
Messy States of Wiring: Vulnerabilities in Emerging Personal Payment Systems

Jiadong Lou, Xu Yuan ⇤

University of Louisiana at Lafayette
Ning Zhang

Washington University in St. Louis

Abstract
This paper presents our study on an emerging paradigm of
payment service that allows individual merchants to lever-
age the personal transfer service in third-party platforms to
support commercial transactions. This is made possible by
leveraging an additional order management system, collec-
tively named Personal Payment System (PPS). To gain a bet-
ter understanding of these emerging systems, we conducted
a systematic study on 35 PPSs covering over 11740 mer-
chant clients supporting more than 20 million customers. By
examining the documentation, available source codes, and
demos, we extracted a common abstracted model for PPS and
discovered seven categories of vulnerabilities in the existing
personal payment protocol design and system implementa-
tion. It is alarming that all PPSs under study have at least one
vulnerability. To further dissect these potential weaknesses,
we present the corresponding attack methods to exploit the
discovered vulnerabilities. To validate our proposed attacks,
we conducted four successful real attacks to illustrate the se-
vere consequences. We have responsibly disclosed the newly
discovered vulnerabilities, with some patched after our report-
ing.

1 Introduction

Pervasive network connections in modern computing devices
are enabling the adoption of the online payment service as a
more convenient and safer method for monetary transactions.
Reports from eMarketer [20, 21] state that 1.06 billion people
are using a proximity mobile payment. Asia’s 577.4 million
proximity mobile payment users make up about half of that
total, largely due to rapid adoption in China. In recognition
of the growing market, there have been an increasing number
of mobile payment platforms designed to enable payments
among users without having to go through traditional methods
such as credit cards and checks, often reducing the risk to the
user in the case of information disclosure to the vendor. The

⇤Corresponding author: Dr. Xu Yuan (xu.yuan@louisiana.edu)

well-known third-party platforms include but are not limited
to Alipay [2], Wexpay [10], Apple pay [4], Paypal [6], and
Venmo [8].

However, existing payment platforms have several limita-
tions. First, individual payment accounts on these platforms
are not designed to handle large volumes of transactions,
thereby there is a lack of scalable methods to automatically
associate orders with payment transactions. Second, while
there exist merchant accounts that can be registered on the
payment platforms to provide the aforementioned function-
alities, the barrier to entry is quite high for many small busi-
nesses. For example, it requires a government-issued license
(considerable delay in application) in China to get a merchant
account with Alipay. Lastly, there is also a non-trivial upfront
cost commitment to get started. Realizing these drawbacks,
a new form of payment management service has emerged
to serve as a broker between buyers and sellers, providing a
minimalist payment management system with significantly
lower transaction fees and initial financial commitment. They,
however, are not individual financial institutions and do not
offer wallet functions. Instead, these payment management
systems rely on existing personal transfer services from third-
party platforms for actual money transfers. We refer to this
new paradigm of payment system as the personal payment
system (PPS).

Since this new payment system builds on top of the ex-
isting personal money transfer interface and has to involve
multiple rounds of complex interactions between different
entities in the ecosystem, security remains a challenging issue
for both the PPS and its users. Recognizing the role of pay-
ment systems in the digital economy, there have been several
studies analyzing and demonstrating security issues in both
web-based payment services [18,34,45,46,48,52] and in-app
payment services [25, 37, 54]. However, they have mainly
focused on commercial payment services, and little attention
has been given to the emerging PPS.

In this paper, we present our systematic analysis of the
emerging PPS where we dissect its design elements, ecosys-
tem, and potential vulnerabilities. The 35 PPSs under study

offer both web and mobile app applications covering over
11740 merchant clients supporting more than 20 million cus-
tomers. By analyzing the technical documents and applica-
tions of these 35 PPSs, we abstract the common design pattern
of their payment systems and the corresponding business pro-
cesses. We found that all PPSs have five key components to
satisfy the essential business needs of their clients, namely
PPS enrollment and key distribution, order generation, order
payment, payment notification, and order inquiry. We found
seven unique patterns of vulnerabilities that are common in
the majority of the studied PPSs. Of the five key components,
the majority of the vulnerabilities are within the order gen-
eration process. Based on the discovered vulnerabilities, we
designed and implemented five proof-of-concept attacks that
chain together multiple vulnerable patterns to demonstrate the
real-world threat. To minimize the impact on the real-world
systems, all experiments were designed to attack our own
test accounts, and we also reported the processes and results
to all vendors so that they could mitigate the impact of the
attacks. The financial ramifications of the attacks are typically
mitigated by closure of the test accounts.

To mitigate the threat of these vulnerabilities, we conducted
a systematic analysis of the root causes and classified them
from different perspectives, such as protocol vs. implemen-
tation. With the analysis, we list 10 suggestions for PPS
providers, merchants, and the buyers who make payments.

Lastly, to ensure that the vendors had enough time to fix
the vulnerabilities, we contacted them individually about the
vulnerabilities several months before the submission of this
manuscript. This allowed several vendors to finish patching
the reported vulnerabilities at the time of writing. We have
also disclosed the vulnerabilities to various security response
platforms, including Tencent security response center [7] and
Alibaba security response center [1].

In summary, we have made the following contributions in
this paper:

• We dissected the internals of a newly emerging paradigm
of payment system, the Personal Payment System (PPS),
and presented a common abstracted model of these new
payment systems.

• Based on our analysis of the PPS, we have discovered 7
vulnerable patterns and presented 5 new attacks methods
that exploit these vulnerable patterns.

• We conducted an empirical study to analyze the pay-
ment services from the 35 most widely used PPSs and
exposed the security issues corresponding to our discov-
ered 7 vulnerable patterns. Four real-world attacks on
the websites adopting the PPSs were also conducted to
demonstrate our discovered vulnerabilities.

• Following the practice of responsible disclosure, we have
reported all the discovered design flaws and worked with
some vendors in fixing these vulnerabilities.

• To mitigate these vulnerabilities, we have conducted a
root cause analysis and provided a discussion on how to
secure the ecosystem.

2 Personal Payment System

2.1 PPS Definition
Personal payment system is an emerging paradigm that cou-
ples personal money transfer functions provided by existing
third-party platforms with an order management platform
developed by a PPS provider. It allows individual small busi-
nesses to leverage personal financial accounts registered in
third-party platforms to meet the demands of commercial
transactions without incurring significant upfront costs. Due
to its low barrier of entry, these new systems have successfully
attracted a large number of merchants, especially startups and
small businesses.

Third-party payment platforms provide free personal
money transfer services, and each user can register a personal
account for sending money to or receiving money from oth-
ers. However, the personal transfer interface does not include
payment and order related management functionalities (e.g.,
recording the payment information and order status, moni-
toring the money flow, informing merchants about payment
status). Therefore, it is often impossible to use these accounts
directly for commercial transactions. Recognizing this op-
portunity, PPS providers develop a payment management
platform to complement existing payment platforms. To use
the PPS platform, a merchant has to register an account on
the PPS system and link this account to an existing personal
account on a third-party payment system such as AliPay. The
PPS platform will work in the background to present to its
users a unified commercial-capable interface that supports
both payment and order tracking.

2.2 Personal Payment System v.s. Commer-
cial Payment System

While both the existing mainstream third-party commercial
payment systems (TP-CPS) and the PPS offer the ability to
manage transactions and payments at the commercial scale,
there are major differences between the ecosystems of the two.
The high level workflows of TP-CPS and PPS are summarized
in Figures 1(a) and 1(b), respectively.

In the TP-CPS, as shown in Figure 1(a), there are three
entities, i.e., merchant client (MC), merchant server (MS), and
cashier server (CS). MC is the merchant client, where users
can browse merchandise and make orders. MS is the merchant
server that hosts the client content. It is also responsible for
processing orders and confirming payment statuses of orders.
The CS in a third-party platform manages money transactions
between different accounts, and offers the ability to track
payment status. With a commercial account on a third-party

Merchant
Commercial Account

Buyer Personal
Account

Cashier Server (CS)

Third-party Platform

Money Flow

Merchant
Server (MS)

Merchant Client
(MC)

Order Management Subsystem

Payment + Order
details

Order Payment
Status

(a) The transaction process in the TP-CPS.

Cashier Server (CS)

Third-party Platform

Merchant Server
(MS)

Merchant PPS
Account

Merchant Client
(MC)

PPS Order
Management Platform

(PMP)

Payment details

Order details

Active Monitoring of
Payment Information

Order Payment
Status

Merchant
Personal Account

Buyer Personal
Account

Money Flow

Order Management Subsystem

(b) The transaction process in the PPS.

