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Abstract—A number of applications require two-sample
testing of pairwise comparison data. For instance, in
crowdsourcing, there is a long-standing question of whether
comparison data provided by people is distributed sim-
ilar to ratings-converted-to-comparisons. Other examples
include sports data analysis and peer grading. In this paper,
we design a two-sample test for pairwise comparison data.
We establish an upper bound on the sample complexity
required to correctly distinguish between the distributions
of the two sets of samples. Our test requires essentially no
assumptions on the distributions. We then prove comple-
mentary information-theoretic lower bounds showing that
our results are tight (in the minimax sense) up to constant
factors. We also investigate the role of modeling assump-
tions by proving information-theoretic lower bounds for
a range of pairwise comparison models (WST, MST, SST,
parameter-based such as BTL and Thurstone).

I. INTRODUCTION

Data in the form of pairwise comparisons arises in
a wide variety of settings. For instance, when eliciting
data from people (say, in crowdsourcing), there is a long-
standing debate over two forms of data collection: asking
people to compare pairs of items or asking people to
provide numeric scores to the items. A natural question
here is whether people implicitly generate pairwise
comparisons using a fundamentally different mechanism
than first forming numeric scores and then converting
them to a comparison. Thus, we are interested in testing if
the data obtained from pairwise comparisons is distributed
in a manner similar to if the numeric scores were
converted to pairwise comparisons [21], [22]. Or, for
instance, in sports and online games, a match between two
players or two teams is a pairwise comparison between
them [10], [11]. Here again arises a natural question of
whether the relative performance of the teams has changed
significantly across a certain period of time (e.g., to design
an appropriate rating system [5]). A third example is peer
grading where students are asked to compare pairs of
homeworks [14], [21]. A question of interest here is
whether a certain group of students (female/senior/...)

grade very differently as compared to another group
(male/junior/...) [24].

Each of the aforementioned problems involves two-
sample testing. With this motivation, in this paper we
consider the problem of two-sample testing on pairwise
comparison data. Specifically, consider a collection of
items (e.g., teams in a sports league). The data we
consider comprises comparisons between pairs of these
items, where the outcome of a comparison involves one
of the items beating the other. In the two-sample testing
problem, we have access to two sets of such pairwise
comparisons, obtained from two different sources (e.g.,
the current season in a sports league forming one set of
pairwise comparisons and the previous season forming a
second set). The goal is to test whether the underlying
distributions (winning probabilities) in the two sets of
data are identical or (significantly) different.
Contributions. We now outline the contributions of this
paper, also summarized in Table I.

• We present a test for two-sample testing on pairwise
comparison data and associated upper bounds on
its sample complexity. Our test makes essentially
no assumptions on the outcome probabilities of the
pairwise comparisons.

• We prove information-theoretic lower bounds on the
critical testing radius for this problem. Our bounds
show that our test is minimax optimal for this problem.

• Finally, we investigate the role of modeling assump-
tions. We show that our test is minimax optimal under
WST and MST models. We prove an information-
theoretic lower bound under the SST and parameter-
based models. We also provide a computational lower
bound for the SST model with single observation per
pair of items, which matches the sample complexity
bound attained by our test.

Related literature. The problem of two-sample testing
of pairwise comparisons is at the intersection of two rich
areas of research – two-sample testing and analyzing pair-
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Model (M) Upper Bound Lower Bound Computational Lower Bound

Model-free ε2M ≤ c
I(k > 1)

kd
(Thm. 1) ε2M > c

I(k > 1)

kd
(Prop. 1) ε2M > c

I(k > 1)

kd

WST and MST ε2M ≤ c
1

kd
ε2M > c

1

kd
(Thm. 2) ε2M > c

1

kd

SST ε2M ≤ c
1

kd
ε2M > c

1

kd3/2
for k = 1, ε2M >

c

kd
(Thm. 4)

