
HOOK FORMULAS FOR SKEW SHAPES IV. INCREASING TABLEAUX

AND FACTORIAL GROTHENDIECK POLYNOMIALS
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Abstract. We present a new family of hook-length formulas for the number of standard

increasing tableaux which arise in the study of factorial Grothendieck polynomials. In the
case of straight shapes our formulas generalize the classical hook-length formula and the

Littlewood formula. For skew shapes, our formulas generalize the Naruse hook-length formula

and its q-analogues, which were studied in previous papers of the series.

1. Introduction

1.1. Foreword. There is more than one way to explain a miracle. First, one can show how it
is made, a step-by-step guide to perform it. This is the most common yet the least satisfactory
approach as it takes away the joy and gives you nothing in return. Second, one can investigate
away every consequence and implication, showing that what appears to be miraculous is actually
both reasonable and expected. This takes nothing away from the the miracle except for its
shining power, and puts it in the natural order of things. Finally, there is a way to place the
apparent miracle as a part of the general scheme. Even, or especially, if this scheme is technical
and unglamorous, the underlying pattern emerges with the utmost clarity.

The hook-length formula (HLF) is long thought to be a minor miracle, a product formula
for the number of certain planar combinatorial arrangements, which emerges where one would
expect only a determinant formula. Despite its numerous proofs and generalizations, including
some by the authors (see §7.1), it continues to mystify and enthrall. The goal of this paper is to
give new curious generalizations of the HLF by using Grothendieck polynomials. The resulting
formulas are convoluted enough to be unguessable yet retain the hook product structure to be
instantly recognizable.

1.2. Straight shapes. Recall some classical results in the area. Let λ = (λ1, . . . , λ`) ` n be
an integer partition of n with ` = `(λ) parts, and let fλ := | SYT(λ)| be the number of standard
Young tableaux of shape λ. The hook-length formula by Frame–Robinson–Thrall [FRT] states
that

(HLF) fλ = n!
∏
u∈λ

1

h(u)
,

where h(u) = λi − i+ λ′j − j + 1 is the hook-length of the square u = (i, j) ∈ λ.
Similarly, let SSYT(λ) denote the set of semi-standard Young tableaux of shape λ. For a

tableau T ∈ SSYT(λ), let |T | denote the sum of its entries. The Littlewood formula, a special
case of the Stanley hook-content formula, states that

(q-HLF)
∑

T∈SSYT(λ)

q|T | = qb(λ)
∏
u∈λ

1

1− qh(u)
,
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where

b(λ) :=
∑

(i,j)∈λ

(i− 1) =

`(λ)∑
i=1

(i− 1)λi ,

see e.g. [S1, §7.21]. Note that (q-HLF) implies (HLF) by taking limit q → 1 and using a
geometric argument, see [P1, §2], or the P -partition theory, see [S1, §3.15]. We are now ready
to state the first two results of the paper, which generalize (HLF) and (q-HLF), respectively.

For a tableau T ∈ SSYT(λ), let Tk = {u ∈ λ : T (u) = k} be the set of tableau entries
equal to k. Define T≤k = {u ∈ λ : T (u) ≤ k} , T≥k = {u ∈ λ : T (u) ≥ k} and T<k = T≤k+1

similarly. Finally, let ν(Tk), ν(T<k) and ν(T≥k) be the shapes of these tableaux.
We say that T is a standard increasing tableau if it is strictly increasing in rows and columns,

and Tk is nonempty for all 1 ≤ k ≤ m, where m = m(T ) is the maximal entry in T . Note
that the (usual) standard Young tableaux are exactly the standard increasing tableaux T with
m(T ) = n. Denote by SIT(λ) the set of standard increasing tableaux of shape λ. By definition,
for T ∈ SIT(λ), we have 0 ≤ νi(T≤k) ≤ λi is the number of elements in T≤k in i-th row of λ.

Theorem 1.1. Fix d ≥ 1. In the notation above, for every λ ` n with `(λ) ≤ d, we have:

(K-HLF)

∑
T∈SIT(λ)

m(T )∏
k=1

([
d∏
i=1

1 + β
(
νi(T<k

)
+ d− i+ 1

)
1 + β

(
λi + d− i+ 1

) ]
− 1

)−1

=
1

(−β)n

`(λ)∏
i=1

(
1 + β(λi + d− i+ 1)

)λi
∏

(i,j)∈λ

1

h(i, j)
.

Here “K” in (K-HLF) stands for K-theory, see below. Note that (K-HLF) implies (HLF) by
taking the limit β → 0, see Proposition 4.8.

To state the K-theory analogue of (q-HLF), we need a few more notation. For a strictly
increasing tableau T ∈ SIT(λ), denote by T≥k the skew subtableau of integers ≥ k, and let
a(T≥k) := |ν(T≥k)| denote the number of such integers. This should not be confused with |T≥k|
which is the sum of such integers. Finally, denote

s(λ) :=
∑

(i,j)∈λ

(i+ j − 1) = b(λ) + b(λ′) + |λ| .

Corollary 1.2. In the notation above, for every λ ` n, we have:

(1.1)
∑

T∈SIT(λ)

q|T |
m(T )∏
k=1

1

1− qa(T≥k)
= qs(λ)

∏
(i,j)∈λ

1

1− qh(i,j)
.

The relationship between (K-HLF) and (1.1) is somewhat indirect and both follow from a
more general equation (4.5) by taking limits.

Remark 1.3. Denote by RPP(λ) the set of reverse plane partitions, which are Young tableaux
with entries ≥ 0, weakly increasing in rows and columns. Similarly, denote by IT(λ) the set of
increasing tableaux, which are Young tableaux with entries ≥ 1, strictly increasing in rows and
columns. Thus:

(1.2) SYT(λ) ⊂ SIT(λ) ⊂ IT(λ) ⊂ SSYT(λ) ⊂ RPP(λ) .

It is well known, and easily follows from (q-HLF), that

(1.3)
∑

T∈IT(λ)

q|T | = qs(λ)
∑

T∈RPP(λ)

q|T | = qs(λ)
∏

(i,j)∈λ

1

1− qh(i,j)
.
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Note that both (1.1) and (1.3) have identical RHS, but the LHS of (1.1) has an extra product
term. In fact, there is a similar direct way to derive (1.1) from (q-HLF) by subtracting a
constant to the entries in each anti-diagonal of the tableau. However, this approach does not
extend to skew shapes, see Theorem 1.5 below and §7.9.

1.3. Skew shapes. We start with the Naruse hook-length formula (NHLF), the subject of the
previous papers in this series [MPP1, MPP2, MPP3]. Here we omit some definitions; precise
statements are given in Section 5.

Let λ/µ be a skew Young diagram (skew shape), and let fλ/µ = | SYT(λ/µ)| be the number
of standard Young tableaux of a shape λ/µ. Then

(NHLF) fλ/µ = |λ/µ|!
∑

D∈E(λ/µ)

∏
u∈λ\D

1

h(u)
,

where h(u) is the (usual) hook-length of square u ∈ λ, and E(λ/µ) denotes the set of excited
diagrams of shape λ/µ. Note that when µ = ∅, there is a unique generalized excited diagram
D = ∅, and (NHLF) reduces to (HLF).

The q-analogue of (NHLF) generalizing Littlewood’s formula (q-HLF) to skew shapes was
given by the authors in [MPP1]:

(q-NHLF)
∑

T∈SSYT(λ/µ)

q|T | =
∑

D∈E(λ/µ)

∏
(i,j)∈λ\D

qλ
′
j−i

1− qh(i,j)
.

In Remark 1.6, we discuss another notable q-analogue as a summation over RPP(λ/µ). The
following results respectively generalize Theorem 1.1 and Corollary 1.2 to skew shapes, thus
giving an advanced generalizations of the (HLF).

Let µ ⊂ λ be two integer partitions. Define the set SIT(λ/µ) of standard increasing tableaux
of skew shape λ/µ again as Young tableaux T which strictly increase in rows and columns
and have nonempty Tk for all 1 ≤ k ≤ m(T ). In this case, the generalized excited diagrams
were introduced by Graham–Kreiman [GK] and Ikeda–Naruse [IN2]. We denote the set of such
diagrams by D(λ/µ), and postpone their definition until the next section.

Theorem 1.4. Fix d ≥ 1. In the notation above, for every µ ⊂ λ with `(λ) ≤ d, we have:

(K-NHLF)

∑
T∈SIT(λ/µ)

m(T )∏
k=1

([
d∏
i=1

1 + β
(
νi(T<k) + d− i+ 1

)
1 + β (λi + d− i+ 1)

]
− 1

)−1

=
∑

D∈D(λ/µ)

(−β)|D| − |λ|
∏

(i,j)∈λ\D

β (λi + d− i+ 1) + 1

h(i, j)
.

See §6.4 for a completely different generalization of (HLF) to skew shapes, which also has
a q-analogue and K-theory analogue (Theorem 6.8). Finally, Corollary 1.2 extends to skew
shapes as follows:

Theorem 1.5. In the notation above, for every µ ⊂ λ, we have:

(1.4)
∑

T∈SIT(λ/µ)

q|T |
m(T )∏
k=1

1

1− qa(T≥k)
=

∑
D∈D(λ/µ)

∏
(i,j)∈λ\D

qh(i,j)

1− qh(i,j)
.