Figure 1: The transaction process in two payment paradigms

payment platform, order management is part of the service
and is tightly integrated. As a result, MC and MS only need
to interact with third-party systems to upload and obtain both
the payment and order status for an agreed upon fee.

On the other hand, for PPS, shown in Figure 1(b), a mer-
chant makes use of an independent order management system.
He/she also needs to register an account with the CS; how-
ever, the account is a personal account without the ability to
access the integrated order management system, and therefore
there is no commission fee imposed on the transactions. To
leverage the personal payment system for commercial trans-
actions, PPS provides a PPS Order Management Platform
(PMP), an additional platform offering the commercial pay-
ment functionalities traditionally provided by CS, such as
recording the transaction information, monitoring cash flow
in the transaction, and verifying the order status.

The transaction flow in PPS can be summarized as follows:
A merchant needs to register two accounts, one personal ac-
count at the third-party payment platform (i.e., CS) and a
merchant commercial account at the PMP. After the buyer
places an order, the payment information will be sent to the
CS while the order information is transmitted to the PMP.
When the contracted payment is made in the CS, the PMP
will then notify the MS to continue the order process. The
addition of an independent PMP in the order and payment
management process is the unique design element in this
ecosystem that avoids the transaction fee. To obtain payment
status, the merchant account at PMP has to keep monitoring
for the money transfer event at the CS.

2.3 PPS Abstracted Model

The abstracted model common to all PPSs is described in this
subsection, from the initial enrollment of the service to order

processing as well as order query.

2.3.1 Enrollment and Key Distribution/Update

Enrollment and initial key distribution - In order to use PPS,
a merchant needs to register for a personal account on the
third-party cashier server as well as a commercial account on
the payment management system in the PPS. After comple-
tion of the registration process of the merchant commercial
account on the PPS website, the enrollment process starts
with the initial key distribution. First, a unique key (hence-
forth referred to as KEY) is generated for each merchant
account. The KEY is distributed via the merchant account
web page on the PPS platform and can only be viewed via this
web portal. The initial KEY distribution process is protected
by common web-based security techniques using merchant
account authentication (i.e., logging in) at the PPS website.

Key update - While the initial key is only available via
the PPS website, it is also possible to request key renewals
subsequently and receive the updated keys via web APIs.
As a result, there are two ways PPS merchants can request
and receive key updates, via the PPS website or via a REST
API call. All the PPSs we studied support key update via
API. Furthermore, 88% of them do not require authentication.
More details can be found in section 3.1.

Common interface and order format - Almost all the PPSs
offer API-based payment service in some form. Specifics
about the order and the transacting parties are usually encap-
sulated in a JSON object sent through the order API (O-API).
Required fields often include order identifier, payment URL,
price, merchant ID as well as the signature that aims to pro-
tect the integrity of the object. This signature is also widely
referred to as the Token in many of the user documents. Sur-
prisingly, we found all PPSs use the MD5 mechanism to
generate the Token (i.e., single MD5 or multi-layer MD5).

MC MS PMP

1. orderrq

4. orderp 5.Token*=sign(...+KEY)
Token =? Token*

2. Token=sign(...+KEY)
generate orderp

3. orderp

8. Money transfer
monitoring

9. Order
checking

10. Payment
 notification

11. Payment
 notification

Order Generation

Order Payment

Payment Notification

6. Personal account

7. Payment

Figure 2: The transaction flow of PPS.

The input of MD5 is a string that concatenates all the related
order information (i.e., values in all fields) in an order packet
as well as the KEY. The ordering of all fields varies in differ-
ent PPSs. The most common approach is to order the fields
alphabetically.

2.3.2 Order Generation

When the user makes a purchase attempt, an order is generated
at MS and delivered to MC, as shown in Figure 2.

1. In the first step, MC generates an order request, denoted
as orderrq, and then sends it to MS. The orderrq often
contains only the minimal amount of information that is
necessary to associate the order with the merchandise,
such as the unique item identifier. Since the merchant
may offer multiple payment options, the buyer’s choice
is also included in this request.

2. After receiving the orderrq, MS generates the order
packet orderp, which contains detailed order parame-
ters for the requested merchandise, and a Token is also
generated using KEY to protect the integrity.

3. MS delivers orderp back to MC.

2.3.3 Order Payment

As shown in Figure 2, this stage includes five steps as follows.

4. MC sends the order packet orderp to PMP.

5. Upon receiving the order packet orderp, the PMP will
look up the stored KEY for the merchant specified in the
orderp, then use the received orderp and KEY to verify
the integrity of the order packet. Note that when PMP

receives multiple orders from one merchant with the
same price simultaneously, it might change the payment
amount by a tiny deviation on these orders so that PMP
can identify these orders by monitoring the paid amount.

6. The payment account information (i.e., the QR code of
the merchant’s personal account registered at the chosen
third-party platform) is sent to the MC.

7. The buyer pays the required amount to the merchant’s
personal account.

8. PMP monitors the merchant’s personal account for the
expected money flow. The actual implementation of how
the PMP can monitor the personal account of the mer-
chant differs among the PPSs under our study. For exam-
ple, some of the PPSs monitor the financial transactions
on the personal account of the merchant by installing a
client app on the merchant’s smartphone that will hook
into the notification interfaces of the third-party payment
platform apps. Even though merchants need to specif-
ically provide consent to such monitoring in order to
use the PPS, there are significant privacy and security
concerns with such designs. However, we will leave the
investigation of these apps for a another time.

2.3.4 Payment Notification

In this stage, PMP sends notification to both MS and MC after
confirming the payment. Three steps are included as follows:

9. Once the PMP detects the money paid to the merchant’s
personal account, PMP compares it to the expected paid
value of the pending orders.

10. A notification is then sent to the MS (via noti f y_url in
orderp) which includes the payment status code, order
ID, and/or monitored payment value, indicating whether
an order is successfully paid or not.

11. The same notification is also sent to the MC via the
return_url in orderp.

Notably, not all PPSs include the paid value in the notification
to MS in step 10. In fact, few PPSs include the price in the
notification. As mentioned in step 5, there can be small devia-
tions between the actual paid value and the item price. This
small deviation is a mechanism by which PMP distinguishes
different transactions from the same merchant by making
small adjustments to the price such that price is unique in
each transaction. Furthermore, MS is not informed of this
deviation in advance, therefore, they would be not able to
associate a money transaction with the order number. As a
result, the value of the price in the notification is often not
used, and only the order number and the payment status code
in the notification are used by MS to verify the success of the

PPS Processes

Vulnerabilities

Attacks

Order Generation Order Payment Payment
Notification

KEY Distribution

Payment Account
Delivery

Historical
Order Inquiry

 Lacking Actual
paid amount

Unprotected
Changing API

Malicious KEY
Changing

Local KEY
Storage

Order Tampering
with KEY

Packet Signature Generation

 Local Order
Generation Simple String

Concatenation

MD5 Token
Generation

MD5 Signature
Collision

String Shift in
Order Packet

 Lacking Order
Checking

Payment
Substitution

Figure 3: The Vulnerabilities and attacks in the PPS flows.

payment on a particular order in PPS. This unique design,
which ignores consistency in the order price of different order
processing stages, turns out to be problematic from a security
perspective, which will be discussed later in section 3.

After all the steps above, the payment transaction of one
order is completed as shown in Fig. 2, and the merchandise
can be shipped.

2.3.5 Order Inquiry in PPS

In PPS, the order management system is provided by PMP to
support the historical order inquiry service.

1. MS generates the query request (denoted as queryo),
which contains the merchant identification code (mer-
chantID), and the order ID (orderid). This request is
protected by the Tokenq.

2. MS sends this query packet queryo to PMP.

3. Upon receiving the queryo, PMP looks up the merchant
KEY based on the merchant ID in the queryo. Using the
KEY, PMP verifies the Token⇤

q in queryo.

4 Once the request is verified, PMP sends the inquiry result
queryres back to MS.

We also found that only the payment status code is included
in the queryres rather than the actual paid value in most of
the PPSs. In this case, the merchant has no way to look up
the actual payment value in historical orders. This creates an
opportunity for the attacker, since merchants would not be
able to go back and verify the payment value via the PMP.

3 Security Analysis

In this paper, we focus our analysis on the unique design
of PPS, involving three key parties MC, MS, and PMP. As
shown in Figure 3, there are five main stages as previously
described, from key distribution to order generation, order

payment, payment notification, and historical order inquiry.
We found seven unique vulnerable patterns in multiple stages
of the order processing pipeline. Based on these vulnerabili-
ties, we have created five proof-of-concept attacks.