Parameter-based ε2M ≤ c
1

kd
ε2M > c

1

kd3/2
(Thm. 3) ε2M > c

1

kd3/2

TABLE I: In this table, we summarize our results for the two-sample testing problem in (1) for different pairwise
comparison models. Here, d denotes the number of items, and we obtain k samples (comparisons) per pair of items
from each of the two populations. The probability distributions of the outcomes are governed by the matrices P and
Q. In this work, we provide upper and lower bounds on the critical testing radius εM, defined in (3). The upper
bound in Theorem 1 is due to the test in Algorithm 1 which is computationally efficient. We note that the constant
c varies from result to result.

wise comparison data. The problem of two-sample testing
has a long history in statistics [15, and references therein].
Several recent works have studied the minimax rate of
two-sample testing for high-dimensional multinomials [2],
[27], [28], and testing for sparseness in regression [4],
[7]. We build on some of these ideas in our work. We
also note the paper [17] which proposes a kernel-based
two-sample test for distributions over permutations (i.e.
distributions over complete rankings and not pairwise
comparisons).

The analysis of pairwise comparison data goes back
to the seminal work [26] and subsequently [3] and [16].
A number of papers [6], [18], [20], [22, and references
therein] analyze parameter-based models such as the BTL
and the Thurstone models. Here the goal is usually to
estimate the parameters of the model or the underlying
ranking of the items. Of particular interest is [1] which
suggests some simple statistics to test for change in
the performance of sports teams over time, and leaves
designing principled tests as an open problem. To this end,
we provide a two-sample test without any assumptions
and with rigorous guarantees, and also use it subsequently
to conduct such a test on real-world data. Some recent
papers [9], [23], [25] focus on the role of the modeling
assumptions in estimation and ranking from pairwise
comparisons. We study the role of modeling assumptions
for two-sample testing and prove performance guarantees
for some pairwise comparison models.

II. PROBLEM SETTING

Our focus in this paper is on the two-sample testing
problem where the two sets of samples come from two
potentially different populations. Specifically, consider a
collection of d items. The two sets of samples comprise
outcomes of comparisons between various pairs of these

items. In the first set of samples, the outcomes are
governed by an unknown matrix P ∈ [0, 1]d×d. The
(i, j)th entry of matrix P is denoted as pij , and any
comparison between items i and j results in i beating j
with probability pij , independent of all else. We assume
there are no ties. Analogously, the second set of samples
comprises outcomes of pairwise comparisons between
the d items governed by a (possibly different) unknown
matrix Q ∈ [0, 1]d×d, wherein item i beats item j with
probability qij , the (i, j)th entry of matrix Q. For any
pair (i, j) of items, we let kpij and kqij denote the number
of times a pair of items (i, j) is compared in the first
and second set of samples respectively. Finally, we let
Xij denote the number of times item i ∈ [d] beats item
j ∈ [d] in the first set of samples, and let Yij denote
the analogous quantity in the second set of samples. It
follows that Xij and Yij are Binomial random variables
independently distributed as Xij ∼ Bin(kpij , pij) and
Yij ∼ Bin(kqij , qij). We adopt the convention Xij = 0
when kpij = 0, and Yij = 0 when kqij = 0, and
kpii = kqii = 0.
Hypothesis test. Consider any class M of pairwise-
comparison probability matrices, and any given parameter
ε > 0. Then the goal is to test the hypotheses

H0 : P = Q

H1 :
1

d
|||P −Q|||F ≥ ε,

(1)

where P,Q ∈M.

A. Hypothesis Testing and Risk

We now provide a brief background on hypothesis tests.
Consider the hypothesis testing problem defined in (1).
We define a test φ as φ : {kpij , k

q
ij , Xij , Yij}(i,j)∈[d]2 →

{0, 1}. Let P0 and P1 denote the distribution of the
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input variables under the null and under the alternate
respectively. Let M0 and M1 denote the set of matrix
pairs (P,Q) that satisfy the null condition and the
alternate condition in (1) respectively. Then, we define
the minimax risk as

RM = inf
φ
{ sup
(P,Q)∈M0

P0(φ = 1) + sup
(P,Q)∈M1

P1(φ = 0)},

(2)

where the infimum is over all {0, 1}−valued tests φ. The
corresponding critical radius is the smallest value ε for
which a hypothesis test has non-trivial power. Formally,
we define the critical radius as