Again, equation (1.4) reduces to (1.1) by taking for µ = ∅, and noting that∑
(i,j)∈λ

h(i, j) =
∑

(i,j)∈λ

(λ′j − i+ 1) +
∑

(i,j)∈λ

(λi − j) = s(λ) .
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Remark 1.6. While the inclusions in (1.2) continue to hold for skew shapes, the natural
analogue of (1.3) is no longer straightforward. In fact, for

Iλ/µ(q) :=
∑

T∈IT(λ/µ)

q|T | and Rλ/µ(q) :=
∑

T∈RPP(λ/µ)

q|T | ,

the theory of P-partition gives:

(1.5) Iλ/µ(−q) = qN Rλ/µ(1/q) for some N ≥ 0, see [S1, §3.15].

On the other hand, the summation formula for Rλ/µ(q) given in [MPP1, Thm. 1.5] gives
yet another generalization of (NHLF), but is summing over a different, albeit related, set of
pleasant diagrams (see §5.2):

(1.6)
∑

T∈RPP(λ/µ)

q|T | =
∑

S∈P(λ/µ)

∏
(i,j)∈S

qh(i,j)

1− qh(i,j)
.

As we explain in Section 6, equation (K-NHLF) is really a generalization of (1.6) rather
than (q-NHLF). A connection can also ibe seen through yet another summation formula for
Rλ/µ(q) is given in [MPP1, Cor. 6.17] in terms of (ordinary) excited diagrams and subsets
π(λ/µ) of excited peaks (see the definition in §5.2):

(1.7)
∑

T∈RPP(λ/µ)

q|T | =
∑

D∈E(λ/µ)

qc(D)
∏

(i,j)∈λ\D

1

1− qh(i,j)
,

where c(D) :=
∑

(i,j)∈π(λ/µ) h(i, j). Finally, let us mention that the corresponding summation

formula for Iλ/µ(q) implied by (1.5) and (1.7), is obtained in (6.8) more directly.

1.4. Methodology. While all results in this paper can be understood as enumeration of certain
Young tableaux, both the motivation and the proofs are algebraic. This is routine in Algebraic
Combinatorics, of course, and goes back to the most basic and classical results in the area.

For example, for the LHS of (HLF), we have fλ = dim Sλ, the dimension of the corresponding
irreducible Sn-module, with standard Young tableaux giving a natural basis. On the other hand,
the LHS in (q-HLF) is equal to evaluation of the Schur function sλ(1, q, q2, . . .), and counts
multiplicities of Sλ in the natural action on the symmetric algebra C[x1, . . . , xn] graded by the
degree. The connection between the two are then provided by the combination of Burnside and
Chevalley theorems.

One can similarly define the standard Young tableaux of skew shapes, excited diagrams,
etc., even if the explanations become more technical and involved with each generalization. A
tremendous amount of work by many authors went into developments of this theory, making a
proper overview for a paper of this scope impossible. Instead, we skip to the end of the story
and briefly describe the motivation behind our new enumerative results.

Before we proceed to the recent work, it is worth pausing and pondering on how the results
in the area come about. First, there are algebraic areas (representation theory, enumerative
algebraic geometry, etc.) which provide the source of key algebraic objects (characters, Schubert
cells, characteristic classes, etc.) Second, in order to build the theory of these objects and be
able to compute them, combinatorial objects are extracted which are able to characterize the
algebraic objects (Schur functions, Schubert polynomials, etc.)

Third, the algebraic combinatorialists join the party and introduce the theory of these com-
binatorial objects without regard to their algebraic origin. Along the way they introduce a
plethora of new combinatorial tools (Young tableaux, reduced decompositions, RSK, etc.)
which substantially enhance and clarify the resulting combinatorial structures. This is still
the same theory, of course, but the self-contained presentation and rich yet to be understood
combinatorics allows an easy access to people not algebraically inclined.
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All this leads to the fourth wave, by enumerative combinatorialists who are able to use tools
and ideas from algebraic combinatorics to study purely combinatorial problems. This is where
we find ourselves in this paper, staring with an amazement at new enumerative results we
obtain following this course that we would not be able to dream up otherwise, yet grasping for
understanding of what these results really mean in the grand scheme of things.

1.5. Motivation and background. The main result of this paper is an unusual β-deformation
of many known hook formulas. Notably, our β-deformation (K-HLF) of the (HLF), see Theo-
rem 1.1, remains concise and multiplicative even if it is quite cumbersome at first glance. By
comparison, it is unlikely that gλ := | SIT(λ)| has a closed formula (cf. §7.10), so a product
formula for the weighted enumeration of SITs is both a minor miracle and testament to the
intricate nature of such tableaux.

The same pattern extends to other, more general hook formulas, suggesting that (K-HLF)
is not an accident, that the β-deformation is a far-reaching generalization, on par with the
“q-analogue”, “shifted analogue”, etc. We expect further results in this direction in the future.

In the combinatorial context, standard increasing tableaux (without the restriction on the
values of the entries), appear as byproducts of the classical Edelman–Greene insertion [EG,
HY] aimed at understanding of Stanley’s theorem on reduced factorizations of Grassmannian
permutations (permutations with at most one descent, see, e.g. [Man]). They also appear in a
more general setting of the Hecke insertion [B+].

More recently, standard increasing tableaux have appeared in the context of K-theoretic
version of the jeu de taquin of Thomas and Yong [TY1, TY3], and K-promotion in K-theoretic
Schubert calculus [Pe1]. Closely related semistandard set-valued tableaux were defined by
Buch [B1], and have also been studied in a number of papers.

In the algebraic context, the K-theory Schubert calculus of the Grassmannian was introduced
by Lascoux and Schützenberger [LS2]. There, they defined the Grothendieck polynomials as
representatives for K-theory classes determined by structure sheaves of Schubert varieties. The
theory has been rapidly developed in the past two decades. We refer to [Bri, B2] for early
surveys of the subject, as reviewing the extensive recent literature is beyond the scope of this
paper.

In this paper, the key role is played by the factorial Grothendieck polynomials [Mc1, KMY],
which generalize both the well studied Grothendieck polynomials and factorial symmetric func-
tions. The latter was first also introduced by Lascoux and Schützenberger [LS1] in the guise
of double Schubert polynomials for Grassmannian permutations, and has been systematically
studied by Macdonald [Mac], see also [BMN] for further background.

Finally, let us mention the excited diagrams, pleasant diagrams and the generalized excited
diagrams, which all arise in the context of hook formulas of skew shapes, introduced by Ikeda–
Naruse [IN1], by us [MPP1], and by Naruse–Okada [NO], respectively. These diagrams provide
a combinatorial language needed to state our results.

1.6. Proof ideas. For us, the story starts with our proof in [MPP1] of equations (NHLF)
and (q-NHLF) using evaluations of factorial Schur functions and the Chevalley type formulas,
see [MS]. Naruse’s (unpublished) approach was likely similar, cf. [Nar]. After our paper, Naruse–
Okada [NO] rederived and further generalized to d-complete posets our RPP(λ/µ) generalization
(1.7) of (NHLF) using the Billey-type and the Chevalley-type formulas from the equivariant
K-theory. Note that our own proof of the RPP(λ/µ) summation (1.6) given in [MPP1] is
completely combinatorial, and based on a generalization of the Hillman–Grassl bijection.

Our proofs in this paper combine our earlier proof technique in [MPP2] with that of Naruse–
Okada. Namely, we study evaluations of the factorial Grothendieck polynomials in two different
ways. First, we use the Pieri rule for the factorial Grothendieck polynomials to obtain the LHS
of the equations in terms of increasing tableaux. In the skew case, we combine these with the
Chevalley type formulas. We also use the Naruse–Okada characterization of generalized excited
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diagrams in terms of the usual excited diagrams (see Proposition 5.1), to obtain equation (6.7)
and its generalizations. We also prove that these diagrams have a lattice path interpretation
that we exploit in §5.3 to obtain an upper bound on their number.

Second, for the RHS of our hook formulas, we use the vanishing property of the evaluation for
the case of straight shapes. Finally, we use formulas in terms of excited diagrams of Graham–
Kreiman [GK] for the case of skew shapes.

1.7. Paper structure. We begin with preliminary Sections 2 and 3, where we review basic
definitions and properties of permutation classes, Young tableaux, increasing tableaux, and
factorial Grothendieck polynomials. We then proceed to present proofs of all our hook formulas
via more general multivariate formulas.

Namely, in Section 4, we prove Theorem 4.2, the main result of the straight shape case,
which implies Theorem 1.1 and Corollary 1.2. In Section 5 we review the technology of excited
diagrams that was unnecessary for the straight shape. We also relate our notation and results to
further clarify combinatorics of the double Grothendieck polynomials of vexillary permutations
for devotees of the subject. Then, in Section 6, we prove Theorem 6.5, the main and most
general result of this paper, which similarly implies both Theorems 1.4 iand 1.5.

Let us emphasize that this paper is not self-contained by any measure, as we are freely using
results from the area and from our previous papers in this series. We tried, however, to include
all necessary definitions and results, so the paper can be read by itself. This governed the style
of the paper: we covered the straight shape case first as it requires less of a background and
can be understood by a wider audience. This also helped set up the more general skew shape
case which followed. We conclude with final remarks and open problems in Section 7.

2. Permutations, Dyck paths and Young tableaux

2.1. Basic notation. Let N = {0, 1, . . .} and [n] = {1, . . . , n}.

2.2. Permutations. We write permutations of [n] as w = w1w2 . . . wn ∈ Sn, where wi is
the image of i. The Rothe diagram of a permutation w is the subset of [n] × [n] given by
R(w) :=

{
(i, wj) | i < j, wi > wj

}
. The essential set of a permutation w is the subset of R(w)

given by Ess(w) :=
{

(i, j) ∈ R(w) | (i + 1, j), (i, j + 1), (i + 1, j + 1) 6∈ R(w)
}

, see e.g. [Man,
§2.1-2].