3.1 Vulnerable KEY Distribution/Update
As discussed in Section 2.3.1, the unique KEY is assigned
when a merchant subscribes to the services and is often dis-
played on the PMP management web page. While accessing
the key via web management interface is well protected with
communication security mechanisms such as HTTPS, PPS
also provides REST APIs to allow merchants to manipulate
keys programmatically.

3.1.1 Unprotected Key Changing API

Through our study, we found that the web management
interface is well protected, however, the API allows pre-
authenticated requests to change KEY. In most of the PPSs
we studied, the API only requires merchant ID to change
KEY. The merchant ID is not a secret by design and can
be directly obtained by examining the order packet. As a re-
sult, an adversary, who has the merchant ID, can easily forge
a KEY change request from MS. This can lead to loss of
merchant KEY or disruption of merchant’s e-commerce.

3.1.2 Attack: Malicious KEY Changing

Taking advantage of this vulnerability, an attacker can first
obtain the merchant ID from various places including any
order packet sent from MC to PMP, then forge a key change
request.

In some PPSs, the new KEY is included directly in the
reply. Using the new KEY, the attacker can make arbitrary
modifications to the order requests from this MS. Unfortu-
nately, communication security mechanisms such as HTTPS
with TLS do not mitigate this attack since attacker is the party

Malicious Key
Changing Attack

Transmission with
HTTPS(TLS)

Remove New KEY
In Reply

KEY Changing with
AuthenticatIon

Steal New KEY DoS Attack on
Merchant

Protection Methods

Results inResults in

Disables

Disables

Cannot Disable

Figure 4: The attack, consequences, and protection in KEY
distribution.

making the requests, instead of eavesdropping or launching
man-in-the-middle attack over the network.

In other PPSs, the new KEY is not included in the reply,
and can only be accessed via the standard web portal. The best
an attacker can do is to leverage the interface to make frequent
key changes to disrupt merchant operations and achieve DoS.

The relationship between different attack results and protec-
tions against malicious use of KEY change APIs can be found
in Figure 4. It is possible to fix the root cause of this vulnera-
bility by mandating authentication on key change request. It
is also possible to limit the damage of a pre-authenticated key
change API by removing the new KEY from the reply. How-
ever, communication security mechanisms, such as HTTPS,
unfortunately cannot defend against key stealing attacks or
DoS since the attacker is the one making the API calls.

3.2 Vulnerable Order Generation
Theoretically, orders should be generated and signed at the
merchant server end before being delivered to the client. How-
ever, in practice, many implementations generate partial or
entire orders at the client. In other words, the order request
includes information fields that go directly into the final order
packet.

3.2.1 Local Order Generation

When the orders are generated locally, there are two secu-
rity implications. First, it implies that attackers can tamper
with some fields of a locally stored order. In many cases,
MS does not conduct additional cross validation, and then
the attacker can successfully manipulate an order. For ex-
ample, the attacker may reduce the price of an item. The
second implication is related to information leakage. When
the server performs additional validation, the attacker cannot
simply reduce the price by modifying the order request, but
he/she can still leverage the leaked information to help stage
more advanced attacks. For example, in the case of a hash
collision attack, which is described later in the section, it is

important that the attacker can manipulate fields in the order
to accommodate the spaces needed for near-collision blocks.

3.2.2 Local KEY Storage

The security of PPS mainly relies on the signature mechanism
to verify order packets, where KEY is essential as discussed
previously. However, to enable the local order generation,
some MC implementations store KEY in MC for convenience.
This allows an attacker to easily obtain the merchant’s KEY
by reverse engineering the MC program. With the KEY, an
attacker can make arbitrary modifications to the order packet
orderp.

3.2.3 Attack: Order Tampering with KEY

When the key is stored locally in MC, the attacker can easily
extract it by reverse engineering, and is able to make arbitrary
modifications to the order packet. After initiating the order
process with MS, the compromised MC can modify the or-
der price and generate a new order packet order

0
p with the

modified price using the stored KEY. Furthermore, almost all
MSs check the payment status code instead of the actual paid
value due to the unique arrangement of price adjustment in
PPS. Thus, they cannot notice such a price change. To make it
worse, there is actually no way for the MS to find the historical
payment value from PMP either, which we will discuss at the
end of this section.

3.3 Vulnerable Packet Signature Generation
Packet signing with the KEY to generate a Token is the most
important design aspect of the payment protocol in regards
to preventing order tampering. Our analysis revealed two
vulnerabilities.

3.3.1 String Concatenation in Token Generation

The first vulnerability falls in the process of string concate-
nation when generating a Token. As we have described in
Section 2.3.1, Token is generated by concatenating all items
(i.e., parameters and their values) in the order packet along
with the KEY into a string and inputting that string to the
MD5 algorithm. While there are PPSs that separate the fields
in the order with a special character, some PPSs simply con-
catenate all fields without any delimiter. As a result, when the
suffix of one field is shifted to the prefix of the next field in
the order packet, the generated Token does not change. This
allows an attacker to tamper with the order packet by shifting
some characters from one field to the next field.

3.3.2 Attack: Order Tampering using String Shift

To exploit this vulnerability, the attacker needs to take advan-
tage of several unique designs that are uniform to PPS. Since

PMP does not have the capability to store all the detailed
information (including pricing) for individual merchandise
from all the merchants, PMP has to rely on the received order
packet to obtain the merchandise price and certify whether
this price has been modified via the token. Additionally, since
MS lacks visibility in how PMP manipulates prices to multi-
plex orders, it needs to rely on the payment status flag in the
payment notification packet rather than the paid amount. As a
result, since neither MS nor PMP know what the correct pay-
ment amount is, if the adversary can forge an order that passes
verification on the token, then he/she can purchase any item
at a much lower price. While all the fields are well defined
using a JSON object, the signature verification is only over
the string concatenation of values from the consecutive fields.
This implies that the trailing bits of a field can be maliciously
shifted to the heading bits of the next field without impacting
the signature.

To give an illustrative example, let’s consider a price mod-
ification attack. To launch the attack, the attacker can shift
some suffix of a Price field into the neighboring return_url
field or optional fields. Figure 5 shows one example of this
operation, where we assume the Price field is 100 and the
neighboring return_url is “www.xxx.com". In this attack, the
attacker modifies the order packet orderp at Step 3 by moving
the last 0 in Price to return_url before sending it to PMP. That
is, one 0 in the Price field is shifted to the front of the URL
field. Then the modified packet will include the new price of
10, and the URL of 0www.xxx.com. return_url works as the
function of notifying MC of the payment status.

 100 www.xxxx.com
price Return_URL

 10 0www.xxxx.com
price Return_URL

 100www.xxxx.com KEY

Same in calculating Token

Figure 5: An example of the string shift in the order packet.

Since the string concatenation of the request has not
changed, the Token remains the same and can pass the verifi-
cation at PMP. As a result, the attacker only has to pay a tenth
of the price to purchase the item. However, because of the
modification on the return_url, his merchant client app will
not receive the notification, but the loss of this functionality
is not important for MC.

3.3.3 MD5-based Token Generation

The second vulnerability is from the use of weak hash cryp-
tographic primitives. From our empirical study, most of the
PPSs are using weak cryptographic primitives such as MD5
message-digest algorithms to generate the Token. There
have been extensive studies demonstrating the weakness of
MD5 [14, 19, 24, 49]. MD5 collision attack has been verified
and implemented in [49], in which two different inputs that

have the same prefix can generate the same output string.
Later, the chosen-prefix collision attack proposed in [41–44]
allows an attacker to change the prefix part of one input, but
still generate the same MD5 output. Consequently, an attacker
can maliciously modify some of the fields in the order packet
(e.g., price), but still generate the same Token for fooling
the PMP, even without the KEY. However, exploiting this
requires chaining several vulnerabilities together.

3.3.4 Attack: Order Modification based on MD5 Colli-
sion

Attackers have to take advantage of the vulnerabilities from lo-
cal order generation, in which some parameters are generated
at MC instead of MS, so that before the Token is generated at
the MS, they can create the collision based on the parameters
leaked at the MC. Different from the string shifting attack, by
leveraging collision attacks in the cryptographic hash function
attackers can make significant changes to the order. With this
attack it is possible to modify the values of the fields instead
of shifting bits from one field to its neighbor. Implementing
the MD5 signature collision in PPS should follow these three
steps:

Parameter Acquisition. To create the MD5 collision, the
attacker needs to obtain enough parameters from certain fields
in the order packet. Before the order packet has been signed,
the attacker can generate two packs of orders that differ in the
expected field, usually the price field, but result in the same
calculated MD5 value. The existing algorithm creates the
MD5 collision by generating the two different data blocks af-
ter the prefix, and as a result, an optional field behind the price
is necessary for placing the collision data blocks. Furthermore,
for MD5, if String1 and String2 collide, then appending the
same string before or after String1 and String2 would also
cause a collision. The attacker only has to obtain the param-
eters between the price and an optional field for creating a
collision.