εM = inf{ε : RM ≤ 1/3}. (3)

The constant 1/3 is arbitrary; we could use any specified
constant in (0, 1).1 In this paper, we focus on providing
tight bounds on the critical testing radius.
Some pairwise comparison models in the literature.
A model for the pairwise comparison probabilities is a set
of matrices in [0, 1]d×d. In the context of our problem
setting, assuming a model means that the matrices P
and Q are guaranteed to be drawn from this set. In this
paper, the proposed test and the associated guarantees
do not make any assumptions on the pairwise comparison
probability matrices P and Q, that is, we allow P and
Q to be any arbitrary matrices in [0, 1]d×d. However,
there are a number of popular models in the literature on
pairwise comparisons, and we provide a brief overview
of them here. In what follows, we let M ∈ [0, 1]d×d

denote a generic pairwise comparison probability matrix
and the models impose conditions on the matrix M .
Parameter-based models: A parameter-based model is
associated with some known, non-decreasing function
f : R → [0, 1] such that f(θ) = 1 − f(−θ) ∀ θ ∈
R. We refer to any such function f as being “valid”.
The parameter-based model associated to a given valid
function f is given by

Mij = f(wi − wj) for all pairs (i, j), (4)

for some unknown vector w ∈ Rd that represents the
notional qualities of the d items. It is typically assumed
that the vector w satisfies the conditions

∑
i∈[d] wi = 0

and that ‖w‖∞ is bounded above by a known constant.
Bradley-Terry-Luce (BTL) model: This is a specific

parameter-based model with f(θ) =
1

1 + e−θ
.

Thurstone model: This is a specific parameter-based
model with f(θ) = Φ(θ), where Φ is the Gaussian CDF.

1Our designed test can guarantee any desired error level, as discussed
in the sequel.

Strong stochastic transitivity (SST): The model assumes
that the set of items [d] is endowed with an unknown
total ordering π, where π(i) < π(j) implies that item i
is preferred to item j. A matrix M ∈ [0, 1]d×d is said to
follow the SST model if it satisfies Mij = 1−Mji for
every pair i, j ∈ [d] and the condition

Mi` ≥Mj` for every i, j ∈ [d]

such that π(i) < π(j) and for every ` ∈ [d]. (5)

Moderate stochastic transitivity (MST): The model as-
sumes that the set of items [d] is endowed with an
unknown total ordering π. A matrix M ∈ [0, 1]d×d is said
to follow the MST model if it satisfies Mij = 1−Mji

for every pair i, j ∈ [d] and the condition

Mi` ≥ min{Mij ,Mj`} for every i, j, ` ∈ [d]

such that π(i) < π(j) < π(`). (6)

Weak stochastic transitivity (WST): The model assumes
that the set of items [d] is endowed with an unknown
total ordering π. A matrix M ∈ [0, 1]d×d is said to follow
the WST model if it satisfies Mij = 1−Mji for every
pair i, j ∈ [d] and the condition

Mij ≥
1

2
for every i, j ∈ [d] such that π(i) < π(j).

Model hierarchy: Note that there is a structured hierar-
chy between these models, that is, {BTL, Thurstone} ⊂
parameter-based ⊂ SST ⊂ MST ⊂ WST ⊂ model-free.

III. MAIN RESULTS

We now present the main theoretical results of this paper.

A. Test and guarantees

Our first result provides an algorithm for the two-sample
testing problem (1), and associated upper bounds on its
critical radius. Importantly, we do not make any modeling
assumptions on the probability matrices P and Q. We
consider a random-design setup wherein for every pair of
items (i, j), the sample sizes kpij , k

q
ij are drawn iid from

some distribution D supported over non-negative integers.
Let µ and σ denote the mean and standard deviation of
distribution D respectively, and let p1 := PrZ∼D(Z = 1).
We assume that D has a finite mean and