A permutation w ∈ Sn is called Grassmannian if it has a unique descent, say at position k.
Such a Grassmannian permutation corresponds to a partition µ = µ(w) with `(µ) ≤ k and
µ1 ≤ n−k. Grassmannian permutations w can also be characterized as having Ess(w) contained
in one row, the last row of R(w) and µ(w) can be read from the number of boxes of R(w) in
each row bottom to top.

A permutation w ∈ Sn is called vexillary if it is 2143-avoiding. Vexillary permutations can
also be characterized as permutations w where R(w) is, up to permuting rows and columns, the
Young diagram of a partition µ = µ(w). Given a vexillary permutation let λ = λ(w) be the
smallest partition containing the diagram R(w). We call this partition the supershape of w and
note that µ(w) ⊆ λ(w). The Young diagram of λ(w) can also be obtained by taking the union
over i × j rectangles with NW and SE corners (1, 1) and (i, j) for each (i, j) in Ess(w). Note
also that Grassmannian permutations are examples of vexillary permutations.

2.3. Lattice paths. A lattice path contained in a Young diagram λ is a path of steps (1, 0)
and (0, 1) along the square grid centered at the centers of the cells of λ.

A Dyck path γ of length 2n is a lattice path from (0, 0) to (2n, 0) with steps (1, 0) and (1,−1)
that stay on or above the x-axis. The set of Dyck paths of length 2n is denoted by Dyck(n).
For a Dyck path γ, a peak is a point (c, d) such that (c − 1, d − 1) and (c + 1, d − 1) are in γ.
A peak (c, d) is called high peak if d > 1. The set of high peaks of a Dyck path γ is denoted
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by HP(γ) and its size by hp(γ). Note that a Dyck path, upon rotation and rescaling is also a
lattice path in the Young diagram of δn = (n+ 1, n, . . . , 1).

For general lattice paths γ above a certain base path γ′ we can also define high peaks relative
to γ′ as the set of pints (c, d), such that (c, d − 1), (c + 1, d) ∈ γ and (c, d) 6∈ γ′. We will also
denote this set by HP(γ).

2.4. Plane partitions and Young tableaux. We use standard English notation for Young
diagrams and Young tableaux, see e.g. [S1, §7].

To simplify the notation, we use the same letter to denote an integer partition and the
corresponding Young diagram λ. The skew shape (skew Young diagram) λ/µ is given by a pair
of Young diagrams, such that µ ⊂ λ. Denote |λ/µ| the size of the skew shape.

A reverse plane partition of skew shape λ/µ is an array A = (aij) of nonnegative integers
of shape λ/µ that is weakly increasing in rows and columns. A semistandard Young tableau
(SSYT) of shape λ/µ is a reverse plane partition of shape λ/µ that is strictly increasing in
columns and has entries ≥ 1. We denote these sets of tableaux by RPP(λ/µ) and SSYT(λ/µ),
respectively.

A standard Young tableau of shape λ/µ is an reverse plane partition T of shape λ/µ which
contains entries 1, . . . , |λ/µ| exactly once. We denote this set by SYT(λ/µ), and let fλ/µ :=
| SYT(λ/µ)|.

In less standard notation, for a tableau T ∈ RPP(λ), we define tableaux Tk, T≤k and T≥k
as in the introduction. The (skew) shape of a tableau Q is denote by ν(Q). We are using
a(Q) := |ν(Q)| to denote the size (the number of entries) in Q. As in the introduction, we write
|T | to denote the sum of entries in the tableau T .

2.5. Increasing and set-valued Young tableaux. An increasing tableau of shape λ/µ is
a row strict semistandard Young tableau of shape λ/µ. A standard increasing tableau1 is an
increasing tableau of shape λ/µ whose entries are exactly [m], for some m ≤ |λ/µ|. As in the
introduction, we denote by m(T ) := m the maximal entry in T .

Denote by IT(λ/µ) the set of increasing tableaux, and by SIT(λ/µ) the set of standard
increasing tableaux of shape λ/µ. Let gλ/µ := | SIT(λ/µ)| be the number of standard increasing
tableaux.

Tableau T ∈ SIT(λ/µ) is called a barely standard Young tableau of shape λ/µ, if m(T ) =
|λ/µ| − 1. In other words, these are the standard increasing tableaux with exactly one entry
appearing twice (cf. §7.4). We denote the set of these tableaux by BSYT(λ/µ). We also denote
by BSYTk(λ/µ) the tableaux in BSYT(λ/µ) with entry k appearing twice.

Finally, a semistandard set-valued tableau of shape λ/µ is an assignment of subsets of [n] to
the cells of λ/µ, such that for T (u) is the set in cell u ∈ λ, we have:

◦ maxT (u) ≤ minT (u′), where u′ is the cell to the right of u in the same row, and
◦ maxT (u) < minT (u′), where u′ is the cell below u in the same column.

We use ne(T ) to denote the number of entries of T , and SSVTn(λ/µ) to denote the set of such
tableaux.

2.6. Examples. To illustrate the definitions, in the figure below we have λ = 442, µ = 21, A ∈
RPP(λ/µ), B ∈ SSYT(λ/µ), C ∈ SYT(λ/µ), D ∈ SSVT5(λ/µ), E ∈ IT(λ/µ), F ∈ SIT(λ/µ)
with m(F ) = 5, and G ∈ BSYT3(λ/µ). Note that ne(D) = 9.

1In the literature these tableaux are sometimes called (just) increasing tableaux or packed increasing

tableaux [Pe2].
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A =
0 1

0 0 1

1 2

, B =
1 1

1 2 3

3 3

, C =
2 5

1 4 6

3 7

, D =
1 1, 4

1 3 5

1, 2 2

E =
1 3

1 2 4

2 7

, F =
1 3

1 2 4

2 5

, G =
2 3

1 4 5

3 6

In this case, we have |F | = 18, ν(F≤0) = µ = 21, ν(F≤1) = 32, ν(F≤2) = 331, ν(F≤3) = 431,
ν(F≤4) = 441, and ν(F≤5) = λ = 442. Similarly, ν(F≥2) = 442/32 and a(F≥2) = 5.

Finally, in the notation of the introduction, we have b(λ) = |Nλ| and s(λ) = |Mλ| is the
sum of the entries of the minimal reverse plane partition Nλ ∈ RPP(λ), and minimal strictly
increasing tableau Mλ ∈ SIT(λ), with entries Nλ(i, j) = (i − 1) and Mλ(i, j) = (i + j − 1),
respectively. See an example in the figure below:

N442 =
0 0 0 0

1 1 1 1

2 2

and M442 =
1 2 3 4

2 3 4 5

3 4

In this case b(λ) = |N442| = 8 and s(λ) = |M442| = 31.

2.7. Special cases. To further clarify the definitions, let us give a quick calculation of the
number of increasing tableaux for the two row shape (n, n) and the hook shape (p, 1q).

Let sn denote the n-th little Schröder number [OEIS, A001003] that counts lattice paths
(0, 0) → (n, n) with steps (1, 0), (0, 1) and (1, 1) that never go below the main diagonal x = y
and with no (1, 1) steps on the diagonal.

Proposition 2.1 ([Pe1]). We have g(n,n) = sn.

Proof. We interpret the SITs as lattice paths on the square grid. In the case λ = (n, n), let
T ∈ SIT(λ) correspond to the lattice path γ : (0, 0)→ (n, n) is given by a sequence of steps:

(1, 0) if the entry i appears only in the first row of T ,
(0, 1) if the entry i appears only in the second row of T , and
(1, 1) if the entry i appears on both rows.

The increasing columns condition forces the paths γ not to cross below the diagonal, with all
(1, 1) steps strictly above the diagonal, as desired. �

Similarly, let D(m,n) denoted the Delannoy number [OEIS, A008288] that counts lattice
paths (0, 0)→ (m,n) with steps (0, 1), (1, 0) and (1, 1). We call these Delannoy steps.

Proposition 2.2 (cf. [PSV]). For the hook shape λ = (p, 1q), we have g(p,1q) = D(p− 1, q).

The proof follows verbatim the argument above, but the lattice paths with Delannoy steps
no longer have a diagonal constraint. We omit the details.

http://oeis.org/A001003
http://oeis.org/A008288
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3. Factorial Grothendieck polynomials

Recall the following operators first introduced in [FK1, FK3]:

x⊕ y := x+ y + βxy , x	 y :=
(x− y)

(1 + βy)
, 	 x := 0	 x,

and [x |y]k := (x⊕ y1)(x⊕ y2) · · · (x⊕ yk) ,

where y = (y1, y2, . . .).

Definition/Theorem 3.1 (McNamara [Mc1]). Factorial Grothendieck polynomials are defined
by either of the following:

Gµ(x1, . . . , xd |y) : =
∑

T∈SSVTd(µ)

βne(T )−|µ|
∏

u∈µ, r∈T (u)

(
xr ⊕ yr+c(u)

)
= det

(
[xi |y]µj+d−j(1 + βxi)

j−1
)d
i,j=1

∏
1≤i<j≤d

1

(xi − xj)
.

The factorial Grothendieck polynomials are equal to the double Grothendieck polynomials
parameterized by a Grassmannian permutation associated to partition µ, see [Mc2]. These in
turn were defined earlier in [KMY], in the greater generality of all vexillary permutations, see
equation (3.2) below. We postpone their definition until §5.6 (see also §7.3).