Orders have a time window in which the payment can be
accepted. Since the time for calculating the MD5 collision is
usually longer than this window, capturing the packet after
the payment has been set up and then generating the collision
is impractical. However, we can predict the necessary param-
eters to practically implement the MD5 attack. Based on our
empirical studies, some PPSs put the price near the optional
field, usually named return_URL or orderuid, in addition to
some other possibilities. Then the attackers can create the
collision based only on two different prices. Moreover, some
parameters between the price and the optional field can be
obtained from other orders, such as noti f y_url, merchant ID,
and the merchandise name. These parameters can be eas-
ily obtained by applying for the payment and capturing the
network packet. The most difficult problem comes from the
condition where the order ID lies in the area between the price
and the optional field, since it varies in different orders. We

collected order IDs from some merchants and found that a
timestamp with a random sequence is the most common form.
For example, an order from xddpay platform contains the or-
der ID “20201009053425901798", where “20201009053425"
is the timestamp and “901798" is the random number. Based
on the demo provided for the PPS, the random sequence is
often created by the function “math.round(seed)". If the seed
does not specially assign but only adopts the default value,
which is the common situation in the sample code, the current
time will be used as the seed when calling the function, and
knowing that we can pre-calculate the random sequences to
predict the order ID.

MD5 Collision Generation. The Chosen-Prefix attack
method proposed in [43] can be employed by us to achieve
such a goal. Given two different prefixes (denoted as Prefix1
and Prefix2), two corresponding suffixes (denoted as suffix1
and suffix2) can be constructed so that the concatenated val-
ues of Prefix1||suffix1 and Prefix2||suffix2 collide under MD5,
with the time complexity of 239, where || denotes the concate-
nation of two strings.

The original price and the modified price are referred to as
P1 and P2 respectively. Since the attacker is most likely trying
to reduce the price he has to pay for an item, we assume P2,
the modified price, is a smaller value than P1. Here we assume
the optional field is a returnURL (this field is usually designed
as an optional field in our collected PPS protocols). One key
property of URL is that any content after # will be ignored,
therefore we can add # at the end of the URL and place the
near collision blocks after the # so that we can even eliminate
the influence of collision blocks in the order packet. Let S1 and
S2 be the generated suffixes, which are the collision blocks. By
using the Chosen-Prefix attack, the attacker can generate two
strings, P1||URL#||S1 and P2||URL#||S2, that collide in MD5
algorithm, as shown in Figure 6. Furthermore, the parameters
are delivered through JSON form, and some characters (i.e,
“ : {} []") are keywords. Any S1 or S2 that contains any of
those characters can cause parsing problems. In the practical
experiment, we will calculate multiple collision cases to avoid
this situation.

Parameters Replacing. Leveraging the vulnerability that
some order parameters are generated locally at the MC, the
attacker first prepares two sets of parameters with the same
MD5 value. The attacker then manipulates the MC to in-
clude P1||URL#||S1 in the order request packet orderrq to
purchase the merchandise. Once the order packet is sent back
to MC from MS after generating the MD5 Token, the attacker
replaces the field of P1||URL#||S1 with P2||URL#||S2 while
using the same token to generate a new packet order

0
p. The

attacker then sends it to PMP to continue the transaction
process. Figure 7 summarizes the procedure of this attack.

Price2...URL#

Price1...URL#

string2

string1

Prefix Suffix

KEY

Price2...URL#string2

Price1...URL#string1

Same MD5

Figure 6: MD5 collision for two pairs of order parameters.

Attacker/MC MS PMP

2. orderrq(data1)

6. orderp' 7.Token*=sign(...+KEY)
 Token= Token*

3. Token=sign(...+KEY)
 generate orderp(data1)

4. orderp

10. Payment
 monitoring
11. Money
 checking12. Payment

 notification13. Payment
 notification

1.generate data1(price),
 data2(price')

5. generate orderp' (data2)

8. Personal account

9. Payment

Figure 7: The flow of MD5 collision attack on PPS.

3.4 Vulnerable Payment Account Delivery

As shown in Figure 2, the merchant’s personal account will
be sent to the MC in QR code form after PMP has checked
the packet signature as part of the payment process. The
price will also be sent along with the QR code and displayed
on the payment webpage to prompt the user. In general, if
the displayed money amount is the same as the commodity
price, the user at MC will trust this information and make the
payment.

3.4.1 Lacking Order Checking Mechanisms

Most of the payment interfaces designed by the PPSs only
display the price, order ID, and QR code to the MC so that a
user can confirm and pay the bill. However, there is neither
information on the merchandise for the order nor the shipping
address. As a result, the order ID is the only clue a buyer can
use to associate the payment with the item he/she is trying
to purchase. However, since a buyer has no way to obtain
his order ID, he will trust the one displayed by the payment
interface. Even if the order has been substituted, the victim
buyer doesn’t notice the displayed order ID is not the one for
his order. It leaves the opportunity for an attacker to swap a
buyer’s order payment information with his/her own order
without the victim being aware .

Attacker/MC MS PMP

1.orderrq*

5. orderp

7.Order check

2. orderp*

10. Payment
 monitoring
11. Money
 checking12. Payment

 notification13. Payment
 notification

Victim/MC

3. orderrq

4. orderp

8. Personal account

9. Payment

6.orderp*

Figure 8: The flow of attack with payment substituting.

3.4.2 Attack: Payment Substitution

A payment substitution attack is shown in Figure 8. In this
attack, the attacker first performs the man-in-the-middle at-
tack to block the order, orderp, sent from the victim’s MC to
the PMP. Meanwhile, he obtains an order packet for his own
order, order⇤p. Then the attacker substitutes the order informa-
tion in the JSON field of orderp with that in the order⇤p and
sends this tampered order packet orderp to the PMP. Since
this order request was a legitimate one, PMP will gladly ac-
cept the request and return the corresponding payment infor-
mation to the victim’s client based on the unchanged header
information in orderp. The victim user, not knowing that his
order has been swapped, will pay for the order but cannot get
his purchased item, while the attacker gains his merchandise
without paying.

3.5 Vulnerable Historical Order Inquiry
Generally, it is desirable to have an order inquiry system that
can support queries on the details of previous transactions,
such as order id, payer id, goods’ name, and payment amounts.
However, we found that most of the inquiry APIs in PPSs
often return only a flag indicating whether an inquired order
is paid or not. This limitation is also a key facilitator for our
other attack in Sections 3.2.3, 3.3.2, and 3.3.4, since by the
inquiry API a merchant can never recognize that an order’s
price has been tampered with.

4 Empirical Study

In this section, we discuss our empirical study to analyze
the payment service from PPSs. Our goal is twofold. First,
we investigate the usage of PPS and expose security issues
existing in PPS by detecting the potential vulnerabilities as
we have discussed in Section 3. Second, we use case studies
to exhibit our attacks on some real-world payment applica-

Table 1: The list of collected 35 PPSs
PPS Names Website

Paysapi https://www.paysapi.com/
Xddpay https://www.xddpay.com
Sdpay https://www.sdpay.cc/doc/pay.html
020zf https://www.020zf.com

Weimifu http://weimifu.net/index.php
Pay10086 http://www.pay10086.com/docpay

Yktapi http://weimifu.net/yktApi/index.php
Xunhupay https://www.xunhupay.com
Paypayzhu https://www.paypayzhu.com
Caiwumao http://www.jiakeshuma.com
Userspay http://pay.userspay.com
Greenyep https://www.greenyep.com

Qianmapay http://qianma.app/
Bearpay http://www.bearpay.net
Xinyipay http://www.bosee.cn/index.html

Zhifu https://zf-api.com
BufPay https://bufpay.com
ARYA http://www.moont.cn
L pays http://lp.edlm.cn/
Paycats https://www.paycats.cn/
188PC http://188pc.cn
PayJS https://payjs.cn

Heimipay https://www.heimipay.com/
Fastpay http://www.weixin.mobi

Huanxipay https://www.zhapay.com
Yijinka http://www.yijinka.com/

PersonalPay http://www.personalpay.cn
Shouxiaoqian https://shouxiaoqian.com

XorPay https://xorpay.com
7CPay https://www.7cpo.com

Yuandianpay https://www.suyoupay.cn
Dunpay https://www.dunpay.net
Jupay http://pay.jam00.comk
XPay http://xpay.exrick.cn/

Sihupay http://jia.bendilaosiji.com/

tions supported by PPSs, demonstrating that the revealed
vulnerabilities can cause serious consequences in real-world
transactions.