µ ≥ c1p1; µ ≥ c2σ, (8)

for some constants c1 > 1 and c2 > 1. Many commonly
occurring distributions obey these properties, for instance,
Binomial distribution, Poisson distribution, geometric
distribution and discrete uniform distribution.
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Input : Samples Xij , Yij denoting the number of times item i beat item j in the observed kpij , k
q
ij pairwise

comparisons from populations denoted by probability matrices P,Q respectively
Test Statistic :

T =
d∑
i=1

d∑
j=1

Iij
kqij(k

q
ij − 1)(X2

ij −Xij) + kpij(k
p
ij − 1)(Y 2

ij − Yij)− 2(kpij − 1)(kqij − 1)XijYij

(kpij − 1)(kqij − 1)(kpij + kqij)
(7)

where Iij = I(kpij > 1)× I(kqij > 1).
Output : If T ≥ 11d, then reject the null.

Algorithm 1: Model-free two-sample test with pairwise comparisons

Our test is presented in Algorithm 1. The following
theorem characterizes the performance of this test, thereby
establishing an upper bound on the critical radius of this
two-sample testing problem in a random-design setting.

Theorem 1. Consider the testing problem in (1) withM
as the class of all pairwise probability matrices. Suppose
the number of comparisons between the two populations
kpij , k

q
ij are drawn iid from some distribution D that

satisfies (8) (for all i 6= j in the asymmetric setting and
all i < j in the symmetric setting). There is a constant
c > 0 such that if ε2 ≥ c

µd
, then the sum of Type I error

and Type II error of Algorithm 1 is at most 1
3 .

As a consequence of Theorem 1, to control the probability
of error, we get a sufficient condition on the (per pair)
sample complexity as k ≥ c

dε2 . Theorem 1 provides an
upper bound of 1

3 on probability of error, and this number
is closely tied to the threshold used in the test above.
More generally, for any specified constant ν ∈ (0, 1),
the test achieves a probability of error at most ν by

setting the threshold as d
√

24(2−ν)
ν , with the same order

of sample complexity as in Theorem 1. Moreover, if
the sample complexity is increased by some factor R,
then running Algorithm 1 on R independent instances
of the data and taking the majority answer results in
exponential (exp(−2R)) decrease in probability of error.
Finally, we note that a sharper but non-explicit threshold
can be obtained using the permutation test method [8]
to control the Type I error.
Proof Sketch for Theorem 1. The test statistic T in (7)
is designed to ensure that EH0

[T ] = 0 for any values of
{kpij , k

q
ij}1≤i,j≤d. We lower bound the expected value of

T under the alternate hypothesis as EH1 [T ] ≥ cµd2ε2.
Next, we prove upper bounds for Var[T ] under both the
null and the alternate. This allows us to choose a threshold
value of 11d. Finally, using Chebyshev’s inequality, we
obtain the claimed upper bound on the sample complexity
with guarantees on Type I and Type II error.

B. Information-theoretic converse results and the role of
modeling assumptions

In this section we look at the role of modeling
assumptions on the pairwise comparison probability
matrices in the two-sample testing problem in (1).
Information-Theoretic Lower Bound for MST Class.
Having established an upper bound on the rate of two-
sample testing without modeling assumptions on the
pairwise comparison probability matrices P,Q, we show
matching lower bounds that hold under the MST class.

Theorem 2. Consider the testing problem in (1) with
M as the class of matrices described by the MST model.
Suppose we have k comparisons for each pair (i, j) from
each population. There exists a constant c > 0, such that
the critical radius εM is lower bounded as ε2M >

c

kd
.

This lower bound matches the bound derived for Al-
gorithm 1 in Theorem 1, thereby establishing the
information-theoretic minimax optimality of our algo-
rithm (up to constant factors) under MST, WST modeling
assumptions in addition to the model-free setting. We
provide a proof sketch for Theorem 2 in Section III-B.
Necessity of µ > p1. Recall that the upper bound derived
in Theorem 1 under the model-free setting holds under
the assumption that µ ≥ c1p1 with c1 > 1, as stated
in (8). We now state a negative result for the case µ ≤ p1
(which implies that kpij , k

q
ij ≤ 1∀ (i, j)).

