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Abstract. The chromatic symmetric function (CSF) of Dyck paths of Stanley and its Shareshian–
Wachs q-analogue have important connections to Hessenberg varieties, diagonal harmonics and
LLT polynomials. In the, so called, abelian case they are also curiously related to placements of
non-attacking rooks by results of Stanley–Stembridge (1993) and Guay-Paquet (2013). For the q-
analogue, these results have been generalized by Abreu–Nigro (2020) and Guay-Paquet (private
communication), using q-hit numbers. Among our main results is a new proof of Guay-Paquet’s
elegant identity expressing the q-CSFs in a CSF basis with q-hit coefficients. We further show
its equivalence to the Abreu–Nigro identity expanding the q-CSF in the elementary symmetric
functions. In the course of our work we establish that the q-hit numbers in these expansions differ
from the originally assumed Garsia-Remmel q-hit numbers by certain powers of q. We prove new
identities for these q-hit numbers, and establish connections between the three different variants.

keywords: chromatic symmetric functions, abelian Hessenberg varieties, Dyck paths, q-hit num-
bers, q-rook numbers.

1. Introduction

Ever since their introduction in 1995 in [Sta95], the chromatic symmetric functions have been this
mysterious object combining the misleading simplicity of graphs with the powerful tools of sym-
metric functions. Graph colorings present some of the hardest problems in combinatorics1, and nice
formulas there qualify as miracles rather than general rules. It is thus even more appealing that the
chromatic symmetric functions, and their q-generalizations, are a source of beautiful results and
striking conjectures2. The chromatic symmetric functions have found significant connections be-
yond combinatorics – to Hessenberg varieties [SW16], diagonal harmonics [CM18], and Macdonald
polynomials [AP18, HW17].

In this paper we bring to light such an unusually nice combinatorial formula, relating the q-rook
theory which comes from generalizations of permutations and their inversions, and chromatic sym-
metric functions for Dyck paths of bounce two, aka abelian case. We give an elementary proof of the
strikingly elegant identity of Guy-Paquet (Theorem 1.3) which expresses the chromatic symmetric
function for an arbitrary path given by partition λ in terms of the chromatic symmetric functions

L. Colmenarejo was partially supported by the AMS-Simons Travel Grant and by MTM2016-75024-P, A. H.
Morales was partially supported by the NSF grant DMS-1855536, and G. Panova was partially supported by the NSF
grant DMS-1939717.

1Informally, but also formally as an NP-complete problem.
2Most notably the e-positivity Conjecture 1.1 of Stembridge-Stanley [SS93], refined further by Shareshian-

Wachs [SW16].
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Figure 1. The Dyck path d = n3enenee2 associated to the partition λ = (2, 1) ⊂
2× 3 and the corresponding graph G(λ). Each cell below the path d corresponds to
an edge of the graph. An example of a proper coloring would be κ(1) = 2, κ(2) =
3, κ(3) = 1, κ(4) = 2, κ(5) = 3 which has asc(κ) = 4.

for rectangles with coefficients the very combinatorial q-hit numbers. Along the way we establish
numerous new identities for q-hit and q-rook numbers, give an elementary proof of Theorem 1.2,
and pose many conjectures stemming from our findings. Our ultimate goal is to understand the
chromatic symmetric functions with more relations and connections, which could lead not only to
a proof of the e-positvity Conjecture 1.1, but also to a combinatorial interpretation of these coef-
ficients. The technique of symmetry-breaking used in our proof of Theorem 1.3 could be extended
beyond the abelian case as long as there is a suitable conjectured expression for the coefficients in
the e-basis.

1.1. Definitions and main results. Let G be a graph with vertices {v1, v2, . . . , vn} that are
totally ordered v1 < v2 < · · · < vn. In [Sta95], Stanley defined the chromatic symmetric function
(CSF) XG(x) of G as

XG(x) =
∑

κ:V→P, proper
xκ =

∑
κ:V→P, proper

x
#κ−1(1)
1 x

#κ−1(2)
2 · · · ,

where P = {1, 2, 3, . . .}, x = (x1, x2, . . .), and the sum is over the proper colorings of the vertices of
G.

Stanley and Stembridge [SS93] conjectured that the chromatic symmetric functions expand with
positive coefficients in the basis {eµ} of elementary symmetric functions for the graphs coming from
Dyck paths in the following way. Given a Dyck path d from (0, 0) to (n, n), let G(d) be the graph
with vertices {1 . . . n} and edges (i, j), i < j if and only if the cell (i, j) is below the path d (see
Figure 1). These are also the incomparability graphs of unit interval orders or graphs obtained from
Hessenberg sequences.

Shareshian–Wachs [SW16] introduced a quasisymmetric version of XG(x) defined by

XG(x, q) =
∑

κ:V→P, proper
qasc(κ)xκ,

where asc(κ) is the number of edges {vi, vj} of G with i < j and κ(vi) < κ(vj).

For the graphs G(d) coming from Dyck paths, the quasisymmetric function XG(d)(x, q) is actually
symmetric and Shareshian–Wachs gave a refinement of the Stanley–Stembridge conjecture for this
Catalan family of graphs.
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Conjecture 1.1 (Stanley–Stembridge, Shareshian–Wachs). Let d be a Dyck path. Then the coef-
ficients of XG(d)(x, q) in the elementary basis are in N[q].

This conjecture has been verified independently and by different techniques by Cho–Huh [CH18],
Hamada–Precup [HP19], and Abreu–Nigro [AN] for the case of so-called abelian Dyck paths (cor-
responding to abelian Hessenberg varieties), which are defined as paths d of size m+ n of the form
nmw(λ)en where w(λ) is the encoding in north (n) and east (e) steps of the partition λ ⊂ n ×m
(see Figure 4a). We denote the associated graph by G(λ) and the chromatic symmetric function by
Xλ(x, q) := XG(λ)(x, q).

The symmetric functions Xλ(x, q) corresponding to abelian Dyck paths are deeply related to the
q-rook theory of Garsia–Remmel [GR86] as we illustrate with the next two identities that use the
following notation

[n]k = [n][n− 1] · · · [n− k + 1], [n]! = [n]n,

[
n
k

]
=

[n]k
[k]!

,

where [m] = 1 + q + · · ·+ qm−1.

We define q-hit numbers of rectangular boards of size n×m that we denote as Hm,n
j (λ) by a

change of basis equation (2.1) involving the Garsia–Remmel q-rook numbers. These q-hit numbers
are polynomials in q, satisfying

∑n
j=0H

m,n
j (λ) = [m]n, and at q = 1 give the number of placements

of n non-attacking rooks in an n × m board (n ≤ m) with j rooks in the board of λ. We show
that these q-hit numbers Hm,n

j (λ) are symmetric polynomials in N[q] and are realized by a statistic

defined by Dworkin [Dwo98] (see Theorem 2.9). In the case of a square board m = n, these q-hit
numbers Hn

j (λ) := Hn,n
j (λ) are up to a power of q equal to the Garsia–Remmel q-hit numbers

(Proposition B.1) which are symmetric unimodal polynomials in N[q] realized by different statistics
by Haglund and Dworkin (see [HR01]).

Abreu–Nigro gave an expansion of Xλ(x, q) in the elementary basis in terms of q-hit numbers of
square boards. This result is a q-analogue of a special case of a result of Stanley–Stembridge [SS93,
Thm. 4.3].

Theorem 1.2 (Abreu–Nigro [AN]). Let λ be partition inside an n×m board with `(λ) = k ≤ λ1.
Then

Xλ(x, q) = [k]!Hm+n−k
k (λ) · em+n−k,k +

k−1∑
j=0

qj [j]! [m+ n− 2j]Hm+n−j−1
j (λ) · em+n−j,j .

Our first main result is an elementary proof of an unpublished identity of Guay-Paquet3

in Section 4 that expands Xλ(x, q) in terms of chromatic symmetric functions for rectangular shape
with coefficients given by the q-hit numbers of rectangular boards defined above. This result appears
as a q-analogue of special case of [GPb, Prop. 4.1 (iv)].

3Private communication [GPa].
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Theorem 1.3 (Guay-Paquet [GPa]). Let λ be partition inside an n×m board (n ≤ m). Then

Xλ(x, q) =
1

[m]n

n∑
j=0

Hm,n
j (λ) ·Xmj (x, q).

Our second result is a direct elementary proof of Theorem 1.2 following from Theorem 1.3
and using our third result which is the definition and properties of the q-hit numbers H∗,∗∗ (λ),
including a deletion contraction relation, that we derive in Sections 3 and in the Appendix.

1.2. Old and new methods. The original proofs of the two statements above use a linear relation
satisfied by XG(d)(x, q) called the modular relation [AN, AS, GPb]. Our proof of Theorem 1.3 uses
a simple recursive approach. It breaks the symmetry of the chromatic symmetric functions by
inducting from N to N + 1 variables. The ultimate identities are derived from identities of the
coefficients – the q-hit numbers. Such an approach could work in a more general setting if the
coefficients in the expansion have some recursive combinatorial structure. Moreover, following the
recursion it could be extended to a bijection, similar to RSK. The bottleneck in this approach are
the necessary new q-hit identities, which we derive after extensive use of generating functions4.
The derivation (and equivalence) of Theorem 1.2 follows from other q-hit identities, which can be
proven also using deletion-contraction on q-hit and q-rook numbers. Note that deletion-contraction
on the classical CSFs itself is not directly applicable due to the inhomogeneity of the relation.

Along the way we prove new q-hit identities (Section 3 and Appendix) and unravel a mystery on
different combinatorial statistics leading to different kinds of q-hit numbers (see Section 7.1 and the
Appendix) that have been mixed up in the literature. In particular, we establish new relations of
q-rook numbers and q-hit numbers (Lemmas 3.3, 3.4, 3.5, and 5.5) that develop further the q-rook
theory of rectangular boards [LM18].

As a Corollary to the fact that Theorems 1.2 and 1.3 are in essence linear relation between chromatic
symmetric functions, we establish that the same linear relation holds of the unicellular LLT
polynomials, see Section 6.1.

1.3. Organization. In Sections 2 and 3 we give the definitions of q-hit numbers and prove the
necessary identities used later on. Our elementary proof of Theorem 1.3 is in Section 4, and the proof
of Theorem 1.2 is in Section 5. In Section 6 we discuss variations on these problems, expansions in
other bases like CSFs for staircase shapes, applications to LLT polynomials, and some conjectures.

In Appendices A, B, and E we present the Garsia–Remmel q-hit numbers and their relation to
the q-hit numbers appearing in Theorems 1.2,1.3, and the deletion-contraction relations for each
variant. Appendices C, D have the proofs of Theorem 2.9 and the symmetry of the q-hit numbers,
respectively.

4Fully combinatorial/bijective proof would be highly desirable and could completely unravel the combinatorics for
CSFs in the abelian case. See Section 7.
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2. Background on q-rook theory

For the rest of the paper, we assume m and n are non-negative integers with m ≥ n.

2.1. q-rook numbers. Rook placements are a generalizations of permutation diagrams, and their
q-analogues keep track of the number of inversions. We now summarize important definitions and
properties used later in relation to the chromatic symmetric functions. In the Appendix we include
the proofs and further properties.

Definition 2.1 (q-rook numbers [GR86]). Given a partition λ = (λ1, λ2, . . . , λ`) the Garsia-
Remmel q-rook numbers are defined as

Rk(λ) =
∑
p

qinv(p),

where the sum is over all placements p of k non-attacking rooks on λ and inv(p) is the number of
cells of λ that are not occupied by a rook or directly west or north of a rook (see Figure 3a).

Proposition 2.2 (Garsia-Remmel [GR86]). Given a partition λ = (λ1, . . . , λ`) we have that

F (x;λ) :=
∑̀
k=0

Rk(λ)[x]`−k =
∏̀
i=1

[x+ λ`−i+1 − i+ 1],

in particular R`(λ) =
∏`
i=1[λ`−i+1 − i+ 1].

2.2. q-hit numbers. The q-hit numbers are defined in terms of the q-rook numbers by a change

of basis. Let (a; q)k =
∏k−1
i=0 (1− aqi) denote the q-Pochhammer symbol.

Definition 2.3 ([LM18, Def. 3.1, Prop. 3.5]). For λ inside an n × m board, we define the q-hit
polynomial of λ by

(2.1) P (x;λ) =

n∑
i=0

Hm,n
i (λ)xi :=

q−|λ|

[m− n]!

n∑
i=0

Ri(λ) [m− i]!(−1)iqmi−(i2)(x; q)i,

where the coefficients Hm,n
i (λ) are the q-hit numbers associated to λ. Equivalently, we have that

for every k

Hm,n
k (λ) =

q(
k
2)−|λ|

[m− n]!

n∑
i=k

Ri(λ) [m− i]!
[
i
k

]
(−1)i+kqmi−(i2),(2.2)
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and

Rk(λ) = q|λ|−mk
[m− n]!