4.1 PPS Ecosystem

We collect PPS systems primarily via internet search and fo-
rum topics that match common keywords for PPS, such as
“personal money collection”, “security payment interface”,
“visa-free”, among others. To this end, we found 35 PPSs,
listed in Table 1. Their vulnerabilities are shown in Fig. 9,
where the orange block represents that the PPS has the cor-
responding vulnerability and the red block indicates that the
PPS has fixed the vulnerability based on our feedback. PPS
names marked in red have temporarily stopped providing their
payment services after our investigation.

Existed Vulnerability Fixed Vulnerability after Our Report

Figure 9: The vulnerabilities distributions in the collected 35 PPSs, where the horizontal axis lists the names of PPSs and the
vertical axis lists the vulnerabilities that we have discussed in Section 3.

4.1.1 Discovering the Use of PPS in Merchant

The use of O-API, which is designed for the order interaction
between MC and PMP, is a strong indicator for the use of PPS
in the merchant system. Almost all of the O-APIs are in the
form of REST APIs at a URL. These URLs can be obtained by
automatically parsing the user documents, which are then used
to match against the source code of websites or applications.
In the case of websites, they are directly visible, while parsing
the mobile apps requires a basic reverse engineering tool such
as Androguard [3].

4.1.2 Usage Statistics of PPSs

PPSs are currently used in both websites and mobile apps,
with the web as the recommended method of deployment.
In web-based deployment, PPSs are incorporated as plugins
or website templates by the providers. Our study shows that
PPS’s plugins have been downloaded more than 11,611 times
according to the statistics of two popular repositories (i.e.,
Packagist and WordPress) and some data from PPS websites
[11, 28–30, 50, 51], covering at least 10 thousand merchants
and 20 million customers. Specifically, for one popular PPS,
FastPay [11], 1,292 merchants and 129 corporations are us-
ing its service to implement the payment function in their
products. The number of customers relying on this service
could be in the millions. For example, we have found more
than 10,000 customers that recharge the accounts and conduct
purchase services on the website of an SEO-related merchant
that adopts the Paysapi PPS. In terms of use of PPS in mobile
apps, a total of 26,956 apps were crawled from SnapPea and
Android Market app stores belonging to different categories.
We found 564 apps that contain the string of unique PPS in-
terface URLs. Through manual inspection, we found that 67
of them have employed PPS payment services, with average

Table 2: Signature Mechanisms of 35 PPSs
Order packet Order Inquiry Packet

One-layer MD5 30 31
Two-layer MD5 2 2

No signature 3 2

downloads of 2,000. These statistics evidence that PPS ser-
vice has become an emerging payment paradigm, attracting a
large number of merchants and individuals, and the adoption
of PPS is still growing rapidly. They also justify the necessity
and importance of our investigation.

4.2 PPS Vulnerability Analysis

4.2.1 Vulnerable Signature Mechanism

To our surprise, we found three PPSs that do not adopt any sig-
nature mechanism to protect the order packets in transmission,
i.e., no Token for integrity protection. The remaining 32 PPSs
leverage a weak cryptographic primitive, MD5 specifically,
for the token generation. 30 of them leverage the one-layer
MD5 algorithm while 2 of them adopt the two-layer MD5
algorithm, all of which can be broken by MD5 collision attack
(Section 3.3.4). For one-layer and two-layer MD5, the Token
is generated by Token=MD5(order parameters+KEY) and
Token=MD5(MD5(order parameters)+KEY), respectively.
In the order inquiry packet, 31 PPSs leverage the single layer
MD5 algorithm, and 2 PPSs adopt the two-layer MD5 algo-
rithm in the signature mechanism. The remaining two PPSs
do not require the packet signature for order inquiry. Table 2
summaries the token generation mechanisms of 35 PPSs.

Table 3: Price field position in string concatenation strategies
Separated Field Direct connection

Near optional field 3 0
Near Notify URL 4 12

Near Required Fields 13 1

4.2.2 Vulnerable String Concatenation

To discover this vulnerability, our analysis is based on two
criteria: 1) whether the values among different fields are sepa-
rated with delimiters or the field names, and 2) whether the
price field is nearby some optional field. Table 3 shows the
concatenation methods of all 32 PPSs that adopt signature
mechanisms. 13 PPSs have string concatenation without de-
limiters or the field name among neighboring fields, among
which 12 PPSs have the optional field of Return URL near
the price field. Here, the Return URL is the website address
MC jumps to after the payment behavior. When the value in
Return URL is modified, MC stagnates at the payment inter-
face page, but the transaction is still successfully placed at the
MS. As a result, these 12 PPSs are vulnerable to our proposed
string shift attack (Section 3.3.2). The remaining 20 PPSs
require the merchants to add a delimiter (i.e., &) between
any two fields or include the corresponding field name before
the values (e.g., “price=xxx”) in the concatenated string. Our
string shift attack does not work on these PPSs.

4.2.3 Vulnerable Key Changing API

We found that 31 out of 35 PPSs do not adopt signature mech-
anisms in the request packet and may be vulnerable to the
malicious key changing attack described in Section 3.1.2.
Additionally, among these 31 PPSs, 14 send new KEYs as
cleartext, allowing an attacker to intercept the packet and
obtain this new KEY.

4.2.4 Vulnerable Order Inquiry

All PPSs employed a cryptographic checksum, such as MD5,
in the inquiry request packet to prevent malicious order in-
quiry. In the response packet, we found that all 35 PPSs attach
the payment status, i.e., pending, error, and success, in the
response packet, represented by a status code, while only 3
PPSs include both the expected amount and actual value paid.
Without the expected and actual payment values, it becomes
impossible for the merchant to perform audits afterward, sig-
nificantly impacting financial operations should there be an
attack.

4.2.5 Vulnerable Payment Interface

As discussed previously, the payment interface can be crucial
in assisting the buyer to identify a payment swapping attack
in which an attacker swaps in his order to mislead the victim

Figure 10: A representative payment interface shown at the
MC in the PPS.

buyer into paying for the attacker’s order. We found that the
payment interfaces of all 35 PPSs display the order ID, the
expected amount, and the pay-to account (i.e., QR code), but
not buyer-oriented information, such as shipping address and
merchandise recipient. One representative interface is shown
in Figure 10. The order ID is the only information designed
for identifying the attribution of this payment account, but
according to our analysis it actually does not help buyers rec-
ognize the order attribution. Generally, when the displayed
price in the interface of these 24 vulnerable PPSs matches a
buyer’s expectation, he is prone to pay for it without checking
the order details. As a result, the attacker can easily perform
the payment substitution attack. There are 9 PPSs that pro-
vide additional order details such as product names. Such
additional information does help the user to recognize the
order substitution, which limits the attacker’s swap.

4.2.6 Missing Security Guideline in User Documents

One of the key questions we aim to answer is whether there
is clear and concise guidance on the best security practices
for developers. Since the majority of deployment vulnera-
bilities we found are related to local key storage, and the
historical order inquiry is the important step for identifying
tampered orders, we are focusing on the provided guidance
around these issues. Our analysis shows that more than half of
PPSs do not provide important security guidelines for either
KEY storage or order verification. According to our analysis
on 35 PPSs’ documents, we found only 15 of them give the
tip that the KEY must be kept in the MS. The lack of this
guideline has contributed to many developers using the re-
maining 20 PPSs mistakenly placing the KEY at MC. For
historical order inquiry, we only found 3 PPSs that suggest
merchants adding additional verification steps to record the
order payment history.

4.2.7 Insecure Network Transmission

Additionally, network transmission security is a common re-
quirement to prevent man-in-the-middle attacks. Insecure
network communication is one of the key enablers of theft
of important parameters transmitted between MS and PMP.
Although we do not mention this trivial attack in the security
analysis since it has a strict requirement to sniff the channel
between MS and PMP, we still provide related statistics here.
We find that among 35 PPS platforms, 17 PPSs use the HTTP
protocol to deliver the packet for the KEY changing response.
These 17 PPSs all place the new KEY in cleartext form in
the response packet. As a result, merchants adopting their
payment services are theoretically at risk of KEY sniffing
attacks.

4.3 Cases for Real-world Attacks
To validate the vulnerable patterns we analyzed, we conduct
several real-world attacks on our own merchant account to
understand the feasibility and limitations of these attacks.
The video recordings and related MD5 attack materials for
all attack experiments are provided in [9]. Note that all the
attacks demonstrated in our paper are launched against our
own merchant and user accounts, even though they apply
generally.