Remark 3.2. As mentioned in [Mc1, Rem. 3.2], in the literature Grothendieck polynomials
sometimes appear only in the case β = −1. However, one can obtain the β case from the case
β = −1 by replacing xi with −xi/β and yi with yi/β,

(3.1) Gµ
(
x |y

) ∣∣
β=−1

= (−β)|µ| ·Gµ
(
−x/β | y/β

)
.

It is easy see that G∅(x |y) = 1. We need the following technical result.

Proposition 3.3 ([Mc1, Mc2]). The factorial Grothendieck polynomials G∅(x |y) satisfy:

(i) Gµ(x1, . . . , xd |y) is symmetric in x1, x2, . . . , xd .

(ii) Doing the substitution yi ← (−yi), and setting β = 0, we obtain the factorial Schur
function:

Gµ
(
x1, . . . , xd | − y

) ∣∣
β=0

= sµ(x1, . . . , xd |y).

(iii) Setting yi = 0, we obtain the ordinary Grothendieck polynomials:

Gµ(x1, . . . , xd | y)
∣∣
yi=0

= Gµ(x1, . . . , xd).

(iv) They are equal to double Grothendieck polynomial of Grassmannian permutations:

(3.2) Gw(µ)(x , y) = Gµ(x1, . . . , xd | y),

for d ≥ `(µ), and w(µ) is the Grassmannian permutation with descent at position d
associated to µ.

Proposition 3.4 (Vanishing property of Grothendieck polynomial [Mc1, Thm. 4.4]). When
evaluated at yλ := (	 yλ1+d,	 yλ2+d−1, . . . ,	 yλd+1) with `(d) ≤ d,

(3.3) Gµ(yλ |y) =

{
0 if µ 6⊆ λ,∏

(i,j)∈λ(yd+j−λ′j 	 yλi+d−i+1) if µ = λ.

To simplify the notation, we write G1 for G(1). We use notation ν 7→ µ when the skew shape
ν/µ is nonempty and its boxes are in different rows and columns. Note that ν 6= µ in this case.
In this notation, every standard increasing tableau T ∈ SIT(λ/µ) is viewed as a chain

(3.4) λ = ν
(
T≤k

)
7→ ν

(
T≤k−1

)
7→ . . . 7→ ν

(
T≤1

)
7→ ν

(
T≤0

)
= µ.
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Lemma 3.5 (Pieri rule for Grothendieck polynomial [Mc1, Prop. 4.8]).

(3.5) Gµ(x |y)
(
1 + βG1(x |y)

)
=
(
1 + βG1(yµ |y)

) ∑
ν 7→µ

β|ν/µ|Gν(x |y) .

We can rewrite this Pieri rule as follows:

Proposition 3.6. We have:

(3.6) Gµ(x |y)

(
G1(x |y)−G1(yµ |y)

1 + βG1(yµ |y)

)
=
∑
ν 7→µ

β|ν/µ|−1Gν(x |y) .

Proof. We expand both sides of (3.5) and cancel the term Gµ(x|y) giving

Gµ(x |y) · βG1(x |y) = βG1(yµ |y) · Gµ(x |y) +
(
1 + βG1(yµ |y)

) ∑
ν 7→µ

β|ν/µ|Gν(x |y) .

Now collect the terms with Gµ(x |y) on the LHS. Dividing by 1 + βG1(yµ |y) 6= 0 and β gives
the desired expression. �

Remark 3.7. When we set β = 0 in the Pieri rule above, it immediately reduces to the Pieri
rule of factorial Schur functions (see e.g. [MS, §3]).

Note that

1 + βG1(x |y) =

d∏
j=1

(
1 + β(xj ⊕ yj)

)
=

d∏
i=1

(1 + βxi)

d∏
i=1

(1 + βyi) .

Evaluating both sides at x = yλ, we get

(3.7) 1 + βG1(yλ |y) =
d∏
i=1

1 + βyi
1 + βyλi+d−i+1

.

4. Hook formula for straight shapes

The goal of this section is to prove the multivariate Theorem 4.2 and derive its specializations
Theorem 1.1 and Corollary 1.2.

4.1. Multivariate formulas. First we evaluate x = yλ in (3.6) and simplify to obtain the
following expression.

Proposition 4.1. We have:

(4.1) Gµ(yλ |y)
(
wt(λ/µ)− 1

)
=
∑
ν 7→µ

β|ν/µ|Gν(yλ |y) ,

where

wt(λ/µ) :=
d∏
i=1

1 + βyµi+d−i+1

1 + βyλi+d−i+1
.

Proof. We evaluate (3.6) at x = yλ and multiply by β. Note that

βG1(yλ |y) − βG1(yµ |y)

1 + βG1(yµ |y)
=

1 + βG1(yλ |y)

1 + βG1(yµ |y)
− 1 .

By (3.7), this equals wt(λ/µ)− 1, as desired. �



NEW HOOK FORMULAS FOR STRAIGHT AND SKEW SHAPES 11

Theorem 4.2 (Multivariate K-HLF). Fix d ≥ 1. For every λ ` n with `(λ) ≤ d we have:

(4.2)

∑
T∈SIT(λ)

m(T )∏
k=1

([
d∏
i=1

1 + βyνi(T<k)+d−i+1

1 + βyλi+d−i+1

]
− 1

)−1

=
1

βn

d∏
i=1

(
1 + βyλi+d−i+1

)λi
∏

(i,j)∈λ

1

yd+j−λ′j − yλi+d−i+1
.

Proof. We apply Proposition 4.1 repeatedly, by taking µ ← ν(T≤k−1) and ν ← ν(T≤k), and
noting that ν 7→ µ by equation (3.4). Since this is a straight shape, we are starting with the
empty partition ∅ = ν(T≤0), until we eventually reach ν(T≤k) = λ. Here we use that the
vanishing property Proposition 3.4 ensures that all shapes are contained in λ. We obtain:∑

T∈SIT(λ)

m(T )−1∏
k=0

βa(T≤k+1)− a(T≤k)

wt(λ/ν(k)) − 1
=

Gλ(yλ |y)

G∅(yλ |y)
.

Since G∅ = 1 and

Gλ(yλ |y) =
∏

(i,j)∈λ

yd+j−λ′j − yλi+d−i+1

1 + βyλi+d−i+1

by Proposition 3.4, the desired statement follows. �

Proposition 4.3. Fix d ≥ 1. For every λ ` n with `(λ) ≤ d, we have:

(−1)nGλ(yλ |y)|yi=i =
d∏
i=1

1

(1 + β(λi + d− i+ 1))λi

∏
(i,j)∈λ

h(i, j) .

Proof. This follows directly from Proposition 3.4, since for yi = i, i ≥ i, we have:(
yd+j−λ′j 	 yλi+d−i+1

)
=

j − λ′j − λi + i− 1

1 + β(λi + d− i+ 1)

and h(i, j) = λ′j − i + λi − j + 1. �

Proof of Theorem 1.1. This follows from Theorem 4.2 by substituting yi ← i, for all i ≥ 1.
Indeed, notice that

yd+j−λ′j − yλi+d−i+1 = −(λi − j + λ′j − i+ 1) = −h(i, j) ,

which implies the result. �

Example 4.4. For λ = (2, 2) ` 4, the hook lengths are 3, 2, 2, 1 as in the tableau H below. We
have:

G22(y22 |y)
∣∣
y1=y2=1

=
3 · 2 · 2 · 1

(1 + 3β)2(1 + 4β)4
.

There are three standard increasing tableaux: SIT(λ) = {A,B,C}, as shown below:

H =
3 2

2 1
A =

1 2

3 4
, B =

1 3

2 4
, C =

1 2

2 3
.

The terms on the RHS of (4.2) are

u(A) = u(B) =
(1 + 3β)3(1 + 4β)2

6β4(4 + 10β)
, u(C) = − (1 + 3β)2(1 + 4β)2

3β3(4 + 10β)
,
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and indeed we have

β4
(
u(A) + u(B) + u(C)

)
=

(1 + 3β)2(1 + 4β)4

12
.

4.2. An infinite version. Next we give an equivalent expression for Theorem 1.1 in terms of
increasing tableaux instead of standard increasing tableaux.

Theorem 4.5 (Infinite Multivariate K-HLF). Fix d ≥ 1. For every λ ` n with `(λ) ≤ d, we
have:

(4.3)

∑
T∈IT(λ)

m∏
k=1

d∏
i=1

1 + βyλi+d−i+1

1 + βyνi(T<k)+d−i+1

=
1

(β)n

d∏
i=1

(
1 + β(λi + d− i+ 1)

)λi
∏

(i,j)∈λ

1

yd+j−λ′j − yλi+d−i+1
.

In contrast with (4.2), the sum on the LHS of (4.3) is infinite. This is somewhat further
away from the original (HLF), but closer in spirit to (q-HLF).

Proof. Rewrite Proposition 4.1 as

Gµ(yλ |y) =
∑

ν 7→µ or ν=µ

β|ν/µ|
Gν(yλ | y)

wt(λ/µ)
.