Proposition 1. Consider the testing problem in (1) with
M as the class of all pairwise probability matrices.
Suppose we have at most one comparison for each
pair (i, j) from each population (for all i 6= j in the
asymmetric setting and all i < j in the symmetric setting).
Then, the critical radius in (3) does not exist, that is, for
any value of ε, the minimax risk is at least 1

2 .

If kpij = kqij ≤ 1∀ (i, j), then at best we have first order
information of each entry of P and Q, that is, one has
access to only Pr(Xij = 1),Pr(Yij = 1),Pr(Xij =

1274

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 16,2021 at 20:29:06 UTC from IEEE Xplore.  Restrictions apply. 



1, Yij = 1) for each pair (i, j). This observation leads to
an example where the null and the alternate cannot be
distinguished from each other by any test.
Information-Theoretic Lower Bound for Parameter-
Based Class. We now prove a lower bound for our
two-sample testing problem (1) wherein the probability
matrices follow the parameter-based model.

Theorem 3. Consider the testing problem in (1) with
M as the parameter-based class of probability matrices.
Suppose we have k comparisons for each pair (i, j) from
each population. There exists a constant c > 0, such that
the critical radius εM is lower bounded as ε2M >

c

kd3/2
.

This lower bound also applies to probability matrices in
the SST class described in (5). We provide a brief proof
sketch in Section III-B.
Computational Lower Bound for SST Class. Given the
gap between Theorem 1 and Theorem 3, it is natural to
wonder whether there is another polynomial-time testing
algorithm for testing under the SST and/or parameter-
based modeling assumption. We answer this question in
the negative, for the SST model and single observation
setup (k = 1), conditionally on the average-case hardness
of the planted clique problem [12], [13]. In informal
terms, the planted clique conjecture asserts that there is
no polynomial-time algorithm that can detect the presence
of a planted clique of size κ = o(

√
d) in an Erdős-

Rényi random graph with d nodes. We construct SST
matrices that are similar to matrices in the planted clique
problem. Then, as a direct consequence of the planted
clique conjecture, we have the following result.

Theorem 4. Consider the testing problem in (1) with
M as the class of matrices described by the SST model.
Suppose the planted clique conjecture holds. Suppose
we have one comparison for each pair (i, j) from each
population. Then there exists a constant c > 0 such that
for polynomial-time testing algorithms the critical radius
εM is lower bounded as ε2M >

c

d
.

Thus, for k = 1, the computational lower bound on the
testing rate for the SST model matches the rate derived
for Algorithm 1 (up to constant factors).

Proof sketches for Theorem 2 and Theorem 3: To
prove the information-theoretic lower bound under the
different modeling assumptions, we construct a null
and alternate belonging to the corresponding class of
probability matrices. The bulk of our technical effort is
devoted to upper bounding the χ2 divergence between
the probability measure under the null and the alternate.

We then invoke Le Cam’s lower bound for testing to
obtain a lower bound on the minimax risk which gives
us the information-theoretic lower bound. We now look
at the constructions for the two modeling assumptions.
Lower bound construction for MST class. We construct
a null and alternate such that under the null P =
Q = [ 12 ]d×d and under the alternate P = [ 12 ]d×d and
Q ∼ Unif(Θ) with 1

d |||P −Q|||F = ε. Here Θ is a set of
matrices following the MST model, in which the upper
right quadrant has exactly one entry equal to 1

2 + η in
each row and each column and the remaining entries
above the diagonal are 1

2 . The entries below the diagonal
follow from skew symmetry.
Lower bound construction for parameter-based class.
The construction is same as the construction given above
except we define a different set Θ of probability matrices.
According to the parameter-based model, the matrices
P and Q depend on the vectors wp ∈ Rd and wq ∈ Rd
respectively. Now, for simplicity in this sketch, suppose
that d is even. We set wp = [0, · · · , 0], which fixes
pij = 1

2 ∀ (i, j). For the alternate, consider a collection
of vectors, wQ, each with half the entries as δ and the
other half as −δ, thereby ensuring that

∑
i∈[d] wi = 0.