4.3.1 String Shift Attack

We choose the Paysapi website and perform the string shift
attack, aiming to recharge a certain amount to our registered
account but pay less than the amount. From our analysis, we
know that Paysapi has a vulnerable token generation method
which simply concatenates all the fields together before hash-
ing, i.e., it is vulnerable to the string shift attack discussed in
Section 3.3.2. We use the Fiddler 4 tool to intercept, counter-
feit, and re-send the transmission packet between our personal
computer and the Paysapi server.

We type 30 Chinese Yuan in the input field of Paysapi user
interface and send this order request to the merchant. After
the merchant sends the order packet back to the user interface,
we use the Fiddler 4 tool [5] to intercept the packet while
preventing the user from delivering it to the Paysapi server.
We manually shift the character “0” from the price field of the
order packet to the beginning of the return_url field and then
forward the new packet to the Paysapi server. The payment
interface will display only requiring 3 Chinese Yuan. After
the user pays 3 Chinese Yuan, the payment interface displays
the payment successfully; however, the website fails to show
the notification page. We check the balance in our account
and find it is 30 Chinese Yuan, but we only pay 3 Chinese
Yuan. This indicates the success of our attack without being
noticed by the Paysapi server. We left the balance as it and
notified merchant of this test without using it to purchase any
commodity for ethical consideration. The video recording of

our attack is shown in the file named “string_shift_attack.mp4”
in [9].

4.3.2 Key Changing Attack

We perform two real merchant-oriented attacks where the first
one targets disabling the merchant’s service and the second
one targets stealing KEY. Merchant accounts are registered
on two different PPSs, the Paysapi and the Xunhupay, Paysapi
includes the new key in the reply, while Xunhupay doesn’t.
Our goal is to demonstrate the vulnerabilities in the KEY
changing interface.

For the test on Xunhupay, we log in through the
merchant portal and see that the current KEY is
“r7Ep7kymuyQQE6taVQNF”. We operate the regis-
tered account and click the key changing button. Meanwhile,
we use the Fiddler 4 tool to monitor the request packet for
the key changing transmission to the PPS. PPS changes
the KEY to “hiTcAvcYicv24XjdcwRY”. However, PPS
does not send a response packet carrying the KEY. Instead,
the registered account needs to refresh his profile page to
see this new KEY. We extract the merchant ID information
from the monitored packet, forge a new request packet,
and send it to the PPS. PPS proceeds to change KEY to
“Tk7pK5BneK2373NuU76E”. As there is no response packet
sent from PPS to the registered account for KEY change, the
merchant’s service will be disabled until he refreshes his
profile page to notice the key is changed.

For the test on Paysapi, we log into the system and fol-
low the same steps as in the experiment above. However,
since Paysapi includes KEY in the response. It is possible
to steal the new key just by examining the key change re-
sponse. The video recordings of these two attacks are shown
in [9], with the files named as “disabled_attack.mp4” and
“key_stealing_attack.mp4”.

4.3.3 Payment Substitution Attack

The goal of this attack is to verify the ability of an attacker
to swap out the content of an order such that the victim pays
for the order of the attacker. Two user accounts are registered,
one for the victim and the other for the attacker. The victim
user and the attacker are placed in the same local area network
under the same router.

First, the victim opens his interface and clicks to recharge
the account with 10 Chinese Yuan. When the attacker moni-
tors that the victim is recharging the account with 10 Chinese
Yuan, he intercepts the packet sent from the merchant service
to the victim and blocks its transmission to the PMP. Mean-
while, the attacker clicks the recharging function in his ac-
count. We intercept the packet transported from the merchant
server to him without forwarding it to the PMP. We record the
important order parameters in this packet and replace them
with those in the intercepted packet from the victim. The new

substituted packet is then sent to the victim’s PMP. The pay-
ment interface is successfully shown on the victim’s website,
which does not show any order identity information. The vic-
tim makes the payment for the attacker’s order. We found
the balance in the attacker’s account is shown as 10 Chinese
Yuan now, but the balance in the victim’s account remains
unchanged. This indicates the success of our payment substi-
tution attack. The video recording of this attack is exhibited
in [9] with the file name of “substitution_attack.mp4”

4.3.4 MD5 Collision Attack

The goal of performing this attack is to verify that the MD5
collision attack is practical in real-world PPS systems. We
carefully choose the donation payment on a blog website as
the attack target since donating a lower amount will not cause
serious effects. We notified the owner of the blog for this ex-
periment. This blog employs the payment services provided
by Paysapi, whose Token generation mechanism arranges
the price directly in front of an optional field “ReturnURL”.
The donation price is set to be 0.02 Yuan, and the ReturnURL
can be obtained by capturing a normal order packet using the
Fiddler 4 tool so that the parameters for performing the MD5
collision attack can be collected. We use an open resource
on github [40] to calculate the chosen prefix MD5 collision
blocks, where the two prefixes differ in the price values, “0.01”
and “0.02”. The calculation was processed on a computer with
CPU: Intel i7-8700k, GPU: NVIDIA GeForce GTX1080 Ti,
and RAM: 64G, where the CUDA was employed. It takes 7
days to find a collision with the two prefixes where the colli-
sion block is free from JSON keywords and the MD5 value is
the same, “9f1ec604dce1bc1c0b1dd368dda3dd44”. We start
to make the payment (i.e., donation) on the blog and block the
network packet sent from MC to the MS. Since the price and
ReturnURL are generated in the website client, we modified
the price and ReturnURL fields with the collision block of 0.02
Yuan. After the order packet is signed at MS and sent back
to the MC, we again block and capture its transmission from
MC to the PMP server. The MD5 collision results are stored
in two “.bin” files; therefore, we use a hex editor to open the
blocked order packet and replace the price and the noti f yURL
with the collision block of “0.01” Yuan. This order passes the
PPS certification, and the payment interface is successfully
sent back to the website, then we pay for it at a lower price.
The two collision files in this attack are exhibited in [9] with
the file names of “prefix1.txt.coll” and “prefix2.txt.coll”.

4.4 Ethical Consideration and Responsible
Disclosure

4.4.1 Ethical Consideration on Real-world Attacks

We carefully designed and conducted our case study to avoid
impact on real-world entities. We have conducted the attack
on credit recharging transactions such that no real product

would be shipped as a result of the attack. In all experiments,
we made use of our test accounts created solely for demon-
strating the attacks. We also did not receive any services and
goods using the hijacked payment systems. At the end of our
experiments, we always let the authority know the detailed
procedures and results so that they can correct at the back
end.

4.4.2 Responsible Disclosure

We first reported all our findings to the PPS providers in Jan-
uary 2020. Unfortunately, no formal email responses were
received in the first round before March 2020, while 9 PPSs
providers, Bufpay, Xunhupay, 020zf, Paycats, Heimipay, Qian-
mapay, paysapi, Greenyep, and Xddpay, gave us feedback
through other online chat tools. During the second PPS in-
spection on August 2020, we found that 5 PPSs had updated
the payment protocols with safer string concatenation mecha-
nisms. The list of these PPSs is shown in Fig. 9. 12 of 35 PPSs
which possess multiple vulnerabilities stopped providing pay-
ment services after our report, including Yktapi, Caiwumao,
Weimifu, ARYA, L Pays, Xinyipay, 188pc, PersonalP, Yijinka,
7cPay, Yuandian, and Dunpay. We have also reported the vul-
nerabilities to the CVE on August 8th, 2020, and received
their vulnerability confirmation on August 10th, 2020. How-
ever, our reported issues do not match the requirements for
applying for a CVE ID.

As we will discuss in Section 5.1, some critical vulnera-
bilities are design flaws in the PPS protocols. Therefore, all
existing merchants supported by PPS are at risk. Since all
the PPSs adopt the personal money transfer service from the
Alipay and WeChat Pay third-party payment platforms, on
August 14th, 2020, we reported the vulnerable PPS list and
the security issues to the Security Response Center of Ten-
cent (WeChat Pay) and the Alibaba Security Response Center
(AliPay), which are responsible for the security of their pay-
ment ecosystem. The Alibaba Security Response Center has
confirmed our reported PPS issues on September 20, 2020,
and will continue to monitor technical reports in this area to
improve payment security in PPS.

5 PPS Vulnerability Summary

Through the lens of our study, PPS, an emerging payment
platform that aims to bring together the personal payment
account on third-party platforms and an independent order
management platform, still faces challenges in security and
usability despite its popularity. In this section, different at-
tacks are grouped and analyzed from different perspectives,
with the goal of shedding light on this new system’s security
in the future.