Now, as in the proof of Theorem 4.2, iterate this relation until ν(T≤m) = λ, where m = m(T ).
This implies the result. �

By analogy with the previous argument for SITs, we obtain the following infinite version
of (K-HLF):

Corollary 4.6 (Infinite K-HLF). Fix d ≥ 1. For every λ ` n with `(λ) ≤ d, we have:

(4.4)

∑
T∈IT(λ)

m(T )∏
k=1

d∏
i=1

1 + β(λi + d− i+ 1)

1 + β(νi(T<k) + d− i+ 1)

=
1

(−β)n

d∏
i=1

(
1 + β(λi + d− i+ 1)

)λi
∏

(i,j)∈λ

1

h(i, j)
.

The proof follows verbatim the proof above and will be omitted.

4.3. q-analogue. Let us now obtain the q-analogue of (K-HLF).

Theorem 4.7 (q-K-HLF). Fix d ≥ 1. For every λ ` n with `(λ) ≤ d, we have:

(4.5)

∑
T∈SIT(λ)

m(T )∏
k=1

([
d∏
i=1

1 + βqνi(T<k)+d−i+1

1 + βqλi+d−i+1

]
− 1

)−1

=
qm(λ)

βn

d∏
i=1

(
1 + βqλi+d−i+1

)λi
∏

(i,j)∈λ

1

1− qh(i,j)
.

Proof. Substitute yi ← qi for all i ≥ 1, in Theorems 1.1 and 4.5. Observe that

yd+j−λ′j − yλi+d−i+1 = qd+j−λ′j
(
1− qh(i,j)

)
,

since h(i, j) = (λ′j − j) + (λi − i) + 1. Following verbatim the argument above, this implies the
result. �
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Proof of Corollary 1.2. Letting β →∞ in (4.5), for each term on the LHS we have:

1 + βqνi(T<k)+d−i+1

1 + βqλi+d−i+1
→ qνi(T<k)−λi = q−νi(T≥k) .

A product of inverses of such terms over all 1 ≤ i ≤ d, gives qa(T≥k). Factoring out the leading
βn terms on both sides and simplifying the formula, we obtain (1.1). �

4.4. Evaluations of coefficients. We can expand the LHS in (1.1) as a power series in β and
compare the coefficients on both sides. First, as mentioned in the introduction, we recover the
original hook-length formula (HLF) by evaluating the constant terms.

Proposition 4.8 (β = 0 in K-HLF). The term at β−n in equation (K-HLF) gives (HLF).

Proof. Let λ ` n. Extract the constant term in (K-HLF), after multiplying both sides by βn.
In the RHS, we obtain the product of hooks

∏
u∈λ 1/h(u). In the LHS, since

1 + βp

1 + βt
= 1 +

∞∑
i=1

(p− t) (−t)i−1βi,

then the constant term contains only the summands with m(T ) = n, each with weight 1/n!
By definition, these summands correspond to T ∈ SYT(λ). Thus (K-HLF) at β = 0 gives the
HLF in the form ∑

T∈SYT(λ)

1

n!
=
∏
u∈λ

1

h(u)
,

as desired. �

We conclude with a curious corollary relating standard Young tableaux and barely standard
Young tableaux (see §2.5). Here we are using p2(x1, . . . , xd) = x2

1 + . . . + x2
d , a symmetric

power sum. Other notation are the staircase shape δd = (d − 1, . . . , 1, 0), and the harmonic
number hn = 1 + 1

2 + . . .+ 1
n .

Corollary 4.9 (coefficient of β1−n in K-HLF). Fix d ≥ 1. For every λ ` n with `(λ) ≤ d, we
have:

(4.6)

∑
ν(λ

fν fλ/ν
p2(ν + δd)

n− |ν|
−

n∑
k=1

(n+ k − 2)
∣∣BSYTk(λ)

∣∣
= fλ

(
(hn − 1) p2(λ+ δd) +

n(n− d(d+ 1))

2

)
.

The proof is a lengthy but straightforward calculation of evaluating the coefficient of β1 on
both sides of (K-HLF) normalized by βn, and will be omitted. See §7.4 for the background
on BSYTs.

5. Generalized excited diagrams

5.1. Definitions. Given a set S ⊂ λ we say that (i, j) ∈ S is active if (i+ 1, j), (i, j + 1), and
(i+ 1, j + 1) are in λ \ S. For an active u = (i, j) ∈ S, define au(S) to be the set obtained by
replacing (i, j) by (i+ 1, j + 1) in S. Similarly, define bu(S) to be the set obtained by adding
(i+ 1, j + 1) to S. We call au(S) a type I excited move and bu(S) a type II excited move.

Let E(λ/µ) be the set of diagrams obtained from µ after a sequence of type I excited moves
on active cells. These are called excited diagrams. These diagrams are used in both Naruse
hook-length formula (NHLF) and its q-analogue (q-NHLF).

Let D(λ/µ) be the set of diagrams obtained from µ after a sequence of both types of excited
moves on active cells. These are called generalized excited diagrams. For example, the skew
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shape λ/µ = 43/2 has five generalized excited diagrams, three of which are the ordinary excited
diagrams. These are illustrated in Figure 3 below.

5.2. Properties. For an excited diagram D ∈ E(λ/µ) we associate a subset π(D) ⊆ λ \ D
called excited peaks, constructed inductively, see [MPP1, §6.3]. For µ ∈ E(λ/µ), let π(µ) = ∅.
Let D ∈ E(λ/µ) be an excited diagram with active cell u = (i, j), and let D′ = au(D) be result
of the type I excited move D → D′. Then the excited peaks of D′ are defined as

π(D′) := π(D) − (i, j + 1) − (i+ 1, j) + (i, j) ,

see Figure 1. It is easy to see that the set π(D) of excited peaks is well defined and independent
on the order of the moves. Naruse–Okada gave in [NO, Prop. 3.7] an explicit non-recursive
description of π(D) as well as the following characterization of generalized excited diagrams in
terms of excited diagrams and excited peaks.

Proposition 5.1 ([NO, Prop. 3.13]). We have:

D(λ/µ) =
⋃

D∈E(λ/µ)

{
D ∪ S : S ⊆ π(D)

}
,

so in particular

(5.1)
∣∣D(λ/µ)

∣∣ =
∑

D∈E(λ/µ)

2|π(D)| .

Remark 5.2. There is a certain duality between the set D(λ/µ) of generalized excited diagrams
and the set P(λ/µ) of pleasant diagrams defined in [MPP1] to give an RPP(λ/µ) version
of (q-NHLF). In particular, the following result is a direct analogue of Proposition 5.1.

Proposition 5.3 ([MPP1, §6.2]). We have:

P(λ/µ) =
⋃

D∈E(λ/µ)

{
π(D) ∪ S : S ⊆ λ \D

}
,

so in particular

(5.2)
∣∣P(λ/µ)

∣∣ =
∑

D∈E(λ/µ)

2|λ/µ| − |π(D)| .

Example 5.4. We have |E(332/21)| = 5, see Figure 1, giving |D(332/21)| = 11 by (5.1).
Similarly, equation (5.2) gives |P(332/21)| = 88 pleasant diagrams in this case.

Figure 1. Excited diagrams of shape λ/µ = 332/21, excited moves of type I,
and the corresponding excited peaks denoted by shaded triangles.
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5.3. Lattice paths interpretation. Following the approach in [Kre, MPP2], these general-
ized excited diagrams are in bijection with certain collections of lattice paths by the following
construction.

Let us cut the skew diagram λ/µ into border strips greedily starting from µ. Consider these
strips between the diagonal starting at (0, `(µ)) and the diagonal starting at (µ1, 0). Within
this region, let these border strips have starting squares with midpoints Ai and ending at square
with midpoint Bi, see Figure 2 (left).

A1
A2

B1

B2

B1

A1
A2

B2

Figure 2. Paths corresponding to two generalized excited diagrams, the flips
of the paths in the type I and II excited moves, and the forbidden path config-
uration.

Let η(A,B) be the number of paths A → B inside λ, with endpoints in the center of the
squares of the Young diagram and Delannoy steps. We call these Delannoy paths. The follow-
ing result interprets the generalized excited diagrams D(λ/µ) as collections of nonintersecting
Delannoy paths inside λ/µ.

Proposition 5.5. The set D(λ/µ) is in bijection with Delannoy path collections γi : Ai → Bi,
such that no two such lattice paths γi and γj intersect or have configuration as in Figure 2
(right). In particular, we have: ∣∣D(λ/µ)

∣∣ ≤ det
[
η(Ai, Bj)

]
i,j
.

Proof. For the first part, take Delannoy paths in the complement as shown in Figure 3. Observe
that the initial configuration µ ∈ D, the lowest such lattice paths traverse µ inside λ/µ. A type I
excited move transforms a path by flipping a corner from (1, 0), (0, 1) steps to (0, 1), (1, 0) steps.
A type II excited move transforms a path by changing a (1, 0), (0, 1) corner to a (1, 1) step,
while the cells SE and NW of that step are empty. Further, a type I excited move applied to
cell u with a diagonal step at its SE corner results in flipping this diagonal to steps (0, 1), (1, 0)
and transferring the diagonal step to nearest SE path. A type II excited move at a cell u with
a diagonal step already present results in modifying the nearest SE as above. See Figure 2
(middle).

The final configuration can be drawn by a greedy traverse of the non-excited cells starting
from A1 to B1, see Figure 3. Thus the paths pass exactly through the cells outside S, the
corresponding moves are reversible on paths as long as there is no intersection and no forbidden
configuration. For the second part, note that all non-intersecting Delannoy paths are enu-
merated by the determinant using the Lindström–Gessel–Viennot (LGV) lemma (see e.g. [GJ,
§5.4]), giving the desired determinant inequality. �

Example 5.6. For the skew shape λ/µ = 5442/21 as in Figure 2, we have:

23 =
∣∣D(5442/21)

∣∣ ≤ det

[
13 7
1 3

]
= 32 .
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1 1 1 2 2 2

1 1,2 21,2

type I excited move

type II excited move

Figure 3. The generalized excited diagrams of shape λ/µ = 43/2, their peaks
and the corresponding flagged set tableaux (see §7.5). The complements of
diagrams in D(λ/µ) can be viewed as Delannoy paths inside λ (shown in red).