[m− k]!

n∑
i=k

Hm,n
i (λ)

[
i
k

]
q−1

.(2.3)

Notation 2.4. For square boards with n = m, we denote the q-hit number by Hm
j (λ).

Remark 2.5. For the case n = m, Garsia–Remmel defined q-hit numbers H̃n
k (λ) by the relation

(2.4)
n∑
i=0

H̃n
i (λ)xi =

n∑
i=0

Ri(λ)[n− i]!
n∏

k=n−i+1

(x− qk).

One can show that the Garsia–Remmel q-hit numbers and our q-hit numbers differ by a power of q
(see Proposition B.1).

The q-hit numbers satisfy the following deletion-contraction relation that is proved in Appendix E.
Given a shape λ and a corner cell e in λ, λ\e denotes the shape obtained after deleting the cell e
in λ, and λ/e denotes the shape obtained after deleting in λ the row and column containing e. See
Figure 2 for an example.

λ
e

λ \ e λ/e

Figure 2. Example of the deletion and contraction of the board of a partition λ.

Lemma 2.6. We have the following deletion-contraction relation:

Hm,n
j (λ) = Hm,n

j (λ\e) + q|λ/e|−|λ|+j+m−1
(
Hm−1,n−1
j−1 (λ/e)− qHm−1,n−1

j (λ/e)
)
.

Guay–Paquet [GPa] defined the rectangular q-hit numbers using a statistic similar to Dworkin’s
statistic [Dwo98] for the Garsia–Remmel q-hit numbers and we present this definition next, illus-
trated in Figure 3a.

Definition 2.7 (Statistic for the q-hit numbers). Let λ be a partition inside an n×m board. Given
a placement p of n non-attacking rooks on an n×m board, with exactly j rooks inside λ, let stat(p)
be the number of cells c in the board such that:

(i) there is no rook in c,
(ii) there is no rook above c on the same column, and either,

(iii) if c is in λ then the rook on the same row of c is in λ and to the right of c or
(iv) if c is not in λ then the rook on same row of c is either in λ or to the right of c.

Remark 2.8. Intuitively, this statistic stat(p) counts the number of remaining cells in the n×m
board after: wrapping this board on a vertical cylinder and each rook of p cancels the cells south in
its column and the cells east in its row until the border of λ.
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Theorem 2.9. Let λ be a partition inside an n×m board and j = 0, . . . , n then

(2.5) Hm,n
j (λ) =

∑
p

qstat(p),

where the sum is over all placements p of n non-attacking rooks on an n×m board, with exactly j
rooks inside λ.

Remark 2.10. Note that the Garsia–Remmel q-hit numbers have a very similar description in
[HR01] (attributed to Dworkin) using a different attacking rule for the rooks. Our proof of Theo-
rem 2.9 in Appendix A follows by reducing to the case of the Garsia–Remmel q-hit numbers. See
also Section 7.1 for more details.

Moreover, for each partition λ, the statistic stat(·) is Mahonian.

Corollary 2.11. Let λ be a partition inside an n×m board, then
n∑
j=0

Hm,n
j (λ) = [m]n.

Proof. Set k = 0 in (2.3) and since R0(λ) = q|λ|, we obtain
n∑
j=0

Hm,n
j (λ) = q−|λ|R0(λ)[m]n = [m]n. �

λ

(a)

n

m

λ

(b)

n

m

k

(c)

n

m

k

(d)

Figure 3. Example of the statistics of (A) a q-rook number and (B) a q-hit number.
(C)(D) Examples of the cases of q-hit numbers of a rectangle (m− 1)k ⊂ n×m for
Proposition 2.17.

Example 2.12. Consider the partition λ = (6, 3, 3, 1) inside a 6× 8 board. In Figures 3a and 3b,
we present an example of a placement p of two rooks on λ with inv(p) = 7 and an example of a
placement p′ of six rooks on the 6× 8 board with two hits on λ and stat(p′) = 13, respectively.

We finish this section with some results for q-hit numbers. The next two results show the relation
between the q-hit numbers when we change the dimensions of the board.

Lemma 2.13. Let λ be a partition inside an n×m board. Then

Hm,n
j (λ) =

1

[m− n]!
Hm,m
j (λ).
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Proof. Since Ri(λ) = 0 for i = n+ 1, . . . ,m then (2.2) becomes,

Hm,n
j (λ) =

q−|λ|

[m− n]!

m∑
i=0

Ri(λ)[m− i]!(−1)iqmi−(i2)(x; q)i =
1

[m− n]!
Hm,m
j (λ).

�

Lemma 2.14. Let λ be a partition inside an (n− 1)×m board. Then

Hm,n
j (λ) = [m+ 1− n]Hm,n−1

j (λ).

Proof. We apply (2.1) to Hm,n
k (λ) and use the fact Rn(λ) = 0 since λ ⊂ (n− 1)×m to obtain

Hm,n
k (λ) = [m+ 1− n]

q(
k
2)−|λ|

[m− n+ 1]!

n−1∑
i=k

Ri(λ) [m− i]!
[
i
k

]
(−1)i+kqmi−(i2)

= [m+ 1− n]Hm,n−1
k (λ),

where we used (2.1) again for Hm,n−1
k (λ) to obtain the desired formula. �

Finally, we give formulas for q-rook numbers and q-hit numbers of rectangular shapes.

Proposition 2.15.

(2.6) Rk(a
b) = q(a−k)(b−k)

[a]k [b]k
[k]!

.

Proof. The result follows from the recurrence Rk(a
b) = [b]Rk−1((a−1)b−1)+qbRk((a−1)b) or from

the fact that up to a power of q and (q − 1)k, this is the number of rank k matrices of size a × b
over a finite field with q elements [Hag98, Thm. 1], formulas for which can be found in [Mor06, Sec.
1.7]. �

Proposition 2.16.

HN
k (mj) = q(N−j−m+k)k [m]k [N − j]!

[N −m]j−k [j]j−k
[j − k]!

.(2.7)

Proof. We compute the q-hit number directly using the statistic in (2.5). We claim that

HN
k (mj) = Rk(m

k) ·Rj−k((N −m)j) ·RN−j((N − j)N−j).
To show this, let us denote by B the N ×N board. Then there are j − k rows occupied by rooks
right of the shape mj . These rooks cancel the respective rows from the mj shape. The overall
contribution to the q-hit number from the k rooks on the remaining shape mk is Rk(m

k) = [m]k.
The overall contribution to the q-hit number from the j − k rooks placed to the right of the shape
mj is Rj−k((N−m)j). The j rooks placed on the first j rows of the board B cancel as many columns

in the shape NN−j consisting of the last N − j rows of the board B. By Proposition 2.2, the overall
contribution to the q-hit number from placing the remaining N − j rooks in the remaining shape
(N − j)N−j is RN−j((N − j)N−j) = [N − j]!. This proves the claim and the result follows by using

the formula in (2.6) for Rk(a
b). �
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Proposition 2.17.

Hm,n
r ((m− 1)k) =


qk[m− k][m− 1]n−1 r = k,

[k][m− 1]n−1 r = k − 1,

0 otherwise.

Proof. Since every row of the n ×m board has a rook and the last column has at most one rook
then the rooks can only “hit” the shape (m − 1)k r = k or r = k − 1 times.

When r = k, the first k cells of the last column are not cancelled in any rook placement so they
contribute to stat(·). The contribution to the q-hit number from the k rooks placed on the shape
(m− 1)k is Rk((m− 1)k). These rooks cancel k columns in the shape of the last n− k rows. Then
the contribution to the q-hit number of placing n− k rooks on the remaining shape (m− k)n−k is
Rn−k((m− k)n−k). See Figure 3c. Thus,

Hm,n
k ((m−1)k) = qkRk((m−1)k)·Rn−k((m−k)n−k) = qk[m−1]k[m−k]n−k = qk[m−k][m−1]n−1.

When r = k − 1, there is a rook on one of the first k cells of the mth column which cancels all
the cells of its corresponding row i = 1, . . . , k and the cells below the rook in its column. This rook
contributes i− 1 to the statistic (the cells above the rook in the mth column). There contribution
to the q-hit number from the k−1 rooks placed on the remaining shape (m−1)k−1 (without row i)
is Rk−1((m− 1)k−1). The k rooks on the first k rows cancel the cells of their columns in the shape
of the last n − k rows. Then the contribution to the q-hit number of placing n − k rooks on the
remaining shape (m− k)n−k is Rn−k((m− k)n−k). See Figure 3d. Summing over all i = 1, . . . , k we
obtain that

Hm,n
k−1((m−1)k) = [k]Rk−1((m−1)k−1)·Rn−k((m−k)n−k) = [k][m−1]k−1[m−k]n−k = [k][m−1]n−1.

�

3. New q-rook and q-hit identities

The proofs of Theorems 1.2 and 1.3 rely on many new identities between q-hit numbers, and their
equivalent q-rook versions. While the q-hit and q-rook identities are independent of the chromatic
symmetric function theory, we first prove them using elementary combinatorial methods and uni-
variate generating functions.

For brevity, we will denote by λ/c j the partition obtained from λ by removing its jth column, by
λ/r i the partition obtained by removing its ith row, and by λ/(i, j) the partition obtained from λ
by removing its jth column and its ith row. Moreover, we denote ` = `(λ).

3.1. Identities on q-rook numbers. The following q-rook identities can be proven directly using
the generating function identity in Proposition 2.2 of Garsia-Remmel. We start with a simple
algebraic identity.
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Lemma 3.1. Given a partition λ = (λ1, . . . , λ`),

qλ1 [x]
F (x− 1;λ)

F (x;λ)
= [x− `+ λ1]−

λ1∑
j=1

qλ1−j
λ′j∏
t=1

[x+ λt − 1− `+ t]

[x+ λt − `+ t]
.

Proof. We use induction on `(λ) and apply Proposition 2.2. For `(λ) = 1, we have

[x]
F (x− 1;λ)

F (x;λ)
= [x − 1] +

λ1∑
j=1

q−j − q−j
[x+ λ1 − 1]

[x+ λ1]
= q−λ1

[x+ λ1 − 1]

[x+ λ1]
([x + λ1] − [λ1]).

Next, expanding the RHS of the above identity and doing standard manipulations gives

[x− `+ λ1]−
λ1∑
j=1

qλ1−j
λ′j∏
t=1

[x+ λt − 1− `+ t]

[x+ λt − `+ t]
=

= qλ1−λ2
[x+ λ1 − `]

[x+ λ1 − `+ 1]

[x+ λ2 − (`− 1)]−
λ2∑
j=1

qλ2−j
λ′j∏
t=2

[x+ λt − 1− `+ t]

[x+ λt − `+ t]

 .

By induction hypothesis the parenthetical on the RHS above is qλ2 [x]F (x − 1; λ̃)/F (x; λ̃) where

λ̃ = (λ2, . . . , λ`). Using λ̃t = λt+1 for the reindexing, we obtain the result. �

Next, we find the following q-analogue of the derivative of F (x;λ).

Lemma 3.2. We have the following formula for the q-analogue of the derivative of F (x;λ):

DF (x;λ) :=
∑̀
k=0

[k]Rk(λ)[x]`−k = q`−x([x]F (x− 1;λ)− [x− `]F (x;λ)).

Proof.

F (x;λ) :=
∑̀
k=0

Rk(λ)[x]`−k =
∏̀
i=1

[x+ λ`−i+1 − i+ 1].

Note that

[x]`−k − [x− 1]`−k = [x− 1]`−k−1

(
1− qx − 1 + qx−`+k

1− q

)
=

[x]`−k
[x]

qx−`(qk − q`)
1− q

=
[x]`−k

[x]
qx−`([`]− [k]).

Apply this identity to each term in the following difference

F (x;λ)− F (x− 1;λ) =
∑̀
k=0

Rk(λ)
[x]`−k

[x]
qx−`([`]− [k]),
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so that

[x](F (x;λ)− F (x− 1;λ)) = qx−`[`]F (x;λ)− qx−`
∑̀
k=0

[k]Rk(λ)︸ ︷︷ ︸
DF (x;λ)

.

This gives an equation for DF which we solve as

DF (x;λ) = −q`−x([x]− qx−`[`])F (x;λ) + q`−x[x]F (x− 1;λ) = q`−x([x]F (x− 1;λ)− [x− `]F (x;λ)),

giving us the desired formula. �

The following result shows the relationship between q-rook numbers for partitions obtained from
deleting a column of λ.

Lemma 3.3. For all i fixed,∑
j

qm−jRi(λ/
c j) = Ri(λ)[m− i]−Ri+1(λ)(qm − qm−i−1).