We set δ to ensure that each of the probability matrices
induced by this collection of vectors obey 1

d |||P−Q|||F = ε.
We then consider the setting where Q is chosen uniformly
at random from the set of pairwise comparison probability
matrices induced by the collection of values of wQ.

IV. DISCUSSION

In an extended version of this paper, we use our test to
understand two important empirical questions based on
real-world datasets. In a setting where crowdsourcing
workers provide ratings and comparisons over a set
of objects, our test concludes there is a statistically
significant difference (p = 0.003) between comparisons
and ratings-converted-to-comparisons given by people.
As a second experiment, we test for difference in relative
performance of teams in consecutive seasons of the
European football leagues and our test does not find
any significant difference (p = 0.97).

On the theoretical front, there is a gap between the
testing rate of our algorithm and our information-theoretic
lower bound for the SST and parameter-based models,
and closing this gap is an open problem of interest. In the
future, our work may also help address open problems
of two-sample testing pertaining to more general aspects
of data from people such as partial or total rankings [17],
function evaluations [19], and strategic behavior [29].
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[13] L. Kučera. Expected complexity of graph partitioning problems.
Discrete Appl. Math., 57, 1995.

[14] A. Lamon, D. Comroe, P. Fader, D. McCarthy, R. Ditto, and
D. Huesman. Making WHOOPPEE: A collaborative approach
to creating the modern student peer assessment ecosystem. In
EDUCAUSE, 2016.

[15] E. L. Lehmann and J. P. Romano. Testing statistical hypotheses.
Springer Texts in Statistics. Springer, third edition, 2005.

[16] R. D. Luce. Individual choice behavior: A theoretical analysis.
New York: Wiley, 1959.

[17] H. Mania, A. Ramdas, M. J. Wainwright, M. I. Jordan, and
B. Recht. On kernel methods for covariates that are rankings.
Electronic Journal of Statistics, 12(2):2537–2577, 2018.

[18] S. Negahban, S. Oh, and D. Shah. Iterative ranking from pair-
wise comparisons. In Advances in neural information processing
systems, 2012.

[19] R. Noothigattu, N. B. Shah, and A. D. Procaccia. Loss functions,
axioms, and peer review. arXiv preprint arXiv:1808.09057, 2018.

[20] A. Rajkumar and S. Agarwal. A statistical convergence perspective
of algorithms for rank aggregation from pairwise data. In ICML,
pages 118–126, 2014.

[21] K. Raman and T. Joachims. Methods for ordinal peer grading. In
Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1037–1046,
2014.

[22] N. B. Shah, S. Balakrishnan, J. Bradley, A. Parekh, K. Ram-
chandran, and M. J. Wainwright. Estimation from pairwise
comparisons: Sharp minimax bounds with topology dependence.
JMLR, 17(1), 2016.

[23] N. B. Shah, S. Balakrishnan, A. Guntuboyina, and M. J. Wain-
wright. Stochastically transitive models for pairwise comparisons:

Statistical and computational issues. IEEE Transactions on
Information Theory, 63(2):934–959, 2017.

[24] N. B. Shah, B. Tabibian, K. Muandet, I. Guyon, and
U. Von Luxburg. Design and analysis of the NIPS 2016 review
process. JMLR, 19, 2018.

[25] N. B. Shah and M. J. Wainwright. Simple, robust and optimal
ranking from pairwise comparisons. JMLR, 18(199):1–38, 2018.

[26] L. L. Thurstone. A law of comparative judgment. Psychological
Review, 34(4):273, 1927.

[27] G. Valiant and P. Valiant. An automatic inequality prover and
instance optimal identity testing. SIAM Journal on Computing,
46(1):429–455, 2017.

[28] P. Valiant. Testing symmetric properties of distributions. SIAM
Journal on Computing, 40(6), 2011.

[29] Y. Xu, H. Zhao, X. Shi, and N. B. Shah. On strategyproof
conference peer review. In IJCAI, 2019.

1276

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on December 16,2021 at 20:29:06 UTC from IEEE Xplore.  Restrictions apply. 


