1e 50

θ̄1 10 ū1 2.5 y1 -6 c2 1.963 c2e 50

θ̄2 10 ū2 2.5 y2 4 γ1 0.8 γ1e 0.8

K∆ 0.833 γ2 1.2 γ2e 1.2

ℓe 100

literature and, as a consequence, able to reach a goal which

may require such an approach despite uncertainty. Table II

provides the legend codes used to refer to these other works.

TABLE II: Controllers from the Literature

Authors Citation Legend Code

Taylor et al. [11] TAY

Black et al. [5] BLA

Lopez et al. [12] (w/o SMID) LOP

Lopez et al. [12] (w/ SMID) LSM

Zhao et al. [14] ZHA

Proposed Method PRO

Note: [12] presents RaCBF-based control formulations with and without
SMID for parameter estimation. We have considered both cases.

First, we observe that in accordance with Theorem 2,

Figure 3 highlights that the parameter estimates, θ̂, do in fact

converge to their true values within fixed-time Tθ given by

(28). Figure 2a shows that our proposed method ”shoots the

gap” where the others do not; that is, our method can tolerate

regions of the state space which exist in close proximity

to the boundary of the safe region. As such, it fulfills its

specification of FxT convergence to the origin. In this sense,

our synthesized adaptation law and RaCBF-based controller

is less restrictive than the existing literature.

B. Highway Overtake

We now consider an automobile highway overtake prob-

lem, similarly to [5], and show how our control formulation
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Fig. 3: Estimates of the unknown model parameters, θ.

can guarantee success of the overtake maneuver under un-

certainty, where the robust CBF approach cannot.
1) Dynamics: Just as in [5], we model the vehicles as

kinematic bicycles using the model from [24]. Accordingly,
the state vectors are zi = [xi yi θi vi]

T , where x and y are
planar Euclidean coordinates (longitudinal and transverse),
θ is the heading angle, v is velocity, and the subscript i ∈
{e, l} denotes belonging to the Ego or Lead vehicle. The
corresponding dynamical system is described by:

żi =







vi cos(θi)
vi sin(θi)

0
0






+







0 0
0 0
1 0
0 1/M







[

ωi

ai

]

+∆i(z)θ, (41)

where M is the mass of the vehicle in kg, and ωi and

ai represent the angular velocity and heading acceleration

control inputs, for which the bounds
¯
ω ≤ ωi ≤ ω̄ in rad−1

and
¯
a ≤ ai ≤ ā in m/s2 hold. For reference, all overtake



parameter values may be found in Table III2. We elect to

model erratic, or distracted, driver behavior by the addition

of the uncertain term ∆i(x)θ, where ∆i : R
4 → R

4 ×R
2 is

the known regressor matrix. As such, we let ∆e = 0n×p and

∆l = 0n×p with the exception of ∆l,(0,0)(z) = 1 + 1
2 (1 −

cos(2πfl,1xl)) and ∆l,(1,1)(z) =
1
10 +

1
20 (1−sin(2πfl,2xl)).

2) Problem Formulation: We define the safe sets as:

Si = {z | hi(z) ≥ 0}, ∀i ∈ {1, 2, 3} (42)

where

h1(z) = Ks ((ye − ER(z))(EL(z)− ye)) (43)

h2(z) = L− v (44)

h3(z) =

(

xe − xl

sx

)2

+

(

ye − yl
sy

)2

− 1 (45)

and

ER(z) = er +
θeve sin(θe)

ω̄

− θ2e
2ω̄2

(

ā sin(θe)

M
+ veω̄ cos(θe)

)

(46)

EL(z) = el −
θeve sin(θe)

ω̄

− θ2e
2ω̄2

(

ā sin(θe)

M
− veω̄ cos(θe)

)

(47)

where er and el denote the physical edges of the right and

left side of the road such that (46) and (47) imply that (43)

encodes that the Ego vehicle remain on the road despite

bounded steering control. We also have that (44) enforces

the road speed limit, L, in m/s, and (45) ensures that safety

margins sx = τve cos(θe) + lc and sy = wc + 0.75 between

vehicles are observed, where lc and wc are the length and

width of the vehicles in m. Then, S = ∩Si, ∀i ∈ {1, 2, 3}.

In addition, Oncoming vehicles are known to obey the

following pattern: the first vehicle has a time-headway of 24s

with the Lead Vehicle, and subsequent Oncoming vehicles

arrive in 30s intervals. Consequently, the Ego vehicle must

complete the overtake within 24s to proceed at the outset,

and within 30s to proceed after the first Oncoming vehicle.

We now formally define the overtake problem.

Problem 2. Given the initial states, ze(0), zl(0), the time

headway of an oncoming vehicle, Th, and the set Θ to which

the unknown parameter vector, θ, belongs, determine whether

it is safe for the Ego vehicle to overtake the Lead vehicle, i.e.

whether there exist z(t), ue(t) ∈ U = {(ωe, ae) |
¯
ω ≤ ωe ≤

ω̄,
¯
a ≤ ae ≤ ā} such that ze(t) ∈ S, ∀t ∈ [0, T ], where T

is the upper bound on time to complete the overtake. If safe

and T ≤ Th, design a control input, ue(t) ∈ U for the given

z(0) such that the Ego vehicle overtakes the Lead vehicle.