Proof. Multiplying on both sides by [x]`−i, the above claim is equivalent to the generating function
identity:∑

j

qm−jF (x;λ/c j) =
∑
i

(Ri(λ)[m− i]−Ri+1(λ)(qm − qm−i−1))[x]`−i

=
∑
i

Ri(λ)
(
[m− i][x]`−i − (qm − qm−i)[x]`−i+1

)
=
∑
i

Ri(λ)[x]`−i[m+ x− `]− qm[x][x− 1]`−i)

= [m+ x− `]F (x;λ)− qm[x]F (x− 1;λ),

where we use the observation that

[m− i][x]`−i − (qm − qm−i)[x]`−i+1 = [x]`−i
(1− qm−i)− (qm − qm−i)(1− qx−`+i)

1− q

= [x]`−i
1− qm−i − qm + qm−i + qm+x−`+i − qm+x−`)

1− q
= [x]`−i[x+m− `]− qm[x]`−i+1.

We have that

F (x;λ/c j) =

λ′j∏
i=1

[x + λi − 1 − ` + i]
∏̀

i=λ′j+1

[x + λi − ` + i] = F (x;λ)

λ′j∏
i=1

[x− 1 + λi − `+ i]

[x+ λi − `+ i]
.
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Using Lemma 3.1 and that λ/c j = λ for j > λ1,

m∑
j=1

qm−jF (x;λ/c j) = F (x;λ)

[m− λ1] + qm−λ1
∑
j

qλ1−j
λ′j∏
i=1

[x− 1 + λi − `+ i]

[x+ λi − `+ i]


= F (x;λ)

(
[m− λ1] + qm−λ1 [x− `+ λ1]− qm−λ1qλ1 [x]

F (x− 1;λ)

F (x;λ)

)
= F (x;λ)[x− `+ λ1 +m− λ1]− qm[x]F (x− 1;λ),

which is what we wanted to show and completes the proof. �

We also have the following relationship between q-rook numbers obtained from removing a single
row from λ.

Lemma 3.4. For all fixed k,
n∑
i=1

qi−1+λiRk(λ/
r i) = [n]Rk(λ)− [k]Rk(λ).

Proof. First of all, notice that we can replace n with ` since for i > `, λ/r i = λ, λi = 0 and
[n] −

∑n
i=`+1 q

i−1 = [`]. Multiplying by [y]`−k = [y][y − 1](`−1)−k on both sides and summing over
all k, the identity is equivalent to

[y]
∑̀
i=1

qi−1+λi
∑
k

Rk(λ/
r i)[y − 1](`−1)−k = [n]

∑
k

Rk(λ)[y]`−k −
∑
k

[k]Rk(λ)[y]`−k.

Thus, the identity is then equivalent to the generating function identity

[y]
∑̀
i=1

qi−1+λiF (y − 1, λ/r i)

= [`]F (y;λ)−DF (y;λ) = [`]F (y, λ) + q−y+`[y − `]F (y, λ)− q`−y[y]F (y − 1, λ).

We have that for i ≤ `

F (y−1, λ/r i) =
`−1∏
j=1

[y−1+(λ/r i)j−(`−1)+i] =
i−1∏
j=1

[y−1+λj−`+1+j]
∏̀
j=i+1

[y−1+λj−(`−1)+j−1]

=
1

[y − 1 + λi − `+ i]

i−1∏
j=1

[y + λj − `]
[y − 1 + λj − `]

F (y − 1, λ),

and so we reach the following equivalent identity

[y]
∑̀
i=1

qy−`+i−1+λi

[y − 1 + λi − `+ i]

i−1∏
j=1

[y + λj − `]
[y − 1 + λj − `]

F (y − 1, λ)

= qy−`[`]F (y, λ) + [y − `]F (y, λ)− [y]F (y − 1, λ).
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We can rewrite it as

[y]
∑̀
i=1

[y − `+ i+ λi]− [y − 1− `+ i+ λi]

[y − 1 + λi − `+ i]

i−1∏
j=1

[y + λj − `+ j]

[y − 1 + λj − `+ j]
F (y − 1, λ)

= qy−`[`]F (y, λ) + [y − `]F (y, λ)− [y]F (y − 1, λ),

which reduces again to

[y]F (y − 1, λ)
∑̀
i=1

 i∏
j=1

[y + λj − `+ j]

[y − 1 + λj − `+ j]
−

i−1∏
j=1

[y + λj − `+ j]

[y − 1 + λj − `+ j]

 = [y]F (y, λ)− [y]F (y − 1, λ).

After canceling the terms in the telescoping sum on the LHS, the identity reduces to

[y]F (y − 1, λ)

∏̀
j=1

[y + λj − `+ j]

[y − 1 + λj − `+ j]
− 1

− [y]F (y, λ) + [y]F (y − 1, λ)

= [y](F (y, λ)− F (y − 1, λ))− [y]F (y, λ) + [y]F (y − 1, λ) = 0,

which completes the proof. �

Lemma 3.5. We have the following identity for q-rook numbers:∑
(i,j)∈λ

qi−j+λiRk(λ/(i, j)) = q[k + 1]Rk+1(λ).

Proof. Translating this identity into generating functions, we have that it is equivalent to

`−1∑
k=0

∑
(i,j)∈λ

qi−j+λiRk(λ/(i, j))[x]`−1−k =
`−1∑
k=0

q[k + 1]Rk+1(λ)[x]`−k−1 =
∑̀
t=0

q[t]Rt(λ)[x]`−t,

which can be rewritten, with the help of Lemma 3.2, in terms of the F function as∑
(i,j)∈λ

qi−j+λiF (x;λ/(i, j)) = qDF (x;λ) = −q`−x+1[x− `]F (x;λ) + q1+`−x[x]F (x− 1;λ).(3.1)

Now, we notice that if µ = λ/(i, j)

F (x;λ/(i, j)) =

`−1∏
t=1

[x+ µt − `+ 1 + t]

=

i−1∏
t=1

[x+ λt − 1− `+ 1 + t]

λ′j−1∏
t=i

[x+ λt+1 − 1− `+ 1 + t]

`−1∏
t=λ′j

[x+ λt+1 − `+ 1 + t]

= F (x;λ)

∏λ′j
t=i+1[x+ λt − 1− `+ t]∏λ′j

t=i[x+ λt − `+ t]
.
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Note that qx−1−`+i+λi = [x+ λi − `+ i]− [x+ λi − `+ i− 1], so we can rewrite this as

qi−j+λiF (x;λ/(i, j))

= q−x+1+`−jF (x;λ)([x+ λi − `+ i]− [x+ λi − `+ i− 1])

∏λ′j
t=i+1[x+ λt − 1− `+ t]∏λ′j

t=i[x+ λt − `+ t]

= q−x+1+`−jF (x;λ)

 λ′j∏
t=i+1

[x+ λt − 1− `+ t]

[x+ λt − `+ t]
−

λ′j∏
t=i

[x+ λt − 1− `+ t]

[x+ λt − `+ t]

 .

Fixing j and summing over all possible i = 1 . . . λ′j we get telescoping cancellations and so

∑
(i,j)∈λ

qi−j+λiF (x;λ/(i, j)) =
∑
j

q−x+1+`−jF (x;λ)

1−
λ′j∏
t=1

[x+ λt − 1− `+ t]

[x+ λt − `+ t]

 .

Substituting this into the LHS of (3.1), the needed identity transforms to the equivalent

∑
j

q1−j+`−xF (x;λ)

1−
λ′j∏
t=1

[x+ λt − 1− `+ t]

[x+ λt − `+ t]

 = qDF (x;λ)

= q`−x+1 ([x]F (x− 1;λ)− [x− `]F (x;λ)) ,

which is equivalent to

[x]
F (x− 1;λ)

F (x;λ)
= [x− `] +

λ1∑
j=1

q−j − q−j
λ′j∏
t=1

[x+ λt − 1− `+ t]

[x+ λt − `+ t]
.

This last identity simplifies as

qλ1 [x]
F (x− 1;λ)

F (x;λ)
= [x− `+ λ1]−

λ1∑
j=1

qλ1−j
λ′j∏
t=1

[x+ λt − 1− `+ t]

[x+ λt − `+ t]
,

and is equivalent to the formula in Lemma 3.1, which completes the proof. �

3.2. q-hit identities. We now translate the above rook identities into q-hit identities using the
relationship from Lemma 2.3. Let

Gm,n(x;λ) =
n∑
k=0

Hm,n
k (λ)(qx)k.
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Then we have the following equivalences in terms of the generating functions

Gm,n(x;λ) :=
n∑
i=0

i∑
k=0

q(
k
2)−|λ|

[m− n]!
Ri(λ) [m− i]!

[
i
k

]
(−1)i+kqmi−(i2)qxk(3.2)

=
q−|λ|

[m− n]!

n∑
i=0

Ri(λ) [m− i]!qmi−(i2)(−1)i
i∑

k=0

q(
k
2)
[
i
k

]
(−qx)k

=
q−|λ|

[m− n]!

n∑
i=0

Ri(λ) [m− i]!qmi−(i2)(−1)i
i−1∏
k=0

(1− qx+k).

Lemma 3.6. For every λ inside an n×m board and for every k

m∑
j=1

qm+n−j−λ′jHm−1,n
k (λ/c j) = [m− n]Hm,n

k (λ)qn−k.

Proof. The collection of identities for k = 0, . . . , n is equivalent to the following generating function
identities

n∑
k=0

m∑
j=1

qm+n−j−λ′jHm−1,n
k (λ/c j)qxk

= [m− n]
n∑
k=0

Hm,n
k (λ)qn−kqxk

m∑
j=1

qm+n−j−λ′jGm−1,n(x;λ/c j) = qn[m− n]Gm,n(x− 1;λ).

Using (3.2) and expanding in the qx-polynomial basis (qx; q)k =
∏i−1
k=0(1 − qx+k) for i = 0, . . . , n,

the G-identity is equivalent to the following rook identity for every i:

m∑
j=1

qm+n−j−λ′j q−|λ|+λ
′
j

[m− 1− n]!

n∑
i=0

Ri(λ/
c j) [m− 1− i]!qmi−i−(i2)(−1)i

i−1∏
k=0

(1− qx+k)

= qn[m− n]
q−|λ|

[m− n]!

n∑
i=0

Ri(λ) [m− i]!qmi−(i2)(−1)i
i−1∏
k=0

(1− qx−1+k),

which simplifies as

m∑
j=1

qm−j
n∑
i=0

Ri(λ/
c j) [m− 1− i]!qmi−i−(i2)(−1)i

i−1∏
k=0

(1− qx+k)

=
n∑
i=0

Ri(λ) [m− i]!qmi−(i2)−i(−1)iqi
i−1∏
k=0

(1− qx−1+k).

Notice that

qi(qx−1; q)i = (qi − qx+i−1)(qx; q)i−1 = (qi − 1)(qx; q)i−1 + (qx; q)i,
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and so the RHS above expands in the (qx; q)i basis as:

n∑
i=0

Ri(λ) [m− i]!qmi−(i+1
2 )(−1)i((qi − 1)(qx; q)i−1 + (qx; q)i)

=
n∑
i=0

(−1)i(qx; q)i

(
Ri(λ) [m− i]!qmi−(i+1

2 ) −Ri+1(λ) [m− i− 1]!qmi+m−(i+2
2 )(qi+1 − 1)

)
.

Therefore, this is equivalent to the following q-rook identity for every i:

m∑
j=1

qm−jRi(λ/
c j) [m− 1− i]!qmi−(i+1

2 )

=
(
Ri(λ) [m− i]!qmi−(i+1

2 ) −Ri+1(λ) [m− i− 1]!qmi+m−(i+2
2 )(qi+1 − 1)

)
.

Simplifying last expression, we obtain
m∑
j=1

qm−jRi(λ/
c j) = Ri(λ)[m− i]−Ri+1(λ)(qm − qm−i−1),

which is exactly Lemma 3.3. �

Lemma 3.7. Let k ≤ n ≤ m be fixed, and λ ⊂ n×m. We have the following q-hit identity:

[m− n+ 1]

n∑
i=1

qi−1Hm,n−1
k (λ/r i) = Hm,n

k (λ)qk[n− k] +Hm,n
k+1(λ)[k + 1].

Proof. Multiplying both sides by (qx)k and summing over all k, the identity becomes equivalent to
the following generating function identity:

[m− n+ 1]
n∑
i=1

qi−1Gm,n−1(x;λ/r i) =
n−1∑
k=0

Hm,n
k (λ)(qx+1)k[n− k] +

n−1∑
k=0

Hm,n
k+1(λ)[k + 1]qxk.