5.1 Flaws Classification
The vulnerable patterns described in Section 3 fall into issues
in either protocol or implementation.

• PPS Protocol Vulnerability - Protocol vulnerabilities are
due to insecure design in the payment protocol, and it
is very hard for the merchants to correct them by them-
selves. Among seven vulnerabilities, unprotected Key
changing API, simple String Concatenation in Token
Generation, MD5-based Token Generation, Lacking Or-
der Examining Mechanisms, and No Paid Value in Order
Inquiry fall into this category.

• Implementation Vulnerability - The vulnerabilities in
this category are often business and implementation spe-
cific, i.e., caused by a lack of understanding of either
the PPS API or secure design. Local Order Generation
and Local KEY Storage are the two majority vulnerabili-
ties in this category. Correcting these problems is easier,
requiring changes only at the client side.

5.2 Attack Classification
Based on the attack motivation, five attacks proposed in Sec-
tion 3 can be grouped into three categories as follows:

• Malicious User Attack. In this category, an attacker ma-
nipulates his own client in an attempt to benefit himself,
such as by reducing the price of the item under purchase.
The attacks of Order Tampering with KEY, String Shift
in Order Packet, and MD5 Signature Collision fall into
this category.

• Victim-oriented Attack. In this attack, the adversary can
intercept the communication packets between other users
(victim MC) and MS. His goal is to achieve financial gain
by manipulating network packets. Payment Substitution
attack belongs to this category.

• Merchant-oriented Attack. An attacker in this category
primarily aims to attack the merchant or other user from
the Internet, without access to the victim’s traffic or de-
vices. Malicious KEY Changing belongs to this type.

5.3 Defending the Attacks and Improvement
From the perspective of PPS providers, it is possible to make
the following changes: 1) KEY changing API should require
authentication; 2) The newly issued KEY should be transmit-
ted as ciphertext or via a secure connection such as HTTPs;
3) Adopt strong cryptographic primitives instead of MD5; 4)
Display clear payment and order information to users in a
unified manner; 5) Provide actual paid amount in both the
order payment status notification and the order inquiry results.

From the perspective of merchants, the following changes
might be beneficial: 6) KEY should never be stored at the
client side; 7) The order parameters should be generated and
signed at the server, and then transmitted to the user client;
8) Check the actual paid value for each order when receiving
the payment notification.

Finally, users need to carefully check order information: 9)
Always check the payment attribution information, such as or-
der ID, before making payment; 10) Avoid making payments
over insecure links.

6 Related Work

6.1 Security in Branchless Banking
The branchless banking system is the foundation of mod-
ern e-commerce, and its security has been studied in several
previous works. In particular, the analysis started with the
classic paper where Anderson first raised questions on the
security of banking systems [13]. Since then, there has been
extensive works done studying the enhancement of password-
based authentication in mobile banking [33, 39]. At the same
time, SMS-based mobile bank application is a common de-
sign which is vulnerable to attacks on messages [27], so there
have been plenty of studies aiming to improving such mecha-
nisms [16, 17, 26]. Even though there have been significant
amount of efforts on securing the mobile banking systems,
recent studies are still raising concerns on the security of ex-
isting systems [12, 22, 31, 32]. A comprehensive study of the
existing branchless banking applications in different coun-
ties was conducted in [35, 36]. By analyzing the application
communication flow, the authors found critical vulnerabilities
that can lead to compromised transaction integrity in six of
the seven applications. While these efforts are related to our
work, we are analyzing a new paradigm that couples online
banking and third-party management systems, which faces
unique problems in security.

6.2 Security in Online Payment System
The existing work on online and mobile payment systems
with third-party platforms mainly fall along two lines, i.e.,
web-based and in-app payment systems.

6.2.1 Web-based Payment System Analysis

For web-based payment systems, existing security analysis
has primarily focused on merchant websites that integrate
third-party platforms. In [48], Wang et al. focused on vulner-
abilities in several popular online stores that adopt third-party
payments, like PayPal and Amazon Pay. Dynamic protec-
tion strategies were proposed for automatically protecting the
third-party web services in [52]. In [46], the static detection
methods based on the symbolic execution framework were

proposed to detect the vulnerabilities in merchant websites.
Furthermore, [18, 34] generalized black-box detection tech-
niques across multiple web applications, with the analysis
based on network traces or user behaviors. [45] proposed
pattern-based attack methods to automatically generate test
cases for checking security issues of multi-party web applica-
tions.

6.2.2 In-app based Payment System Analysis

The other line of research focused on exploring the vulnerabil-
ities for in-app based payment systems. In [37], it was found
that attackers can bypass server-side validation in Google-
developed in-App Billing to make a purchase for free. Follow-
ing this line, a tool named VirtualSwindle was later proposed
in [25] to automatically target the in-app billing service for
shopping free in Android applications. Closely related to our
work is a systematical security analysis of third-party in-app
payment services in the Chinese market [53, 54]. They out-
lined seven secure design patterns for constructing a secure
transaction process and discussed the potential impact of not
following them.

6.2.3 Other Payment Methods Analysis

In [15], Chen et al. explored syndication payment services
by analyzing the user documentation via NLP-based tech-
niques on syndication services to detect logic vulnerabilities.
Moreover, credit, debit, and gift card usage in online payment
suffers from card counterfeiting. Using keyloggers and cam-
eras, attackers can steal card data and forge a copy [23]. By
monitoring network transmission, a counterfeit card can be
created to shop in the real world store [47]. To protect gift
card security, in [38], a new method to detect counterfeit gift
cards without needing to scan the original was proposed.

However, none of the existing work focuses on the Personal
Payment System (PPS), which is a newly emerged payment
service that has different system mechanisms and customers
from those explored in the existing work. To the best of our
knowledge, we are the first to offer a systematic study to
reveal security issues in PPS.

6.3 MD5 Collision Techniques
The payment system relies heavily on a secure signature mech-
anism to prevent packet transmission tampering. Since the
PPS system generally adopts the MD5 as the Token genera-
tion hash function, we reviewed works on the MD5 collision
attack to help examine payment security. The MD5 collision
was first noticed by Den Boer and Bosselaers in [19], which
demonstrated that two different vectors can produce an iden-
tical digest. In [49], a full MD5 collision was generated by
Xiaoyun Wang’s group, indicating that MD5 has gradually

become an insecure digest method. In addition, a practical
collision case of two X.509 certificates with different public
keys resulting in the same MD5 hash value was provided
in [24]. After that, plenty of works improved the MD5 colli-
sion approaches, from the identical prefix collision to the cho-
sen prefix while shortening the calculation time [14, 41–44],
demonstrating the weakness of MD5. In this paper, we lever-
age open resources to conduct the MD5 collision experiments
and design the attack scheme targeting the vulnerabilities in
the PPS payment process.

7 Conclusion

Personal Payment System (PPS) represents an emerging
paradigm where small business owners leverage an indepen-
dent management platform in combination with a personal
financial account on a third-party payment system to conduct
e-commerce. However, the added complexity in composing
the two independent services for payment transaction and
order management significantly increases the risk of secu-
rity vulnerabilities. In this paper, we studied the 35 most
widely used PPSs supporting more than 20 million users and
presented an abstracted model that captures the common de-
sign elements within these systems. In our security analysis
of these systems, we found 7 vulnerable patterns in these
designs. By chaining these vulnerabilities together, we pre-
sented 5 proof of concept exploits of these vulnerabilities.
Moreover, we also conducted four real-world attacks to allow
an attacker to purchase items at a lower price without a trace.
We have designed and conducted all the experiments on our
own accounts to minimize the impact on real customers. Fol-
lowing the practice of responsible disclosure, we have also
reported to and worked with vendors to fix some of the vul-
nerabilities. Lastly, we put forth a set of suggestions for future
deployments of PPS.

Acknowledgement

This work was supported in part by Louisiana Board of Re-
gents under Contract Numbers LEQSF(2018-21)-RD-A-24
and in part by US National Science Foundation under grants
CNS-1837519, CNS-1916926, and CNS-1948374.

References

[1] Alibaba security response center. https://security.
alipay.com/.

[2] Alipay. https://www.alipay.com.

[3] Androguard. https://github.com/androguard/

androguard.

[4] Apple pay. https://www.apple.com/apple-pay/.

[5] Fiddler 4. https://www.telerik.com/fiddler.

[6] Paypal. https://www.paypal.com/us/home.

[7] Tencent security response center. https://en.

security.tencent.com/.

[8] Venmo. https://venmo.com.

[9] Video records and md5 attack files for attacks in
the case stuty. https://www.dropbox.com/sh/

kbo321oaw03qils/AAAJSUmncKo3heKY0BOZnSi4a?

dl=0.