5.4. Labeled lattice paths. Kreimain [Kre] (see also [MPP2, Prop. 3.6]), showed that excited
diagrams are in bijection with the complements of collections of non-intersecting lattice paths
consisting of the (0, 1) and (1, 0) steps, contained in λ, and with starting and ending points
Ai, Bi as above. Note that in [Kre, MPP2], the starting and ending points where different, but
the geometry actually forces the corner portions of the paths to be always fixed and hence the
start and end points can vary.

Following the definition in §2.3, consider the high peaks of collection of non-intersecting
lattice paths relative to the original path obtained corresponding to the skew diagram λ/µ. As
an example, in Figure 1, there is one lattice path which corresponds to the white cells and the
inner corners which are high-peaks are labeled.

Remark 5.7. Note that high peaks are a subset of the cells on which a type I excited move
was applied at some point and correspond exactly to the excited peaks.

Denote by Π(λ/µ) the set of such collections of paths, where each high peak has been labeled
0 or 1. Similarly, denote by ∆(λ/µ) the set of collections of Delannoy paths in the complement
of generalized excited diagrams in D(λ/µ).

We can now explain Proposition 5.1 via lattice paths by the following bijection φ : Π(λ/µ)→
∆(λ/µ) between labeled lattice and Delannoy paths. Formally, for a collection Υ ∈ Π(λ/µ),
replace each high peak labeled 1 with a (1, 1) step; all other peaks and paths stay the same.

Proposition 5.8. For the a skew shape λ/µ the map φ : Π(λ/µ) → ∆(λ/µ) defined above is
a bijection.

Proof. It is easy to see that for every Υ ∈ Π(λ/µ), the paths in φ(Υ) are exactly the Delannoy
paths for ∆(λ/µ). For the inverse map φ−1, replace every (1, 1) step with (0, 1), (1, 0) steps
which would necessarily form a high peak and label it 1. This implies the result. �

5.5. Thick zigzag shape. Consider now the thick zigzag shape δn+2k/δn. Recall that∣∣E(δn+2k/δn)
∣∣ = det

[
Cn+i+j−2

]k
i,j=1

and
∣∣P(δn+2/δn)

∣∣ = 2(k
2) det

[
ŝn+i+j−2

]k
i,j=1

,

where ŝn = 2n+2sn. The first equality is proved in [MPP2, Cor. 8.1], while the second was
originally conjectured in [MPP1, Conj. 9.3] and proved in [HKYY, Thm. 1.1]. We give a similar
determinant formula for the number of generalized excited diagrams of thick zigzag shape.

Theorem 5.9. We have:
∣∣D(δn+2/δn)

∣∣ = sn and
∣∣D(δn+4/δn)

∣∣ = 1
2

(
snsn+2 − s2

n

)
. More

generally, we have:

(5.3)
∣∣D(δn+2k/δn)

∣∣ = 2−(k
2) det

[
sn−2+i+j

]k
i,j=1

for all k ≥ 1 .
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Proof. From [MPP2, §3.3, §8.1], the complements of excited diagrams D ∈ E(δn+2k/δn) cor-
respond to k-tuples Υ := (γ1, . . . , γk) of non-intersecting Dyck paths γi ∈ Dyck(n + 2i − 2),

for all 1 ≤ i ≤ k, whose set we denote by NDyck(n, k). Define HP(Υ) :=
⋃k
i=1HP(γi), and

hp(Υ) := |HP(Υ)|.
By Proposition 5.8, the diagrams D ∈ D(δn+2k/δn) correspond to tuples (Υ, S), where

Υ ∈ NDyck(n, k) and S ⊆ HP(Υ) are the high peaks labeled with 1. We conclude:

(5.4)
∣∣D(δn+2k/δn)

∣∣ =
∑

Υ∈NDyck(n,k)

2hp(Υ) .

Let

Ln(x) :=
∑

γ∈Dyck(n)

xhp(γ) and Ln,k(x) :=
∑

Υ∈NDyck(n,k)

xhp(Υ) .

Note that sn = Ln(2), see e.g. [Sul]. By (5.4), we have Ln,k(2) =
∣∣D(δn+2k/δn)

∣∣.
Finally, by [HKYY, Thm. 5.9], the sum Ln,k(x) satisfies the following determinant formula:

(5.5) x(k
2) · Ln,k(x) = det

[
Ln+i+j−2(x)

]k
i,j=1

.

Setting x = 2, we obtain the result. �

5.6. Double Grothendieck polynomials. Excited diagrams can be used to give a combina-
torial model of these polynomials in the special case we need. For a definition and combinatorial
models of double Grothendieck polynomials for all permutations, see [FK1, FK2, KM].

In [KMY], Knutson–Miller–Yong gave the following formula for Grothendieck polynomials
of vexillary permutations originally stated in terms of flagged set tableaux, and restated here
in terms of generalized excited diagrams. See also §7.7 for discussion of another proof of this
result.

Theorem 5.10 ([KMY, Thm. 5.8]). Let w be a vexillary permutation of shape µ and super-
shape λ. Then the double Grothendieck polynomial parameterized by w can be computed as
follows:

(5.6) Gw(x , y) =
∑

D∈D(λ/µ)

β|D|−|µ|
∏

(i,j)∈D

(xi ⊕ yj)

Corollary 5.11. Let w be a vexillary permutation of shape µ and supershape λ. Then we have:

Gw(x , y) =
∑

D∈E(λ/µ)

β|D|−|µ|
∏

(i,j)∈π(D)

(
1 + β(xi ⊕ yj)

) ∏
(i,j)∈D

(
xi ⊕ yj

)
.

Proof. This follows immediately from Theorem 5.10 and Proposition 5.1. �

Example 5.12. For w = 1432 ∈ S4, we have µ = 21, λ = 332, and |D(332/21)| = 11, see
Example 5.4 and [FK1, Ex. 1]. By Corollary 5.11 for yi = 0 we have:

G1432(x , 0) =

= x2
1x2 + x2

2x1 (1 + βx1) + x2
1x3 (1 + βx2) + x1x2x3 (1 + βx1) (1 + βx2) + x2

2x3 (1 + βx1)

= x2
1x2 + x2

2x1 + x2
1x3 + x1x2x3 + x2

2x3 + βx2
1x

2
2 + 2βx2

1x2x3 + 2βx2
2x1x3 + β2x2

1x
2
2x3 .
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5.7. Principal specialization. Let Γw(β) := Gw(1 , 0) be the principal specialization of the
Grothendieck polynomial. Substituting xi ← 1 and yi ← 0 in Corollary 5.11, we immediately
obtain:

Corollary 5.13. Let w be a vexillary permutation of shape µ and supershape λ. Then:

Γw(β) =
∑

D∈D(λ/µ)

β|D|−|µ| =
∑

D∈E(λ/µ)

β|D|−|µ| (1 + β)|π(D)| .(5.7)

Using the lattice paths interpretation from §5.3, let ηβ(A,B) be the weighted sum of Delan-
noy paths A → B with β keeping track of the number of (1, 1) steps. We have the following
inequality for the principal specialization of the Grothendieck polynomials considered above.

Corollary 5.14. Let w be a vexillary permutation of shape µ and supershape λ, and let Γw(β)
be the principal specialization of the Grothendieck polynomial. Then:

Γw(β) 6 det
[
ηβ(Ai, Bj)

]
i,j
,

where 6 means coefficient-wise inequality as polynomials in β.

Proof. The result follows immediately from Corollary 5.13, the proof of Proposition 5.5, and the
proof of the LGV lemma which preserves the total number of (1, 1) steps under the involution.

�

Finally, we give a determinant formula for the principal specialization Γw(n,k)(1), where

w(n, k) := (1, 2, . . . , k, n+ k, n+ k − 1, . . . , k + 1) .

See [FK3] and [MPP3, Cor. 5.8] for the analogous results on evaluations of Schubert polynomials
of w(n, k).

Corollary 5.15. For all n, k ≥ 1, in notation we have:

Γw(n,k)(1) = 2−(k
2) det

[
sn−2+i+j

]k
i,j=1

for all k ≥ 1 .

Proof. The permutation w(n, k) is dominant (132-avoiding), and hence vexillary. Denote by
λ/δn the skew shape associated to w(n, k), see [MPP3, Fig. 6(a)]. Then Corollary 5.13 at β = 1
gives:

Γw(n,k)(1) =
∣∣D(λ/δn)

∣∣.
From the definition of generalized excited diagrams, or from their correspondence with flagged
set-valued tableaux (see §7.5), it is easy to see that

∣∣D(λ/δn)
∣∣ =

∣∣D(δn+2k/δn)
∣∣. The result

then follows by Theorem 5.9. �

6. Hook formula for skew shapes

6.1. The setup. Recall the vanishing property (Proposition 3.4) of the factorial Grothendieck
polynomials:

Gµ(yλ |y) =

{
0 if µ 6⊆ λ ,∏

(i,j)∈λ(yd+j−λ′j 	 yλi+d−i+1) if µ = λ .