To prove the above identity, we will use the following difference operator and its properties:

∆F (x) :=
F (x+ 1)− F (x)

qx(q − 1)
, ∆(qx)p = [p](qx)p−1, ∆(qx, q)p = −[p](qx+1, q)p−1 = − [p](qx; q)p

1− x
.

Notice also that qk[n− k] = [n]− [k] and [k + 1]qxk = ∆qx(k+1). Therefore, we have

n−1∑
k=0

Hm,n
k (λ)

(
qx+1

)k
[n− k] =

n−1∑
k=0

Hm,n
k (λ)qxk[n]−

n−1∑
k=0

Hm,n
k (λ)[k]qxk

= [n]Gm,n(x;λ)− qx∆Gm,n(x;λ)

and
n−1∑
k=0

Hm,n
k+1(λ)[k + 1]qxk = ∆Gm,n(x;λ).
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Thus, the generating function identity is equivalent to

[m− n+ 1]
n∑
i=1

qi−1Gm,n−1(x;λ/r i) = [n]Gm,n(x;λ)− qx∆Gm,n(x;λ) + ∆Gm,n(x;λ).

Using the formula

(1− qx)∆Gm,n(x;λ) =
q−|λ|

[m− n]!

n∑
k=0

[k]Rk(λ)[m− k]!qmk−(k2)(−1)k−1 (1− qx)(qx+1, q)k−1︸ ︷︷ ︸
(qx;q)k

,

we can express the generating function identity in terms of q-rook numbers generating function as:

[m− n+ 1]
n∑
i=1

qi−1
q−|λ|+λi

[m− n+ 1]!

n∑
k=0

Rk(λ/
r i)[m− k]!qmk−(k2)(−1)k(qx, q)k

= [n]
q−|λ|

[m− n]!

∑
k

Rk(λ)[m− k]!qmk−(k2)(−1)k(qx, q)k

+
q−|λ|

[m− n]!

n∑
k=0

[k]Rk(λ)[m− k]!qmk−(k2)(−1)k−1(qx; q)k.

For each k, the coefficients at (qx; q)k coincide, after canceling common factors, and reducing then
to the q-rook identities from Lemma 3.4

n∑
i=1

qi−1+λiRk(λ/
r i) = [n]Rk(λ)− [k]Rk(λ).

�

Lemma 3.8. We have the following identity

qk
∑

(i,j)∈λ

qi+(m−j−λ′j)Hm−1,n−1
k (λ/(i, j)) = [k + 1]Hm,n

k+1(λ).

Proof. We show that this result follows from Lemma 3.5. By (2.2),

[k + 1]Hm,n
k+1(λ) = [k + 1]

q(
k+1
2 )−|λ|

[m− n]!

n∑
t=k+1

Rt(λ)[m− t]!
[

t
k + 1

]
(−1)t+k+1qmt−(t2)

=
q(
k+1
2 )−|λ|

[m− n]!

n−1∑
t′=k

[t′ + 1]Rt′+1(λ)[m− t′ − 1]!

[
t′

k

]
(−1)t

′+kqmt
′+m−(t

′+1
2 ),
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1

m

λ

m+ 1

m+ n

(a)

3

2

q3 q1 q1 q2 q2 q0

(b)

Figure 4. (A) an abelian Dyck path λ inside an n×m board. (B) Top: the paths
for λ = (2, 1), and for the rectangles 30, 31, 32 inside a 2× 3 board. (B) Bottom: the
six placements of 2 rooks in 2× 3 divided by how many rooks “hit” (2, 1) (in gray)
and the associated statistic to each rook placement.

where we reindexed the sum with t′ = t − 1. Next, we apply Lemma 3.5 and exchange sums to
obtain

[k+ 1]Hm,n
k+1(λ) =

q(
k+1
2 )−|λ|

[m− n]!

∑
(i,j)∈λ

qm−j+λi
n−1∑
t′=k

Rt′(λ/(i, j))[m− t′ − 1]!

[
t′

k

]
(−1)t

′+kqmt
′+m−(t

′+1
2 )

= qk
∑

(i,j)∈λ

qi+m−j−λ
′
j
q(
k
2) − |λ/(i, j)|

[m− n]!

n−1∑
t′=k

Rt′(λ/(i, j))[m− t′ − 1]!

[
t′

k

]
(−1)t

′+kq(m−1)t
′−(t

′
2)

= qk
∑

(i,j)∈λ

qi+m−j−λ
′
jHm−1,n−1

k (λ/(i, j)),

where we also used that |λ/(i, j)| = |λ| − λi − λ′j + 1 and (2.2) for Hm−1,n−1
k (λ/(i, j)). �

4. The Guay-Paquet q-hit identity

In this section we give our main result, a proof of Theorem 1.3 using the q-rook theory identities
from Section 3. We start by giving an example of this elegant identity.

Example 4.1. For λ = (2, 1) inside a 2×3 board, looking at Figure 4b, we see that H3,2
0 (λ) = q0 = 1,

H3,2
1 (λ) = 2q + 2q2, H3,2

2 (λ) = q3. One can verify that

X21(x, q) =
1

[3][2]

(
X30(x, q) + (2q2 + 2q)X31(x, q) + q3X32(x, q)

)
.

Remark 4.2. By Lemma 2.13, the identity in Theorem 1.3 can be rewritten as

(4.1) Xλ(x, q) =
1

[m]!

n∑
j=0

Hm
j (λ) ·Xmj (x, q).
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Our main self-contained proof is an inductive argument, where the induction is applied both on
the size m + n of the graph, and also on the number of variables in the symmetric polynomials.
Namely, we consider the chromatic symmetric functions in variables x1, . . . , xM and each monomial
appearing as a particular assignment of the variables (i.e. colors) to the vertices. That is, the vertices
1, . . . , N = m + n are colored {1, . . . ,M}. For simplicity, we denote by XN

λ (M) the chromatic
symmetric polynomial XG(λ)(x1, . . . , xM ; q) where the graph G(λ) has N vertices. We will use
induction on both M and n, m when necessary, driven by the following recursion.

Recall that λ/(i, j) is the partition obtained by removing the ith row and the jth column from
λ. Moreover, we denote by λ/i the partitions obtained by removing from λ the ith column, for
i = 1, . . . ,m, or the (m+ n− i+ 1)th row, for i = m+ 1, . . . ,m+ n.

Lemma 4.3. For λ ⊂ n×m we have the following recursion

Xm+n
λ (M) =Xm+n

λ (M − 1) + xM

m+n∑
i=1

qm+n−i−λ′iXm+n−1
λ/i (M − 1)

+ x2M
∑

(i,j)∈λ

qi−1+(m+n−j−λ′j)Xm+n−2
λ/(i,j) (M − 1).

Proof. In the abelian case, i.e. when λ ⊂ n ×m, the graph G(λ) consists of a clique with vertices
{1, . . .m}, a clique with vertices {m + 1, . . . ,m + n} and a bipartite graph in between with edges
(i,m+ j) for each (i, j) in λ (the complement of λ in n×m). Therefore, a coloring of this graph has
at most two vertices of the same color. If the colors used are in {1, . . . ,M}, there are three cases
for the appearances of color M :

1. No vertex is colored M , this term contributes Xm+n−1
λ (M − 1) to Xm+n

λ (M).
2. Only one vertex is colored M . Suppose this vertex is in column j (from left) and row

i = N − j (from top to bottom). It creates ascents with all vertices above it but not in λ,
giving N − j − λ′j ascents. Deleting this vertex corresponds to deleting its row and column

(only one would be a row/column of λ) and we get a graph on N − 1 vertices with shape
λ/j (deleting either row N − j from λ, or column j from λ). The remaining vertices and
their ascents are not affected by this, so all their possible colorings contribute

xM

N∑
j=1

qN−j−λ
′
jXm+n−1

λ/j (M − 1).

3. Two vertices are colored M . Suppose that the lower one is in column j and the higher one
is in row i (counting from the top), necessarily with (i, j) ∈ λ. The lower vertex contributes
N − j − λ′j ascents with the “visible” vertices above it. The higher vertex contributes i− 1

ascents, the number of vertices above it, giving a total of N − j−λ′j + i− 1 ascents. We can
remove these two vertices, by removing row i and column j from λ and decreasing N by 2.
Again, the remaining vertices and their ascents are not affected, so these terms contribute

x2M
∑
(i,j)

qN−j−λ
′
j+i−1Xm+n−2

λ/(i,j) (M − 1).

�
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For rectangular shapes λ = (mk), Lemma 4.3 simplifies to give the following recursive expansion.

Lemma 4.4.

Xm+n
mk

(M) = Xm+n
mk

(M − 1) + xM

(
qn−k[m]Xm+n−1

(m−1)k (M − 1) + [k]Xm+n−1
mk−1 (M − 1)

+qk[n− k]Xm+n−1
mk

(M − 1)
)

+ x2Mq
n−k[k][m]Xm+n−2

(m−1)k−1(M − 1).

Proof. This follows by carefully applying Lemma 4.3 to the shape λ = mk. If i ∈ [1,m] then
λ/i = (m− 1)k and N − i− λ′i = m+ n− i− k. If i ∈ [m + 1,m + n− k], then it is not a row or
column of λ and we have λ/i = mk with m+ n− i− 0 ascents. If i ∈ [m+ n− k + 1,m+ n] then
λ/i = mk−1 and there are m+n− i ascents. For (i, j) ∈ λ we always have λ/(i, j) = (m−1)k−1 and
the ascents are m+ n− j − k + i− 1. Summing over the row/column indices in the given intervals
we get the desired ascent statistics as the given q-integers. �

Proof of Theorem 1.3. Translating Theorem 1.3 into chromatic symmetric polynomials, we want
to prove that for every M we have

Xm+n
λ (M) =

1

[m]n

n∑
j=0

Hm,n
j (λ) ·Xm+n

mj
(M).(4.2)

If M < m then both Xm+n
λ (M) = 0 and Xm+n

mj
(M) = 0 since there is no proper coloring of the

lower complete graph on m vertices. Otherwise, if M = 1 then m = 1 and so n = 1 and if λ = ∅
then X2

λ(M) 6= 0 with Xm0(1) = 0 and H1,1
1 (∅) = 0, and the identity is satisfied. If λ = (1) then

X2
(1)(1) = x21, [m]n = [1]1 = 1, H1,1

0 ((1)) = 0 and H1,1
1 ((1)) = 1 with m1 = (1), and the identity is

again trivially satisfied. This completes the initial conditions for the recursion in Lemma 4.3.

We will prove identity (4.2) by induction on M . As the argument above shows, the identity is
trivially satisfied for M = 1. Suppose that (4.2) is true for M − 1, every m ≥ n, and every shape
λ ⊂ mn. Naturally, if M < m then both sides become trivially 0.

The rest of the proof is as follows. We apply Lemma 4.4 to each term Xmj (M) appearing in the
RHS of (4.2). We also apply Lemma 4.3 to the LHS of (4.2), and the inductive hypothesis to
X?
µ(M − 1) for all appearing terms, where ? means any value ≤ m+ n.

Applying Lemma 4.4 to each term Xmj (M) appearing in the RHS in (4.2), we obtain

1

[m]n

n∑
j=0

Hm,n
j (λ)·Xm+n

mj
(M) =

1

[m]n

∑
k

Hm,n
k (λ)

(
Xm+n
mk

(M − 1) + xM

(
qn−k[m]Xm+n−1

(m−1)k (M − 1)

+[k]Xm+n−1
mk−1 (M − 1) + qk[n− k]Xm+n−1

mk
(M − 1)

)
+ x2Mq

n−k[k][m]Xm+n−2
(m−1)k−1(M − 1)

)
.

We now apply Lemma 4.3 to the LHS in (4.2). We split the sum in the linear xM term into j ∈ [1,m],
when λ/j = λ/c j ⊂ (m− 1)× n (removing column j), and then i = m+ n+ 1− j ∈ [1, n], where
λ′j = 0 and m+ n− j − λ′j = i− 1 and λ/i ⊂ (n− 1)×m. We then apply the inductive hypothesis
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to each X?
µ(M − 1) appearing with the corresponding rectangular frame, obtaining

Xm+n
λ (M) = Xm+n

λ (M − 1)

+ xM

m+n∑
j=1

qm+n−j−λ′jXm+n−1
λ/j (M − 1) + x2M

∑
(i,j)∈λ

qi−1+(m+n−j−λ′j)Xm+n−2
λ/(i,j) (M − 1)

=
1

[m]n

∑
k

Hm,n
k (λ)Xm+n

mk
(M − 1) + xM

∑
k

∑m
j=1 q

m+n−j−λ′jHm−1,n
k (λ/c j)

[m− 1]n
Xm+n−1

(m−1)k (M − 1)

+ xM
∑
k

∑n
i=1 q

i−1Hm,n−1
k (λ/i)

[m]n−1
Xm+n−1
mk

(M − 1)

+ x2M
∑
k

∑
(i,j)∈λ q

i−1+(m+n−j−λ′j)Hm−1,n−1
k (λ/(i, j))

[m− 1]n−1
Xm+n−2

(m−1)k (M − 1).