3) Control Formulation: Just as in [5], we partition the

problem into the following sub-problems:

i) Ego Vehicle approaches Lead Vehicle

ii) Ego Vehicle merges into overtake lane

2M , lc , and wc taken from the
2020 Ford Mustang Shelby GT: https://tinyurl.com/yxhn63of.

iii) Ego Vehicle advances beyond Lead Vehicle

iv) Ego Vehicle merges back into original lane

We use the CLF-CBF-QP control framework presented in

(40) to compute the control inputs, u1 = ωe and u2 = ae,

pointwise-in-time where q = 3 in accordance with h1(z),
h2(z), and h3(z) in (43)-(45). Our CLF is:

V (z) = KV (kxx̄
2 + ky ȳ

2 + kθ θ̄
2 + kvv̄

2 − 1) (48)

where x̄ = x− xd, ȳ = y− yd, θ̄ = θ− θd, and v̄ = v− vd,

and zd = [xd yd θd vd]
T is the desired state. We define the

fixed-time convergence times for the four sub-problems as

T1 = 3, T2 = 5, T3 = 7, and T4 = 5 respectively.

TABLE III: Overtake Parameters

ẋ Val QP Val CBF Val CLF Val
˙̂
θ Val

M 1994 Q0,0 1/ω̄2 er 0 KV 10−5 ke 0.001

fl,1 0.01 Q1,1 1/ā2 el 6 µ 5 Te 0.2

fl,2 0.02 p0 5×10
8 L 30 γ1 0.8 µe 5

θ1 1 p1 1 lc 4.81 γ2 1.2 c1e 50

θ2 0 p2 1 wc 1.92 kx 0.0625 c2e 50

p3 1 τ 1.8 ky 100 c2e 50

ω̄ 0.175 kθ 400 γ1e 0.8

ā 4890 kv 1 γ2e 1.2

ℓe 100
Note: Qi,j denotes the value of the row i column j entry for the Q

matrix. Non-specified entries are uniformly zero.

4) Results: The scenario was initialized as xe(0) =
−64.8, ye(0) = 1.5, θe(0) = 0, ve(0) = 24, xl(0) = 0,

yl(0) = 1.5, yθ(0) = 0, and vl(0) = 19. For all considered

sets of admissible parameters, Θ, we set θ̄ = θ̄1 = −
¯
θ1 =

θ̄2 = −
¯
θ2, and chose θ̄ = 1, 2, 4, 6, 8, 10. Table IV shows

how the fixed-time horizon grows for BLA as θ̄ increases.

TABLE IV: Overtake Fixed-Time Horizons

θ̄ TPRO TBLA toncoming,1 toncoming,i

1 20 20.74 24 24 + 30(i-1)

2 20 21.31 24 24 + 30(i-1)

4 20 22.67 24 24 + 30(i-1)

6 20 24.42 24 24 + 30(i-1)

8 20 26.80 24 24 + 30(i-1)

10 20 30.38 24 24 + 30(i-1)

As such, the PRO technique completes the overtake with-

out delay for all parameter bounds, whereas the BLA con-

troller appropriately proceeds immediately with the overtake

when θ̄ = 1, 2, 4, proceeds after the first oncoming vehicle

has passed when θ̄ = 6, 8, and cannot guarantee a safe

overtake when θ̄ = 10. This is precisely the advantage

of our proposed controller. Because it is guaranteed to

adaptively learn the true parameters within fixed-time, it is

able to successfully complete the overtake maneuver for all

considered sets, Θ.

VI. CONCLUSION

In this study on the efficacy of various techniques for safe

control under parametric model uncertainty, we presented

a novel adaptation law that learns the uncertain parameters

associated with a class of nonlinear, control-affine dynamical

systems in fixed-time. We synthesized our parameter adapta-

tion law with a robust, adaptive CBF-based controller in the

https://www.ford.com/cars/mustang/models/shelby-gt350r
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Fig. 4: Results for 6 different simulations of the overtake problem. The top row displays state trajectories. The bottom row contains
control inputs and CBF trajectories for cases where [5] must postpone the overtake maneuver (left) and cannot complete safely complete
it (right).

form of a quadratic program, and provided an upper bound

on the parameter estimation error as an explicit function

of time. We then studied the performance of our method

on a simple, 2D single integrator system in relation to

several recent works from the literature and demonstrated

that our contribution succeeds in navigating near unsafe

regions where the others fail. We further illustrated the

promise of our method in applications where a decision on

whether to initiate a possibly unsafe maneuver is required,

using the automobile overtake problem as a case study.

In the future, we intend to study cases for which the

uncertain parameters are time-varying and an upper bound

is not known a priori, as we recognize that these may have

broader applicability to real-world scenarios.
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