Following the approach of Ikeda–Naruse [IN1] and Kreiman [Kre] for the factorial Schur func-
tions sµ(yλ |y), we present a combinatorial model for the Andersen–Jentzen–Soergel [AJS] and
Billey [Bil] expressions for evaluations of the factorial Grothendieck polynomials Gµ(yλ |y)
when µ ⊆ λ.

Fix two Grassmannian permutations w ≤ v in SN with associated partitions µ ⊆ λ with
`(λ) ≤ d and λ1 ≤ N−d, see e.g. [Man, §2.1]. Let cλµτ and Kλ

µτ be the structure constants for the
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Schubert classes in the equivariant cohomology and equivariant K-theory of the Grassmannian,
respectively, see e.g. [IN1, Kre, GK].

Theorem 6.1 (Ikeda–Naruse [IN1], Kreiman [Kre]). Fix d ≥ 1. For all µ ⊂ λ with `(λ) ≤ d,
we have:

cλµλ =
∑

D∈E(λ/µ)

∏
(i,j)∈D

(
yd+j−λ′j − yλi+d+1−i

)
.

Theorem 6.2 (Graham–Kreiman [GK, Thm. 4.5]). Fix d ≥ 1. For all µ ⊂ λ with `(λ) ≤ d,
we have:

Kλ
µλ =

∑
D∈D(λ/µ)

(−1)|D|−|µ|
∏

(i,j)∈D

yd+j−λ′j − yλi+d+1−i

1 − yλi+d+1−i
.

Remark 6.3. To translate from the result in [GK, Thm. 4.5] to the one stated here one needs
to do the substitution yi ←

(
1− eεi

)
, as discussed in [GK, §4.3.1,§5.4].

6.2. Multivariate formulas. The following technical lemma gives an evaluation of the facto-
rial Grothendieck polynomials, and provides a bridge to our enumerative problem.

Lemma 6.4. Fix d ≥ 1. For all µ ⊂ λ with `(λ) ≤ d, we have:

(6.1) Gµ(yλ |y) =
∑

D∈D(λ/µ)

β|D|−|µ|
∏

(i,j)∈D

(
yd+j−λ′j 	 yλi+d−i+1

)
.

Proof. We show that both sides of (6.1) satisfy the same identity. First, the factorial Grothendieck
polynomials satisfy the Chevalley formula (3.6). Thus, for the LHS of (6.1) we have:

Gµ(yλ |y)

(
G1(yλ|y) − G1(yµ |y)

1 + βG1(yµ |y)

)
=
∑
ν)µ

β|ν/µ|−1 Gν(yλ |y) .

By Theorem 6.2, the RHS of (6.1) at β = −1 equals Kλ
µλ. On the other hand, Lenart–

Postnikov [LP, Cor. 8.2] (see also the proof of Prop. 3.1 in [PY]), give the following equivariant
K-theory Chevalley formula:

Kλ
µλ

(
Kλ

1λ − 1 + wt′(µ)

wt′(µ)

)
=
∑
ν 7→µ

(−1)|ν/µ|−1 Kλ
νλ ,

where

wt′(µ) :=
∏

(i,j)∈µ

1− yi+j−1

1− yi+j
.

Observe that we have cancellations in the formula for wt′(µ), and for each row i of µ only the
term (1− yi)/(1− yµi+d−i+1) survives in the product. Thus:

wt′(µ) =
d∏
i=1

1− yi
1− yµi+d−i+1

= 1−G1

(
yµ |y

)
|β=−1 ,

where the second equality follows by (3.7). Therefore, we have:

Kλ
µλ

(
Kλ

1λ −G1(yµ |y) |β=−1

1−G1(yµ |y) |β=−1

)
=
∑
ν)µ

(−1)|ν/µ|−1 Kλ
νλ .

This shows that

Gµ(yλ |y) |β=−1 = Kλ
µλ.
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We conclude:

(6.2) Gµ(yλ |y) |β=−1 =
∑

D∈D(λ/µ)

(−1)|D|−|µ|
∏

(i,j)∈D

yd+j−λ′j − yλi+d+1−i

1 − yλi+d+1−i
.

It remains to show that by substituting yi ← (−yiβ) in (6.2), we get the desired result.
Denote the LHS of (6.2) by F (y1, . . . , yn). We easily verify that

(−β)−|µ| F (−y1β, . . . ,−ynβ) =
∑

D∈D(λ/µ)

β|D|−|µ|
∏

(i,j)∈D

(yd+j−λ′j 	 yλi+d−i+1) .

Finally, for the RHS by (3.1) we have that

(6.3) Gµ
(
yλ |y

)
|yi←(−yiβ) = (−β)|µ|Gµ(yλ |y) ,

as desired. �

Theorem 6.5 (Multivariate K-NHLF). Fix d ≥ 1. For all µ ⊂ λ with `(λ) ≤ d, we have:

(6.4)

∑
T∈SIT(λ/µ)

m(T )∏
k=1

([
d∏
i=1

1 + βyνi(T<k)+d−i+1

1 + βyλi+d−i+1

]
− 1

)−1

=
∑

D∈D(λ/µ)

β|D|−|λ|
∏

(i,j)∈λ\D

βyλi+d−i+1 + 1

yd+j−λ′j − yλi+d+1−i
.

Proof. By Lemma 6.4 and the vanishing property (3.3) of Gµ(yµ |y), we have:

(6.5)
Gµ(yλ |y)

Gλ(yλ |y)
=

∑
D∈D(λ/µ)

β|D|−|µ|
∏

(i,j)∈λ\D

1

yd+j−λ′j 	 yλi+d−i+1
.

Alternatively, by iterating (4.1), we obtain:

(6.6)
Gµ(yλ|y)

Gλ(yλ |y)
= β|λ/µ|

∑
T∈SIT(λ/µ)

m(T )∏
k=1

([
d∏
i=1

1 + βyνi(T<k)+d−i+1

1 + βyλi+d−i+1

]
− 1

)−1

.

Equating (6.5) and (6.6) we get the result. �

Proof of Theorem 1.4. This follows from Theorem 6.5 by substituting yi ← i for all 1 ≤ i ≤ d,
and noticing that yd+j−λ′j − yλi+d−i+1 = −h(i, j). �

6.3. q-analogue. By analogy with the straight shape (§4.3), we obtain a q-analogue using the
substitution yi ← qi for all i ≥ 1.

Theorem 6.6 (q-K-NHLF). Fix d ≥ 1. For all µ ⊂ λ with `(λ) ≤ d, we have:

(6.7)

∑
T∈SIT(λ/µ)

m(T )∏
k=1

([
d∏
i=1

1 + βqνi(T<k)+d−i+1

1 + βqλi+d−i+1

]
− 1

)−1

=
∑

D∈D(λ/µ)

β|D|−|λ|
∏

(i,j)∈λ\D

βqλi+d−i+1 + 1

qd+j−λ′j (1 − qh(i,j))
.

We omit the proof as the calculations follow verbatim that in the proof of Theorem 4.7.
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Proof of Theorem 1.5. Following the proof of Corollary 1.2, let β →∞ in (6.7). We have:

1 + βqνi(T<k)+d−i+1

1 + βqλi+d−i+1
→ q−|λi−νi(T<k)| = q−|νi(T≥k)| .

Taking the inverse of a product of these terms over all 1 ≤ i ≤ d, we get qa(T ). The β terms
on the RHS of (6.7) all have exponents zero, which implies the result. �

Finally, as discussed in the introduction (see Remark 1.6), we can now rewrite the RHS of
(6.7) in terms of the (ordinary) excited diagrams.

Corollary 6.7. For every µ ⊂ λ, we have:

(6.8)

∑
T∈SIT(λ/µ)

q|T |
m(T )∏
k=1

1

1− qa(T≥k)

=
∑

D∈E(λ/µ)

∏
(i,j)∈π(D)

1

1− qh(i,j)

∏
(i,j)∈λ\D

qh(i,j)

1− qh(i,j)
.

Proof. This follows from Theorem 1.5 and the characterization of generalized excited diagrams
given in Proposition 5.1. �

6.4. Back to set-valued tableaux. The following Okounkov–Olshanski formula (OOF) given
in [OO], is yet another nonnegative formula for fλ/µ . Fix d ≥ 1 for µ ⊂ λ with `(λ) ≤ d we
have:

(OOF) fλ/µ = n!
∑

T∈SSYTd(µ)

∏
(i,j)∈λ

(
λd+1−T (i,j) + i− j

) ∏
(i,j)∈λ

1

h(i, j)
,

where SSYTd(µ) denotes the set of SSYTs of shape µ with entries ≤ d. Note that (OOF) is
also proved via evaluations of factorial Schur functions, preceding (NHLF) in this approach.
The corresponding q-analogues are given in [CS, Thm. 1.2] and [MZ, §1.4], for the summations
over SSYT(λ/µ) and RPP(λ/µ), respectively.

Here we follow a simple proof in [MZ, §3.1] via evaluations of factorial Schur functions, to
give a (K-OOF) generalization of (OOF) for SIT(λ/µ) analogous to Theorem 1.4.