Applying Lemmas 3.6, 3.7 and 3.8 to the sums of q-hit numbers above, we get that

Xm+n
λ (M) =

1

[m]n

∑
k

Hm,n
k (λ)Xm+n

mk
(M − 1) + xM

∑
k

qn−k[m− n]Hm,n
k (λ)

[m− 1]n
Xm+n−1

(m−1)k (M − 1)

+ xM
∑
k

qk[n− k]Hm,n
k (λ) + [k + 1]Hm,n

k+1(λ)

[m− n+ 1][m]n−1
Xm+n−1
mk

(M − 1)

+ x2M
∑
k

qn−1−k[k + 1]Hm,n
k+1(λ)

[m− 1]n−1
Xm+n−2

(m−1)k (M − 1).

Simplifying the factors [m−1]n
[m−n] = [m]n

[m] , [m − n + 1][m]n−1 = [m]n and [m − 1]n−1 = [m]n
[m] , and

grouping the terms with Hm,n
k (λ), we can rewrite the above identity as

Xm+n
λ (M) =

1

[m]n

∑
k

Hm,n
k (λ)×

(
Xm+n
mk

(M − 1) + xMq
n−k[m]Xm+n−1

(m−1)k (M − 1)

+xM (qk[n− k]Xm+n−1
mk

(M − 1) + [k]Xm+n−1
mk−1 (M − 1)) + x2Mq

n−k[k][m]Xm+n−2
(m−1)k−1(M − 1)

)
=

1

[m]n

∑
k

Hm,n
k (λ)Xm+n

mk
(M),

where we recognized the sum in the parentheses as the RHS of the recursion for rectangular CSF,
namely Lemma 4.4. This completes the induction. �

5. The Abreu–Nigro expansion in the elementary basis

In this section we show that Guay-Paquet’s identity (Theorem 1.3) is equivalent to Abreu–Nigro’s
identity (Theorem 1.2). We start by giving a proof of Abreu–Nigro’s identity for rectangular shapes.
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Lemma 5.1 (Abreu–Nigro’s formula for rectangles).

Xmk(x, q) = [k]!Hm+n−k
k (mk) · em+n−k,k +

k−1∑
r=0

qr [r]! [m+ n− 2r]Hm+n−r−1
r (mk) · em+n−r,r.

In order to prove this case of the Abreu–Nigro identity we need the following result.

Lemma 5.2 (Guay-Paquet formula for rectangles). For the shape (m−1)k ⊂ n×m we have that,

[m]X(m−1)k = qk[m− k]Xmk + [k]Xmk−1 .

Corollary 5.3. [
m− 1
k

]
Xmk =

k∑
j=0

[
m
j

]
(−1)k−jq−(k+j)(k−j+1)/2X(m−1)j .

Proof of Lemma 5.2. By Theorem 1.3 for the shape λ = (m− 1)k ⊂ n×m and the formula for the
q-hit numbers Hm,n

r ((m− 1)k) from Proposition 2.17 we obtain

X(m−1)k =
1

[m]n
qk[m− 1]k[m− k]n−kXmk +

1

[m]n
[k][m− 1]k−1[m− k]n−kXmk−1 ,

which simplifies to

[m]X(m−1)k = qk[m− k]Xmk + [k]Xmk−1 .

�

Proof of Lemma 5.1. We use induction on m and k. For the base case, note that Xm0 = [m +
n]!em+n = Hm+n

0 (m0)em+n. Now, by Lemma 5.2 we have that

qk[m− k]Xmk =
(

[m]X(m−1)k − [k]Xmk−1

)
.

Next, we use the induction hypothesis on X(m−1)k and Xmk−1 and we simplify our expression, so
we want to prove that

(5.1) qk[m− k]
(

[k]!Hm+n−k
k (mk) · em+n−k,k +

k−1∑
r=0

qr [r]! [m+ n− 2r]Hm+n−r−1
r (mk) · em+n−r,r

)
= [m]

(
[k]!Hm+n−k

k ((m− 1)k) · em+n−k,k +
k−1∑
r=0

qr [r]! [m+ n− 2r]Hm+n−r−1
r ((m− 1)k) · em+n−r,r

)
−[k]

(
[k − 1]!Hm+n−k+1

k−1 (mk−1)·em+n−k+1,k−1−
k−2∑
r=0

qr [r]! [m+ n− 2r]Hm+n−r−1
r (mk−1)·em+n−r,r

)
.

We do so by looking at the coefficient of em−n−r,r for 0 ≤ r ≤ k. For r = k, we have that

qk[m− k] [k]!Hm+n−k
k (mk) = [m] [k]!Hm+n−k

k ((m− 1)k),

which follows from (2.7) using routine simplifications.
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For r = k − 1, we have that

(5.2) qk[m− k]qk−1 [k − 1]! [m+ n− 2k + 2]Hm+n−k
k−1 (mk)

= [m] qk−1 [k − 1]! [m+ n− 2k + 2]Hm+n−k
k−1 ((m− 1)k)− [k] [k − 1]!Hm+n−k+1

k−1 (mk−1).

Using (2.7), we obtain that (5.2) is equivalent to

q [m− k] [n− k] = [m− k + 1] [n− k + 1]− [m+ n− 2k + 1] .(5.3)

For 0 ≤ r ≤ k − 2, we have that

(5.4) qk [m− k] qr [r]! [m+ n− 2r]Hm+n−r−1
r (mk)

= [m] qr [r]! [m+ n− 2r]Hm+n−r−1
r ((m− 1)k)− [k] qr [r]! [m+ n− 2r]Hm+n−r−1

r (mk−1).

Using (2.7), we obtain that (5.4) is equivalent to

qk−r [m− k] [n− k] = [m− r] [n− r]− [m+ n− r − k] [k − r] ,(5.5)

which is straightforward to verify by expanding both sides. Note that (5.3) is a particular case
of (5.5) by taking r = k − 1. �

We are now ready to prove that the Guay-Paquet’s identity and Abreu–Nigro’s follow from each
other. As a corollary, we obtain a new proof of the latter. The following example illustrates Abreu–
Nigro’s result.

Example 5.4. For λ = (2, 1) inside a 2× 3 board, we have that for k = 2, H3
2 (λ) = q3, H3

1 (λ) =
2q2 + 2q (see Figure 5), and H4

0 (λ) = q3 + 3q2 + 3q + 1. Therefore,

X2,1(x, q) = q3(1+q)e3,2(x)+q(1+q+q2)(2q2+2q)e4,1(x)+(1+q+q2+q3)(q3+3q2+3q+1)e5(x).

q3q1 q2 q2 q1

Figure 5. Placements of 3 rooks in 3× 3 that “hit” (2, 1) (in gray) once and twice
and the associated statistic to each rook placement.

Proof of Theorem 1.2. Applying Lemma 5.1 to the RHS of the formula in Theorem 1.3, we obtain
that

1

[m]n

n∑
j=0

Hm,n
j (λ) ·Xmj (x, q) =

1

[m]n

n∑
j=0

Hm,n
j (λ)

(
[j]!Hm+n−j

j (mj) · em+n−j,j

)

+
1

[m]n

n∑
j=0

Hm,n
j (λ)

(
qr

j−1∑
r=0

[r]! [m+ n− 2r]Hm+n−r−1
r (mj) · em+n−r,r

)
.
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Now, switching the summation order, we have that

1

[m]n

n∑
j=0

Hm,n
j (λ) ·Xmj (x, q) =

n∑
r=0

em+n−r,r
1

[m]n
[r]!Hm+n−r

r (mr)Hm,n
r (λ)

+
n−1∑
r=0

em+n−r,r
1

[m]n

(
qr

n∑
j=r+1

[r]! [m+ n− 2r]Hm+n−r−1
r (mj)Hm,n

j (λ)
)
.

Thus, we need to show that for r = k = `(λ),

[m]nH
m+n−k
k (λ) = Hm+n−k

k (mk)Hm,n
k (λ) + qk

n∑
j=k+1

[m+ n− 2k]Hm+n−k−1
k (mj)Hm,n

j (λ)

= Hm+n−k
k (mk)Hm,n

k (λ),

since Hm,n
j (λ) = 0 for j = k + 1, . . . , n. We also need to show that for r < k = `(λ),

[m]n q
r [m+ n− 2r]Hm+n−r−1

r (λ) = Hm+n−r
r (mr)Hm,n

r (λ)

+ qr
n∑

j=r+1

[m+ n− 2r]Hm+n−r−1
r (mj)Hm,n

j (λ).

After using (2.7), these two relations are equivalent to the following identities relating q-hit numbers
of λ in square boards and rectangular boards. Thus, the Abreu-Nigro expansion for Xλ(x, q) follows
now from Lemma 5.5 below, which completes the proof. �

Lemma 5.5. Let λ be a partition inside an n×m board and k = `(λ), then[
m− k
n− k

]
Hm+n−k
k (λ) = qk(n−k) [m+ n− 2k]m−kH

m,n
k (λ),(5.6)

and for 0 ≤ r < k, we have[
m− r
n− r

]
Hm+n−r−1
r (λ) = qr(n−r−1) [m+ n− 2r − 1]m−r−1H

m,n
r (λ)

+
n∑

j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]
Hm,n
j (λ).(5.7)

Proof. The first relation follows from a simple combinatorial observation together with Lemma 2.13.
For k = `(λ), we see that the k rooks on the first k rows on the board have to be all inside λ, and
all the cells outside λ in these first rows will be empty. Thus

HN
k (λ) = Hk,λ1

k (λ)qk(N−λ1)[N − k]!.

Similarly, by the proof of Lemma C.1 we have

Hm,n
k (λ) = Hk,λ1

k (λ)q(k(m−λ1)
[
m+ n− 2k
n− k

]
.

Substituting these formulas in each side of (5.6) we get the desired identity.
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For the second relation, we switch gears and use a deletion-contraction relation of q-hit numbers
(Lemma 2.6). The idea is to use induction of the size of λ, the deletion-contraction relation for q-hit
numbers, and deduce the identity by matching coefficients at each q-hit number.

Remark 5.6. An alternative proof appears in Section F, where the q-hits are expressed in terms
of q-rooks and matching coefficients at each q-rook reduces to q-binomial identities.

Let us start with the RHS of (5.7). Denote by

Bm,n
r (λ) := qr(n−r−1) [m+ n− 2r − 1]m−r−1H

m,n
r (λ)

+
n∑

j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]
Hm,n
j (λ).

If we apply the deletion-contraction relation in Lemma 2.6 to the q-hit numbers, we have that

Bm,n
r (λ) = qr(n−r−1) [m+ n− 2r − 1]m−r−1H

m,n
r (λ\e)

+ qr(n−r−1) [m+ n− 2r − 1]m−r−1 q
|λ/e|−|λ|+r+m−1Hm−1,n−1

r−1 (λ/e)

− qr(n−r−1) [m+ n− 2r − 1]m−r−1 q
|λ/e|−|λ|+r+mHm−1,n−1

r (λ/e)

+

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]
Hm,n
j (λ\e)

+

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]
q|λ/e|−|λ|+j+m−1Hm−1,n−1

j−1 (λ/e)

−
n∑

j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]
q|λ/e|−|λ|+j+mHm−1,n−1

j (λ/e).(5.8)

For the LHS of (5.7), we denote Cm,nr (λ) :=

[
m− r
n− r

]
Hm+n−r−1
r (λ). Then by Corollary E.2,

Cm,nr (λ) =

[
m− r
n− r

]
Hm+n−r−1
r (λ\e)

+

[
m− r
n− r

]
q|λ/e|−|λ|+r+m+n−r−2 (Hm+n−r−2

r−1 (λ/e)− qHm+n−r−2
r (λ/e)

)
.