[10] Wexpay. https://pay.weixin.qq.com.

[11] Fastpay PPS. http://www.weixin.mobi/, 2020.

[12] Gilberto Marins de Almeida. M-payments in brazil:
Notes on how a country’s background may determine
timing and design of a regulatory model. Wash. JL Tech.
& Arts, 8:347, 2012.

[13] Ross Anderson. Why cryptosystems fail. In Proceedings
of the ACM Conference on Computer and Communica-
tions Security, pages 215–227, 1993.

[14] John Black, Martin Cochran, and Trevor Highland. A
study of the md5 attacks: Insights and improvements. In
Proceedings of International Workshop on Fast Software
Encryption, pages 262–277. Springer, 2006.

[15] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng
Wang, Kai Chen, and Wei Zou. Devils in the guidance:
Predicting logic vulnerabilities in payment syndication
services through automated documentation analysis. In
USENIX Security Symposium, pages 747–764, 2019.

[16] Ming Ki Chong. Usable authentication for mobile bank-
ing. PhD thesis, University of Cape Town, 2009.

[17] Sheila Cobourne, Keith Mayes, and Konstantinos
Markantonakis. Using the smart card web server in
secure branchless banking. In Proceedings of Inter-
national Conference on Network and System Security,
pages 250–263, 2013.

[18] G Deepa, P Santhi Thilagam, Amit Praseed, and Al-
wyn R Pais. Detlogic: A black-box approach for detect-
ing logic vulnerabilities in web applications. Journal
of Network and Computer Applications, 109:89–109,
2018.

[19] Bert Den Boer and Antoon Bosselaers. Collisions for
the compression function of md5. In Workshop on the
Theory and Application of of Cryptographic Techniques,
pages 293–304. Springer, 1993.

[20] eMarketer. Global mobile payment users
2019. https://www.emarketer.com/content/

global-mobile-payment-users-2019, 2019.

[21] eMarketer. Global mobile payment users
2019. https://www.emarketer.com/content/

china-mobile-payment-users-2019, 2019.

[22] Andrew Harris, Seymour Goodman, and Patrick Traynor.
Privacy and security concerns associated with mobile
money applications in africa. Wash. JL Tech. & Arts,
8:245, 2012.

[23] B Krebs. All about fraud: How crooks get the
cvv. http://krebsonsecurity.com/2016/04/

all-about-fraud-how-crooks-get-the-cvv/,
2016.

[24] Arjen K Lenstra, Xiaoyun Wang, and BMM de Weger.
Colliding x. 509 certificates. https://eprint.iacr.
org/2005/067, 2005.

[25] Collin Mulliner, William Robertson, and Engin Kirda.
Virtualswindle: An automated attack against in-app
billing on android. In Proceedings of the 2014 ACM
symposium on Information, computer and communica-
tions security, pages 459–470, 22014.

[26] Baraka W Nyamtiga, Anael Sam, and Loserian S Laizer.
Enhanced security model for mobile banking systems in
tanzania. Intl. Jour. Tech. Enhancements and Emerging
Engineering Research, 1(4):4–20, 2013.

[27] Baraka W Nyamtiga, Anael Sam, and Loserian S Laizer.
Security perspectives for USSD versus SMS in con-
ducting mobile transactions: A case study of tanzania.
international journal of technology enhancements and
emerging engineering research, 1(3):38–43, 2013.

[28] Packagist. Payjs PPS. https://packagist.org/

?query=PayJs, 2020.

[29] Packagist. Paysapi PPS. https://packagist.org/

?query=paysapi, 2020.

[30] Packagist. Xunhupay PPS. https://packagist.org/
?query=Xunhupay, 2020.

[31] Michael Paik. Stragglers of the herd get eaten: secu-
rity concerns for gsm mobile banking applications. In
Proceedings of the Eleventh Workshop on Mobile Com-
puting Systems & Applications, pages 54–59, 2010.

[32] Saurabh Panjwani. Towards end-to-end security in
branchless banking. In Proceedings of the 12th Work-
shop on Mobile Computing Systems and Applications,
pages 28–33, 2011.

[33] Saurabh Panjwani and Edward Cutrell. Usably secure,
low-cost authentication for mobile banking. In Pro-
ceedings of Symposium on Usable Privacy and Security,
pages 1–12, 2010.

[34] Giancarlo Pellegrino and Davide Balzarotti. Toward
black-box detection of logic flaws in web applications.
In NDSS, 2014.

[35] Bradley Reaves, Jasmine Bowers, Nolen Scaife, Adam
Bates, Arnav Bhartiya, Patrick Traynor, and Kevin RB
Butler. Mo (bile) money, mo (bile) problems: Analysis
of branchless banking applications. ACM Transactions
on Privacy and Security (TOPS), 20(3):1–31, 2017.

[36] Bradley Reaves, Nolen Scaife, Adam Bates, Patrick
Traynor, and Kevin RB Butler. Mo (bile) money, mo
(bile) problems: Analysis of branchless banking appli-
cations in the developing world. In Proceedings of the
24th USENIX Conference on Security Symposium, pages
17–32, 2015.

[37] Daniel Reynaud, Dawn Xiaodong Song, Thomas R Ma-
grino, Edward XueJun Wu, and Eui Chul Richard Shin.
Freemarket: Shopping for free in android applications.
In NDSS, 2012.

[38] Nolen Scaife, Christian Peeters, Camilo Velez, Hanqing
Zhao, Patrick Traynor, and David Arnold. The cards
aren’t alright: Detecting counterfeit gift cards using en-
coding jitter. In Proceedings of the IEEE Symposium on
Security and Privacy (SP), pages 1063–1076, 2018.

[39] Ashlesh Sharma, Lakshmi Subramanian, and Dennis
Shasha. Secure branchless banking. In Proceedings of
ACM SOSP Workshop on Networked Systems for Devel-
oping Regions (NSDR), 2009.

[40] Marc Stevens. Md5 and sha-1 cryptanalytic
toolbox. https://github.com/cr-marcstevens/

hashclash.

[41] Marc Stevens. On collisions for md5. https://www.

win.tue.nl/hashclash/, 2007.

[42] Marc Stevens, Arjen Lenstra, and Benne De Weger.
Chosen-prefix collisions for md5 and colliding x. 509
certificates for different identities. In Proceedings of
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–22.
Springer, 2007.

[43] Marc Stevens, Arjen K Lenstra, and Benne De Weger.
Chosen-prefix collisions for md5 and applications. Inter-
national Journal of Applied Cryptography, 2:322–359,
2012.

[44] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Ar-
jen Lenstra, David Molnar, Dag Arne Osvik, and Benne
De Weger. Short chosen-prefix collisions for md5 and
the creation of a rogue ca certificate. In Proceedings
of Annual International Cryptology Conference, pages
55–69. Springer, 2009.

[45] Avinash Sudhodanan, Alessandro Armando, Roberto
Carbone, Luca Compagna, et al. Attack patterns for
black-box security testing of multi-party web applica-
tions. In NDSS, 2016.

[46] Fangqi Sun, Liang Xu, and Zhendong Su. Detecting
logic vulnerabilities in e-commerce applications. In
NDSS, 2014.

[47] American Underworld. Report on carding, skimming.
https://www.youtube.com/watch?v=kbrU9Jwhww,
2012.

[48] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz
Qadeer. How to shop for free online–security analy-
sis of cashier-as-a-service based web stores. In IEEE
Symposium on Security and Privacy, pages 465–480,
2011.

[49] Xiaoyun Wang and Hongbo Yu. How to break md5 and
other hash functions. In Annual international confer-
ence on the theory and applications of cryptographic
techniques, pages 19–35, 2005.

[50] WordPress. Xunhupay PPS.
https://wordpress.org/plugins/

xunhu-wechat-payment-for-woocommerce/,
2020.

[51] WordPress. Xunhupay PPS.
https://wordpress.org/plugins/

xunhu-alipay-payment-for-woocommerce/,
2020.

[52] Luyi Xing, Yangyi Chen, XiaoFeng Wang, and Shuo
Chen. Integuard: Toward automatic protection of third-
party web service integrations. In NDSS, 2013.

[53] Wenbo Yang, Juanru Li, Yuanyuan Zhang, and Dawu
Gu. Security analysis of third-party in-app payment in
mobile applications. Journal of Information Security
and Applications, 48:102358, 2019.

[54] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing
Wang, Yueheng Zhang, and Dawu Gu. Show me the
money! finding flawed implementations of third-party
in-app payment in android apps. In NDSS, 2017.