Theorem 6.8 (K-OOF). Fix d ≥ 1. For all µ ⊂ λ with `(λ) ≤ d, we have:∑
T∈SIT(λ/µ)

m(T )∏
k=1

([
d∏
i=1

1 + β
(
νi(T<k) + d− i+ 1

)
1 + β

(
λi + d− i+ 1

) ]
− 1

)−1

=
d∏
i=1

(
1 + β (λi + d− i+ 1)

)λi

×
∑

T∈SSVTd(µ)

(−β)ne(T )−|λ|
∏

(i,j)∈µ, r∈T (i,j)

λd+1−r + i − j

1 + β
(
λd+1−r + r

) ∏
(i,j)∈λ

1

h(i, j)

Proof. We evaluate Gµ(yλ |y) /Gλ(yλ |y) |yi←i in two different ways. First, the LHS is ob-
tained by substitution yi ← i in (6.6). For the RHS we evaluate the numerator and de-
nominator directly. For the denominator we use Proposition 4.3. For the numerator, since
Gµ(x1, . . . , xd |y) is symmetric in x1, . . . , xd by Proposition 3.3 (i), we have:

Gµ
(
	(λ1 + d), . . . , 	(λd−1 + 2), 	(λd + 1)

∣∣ 1, 2, 3, . . .
)

= Gµ
(
	(λd + 1), 	(λd−1 + 2), . . . , 	(λ1 + d)

∣∣ 1, 2, 3, . . .
)
.

Next, by Definition 3.1 of factorial Grothendieck polynomials, the RHS of the equation above
is equal to ∑

T∈SSVTd(µ)

βne(T )−|µ|
∏

(i,j)∈µ, r∈T (i,j)

[
−(λd+1−r + r)

1 + β(λd+1−r + r)
⊕ (r + j − i)

]
.
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The result then follows by simplifying power of β and doing the calculation

−(λd+1−r + r)

1 + β (λd+1−r + r)
⊕ (r + j − i) =

−λd+1−r − i + j

1 + β
(
λd+1−r + r

) .
We omit the details. �

Remark 6.9. Note that the set SSYTd(µ) in (OOF) is finite and plays a role of the set
E(λ/µ) of excited diagrams in (NHLF). This connection is clarified in [MZ], with reformulations
of (OOF) in terms of puzzles and reverse excited diagrams. Finally, the set SSVTd(µ) plays a
role of generalized excited diagrams D(λ/µ). It would be interesting to reformulate the theorem
similarly, in terms of puzzles.

7. Final remarks and open problems

7.1. The hook-length formula (HLF) has numerous proofs, starting with the original pa-
per [FRT]. The Littlewood formula (q-HLF) was first given in [Lit, p. 124]. We refer to
[CKP, §6.2] for an overview of other proofs and generalizations. The Naruse hook-length for-
mula (NHLF) was originally given by Naruse in his talk slides [Nar]. In our first two papers
of this series [MPP1, MPP2] we give about four proofs of this result, which include both the
SSYT and RPP generalizations, see (q-NHLF) and (1.6).

7.2. In [MPP3], we give various enumerative and asymptotics applications of the (NHLF).
Further applications and comparisons with other tools for estimating fλ/µ = | SYT(λ/µ)| are
surveyed in [P2]. It would be interesting to find similar applications of the β-deformations pre-
sented in this paper. Let us single out Thm. 3.10 in [MPP3] which established a key symmetry
via factorial Schur functions, used to obtain a host of product formulas. Note that two elemen-
tary proofs of this result are given in [PP]; we are especially curious to find its generalization
motivated by the factorial Grothendieck polynomials.

7.3. The notation used for the factorial Grothendieck polynomials goes back to the formal
group law of connective K-theory, and in the context of Algebraic Combinatorics is explained
in [FK1] as follows.

Let Aβn be the algebra with generators u1, . . . , un−1 satisfying u2
i = βui, the exchange and

braid relation. Observe that A0
n is the NilCoxeter algebra and A−1

n is the degenerate Hecke
algebra. Then the functions hi(t) = etui satisfy the Yang–Baxter equation:

hi(t)hi+1(t+ s)hi(s) = hi+1(s)hi(t+ s)hi+1(t) .

For hi(t) = etui = 1 + xui we have x = (eβt − 1)/β. We can now write this as x = [t]β and
note that [t]β ⊕ [s]β = [t+ s]β .

7.4. Our notion of barely standard Young tableaux BSYT comes from a similar notion of barely
set-valued tableaux recently introduced in [RTY], and probably the closest relative of SYT that
we have. Note that (4.6) can be rewritten as computing the expectation of the repeated entry,
similar to [RTY] (see also [FGS]), although the resulting formula is more cumbersome.

7.5. Excited diagrams are in bijection with certain flagged tableaux: |E(λ/µ)| = |Flag(λ/µ)|,
where Flag(λ/µ) ⊂ SSYT(µ), see [MPP1, §3.3]. This connection was used in [MPP2, §3.3]
to obtain a determinant formula for |E(λ/µ)|. Similarly, the generalized excited diagrams in
D(λ/µ) are in bijection with certain flagged set-valued tableaux of shape µ, see an example in
Figure 3. These bijections were obtained by Kreiman [Kre, §6] and by Knutson–Miller–Yong
[KMY, §5] in the context of Schubert calculus.
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7.6. In Theorem 5.9, we gave a determinant formula for the number of generalized excited
diagrams of the skew shape δn+2k/δn using the connection between D(λ/µ) and P(λ/µ), see
Proposition 5.1. A similar determinant formula for P(δn+2k/δn) is proved in [HKYY]. In fact,
[HKYY, Cor. 6.4] gives determinant formulas for pleasant diagrams of more general classes of
skew shapes called good that also include thick reverse hooks (b + c)a+c/ba. Using [HKYY,
Thm. 6.3], which is an analogue of (5.5), one can show determinant formula for generalized
excited diagrams of such good skew shapes.

7.7. In [Wei, Cor. 1.5, Thm. 1.1], Weigandt gave two formulas for double Grothendieck poly-
nomials Gw(x , y) in terms of the bumpless pipe dreams of w defined by Lam–Lee–Shimozono
[LLS]. When w is vexillary, these formulas reduce to Theorem 5.10 and Corollary 5.11, re-
spectively. Indeed, a bijection between marked bumpless pipe dreams of vexillary w and
D
(
λ(w)/µ(w)

)
via the corresponding flagged set-valued tableaux is given in [Wei, Thm. 1.6].

Similarly, a bijection between vexillary bumpless pipe dreams and ordinary excited diagrams is
given in [Wei, §7.3].

We should mention that bumpless pipe dreams of w behave like (generalized) excited dia-
grams of shape λ/µ, since the former are connected by certain moves called (K-theoretic) droop
moves [LLS, Wei]. It would be interesting to further explore this connection.

7.8. There is a large literature on enumeration of increasing tableaux in many special cases
based on a trick of adding Mλ implicitly used in (1.3). Notably, for the rectangular shape,
tableaux in SIT(ab) are in bijection with certain plane partitions of the same shape, see
e.g. [DPS, §4] and [HPPW]. This approach fails to give a bijection for general skew shapes
λ/µ, except when µ = δk is a staircase. The latter are characterized by all minimal elements in
Mλ/µ having the same entries.

7.9. While all our proofs are algebraic, some of our results seem well-positioned to have a
direct combinatorial proof. We are especially curious if (K-HLF) has such a proof. Similarly,
it would be interesting to use Konvalinka’s recursive approach [Kon], to find a combinatorial
proof of our Theorem 1.4.

7.10. The complexity of counting standard increasing tableaux is yet to be understood. In [TY2,
§1.3], the authors give examples of large primes appearing as values, and suggest that the exact
formula might not exist. They ask if there are “efficient (possibly randomized or approximate)
counting algorithms” for gλ = | SIT(λ)| and its refinements.

We conjecture that computing gλ is #P-complete. This would partly explain why our hook
formulas involve nontrivial β-weights. For the related notion of set-valued tableaux, see a
discussion in [MPY] and #P-completeness conjecture in [H+, §5.7].

7.11. The LHS of (K-HLF) is equal to the LHS of equation (K-OOF) given in Theorem 6.8.
It then follows from the proof of Theorem 6.8 that both can be computed efficiently for a given
skew shape λ/µ and β ∈ Q. It would be interesting to see if these have a determinant formula
generalizing the Aitken–Feit determinant formula for fλ/µ (see e.g. [S1, Cor. 7.16.3] and [P2]).

Note that the Lascoux–Pragacz identity gives yet another determinant formula for fλ/µ,
which we used in [MPP2] to give a combinatorial proof of (NHLF). Finally, let us mention that
E(λ/µ) has a determinant formula (see §7.5i above), while Proposition 5.5 is not an equality
but gives only a determinant upper bound for D(λ/µ).

7.12. Following the approach of Stanley [S2], we conjecture that for all β ≥ 0, there is a limit

lim
n→∞

log2 u(β, n)

n2
, where u(β, n) := max

w∈Sn

Γw(β) .
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Using the Cauchy identity for Grothendieck polynomials [FK1, Cor. 5.4], we obtain the following
bounds:

1

4
log2(2 + β) ≤ lim inf

n→∞

log2 u(β, n)

n2
≤ lim sup

n→∞

log2 u(β, n)

n2
≤ 1

2
log2(2 + β).

In [MPP4], we computed the limit above for β = 0, when the maximum is restricted to layered
(231- and 312-avoiding) permutations. It would be interesting to see if our analysis can be
extended to the case of general β > 0.

7.13. Dividing both sides of (K-HLF) by (−1)n and taking β > 0, gives positive weights in
the summation on the LHS over the SITs. Can one efficiently sample from this distribution?
Perhaps, there is a deformation of the NPS algorithm or the GNW hook walk? A positive
answer to either of these would be remarkable.
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[KM] A. Knutson and E. Miller, Gröbner geometry of Schubert polynomials, Annals of Math. 161 (2005),

1245–1318.
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