That is, we have the following deletion-contraction relation for the C’s:

Cm,nr (λ) = Cm,nr (λ\e) + q|λ/e|−|λ|+m+n−2
(
Cm−1,n−1r−1 (λ/e)− q [m− r]

[m− n]
Cm−1,nr (λ/e)

)
.(5.9)

Now, we want to compare the two expressions in (5.8) and (5.9). By inductive hypothesis,

Cm,nr (λ\e) = qr(n−r−1) [m+ n− 2r − 1]m−r−1H
m,n
r (λ\e)

+
n∑

j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]
Hm,n
j (λ\e) = Bm,n

r (λ\e).
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These terms appear both in (5.8) and in (5.9), and so they cancel. We have left to show that

q|λ/e|−|λ|+m+n−2
(
Cm−1,n−1r−1 (λ/e)− q [m− r]

[m− n]
Cm−1,nr (λ/e)

)
= qr(n−r−1) [m+ n− 2r − 1]m−r−1 q

|λ/e|−|λ|+r+m−1Hm−1,n−1
r−1 (λ/e)

− qr(n−r−1) [m+ n− 2r − 1]m−r−1 q
|λ/e|−|λ|+r+mHm−1,n−1

r (λ/e)

+

n∑
j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]
q|λ/e|−|λ|+j+m−1Hm−1,n−1

j−1 (λ/e)

−
n∑

j=r+1

qr(n−1−j)
[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]
q|λ/e|−|λ|+j+mHm−1,n−1

j (λ/e).

This last equation simplify to the following identity:

(5.10) qn−2
(
Cm−1,n−1r−1 (λ/e)− q [m− r]

[m− n]
Cm−1,nr (λ/e)

)
= qr(n−r)−1 [m+ n− 2r − 1]m−r−1

(
Hm−1,n−1
r−1 (λ/e)− qHm−1,n−1

r (λ/e)
)

+

n∑
j=r+1

qr(n−1−j)+j−1
[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]

(
Hm−1,n−1
j−1 (λ/e)− qHm−1,n−1

j (λ/e)
)
,

In order to show (5.10), we apply first the inductive hypothesis in the C’s together with the relation

in Corollary 2.14 to obtain their expansion in terms of q-hit numbers of the form Hm−1,n−1
j (λ/e):

qn−2Cm−1,n−1r−1 (λ/e) = q(r−1)(n−r−1)+n−2 [m+ n− 2r − 1]m−r−1H
m−1,n−1
r−1 (λ/e)

+

n−1∑
j=r

q(r−1)(n−2−j)+n−2
[

j
r − 1

]
[m+ n− r − j − 2]m−r

[n− r]
Hm−1,n−1
j (λ/e),

qn−1
[m− r]
[m− n]

Cm−1,nr (λ/e) = qr(n−r−1)+n−1
[m− r]
[m− n]

[m+ n− 2r − 2]m−r−2H
m−1,n
r (λ/e)

+
n∑

j=r+1

qr(n−1−j)+n−1
[
j
r

]
[m− r]
[m− n]

[m+ n− r − j − 2]m−r−1
[n− r]

Hm−1,n
j (λ/e).

Finally, we compare the coefficients in (5.10). For Hm−1,n−1
r−1 (λ/e), we have

LHS = q(r−1)(n−r−1)+n−2 [m+ n− 2r − 1]m−r−1 = RHS.

For Hm−1,n−1
r (λ/e), we have

LHS = q(r−1)(n−2−r)+n−2
[

r
r − 1

]
[m+ n− r − r − 2]m−r

[n− r]
− qr(n−r−1)+n−1 [m− r] [m+ n− 2r − 2]m−r−2 ,

RHS = −qr(n−r) [m+ n− 2r − 1]m−r−1 + qr(n−2−r)+r
[
r + 1
r

]
[m+ n− 2r − 2]m−r

[n− r]
,
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which simplifies to the relation [m + n− 2r − 1] = qn−r−1 [m− r] + [n− r − 1]. This last relation
is a straightforward verification by expanding both sides.

For Hm−1,n−1
j (λ/e), with r + 1 ≤ j ≤ n− 1,

LHS = q(r−1)(n−2−j)+n−2
[

j
r − 1

]
[m+ n− r − j − 2]m−r

[n− r]

− qr(n−1−j)+n−1
[
j
r

]
[m− r]

[m+ n− r − j − 2]m−r−1
[n− r]

,

RHS = qr(n−2−j)+j
[
j + 1
r

]
[m+ n− r − j − 2]m−r

[n− r]
− qr(n−1−j)+j

[
j
r

]
[m+ n− r − j − 1]m−r

[n− r]
,

which simplifies to the relation [m+ n− r − j − 1] = qn−j−1 [m− r]+[n− j − 1]. This last relation
is a straightforward verification by expanding both sides.

�

6. Variations and applications

6.1. Theorems 1.2 and 1.3 in terms of unicellular LLT polynomials. Chromatic symmetric
functions of Dyck paths are related to unicellular LLT polynomials [LLT97] that can be defined as
follows. For a Dyck path d, let G(d) be the associated graph and denote

LLTG(d)(x, q) :=
∑

κ:V (G(d))→P

qasc(κ)xκ,

where the sum is over all vertex colorings κ of G(d) and asc(κ) is the same as in the definition of
XG(x, q).

The function LLTG(d)(x, q) is actually symmetric (see [AP18, Sec. 3.1]) and the symmetric functions
XG(d)(x, q) and LLTd(x, q) are related via a plethystic substitution discovered independently by
Carlsson–Mellit [CM18, Prop. 3.4] and Guay-Paquet [GPc, Lemma 172]:

LLTG(d)(x, q) = (q − 1)nXG(d)[x/(q − 1), q],

where n is the size of the Dyck path. As a consequence of this connection, any linear relation in
one family implies the same relation in the other one. Since Theorems 1.2 and 1.3 yield a linear
relation among certain chromatic symmetric functions, we immediately obtain the same relations
for the corresponding unicellular LLT polynomials.

Corollary 6.1. Let λ be partition inside an n×m board with `(λ) = k ≤ λ1. Then

LLTG(λ)(x, q) =
1

[m+ n− k]!
Hm+n−k
k (λ) · LLTK(m+n−k,k)(x, q)

+

k−1∑
j=0

qj
[m+ n− 2j]

[m+ n− j]!
Hm+n−j−1
j (λ) · LLTK(m+n−j,j)(x, q),

where K(a, b) is the disjoint union of complete graphs on vertices {1, . . . , a} and {a+ 1, . . . , a+ b}.
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Proof. Since XK(a,b)(x, q) = [a]![b]!ea,b, then Theorem 1.2 yields a linear relation among XG(λ)(x, q),
XK(m+n,0)(x, q), . . . , XK(m+n−k,k)(x, q). The result then follows from the fact that every linear
relation among a set of chromatic symmetric functions of Dyck paths has a corresponding relation
among unicellular LLT polynomials [AP18, Prop. 55]. �

Corollary 6.2. Let λ be a partition inside an n×m (n ≤ m). Then

LLTG(λ)(x, q) =
1

[m]n

n∑
j=0

Hm,n
j (λ) · LLTG(mj)(x, q).

Proof. Theorem 1.3 yields a linear relation among Xλ(x, q), Xm0(x, q), . . . , Xmn(x, q). The result
then follows by the same fact as in the proof above. �

6.2. The staircase basis. Let V m,n := spanQ(q){Xλ | λ inside an n×m board}. Consider the set

of chromatic symmetric functions given by rectangular shapes Rm,n := {Xmj (x, q)}
n
j=0. This set is

actually a basis for V m,n.

Corollary 6.3. The set Rm,n forms a basis for the Q(q)-vector space V m,n.

Proof of Corollary 6.3. By Theorem 1.3 we have that Rm,n span V m,n.

By Theorem 1.2 the leading term Xmj (x, q) in the e-basis is Hm+n−j
j (mj)em+n−j,j . Since j ≤ m

we can certainly place j rooks on mj and see that Hm+n−j
j (mj) 6= 0. Note that the full formula

is given in Proposition 2.16. Thus the transition matrix between Rm,n and the em+n−j,j ’s is upper
triangular with nonzero diagonal entries, so they are linearly independent and form a basis. �

Guay-Paquet considered another basis for the space V m,n. This basis is called the staircase basis
since it is indexed by the staircase partitions, which are partitions inside an n ×m board of the
form δj = (j, j − 1, . . . , 1), for j = 0, . . . , n. Let Sm,n :=

{
Xδj (x, q)

}n
j=0

.

Proposition 6.4 ([GPa]). The set Sm,n forms a basis for the Q(q)-vector space V m,n.

Proof. We look at the expansion in Proposition 1.2 for δj . In this case, Hm+n−j
j (δj) 6= 0 because

we can place j rooks on the main diagonal of δj and place m+ n− 2j remaining rooks outside δj
(for instance, in the main diagonal of the square board). Therefore, the leading term of Xδj (x, q) is

Hm+n−j
j (δj)em+n−j,j 6= 0. That is, Sm,n’s transfer matrix with the V m,n basis given by {em+n−j,j}

is upper triangular with nonzero diagonal and hence is also a basis. �

Since the coefficients of Xλ(x, q) in the Rm,n basis involve q-hit numbers, we also want to study the
coefficients appearing in the decomposition of Xλ(x, q) in this new basis Sm,n. That is, we want to
understand the coefficients am,nj (λ, q) in the expression

(6.1) Xλ(x, q) =

n∑
j=0

am,nj (λ, q) ·Xδj (x, q).

For instance, we know that they add up to one.
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Proposition 6.5.

n∑
j=0

am,nj (λ, q) = 1.

Proof. This follows by extracting the coefficient of x1x2 . . . xm+n on both sides of (6.1) and using
the fact that for any partition λ inside an n×m rectangle, [x1 · · ·xm+n]Xλ(x, q) = [m+n]! [SW16,
Thm. 3.1]. �

Moreover, calculations suggest that up to a sign and a power of q, these coefficients are in N[q].

Conjecture 6.6. Let λ be a partition inside an n×m board (n ≤ m) and j be fixed, then am,nj (λ, q)
is a Laurent polynomial in q whose coefficients are integers of the same sign.

Example 6.7. For λ = 3 inside a 2× 3 board, we have

q2X3(x, q) = −(q + 1)X∅(x, q) + (q2 + q + 1)X1(x, q) + 0 ·X21(x, q).

2

3

2

3

2

3

2

3

Figure 6. Left: the path for λ = 3 inside a 2× 3 board. Right: the three staircase
paths δ0, δ1, δ2 for m = 3 and n = 2.

A possible approach to Conjecture 6.6 is looking at the change of bases between the rectangular
basis Rm,n and the staircase basis Sm,n. Let us start showing that the coefficients of the change of
bases determine am,nj (λ, q).

Proposition 6.8. am,nj (λ, q) =
1

[m]n

n∑
i=0

Hm,n
i (λ)am,nj (mi, q).

Proof. This follows from basic linear algebra. By Theorem 1.3 and (6.1), we have that

Xλ(x, q) =
1

[m]n

n∑
k=0

Hm,n
k (λ) ·Xmk(x, q)

=
1

[m]n

n∑
k=0

Hm,n
k (λ)

n∑
j=0

am,nj (mk, q)Xδj (x, q).

Next, we exchange the order of summation to obtain

Xλ(x, q) =
n∑
j=0

Xδj (x, q)
1

[m]n

n∑
k=0

Hm,n
k (λ)am,nj (mk, q).

The result then follows by extracting the coefficient of Xδj (x, q) on both sides above. �
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This means that in order to prove Conjecture 6.6 it suffices to verify it for am,nj (mk, q).

Remark 6.9. The inverse of the n× n matrix
(
am,nj (mk, q)

)
j,k

is the matrix
1

[m]n

(
Hm,n
k (δj)

)
j,k

.

Moreover, the q-hit numbers Hn,n
j (δn) are the q-Eulerian polynomials defined by

An,j+1(q) :=
∑
w∈Sn

exc(w)=j

qstat(w),

where stat is inv or maj indices (see [SW07, BCHR14]). Also, one can check that the specialization

Hn,n
j (δn−r)

∣∣∣
q=1

= A
(r)
n,j ,

where the A
(r)
n,k are the r-excedence numbers that count the number of permutations in Sn with

k r-excendences {i | w(i) ≥ i+ r} (see [FS06, Eli20]).

6.3. Theorem 1.3 in terms of q-rook numbers. Theorem 1.3 expresses Xλ(x, q) as a linear
combination of the functions Xmj (x, q) where the coefficients are normalized q-hit numbers. Since
the latter are defined in (2.2) in terms of q-rook numbers it is natural to give an expression for
Xλ(x, q) involving q-rook numbers Ri(λ).

Definition 6.10. For non-negative integers m, n, and i, with m ≥ n and 0 ≤ i ≤ n, define

Y m,n
i (x, q) :=

i∑
k=0

(−1)i−k
[
i
k

]
q(
k
2)Xmk(x, q).

Corollary 6.11. Let λ be a partition inside an n×m board (n ≤ m). Then

Xλ(x, q) =
1

[m]!

n∑
i=0

[m− i]!qmi−(i2)−|λ|Ri(λ) · Y m,n
i (x, q).

Proof. We use (2.2) in Theorem 1.3 and change the order to summation to obtain:

Xλ(x, q) =
1

[m]n

n∑
k=0

q(
k
2)−|λ|

[m− n]!

n∑
i=k

[m− i]!
[
i
k

]
(−1)i+kqmi−(i2)Ri(λ)Xmk(x, q)

=
1

[m]!

n∑
i=0

[m− i]!qmi−(i2)−|λ|Ri(λ) ·

(
i∑

k=0

(−1)i−k
[
i
k

]
q(
k
2)Xmk(x, q)

)
.

The result follows by noting that the sum in parenthesis on the RHS is exactly Yi(x, q). �

The following example shows that the Y m,n
i (x, q) are not m-positive.

Example 6.12. For m = 3, n = 2 and i = 1, we have that

Y 3,2
1 (x, q) = X31(x, q)−X30(x, q).
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Expanding in the m-basis, we have that

Y 3,2
1 (x, q) =

(
−q10 − 4q9 − 9q8 − 14q7 − 12q6 − 2q5 + 11q4 + 16q3 + 11q2 + 4q

)
m1,1,1,1,1

+
(
q6 + 3q5 + 5q4 + 5q3 + 3q2 + q

)
m2,1,1,1.

However, in the e-basis we have that

=
(
q6 + 3q5 + 5q4 + 5q3 + 3q2 + q

)
e4,1

+
(
−q10 − 4q9 − 9q8 − 14q7 − 17q6 − 17q5 − 14q4 − 9q3 − 4q2 − q

)
e5.

Indeed, it appears that the expansion of the Y m,n
i in the elementary basis yields palindromic

polynomials with all positive or all negative coefficients.

Conjecture 6.13. Consider the functions Yi(x, q) expanded in the e-basis

Yi(x, q) =
i∑

k=0

ck(q)em+n−k,k.

Then (−1)i−kck(q) ∈ N[q] and are palindromic.

7. Final Remarks

7.1. A tale of two variants of q-hit numbers. To our surprise, the q-hit numbers appearing
in Theorems 1.2 and Theorem 1.3 are not exactly the Garsia–Remmel q-hit numbers denoted by

H̃n
j (λ) but instead, they are off by a power of q (see Proposition B.1). Thus, these two variants of

q-hit numbers satisfy different versions of deletion-contraction (see Appendix E).

While working on this project, we have encountered two different variants of Dworkin’s statistic

for the Garsia–Remmel q-hit numbers H̃j
n(λ) for λ ⊂ n × n. In [Dwo98, Sec. 7, Fig. 3] Dworkin

gives a statistic with a rule that is the transpose of the statistic in Definition 2.7. However, this
statistic actually yields our q-hit numbers Hn

j (λ) (this can be seen from the change of basis to

q-rook numbers and because the latter stay invariant under conjugation) and not the Garsia–

Remmel q-hit numbers H̃n
j (λ) as claimed in [Dwo98]. In [HR01, Fig. 5], Haglund and Remmel give

a statistic similar to Dworkin that they attribute to him (see Definition A.2) that does yield the
Garsia–Remmel q-hit numbers. The authors in [HR01] give a weight-preserving bijection between

their version of Dworkin’s statistic and Haglund’s statistic for H̃n
j (λ) from [Hag98] thus proving

the validity of their version of Dworkin’s statistic.

See Appendices A and B for more details on the Garsia–Remmel q-hit numbers and their relation
to our q-hit numbers. And see Appendix C for a proof of Theorem 2.9 which shows the statistic in

Definition 2.7 that yields the q-hit numbers Hj
m,n(λ).

For a recent q-analogue of hit numbers for general boards, not just Ferrers boards, see [LM18].

7.2. A conjectured deletion-contraction relation for q-hit numbers. We use the deletion-
contraction of q-hit numbers (Lemma 2.6) in our proof of Theorem 1.2. It appears that the q-hit
numbers satisfy a similar deletion-contraction relation with simpler powers of q. For more details
in another deletion-contraction relation of q-hit numbers see Appendix E.
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Conjecture 7.1. Let λ be a partition inside an n×m board and e be an outer corner of λ. Then
we have the following recursion: Hm,n

j (∅) = [m]n δj,0 and

qHm,n
j (λ) = Hm,n

j (λ\e) + qmHm−1,n−1
j−1 (λ/e)−Hm−1,n−1

j (λ/e).

7.3. Combinatorial proof of Theorem 1.3. Guay-Paquet’s proof of Theorem 1.3 sketched in
[GPa] is based on the idea of dual basis from linear algebra. He shows that the vector space V m,n,
together with the basis Rm,n, has a dual vector space V ∗m,n := spanQ(q)

(
P (x;λ)/[m]n | λ ⊂ n×m

)
with dual basis {xi | i = 0, . . . n}. Now, the dual basis coefficients are given by the normalized q-hit
numbers Hm,n

i (λ)/[m]n as shown (up to normalization) in (2.1).

In contrast, our proof of Theorem 1.3 uses q-rook theory, it would be interesting to find a bijective
proof of this result relating colorings with rook placements.

Specifically, we can rewrite the identity as

[m]nXλ(x, q) =
n∑
k=0

Hm,n
k (λ)Xmk(x, q).

Matching monomials in x, powers of q, and interpreting [m]n = Hm,n
0 (∅) we are looking for a

bijection ϕν for every ν = (2, . . . , 2, 1, . . .) as follows.

From:

Pairs of a rook placement Pm,n0 (∅) of n rooks on n×m board with inv(P ) inversions and a proper
coloring κ(λ, ν) of Gλ of type ν and asc(κ) total ascents.

Into:

Triples k, Pm,nk (λ), κ(mk, ν) consisting of an integer k ∈ [0, n], a rook placement on n × m with
exactly k rooks inside λ, and a proper coloring of Gmk of type ν,

such that

asc(κ(mk, ν)) + inv(Pm,nk ) = asc(κ) + inv(P ).

7.4. Combinatorial proof of Theorem 1.2. There are other rules for the elementary basis
expansion of Xλ(x, q). In particular, Cho–Huh [CH18] give an expansion in terms of P -tableaux of
shape 2j1m+n−2j such that there is no s ≥ j+2 such that (ai,1, as,1) ∈ λ for all i ∈ {`+1, . . . , s−1}
(see [SW16, Sec. 6] for details on P -tableaux). We denote such set of P -tableaux by T ′((m+n−j, j)).
Let

cm,nj (q) :=
∑

T∈T ′(m+n−j,j)

qinvG(λ)(T ).

For the definitions of P -tableau and invG(T ) see [SW16, Sec. 6].

It would be interesting to find a weight-preserving bijection that shows that

cm,nj (q) =

{
[j]!Hm+n−j

j (λ) if j = `(λ),

qj [j]![m+ n− 2j]Hm+n−j−1
j (λ) if j < `(λ).
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For instance, for the case j = `(λ), we need to establish a weight-preserving bijection between the
rook placements with j rooks inside λ, together with some labeling of the ones inside λ to account
for [j]!, and T ′((m+ n− j, j)).

7.5. Extending Theorems 1.2 and 1.3 to bicolored graphs. Both Theorem 1.2 and Theo-
rem 1.3 are q-analogues of a special cases of respective results by Stanley–Stembridge [SS93, Thm.
4.3] and by Guay-Paquet [GPb, Prop. 4.1 (iv)] for bicolored graphs. It would be interesting to find
a q-analogue of these more general results for bicolored graphs G. However, for such graphs G the
function XG(x, q) may not be symmetric.

7.6. Beyond the abelian case. We have studied the chromatic symmetric function XG(d)(x, q)
for Dyck paths d of bounce two, aka the abelian case [HP19]. Recently Cho–Hong [CH19] verified
Conjecture 1.1 when q = 1 for Dyck paths of bounce three. Their expansion is in terms of certain
P -tableaux. For these Dyck paths, it would be interesting to find an e-expansion involving q-rook
theory or extending Theorem 1.3.
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Appendix

In this appendix we give more details on the two variants of the statistic on the Garsia–Remmel
q-hit numbers, their relation, and their deletion-contraction relations.

A. Garsia-Remmel q-hit numbers and Dworkin’s statistic. We start by defining the original
version of the q-hit numbers given by Garsia–Remmel that is different than our q-hit numbers. Recall
that m ≥ n.

Definition A.1 ([GR86]). For λ inside an n× n board, we define the Garsia-Remmel q-hit poly-
nomial of λ by

(A.1)
n∑
i=0

H̃n,n
i (λ)xi :=

n∑
i=0

Ri(λ) [n− i]!
n∏

k=n−i+1

(x− qk).

Garsia and Remmel [GR86, Theorem 2.1] showed that H̃n
i (λ) := H̃n,n

i (λ) is a polynomial with
nonnegative coefficients and Dworkin [Dwo98] and Haglund [Hag98] gave different statistics realizing
these q-hit numbers. We focus on Dworkin’s statistic (as presented in [HR01], see Section 7.1) since
it is very similar to the statistic in Definition 2.7.

Definition A.2 (Dworkin’s statistic for the q-hit numbers [HR01]). Let λ be a partition inside an
n×m board. Given a placement p of n non-attacking rooks on an n×n board, with exactly j inside
λ, let statD(p) be the number of cells c in the n×m board such that

(i) there is no rook in c,
(ii) there is no rook below c on the same column, and either,

(iii) if c is in λ then the rook on the same row of c is either outside λ or else to the left of c; or
(iv) if c is not in λ then the rook on same row of c is not in λ and to the left of c.

Example A.3. Consider the partition λ = (4, 3, 2, 2) inside a 6×6 board. In Figure 7a, we present
a rook placement p of six rooks on the 6× 6 board with three hits on λ where statD(p) = 4.
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(a) (b)

p p′ p′′

(c)

Figure 7. (A) For the same rook placement p, examples of (A) the statistic statD(p)
for the Garsia–Remmel q-hit numbers, and (B) of the statistic stat(p) for our q-hit
numbers. Note how the empty cells in the calculation of one statistic correspond to
the double crossings in the other. Moreover in each placement stat(p) − cross(p) =
j ·m−|λ|. (C) Illustration of bijection between rook placement counted in Hm,m

j (λ)

and rook placements counted in Hm,n
j (λ) and Rm−n((m− n)m−n)), respectively.

Theorem A.4 (Dworkin [Dwo98, HR01]). Let λ be a partition inside an n×n board and j = 0, . . . , n
then

H̃n
j (λ) =

∑
p

qstatD(p),

where the sum is over all placements p of n non-attacking rooks on an n × n board with exactly j
rooks inside λ.

B. Relation between q-hit numbers Hn
j (λ) and H̃n

j (λ). The next result shows that our q-hit
numbers and the Garsia–Remmel q-hit numbers are off by a power of q. We show this from the
respective definitions of each q-hit numbers from the generating polynomials of q-rook numbers.
We will ultimately show Theorem 2.9 by showing that for a rook placement p, the statistics stat(p)
and statD(p) are off by the same power (see Lemma C.2).

Proposition B.1.

H̃m
j (λ) := q|λ|−jmHm

j (λ).(B.1)

Proof. We compare (A.1) and (2.1). Substituting xq−m and multiplying by q|λ| in (2.1), rewriting

the factor qmi−(i2) = q
∑i−1
k=0m−k and rewriting the q-Pochhammer symbol we have

m∑
j=0

Hm
j (λ)q|λ|(xq−m)j =

m∑
i=0

Ri(λ)[m− i]!(−1)i
i−1∏
k=0

qm−k(1− xq−mqk)

=

m∑
i=0

Ri(λ)[m− i]!
i−1∏
k=0

(x− qm−k),

which is the RHS of (A.1) for m = n. Comparing coefficients at xj we obtain the desired identity. �

C. Proof of Theorem 2.9. Let Ĥm,n
j (λ) be the sum in the RHS of (2.5). The next result is an

analogue of Lemma 2.13 for Ĥm,n
j (λ).



36 COLMENAREJO, MORALES, AND PANOVA

Lemma C.1. Let λ be a partition inside an n×m board. Then

Ĥm,n
j (λ) =

1

[m− n]!
Ĥm,m
j (λ).

Proof. We claim that

(C.1) Ĥm,n
j (λ) = Ĥm,n

j (λ) ·Rm−n((m− n)m−n).

The result then follows since by Proposition 2.2, Rm−n((m − n)m−n) = [m − n]!. This q-factorial
corresponds to the qstat-weighted enumeration of rook placements in a (m−n)×(m−n) board. Let
p be a rook placement on an m×m board with j rooks inside λ ⊂ m× n and p′ be the placement
obtained by restricting p to the top m rows. Then the bottom m − n rows contain m − n rooks
outside λ and after removing the n columns occupied by rooks from the top n column we obtain
a placement p′′ of m− n rooks on an (m− n)× (m− n) board. This gives a bijection p 7→ (p′, p′′)
between the rook placements on the LHS and pairs of rook placements from the RHS of (C.1). See
Figure 7c Moreover, the bijection is weight-preserving. That is

stat(p) = stat(p′) + stat(p′′) = stat(p′) + inv(p′′),

where inv(p′′) is the statistic of the q-rook numbers. This weight-preserving bijection gives the
desired result. �

The next lemma shows that for a fixed rook placement the statistics stat(·) and statD(·) are related.

Lemma C.2. Let λ be a partition inside an m×m board. Given a placement p of m non-attacking
rooks on an m×m board with j rooks inside λ then

stat(p)− statD(p) = j ·m− |λ|.

Example C.3. Consider the partition λ = (4, 3, 2, 2) inside a 6× 6 board. Figure 7b illustrates an
example of a placement p of six rooks on the 6 × 6 board with j = 3 hits on λ with stat(p) = 11.
Figure 7a illustrates for the same rook placement p that statD(p) = 4. Note that

stat(p)− statD(p) = 7 = 3 · 6− |λ|.

The proof of Lemma C.2 is postponed to the end of the section. We now use this lemma to complete
the proof of our main result of this appendix.

Proof of Theorem 2.5. By Lemma C.2 we have that

H̃m,m
j (λ) = q|λ|−jmĤm,m

j (λ).

Next, by comparing this identity with Proposition B.1 we conclude that Hm,m
j (λ) = Ĥm,m

j (λ).

Finally, combining this with both Lemma 2.13 and Lemma C.1 we conclude that Hm,n
j (λ) =

Ĥm,n
j (λ) as desired. �

The rest of the section is devoted to the proof of Lemma C.2. We need the following definition.

Definition C.4 (crossing statistic for the q-hit numbers). Let λ be a partition inside an m ×m
board. Given a placements p of m non-attacking rooks on an n × m board, with exactly j rooks
inside λ, let cross(p) be the number of cells c in the m×m board such that
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(i) there is no rook in c,
(ii) there is a rook on the same column and below c,
(ii) if c is in λ then there is a rook on the same row in λ to the right of c,

(iii) if c is not in λ then either there is a rook on the same row in λ or a rook on the same row
to the right of c.

In other words, cross(p) is the number of cells that have double crossings after the rook cancellations
used to obtain stat(p). See Remark 2.8 and Figure 7b.

Example C.5. For the rook placement p in Example C.3 and Figure 7b we have that stat(p) = 11
and cross(p) = 4.

First observe that for a rook placement p on the m ×m board we have that statD(p) = cross(p),
since the rays in stat and statD are complementary to each other and the crossings in one directly
correspond to the empty boxes in the other. Therefore Lemma C.2 follows from the next lemma.

Lemma C.6. Let λ be a partition inside an m×m Given a placement p of m non-attacking rooks
on an m×m board with j rooks inside λ then

(C.2) stat(p)− cross(p) = j ·m− |λ|.

Proof. We proceed by induction on |λ| for λ ⊂ m×m. When λ = ∅ we only have rook placements
for j = 0, and then it is clear that,

stat(p) = statD(p) = cross(p) = inv(w),

the number of inversions of the permutation w corresponding to the rook diagram. Thus the identity
(C.2) is verified.

Suppose the identity (C.2) holds for all |λ| ≤ N and then for any j = 0, . . . ,m. Let ν be a partition
of N + 1 and ν = λ + e, where e is a corner cell. Let p be a rook configuration with j rooks in ν,
and let p′ be the same rook configuration on λ (so there are j or j − 1 rooks in λ). Note that cell e
cannot be empty since there is a rook in its row, which is either in ν, and hence the rook’s “arm”
crosses e or is outside in which case the wrap-around also crosses e. We now consider several cases:

Case 1. Cell e has a rook and hence the horizontal arm stops at e as the border of ν. Thus there
are no crossings in the row of e. Suppose there are k empty boxes in the row of e, then
there are also m − k − 1 vertical crossings in this row. Now consider p′ as a configuration
with j − 1 rooks in λ. The rook in e is outside λ and this time the entire row is crossed, so
all empty cells have now a horizontal line and all vertically crossed cells have now a double
crossing. Thus

stat(p′)− cross(p′) = stat(p)− k − (cross(p) +m− k − 1) = stat(p)− cross(p)−m+ 1.

By induction we have

stat(p′)− cross(p′) = m(j − 1)− |λ| = jṁ− |ν| −m+ 1,

and matching sides we obtain the desired identity in this case.
Case 2. The rook in the row of e is to the left of e. Then either e is a double crossing or is only a

horizontal crossing. Then in the rook placement p′ there is no horizontal line crossing e. If
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e was a double crossing in p, then it is neither a double crossing nor empty cell in p′, and if
e was not a double crossing in p then it became an empty cell in p′. In both cases we have

stat(p′)− cross(p′) = stat(p)− cross(p) + 1.

Since the number of rooks inside λ is still j then we have

stat(p)− cross(p) = stat(p′)− cross(p′)− 1 = j ·m− |λ| − 1 = j ·m− |ν|.

This gives the desired identity in this case.
Case 3. The rook in the row of e is to right of e, so outside ν. Then again there is a horizontal line

crossing e, so e is either a double crossing in p or neither a double crossing nor an empty
cell in p. In both cases when we remove e from ν we either turn the double crossing on e in
p to a not a double crossing in p′ or from not a double crossing in e to an empty cell in p′.
Thus, again

stat(p′)− cross(p′) = stat(p)− cross(p) + 1.

Since the number of rooks inside λ is still j then we have

stat(p)− cross(p) = stat(p′)− cross(p′)− 1 = j ·m− |λ| − 1 = j ·m− |ν|.

This gives the desired identity in this case.

This completes the proof. �

D. Symmetry of q-hit numbers of rectangular boards. Since the Garsia–Remmel q-hit num-
bers are symmetric polynomials in N[q] [GR86, Dwo98, Hag98], then so are Hm,n

j (λ).

Corollary D.1. The q-hit numbers Hm,n
j (λ) are symmetric polynomials in N[q].

Proof. By Theorem 2.9 we have that Hm,n
j (λ) are in N[q]. By Lemma 2.13 and Proposition B.1 we

have that

Hm,n
j (λ) =

1

[m− n]!
q|jm−λ|H̃m

j (λ).

Now [m − n]! is a symmetric polynomial in N[q] and so are the Garsia–Remmel q-hit numbers

H̃m
j (λ) [Hag98, Sec. 5]. Therefore, the result follows. �

E. Deletion-contraction for q-hit numbers. In this section we give a proof of the deletion-

contraction relations for the q-hit numbers Hm,n
j (λ) and H̃m,n

j (λ).

Lemma E.1 ([Dwo98, Thm. 6.11]). Let λ be a partition inside an n×m board and e be an outer
corner of λ. Then we have the following recursion:

H̃m,n
j (λ) = qH̃m,n

j (λ\e) + H̃m−1,n−1
j−1 (λ/e)− qmH̃m−1,n−1

j (λ/e), H̃m,n
j (∅) = [m]n δj,0.

Proof. This follows from the deletion-contraction relation for q-rook numbers [Dwo98, Thm. 6.10]

Ri(λ) = q ·Ri(λ\e) +Ri−1(λ/e), Ri(∅) = δi,0,
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which follows directly from considering if a placement p of i rooks in λ has or not a rook in cell e.
Substituting this rook recursion in (2.2), we obtain

Hm,n
k (λ) =

q(
k
2)−|λ|

[m− n]!

n∑
i=k

(q ·Ri(λ\e) +Ri−1(λ/e)) [m− i]!
[
i
k

]
(−1)i+kqmi−(i2)

=
q(
k
2)−|λ\e|

[m− n]!

n∑
i=k

Ri(λ\e) [m− i]!
[
i
k

]
(−1)i+kqmi−(i2)+

q(
k
2)−|λ|

[m− n]!

n∑
i=k

Ri−1(λ/e) [m− i]!
[
i
k

]
(−1)i+kqmi−(i2).

Manipulating the last expression from q-rook numbers into q-hit numbers, we obtain the following
recurrence

Hm,n
k (λ) = Hm,n

k (λ\e) + qm+k−1−|λ|+|λ/e|Hm−1,n−1
k−1 (λ/e) − qk+m−|λ|+|λ/e|Hm−1,n−1

k (λ/e).

Now, we use (B.1) to translate this recursion into the recursion for the H̃’s:

qkm−|λ|H̃m,n
k (λ) = qkm−|λ\e|H̃m,n

k (λ\e) + q(k−1)(m−1)−|λ/e|qm+k−1−|λ|+|λ/e|H̃m−1,n−1
k−1 (λ/e)

− qk(m−1)−|λ/e|qk+m−|λ|+|λ/e|Hm−1,n−1
k (λ/e),

which simplifies to the desired recursion. �

Proof of Lemma 2.6. Combining together (B.1) and Lemma E.1, we obtain

q|λ|−jmHm,n
j (ν) = q|λ\e|−jm+1Hm,n

j (λ\e)

+ q|λ/e|−(j−1)(m−1)Hm−1,n−1
j−1 (λ/e)− q|λ/e|−j(m−1)+mH̃m−1,n−1

j (λ/e).

Noticing that |λ\e|+ 1 = |λ| and simplifying the expression we obtain that

Hm,n
j (ν) = Hm,n

j (λ\e) + q|λ/e|−|λ|+j+m−1Hm−1,n−1
j−1 (λ/e)− q|λ/e|−|λ|+j+mHm−1,n−1

j (λ/e)

= Hm,n
j (λ\e) + q|λ/e|−|λ|+j+m−1

(
Hm−1,n−1
j−1 (λ/e)− qHm−1,n−1

j (λ/e)
)
.

�

The previous deletion-contraction relation specializes to square boards as follows.

Corollary E.2. HN
j (λ) = HN

j (λ\e) + q|λ/e|−|λ|+j+N−1
[
HN−1
j−1 (λ/e)− qHN−1

j (λ/e)
]
.

Conjecture E.3. Let λ be a partition inside an n×m board and e be an outer corner of λ, then
we have: P (x;∅) = [m]n, and

P (x;λ) = qP (x;λ\e) + (xqm − 1)P (x;λ/e).
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F. Another proof of Lemma 5.5. In this section we include the proof of (5.7) using q-binomials.

Proof of (5.7) in Lemma 5.5. We use Proposition 2.2 to rewrite both the LHS and RHS in terms
of q-rook numbers Ri(λ). By q-manipulations, we have that (5.7) is equivalent to[

m+ n− r − i− 1
n− r − 1

]
= q(n−r−1)(r−i) ·

 i∑
j=r

[
m+ n− r − j − 1

n− j − 1

] [
i− r
j − r

]
(−1)j−rq(

j−r
2 )

 .(F.1)

Now, to prove this q-binomial identity, we consider the following q-binomial identities:

i−r−1∏
k=0

(1− qkt) =
i−r∑
k=0

q(
k
2)
[
i− r
k

]
(−1)ktk,

m−r−1∏
k=0

1

(1− qkt)
=

∞∑
k=0

[
m− r + k − 1

k

]
tk.

We have that

i−r−1∏
k=0

(1− qk(qat))
m−r−1∏
k=0

1

(1− qk(qbt))
= i−r∑

j−r=0

q(
j−r
2 )
[
i− r
j − r

]
(−1)j−rqa(j−r)tj−r

 ·( ∞∑
k=0

[
m− r + k − 1

k

]
qbktk

)
.

Taking the coefficient at tn−r−1 at the RHS we get

i−r∑
j−r=0

q(
j−r
2 )
[
i− r
j − r

] [
m− r + n− j − 1

n− j − 1

]
qb(n−j−1)tn−j−1(−1)j−rqa(j−r)tj−r,

=
i∑

j=r

(−1)j−r
[
i− r
j − r

] [
m− r + n− j − 1

n− j

]
q(
j−r
2 )+b(n−j−1)+a(j−r).

Setting a = b = r − i and denoting by [t`]@P the coefficient of t` at P , we have that[
m− i+ n− r − 1

n− r − 1

]
= [tn−r−1]@

m−i−1∏
k=0

1

(1− qkt)

= [tn−r−1]@

i−r−1∏
k=0

(1− qk(qr−it))
m−r−1∏
k=0

1

(1− qk(qr−it))

= [tn−r−1]

i−r∑
j−r=0

q(
j
2)
[
i− r
j − r

] [
m− r + n− j − 1

n− j − 1

]
q(r−i)(n−j−1)tn−j−1(−1)j−rq(r−i)(j−r)tj−r

=

i∑
j=r

(−1)j−r
[
i− r
j − r

] [
m− r + n− j − 1

n− j − 1

]
q(
j−r
2 )+(r−i)(j−r)+(r−i)(n−j−1),
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as desired. �
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